Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Alibardi, Luca (2008) Innovative treatment of tannery sludge. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1250Kb

Abstract (inglese)

The Italian tan line of industrial activity is characterized by 2,400 companies and 30,300 workers. The companies are concentrated in four main industrial poles: S. Croce sull'Arno in Toscana, Arzignano and Valle del Chiampo in Veneto, Solofra in Campania and Turbigo Castano in Lombradia. The Italian tan activity is leader in the European Union and in the World too. The wastewater produced during the tan activity is collected to centralized industrial wastewater treatment plants. The most common depuration treatment of this wastewater is biological activated sludge. The excess sludge produced during the treatment process contents all the pollutants removed from water and it is still a waste to treat and dispose off. The tannery sludges are currently a big ecological and environmental problem in Europe and in Italy, too. The production in Italy is around 280.000 tons every year. No process carried out up to now, has been successful for a reuse of the sludge and the only possible destination remains the landfill.
The aim of the current research work is to analyze the capacity of some biological treatments to be applied in the management system of tannery sludge. The target is to reach the social and environmental sustainability of management system of tannery sludge.
The research work has regarded four topics: minimization of sludge and energy saving, aerobic stabilization of dry tannery sludge, biological hydrogen production from tannery sludge and environmental sustainability of tannery sludge landfill.
Energy saving can be achieved evaluating the optimal conditions for the thermal drying system of tannery sludge. The optimization of the thermal drying system aims to characterize the minimum value of total solids content of the sludge, that inhibits or that stops the biological activity of degradation of organic substances in the sludge. The minimum total solid content emerged in the research work seems to be 75%. Consequently an amount of moisture of 25% is not sufficient to support microbial activity, and the dry sludge does not show appreciable biological degradation processes, independently by he biodegradability of organic substances in the sludge.
Aerobic stabilization of mechanically dried tannery sludge before landfill, has the targets of stabilization of organic substances and reduction of water content. The advantages of a preliminary aerobic treatment are the reduction of environmental impacts of landfilling, better disposal conditions and low costs for treating plant investment and management. The results seem to be encouraging for the development of an aerobic treatment technology for the stabilization of tannery sludge. The treatment seems to work though the negative characteristics of the tannery sludge. Volatile solid content has been reduced, moisture content has been reduced depending on aeration rate, leachability of metals has been reduce. Even the biological activity, measured by respiromentric test and fermentative test, has reached the values suggested in the international literature as stable waste conditions.
Biological hydrogen production is an interesting opportunity to produce hydrogen from renewable source, at low costs and sustainable environmental impacts. The biological processes are not only environmental friendly, but also they lead to open a new avenue for the utilization of renewable energy sources which are inexhaustible. For the investigation of the biological production of hydrogen by dark fermentation, laboratory tests have been conducted at a mesophilic process temperature of 35°C in batch operation. The results show a good production of hydrogen from glucose and also from Kitchen Waste. The hydrogen production from tannery sludge has been comparable with the results from kitchen waste but with slower production rate and long lag phase. The methane production has not been avoided. Probably the low biodegradability of tannery sludge and the fact that this substrate contents different types of biomass allows methanogenic bacterial to maintain or establish again their activity.

The last part of present research work has been set up to understand the behaviour of tannery sludge dispose of in sanitary landfill, especially when the barrier systems will fail and it has regarded the evaluation of the sustainability of landfill disposal of dry tannery sludge. The emission of biogas and quality of leachate indicate that the degradation of organic substances start quickly and the thermal drying treatment does not sterilize the sludge. The biogas emissions and the leachate quality do not indicate a sustainable condition. Comparing these conditions with lysimeters contatining aerobically stabilize tannery sludge, the good effects of pre-treatment can be observed. The biogas production has been very low. Comparing the concentration of metals of lysimeters containing pre-treated sludge and not pre-treated sludge, it is possible to understand the effects of biological stabilization of sludge and the advantages to reach the environmental sustainability of landfill.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cossu, Raffaello
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE > INGEGNERIA PER L'AMBIENTE E IL TERRITORIO
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Tannery sludge, aerobic stabilization, biological hydrogen production, sustainable landfill.
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/03 Ingegneria sanitaria-ambientale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica
Codice ID:767
Depositato il:07 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abbassi B., dullstein S., Rabiger N., 2000. Minimization of excess sludge production by increasing oxygen concentration in activated sludge flocs: experimental and theoretical approach. Water Research 34, 139-146. Cerca con Google

2. Adani F., Scatigna L., Genevini P.L., 2000. Biostabilization of mechanically separated municipal solid waste and fraction. Waste Management & Research. 18, 1-9. Cerca con Google

3. Adani F., Lozzi P., Genevini P.L., 2001. Determination of biological stability by oxygen uptake on municipal solid waste and derivated products. Compost Science & Utilization, 9 (2), 163- 178. Cerca con Google

4. Alibardi L., Lavagnolo M.C., Cossu R., 2005. Aerobic stabilization of tannery sludge. Proceeding Sardinia 2005, Tenth International Waste Management and Landfill Symposium. CISA, Cagliari. Cerca con Google

5. Alibardi L. 2006. Produzione biologica di idrogeno da rifiuti organici. Seminario-Workshop “Gestione della sostanza organica putrescibile nello smaltimento dei rifiuti solidi” Montegrotto Terme (Pd), 5-7 aprile. CISA, Centro di Ingegneria Sanitaria Ambientale, Italia. Cerca con Google

6. Alibardi L., Cossu R., 2006. Biological hydrogen production from organic waste and biomass. Proceedings Venice 2006, Biomass and Waste to Energy Symposium, Venice, Italy, 29 November-1 Dicember. Cerca con Google

7. Alibardi L., Cassetta E., Manoli G., Cossu R., 2007. Biological hydrogen production from organic waste. Proceedings Sardinia 2007, Eleventh International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 1- 5 October. Cerca con Google

8. Alibardi L., Cossu R., 2007. Aerobic stabilization of tannery sludge mixed with compost, Proceedings Sardinia 2007, Eleventh International Waste Managment and Landfill Symposium, S.Margherita di Pula, Cagliari, Italy 2007 Cerca con Google

9. Andreottola G., Foladori P., 2006. A review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants. Journal of Environmental Science and Health part A 41, 1853-1872. Cerca con Google

10. Apat, 2005. Linee guida sulla digestione anaerobica della frazione organica dei rifiuti solidi. Cerca con Google

11. APAT Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici, Rapporto rifiuti 2006. APAT. Cerca con Google

12. APAT Agenzia per la Protezione dell’Ambiente r per i Sevizi Tecnici, Studio sui fattori di produzione dei rifiuti nel settore conciario, Rapporto 2006, APAT Cerca con Google

13. Archer D.B., Kirshop B.H., 1990. The microbiology and control of anaerobic digestion. Anaerobic Digestion: a Waste Treatment, Critical reports on applied chemistry, Vol.31, Edited by A.Weathley, pp.45-48. Cerca con Google

14. Bernal M.P., Paredes C., Sanchez-Monedero M.A., Cegarra J., 1998. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology & Biochemistry 30, 305-313. Cerca con Google

15. Bramryd, T. and Binder, M. (2007). Environmental and efficiency evaluation of different prestabilization techniques for solid wastes. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

16. Bogner, J., K., R., and Spokas, K. (2007). Dynamic water balance aspects of bioreactor landfills. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

17. Boni M. R., Virdis L., 2006. The conversion of lignocellulosic wastes into biohydrogen and methane. Proceedings Venice 2006, Biomass and Waste to Energy Symposium, Venice, Italy, 29 November-1 December Cerca con Google

18. Cabrero A., Fernandez A., Mirada F., Carcia J., 1998. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Research 32, 1355-1362. Cerca con Google

19. Calli B., Vanbroekhoven K., 2006. Dark fermentative hydrogen production at thermophilic temperature – effect of pH. Orbit 2006, part 3, pp 885-892. Cerca con Google

20. Camilli M., Boni M.R., Robertiello A., Virdis L., 2006. Produzione fermentativa di idrogeno da rifiuti lignocellulosici: screening per un inoculo alto produttore. Rifiuti Solidi, vol XX n. 6 novembre-dicembre 2006. Cerca con Google

21. Chiaramonti D., Martelli F., Galante R., Celli M., Bolognesi D., Zoppi M., 2005. Produzione di idrogeno da fonti fossili e rinnovabili. Dipartimento di Energetica “S.Stecco” – Università degli Studi di Firenze e CNR - Istituto di Fisica Applicata “N.Carrara”. Cerca con Google

22. Chica A., Mohedo J.J., Martin M.A., Martin A., 2003. Determination of the stability of MSW compost using a respiromentric technique. Compost Science and Utilization 11, 169-175. Cerca con Google

23. Chiudenti A., Lavagnolo M.C., 2003. Aerobic stabilitation of tannery sludge in a pilot scale composting plant. Proceeding Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, Cagliari. Cerca con Google

24. Cioli A., Daddi P., Mori F., Arrighi A., 1999. Plant for the mechanical selection of MSW and for the aerobic stabilization of the organic fraction. Proceeding Sardinia 99, Seventh International Waste Management and Landfill Symposium. CISA, Cagliari. Cerca con Google

25. Cook G.M., Russell J.B., 1994. Energy-spilling reaction of Streptococcus bovis and resistance of its membrane to proton conductance. Applied Environmental Microbiology 60, 1942-1948. Cerca con Google

26. Cossu R. (1995). The multi-barrier landfill and related engineering problems. Proceedings of Sardinia 95. Fifth International Landfill Symposium. CISA publisher, Cagliari, Italy, vol. I, 3- 28. Cerca con Google

27. Cossu R.,Negrin A., Raga R., Sandon A. Metodologie per la valutazione della stabilità biologica dei rifiuti. Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica (IMAGE). Università di Padova. Cerca con Google

28. Cossu R., Raga R., Vascellari V., 1999. Comparison of different stability criteria for MBP waste in view of landfilling. Proceeding Sardinia 99, Seventh International Waste Management and Landfill Symposium. CISA, Cagliari. Cerca con Google

29. Cossu, R., Laraia, R., Adani, F., Raga, R., 2001. Test methods for the characterization of biological stability of pretreated municipal solid waste in compliance with EU directives. Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium, 1–5 October 2001. CISA, Italy. Cerca con Google

30. Cossu R. (2004). La discarica sostenibile ed il suo ruolo nella gestione dei rifiuti solidi; IWWG Seminar, Abbazia di Praglia, 19-21 may 2004, Eurowaste, Padova. Cerca con Google

31. Cossu R., Raga R., Vettorazzi G., 2005. Carbon and Nitrogen mass bilance in some landfill models fro sustainability assessment. Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 3 - 7 October, CISA, Italy Cerca con Google

32. Cossu R., 2006. La problematica della gestione della sostanza roganica putrescibile nello smaltimento dei rifiuti solidi. Seminario – Workshop “Gestione della sostanza organica putrescibile nello smaltimento dei rifiuti solidi” Montegrotto Terme (Padova), 5-7 aprile 2006 CISA, Italy Cerca con Google

33. Cossu, R., Lai T. and Piovesan E. (2007). Proposal for a methodology for assessing the final storage quality. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

34. Cossu R., Raga R., 2008. Test methods for assessing the biological stability of biodegradable waste. Waste Management 28, 381-388. Cerca con Google

35. Davis R.D., Hall J.E., 1997. Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. European Water Pollution Control 7(2), 9-17. Cerca con Google

36. De Gioannis G., Muntoni A., 2006. Gestione integrata dei rifiuti urbani e delle acque di rifiuto – opportunità offerte dalla digestione anaerobica tradizionale e dalla produzione di idrogeno. Seminario – Workshop “Gestione della sostanza organica putrescibile nello smaltimento dei rifiuti solidi”, Montegrotto Terme (Padova), Italy, 5-7 aprile. Cerca con Google

37. De Gioannis G., Muntoni A., Pisanu A., 2005. Energy recovery from waste trough biological hydrogen production. Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 3-7 October. Cerca con Google

38. Debabrata Das, Nejat Veziroglu T., 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26 (2001), pp 13-28. Cerca con Google

39. Deleris S., Paul E., Audic J.M., Roustan M., Debellefontaine H., 2000. Effects of ozonation on activated sludge solubilization and mineralization. Ozone Science Engineering 22,473-486. Cerca con Google

40. Driessen J.H.A., Moura M.L., Korzilius E.P.E. and van der Sloot H.A. (1995). The sustainable landfill. Proceedings of Sardinia 95. Fifth International Landfill Symposium, CISA publisher, Cagliari, Italy, vol. I, 15-24. Cerca con Google

41. Ehrig, H. J. and Kruempelbeck, I. (2007). The emission behaviour of old landfills in the aftercare phase. In Cossu, R. and Sloot, H. v. d., editors, Sustainable Landfill. Cerca con Google

42. Fang HHP, Liu H., 2002. Effect of pH on hydrogen production from glucose by mixed colture. Bioresource Technology (2002), 82, pp 87-93. Cerca con Google

43. Gronow, J., Hall, D., and Knox, K. (2007). Landfilling: the road less travelled. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

44. Hallenbeck P.C., Benemann J.R., 2002. Biological hydrogen production; foundamentals and limiting processes. International Journal of Hydrogen Energy 27 (2002), pp 1185-1193. Cerca con Google

45. Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I., 2002. Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy 27 (2002), pp 1339-1347. Cerca con Google

46. Heimovaara T.J., Cossu R., Van der Sloot H.A., 2007. State of the art and prespectives for sustainable landfilling. Proceedings Sardinia 2007, Eleventh International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 1 - 5 October 2007, CISA, Italy Cerca con Google

47. Helfrich P., Chefets B., Hadar Y., Chen Y., Schanabel H., 1998. A novel method for determining phytotoxicity in compost. Compost Science and Utilization 6, 6-13. Cerca con Google

48. Hue N.V., Liu J., 1995. Predictiong compost stability. Compost Science and Utilization 3, 8-15 Cerca con Google

49. Janssen M.G.J., Lindblad P., Van Niel Ed W.J., Reith H.J., Wijffels R.H., 2002. Editorial Biohydrogen 2002. International Journal of Hydrogen Energy 27 (2002), pp 1123-1124. Cerca con Google

50. Humer, M. and Lechner, P. (2007). Design of a landfill cover layer to enhance methane oxidation ? results of a two year field investigation. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

51. Kamiya T., Hirotsuji J., 1998. New combined system of biological process and intermitted ozonation for advanced wastewater treatment. Water Science Technology 38, 145-153. Cerca con Google

52. Kapdan Ilgi Karapinar, Fikret Kargi, 2006. Bio-hydrogen production from waste materials. Review. Enzyme and Microbial Technology 38 (2006), pp 569-583. Cerca con Google

53. Krupp M., Krauth U., Widmann R., 2006. Operating experiences of a continuos biohydrogen production reactor used for anaerobic digestion of organic wastes. Orbit 2006, part 3, pp 879- 884. Cerca con Google

54. Largus T. Angenent, Khursheed Karim, Muthanna H. Al-Dahhan, Brian A. Wrenn, Rosa Dominguez-Espinosa, 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in biotechnology, Vol.22, No.9, September 2004. Cerca con Google

55. Lay J.J., Y.J. Lee, T. Noike, 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research Vol 33, No 11, pp 2579-2586, 1999. Cerca con Google

56. Lechner P., Heiss-Ziegler C., 2004. Importance of mechanical-biological pretreatment before landfilling. Seminario-Workshop “La nuova discarica controllata”. Abazia di Praglia, Teolo, Padova, 19-21 Maggio 2004. Università degli Studi di Padova. Cerca con Google

57. Levin D.B., Pitt L., Love M., 2004. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29 (2004), pp 173-185. Cerca con Google

58. Lin C.Y., Lay C.H., 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy 30, pp. 285- 292, 2005. Cerca con Google

59. Lishman L.A., Legge R.L., Farquhar G.J., 2000. Temperature effects on wastewater treatment under aerobic and anoxic conditions. Water Research 36(8), 2263-2276 Cerca con Google

60. Liu G, Shen J., 2004. Effects of culture medium and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioenerg 98 (2004), pp 251-256. Cerca con Google

61. Liu Y., 1999. Model of dissolved organic carbon distribution for substrate-sufficient continuous culture. Biotechnoloy Bioengineering 65, 474-479. Cerca con Google

62. Liu Y., 2000. Effects of chemical uncoupler on the observed growth yields in batch culture of activated sludge. Water Reseach 34 2025-2030. Cerca con Google

63. Liu Y., Tay J.H., 2001, Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances 19, 97-107. Cerca con Google

64. Liu Y., 2003. Chemically reduced excess sludge production in the activated sludge processes. Chemosphere 50, 1-7. Cerca con Google

65. Lobner T., Liu D., Cirauqui B., Batstone D.J., Angelidaki I., 2005. Bio-hydrogen production by anaerobic fermentative of waste. Cerca con Google

66. Lorber K.E., Konrad CH., 2003. Aerobic treatment of non-chromium containig tannery waste. Proceeding Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, Cagliari. Cerca con Google

67. Low W.W., Chase H.A., Milner M.G., Curtis T.U., 2000. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Reseach 34, 3204-3212. Cerca con Google

68. Mayhew M., Stephenson T., 1998. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency?. Water Science Technology 38, 137-144. Cerca con Google

69. Meng Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, 2006. An overview of hydrogen production from biomass. Fuel Processing Technology 87 (2006) pp.461-472. Cerca con Google

70. Montes-Moncivais A., Moreno G., Buitròn G., 2006. Hydrogen production from wastewater: inoculum selection. Proceedings Venice 2006, Biomass and Waste to Energy Symposium, Venice, Italy, 29 November-1 Dicember. Cerca con Google

71. Morcet, M., Aran, C., Bogner, J., Chanton, J., Spokas, K., and Hebe, I. Methane mass balance: a review of field results from three french landfill case studies. In Cossu R, Sloot Hvd (eds.) Sustainable landfilling. IWWG monograph series, CISA Publisher, Padova. Cerca con Google

72. Morimoto M., Atsuko M., Atif A.A.Y., Ngan M.A., Bakir A.M., 2004. Biological production of hydrogen from glucose by natural anaerobic microflora. International Journal of Hydrogen Energy 29, pp. 709-713, 2004. Cerca con Google

73. Muller J.A., 2001. Prospetcs and problems of sludge pre-treatment processes. Water Science Technology 44(10), 121-128. Cerca con Google

74. Nielsen A.T., Amandusson H., Bjorklund R., Dannetun H., Ejlertsson J., Ekedahl L-G., lundstrom I., Svensson B.H., 2001. Hydrogen production from organic waste. International Journal of Hydrogen Energy 26 (2001), pp 547-550. Cerca con Google

75. Noike T., Ohba M., Li Y.Y., 2006. Development of two-phase process for producing hydrogen and methane from potato processing waste without dilution water. Orbit 2006, part 3, pp 859- 867. Cerca con Google

76. Noike T., Takabatake H., Mizuno O., Ohba M., 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27 (2004), pp 1367-1371. Cerca con Google

77. Ratsak C.H., Maarsen K.A., kooijma S.A.L., 1996. Effects of protozoa on carbon mineralization in activated sludge. Water Reseach 30(1), 1-12. Cerca con Google

78. Rechtenbach D., Meyer M., Stegmann R., 2006. Fermentative production of biohydrogen from organic raw and waste materials. Orbit 2006, part 3, pp 869-877. Cerca con Google

79. Rocher M., Goma G., Pilas-Begue A., Louvel L., Rols J.L., 1999. Towards a reduction in excess production in activated sludge processes: biomass physicochemical treatment and biodegradation. Applied Microbiology and Biotechnology 51, 883-890. Cerca con Google

80. Rocher M., Roux G., Goma G., Pilas-Begue A., Luovel L., Rols J.L., 2001. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment. Water Science and Technology 44, 437-444 Cerca con Google

81. Rowe, R. K. (2005). Long-term performance of contaminant barrier systems. Geotechnique, 55(9):631–677. Cerca con Google

82. Saby S., Djafer M., Chen G.H., 2002. Feasibility of using a chlorination Stepp to reduce excess sludge in activated sludge process. Water Reseach 36, 656-666. Cerca con Google

83. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwu Sung, 2003. Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy 29 (2004), pp 1123-1131. Cerca con Google

84. SangEun Oh, Logan E.B., 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research 39 (2005), pp 4673-4682. Cerca con Google

85. SangEun Oh, Van Ginkel S.W., Logan E.B., 2003. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science Technology 37, pp. 5186-5190, 2003. Cerca con Google

86. Stegmann R., 1995. Concepts of waste landfilling. Proceedings of Sardinia 95. Fifth International Landfill Symposium, CISA publisher, Cagliari, Italy, vol. I, 3-14. Cerca con Google

87. Stegmann, R. (2005a). Discussion of different landfill concepts from open dump to MBP landfill. In Cossu R, Stegmann R. (eds) Proceedings Sardinia 2005, International Waste Management and Landfilling Symposium, CISA Publisher. Cerca con Google

88. Tsai S.P., Lee Y.H., 1990. A model for energy-sufficient culture growth. Biotechnology Bioengineering 35, 138-145. Cerca con Google

89. Van Ginkel S.W., SangEun Oh, Logan B.E., 2005. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy 30 (2005), pp 1535-1542. Cerca con Google

90. WCED (1987). Our Common Future, Oxford University Press, Oxford. Cerca con Google

91. Vijayaraghavan K., Mohd Amin Mohod Soom, 2004. Trends in biological hydrogen productiona review. International Association for Hydrogen Energy 2004. Cerca con Google

92. Wei Y., Van Houten R.T., Borger A.R., Eikelboom D.H., Fan Y., 2003. Minimization of excess sludge production for biological wastewater treatment. Water Research 37, 4453-4467. Cerca con Google

93. Wojtenko I., Stinson M.K., Field R., 2001. Performance of ozone as a disinfectant for combined sewer overflow. Critical Review. Environmental Science and Technology 31, 295-309. Cerca con Google

94. Yasui H., Shibata M., Sakuma S., Iwasaki M., Sakai Y., 1996. A fill-scale operation of a novel activated sludge process without excess sludge production. Water Science Technology 43, 395-404. Cerca con Google

95. Yasunori Kawagoshi, Kenji Furukawa, 2005. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal Of Bioscience and Bioengineering, vol 100, n.5, pp. 524-530. 2005. Cerca con Google

96. Yetis M., Gunduz U., Eroglu I., Yucel M., Turker L., 2000. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 25 (2000), pp 1035-1041. Cerca con Google

97. Zheng X.J., Yu H.Q., 2005. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. Journal of Environmental Management 74, pp. 65-70, 2005. Cerca con Google

98. Zmora-Nahum S., Markovitch O., Tarchitzky J., Chen Y., 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology & Biochemistry 37, 2109-2116 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record