Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Spagnol, Lisa (2015) Espressione e attività  del recettore nicotinico α7nAchR in macrofagi intestinali di pazienti con malattie infiammatorie croniche intestinali ed in modelli murini di neuropatie del sistema nervoso enterico. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Altro
9Mb

Abstract (inglese)

The α7 nicotinic receptor is involved in the cholinergic anti-inflammatory pathway, the mechanism through which the nervous system influences leukocytes inflammatory responses. Vagus nerve releases the neurotransmitter acetylcholine which binds to the α7 nicotinic receptors on the surface of macrophages inhibiting pro-inflammatory mediators release, such as TNFα and ILβ.
Intestinal Bowel diseases (IBD), which comprise Crohn’s disease (CD) and ulcerative colitis (UC), are chronic immune mediated diseases characterized by a deregulated immune response to commensal flora in a genetically susceptible host. Epidemiologic studies revealed the dual effect of smoke on IBD patients: smoke ameliorates CU, by suppressing macrophages and lymphocytes activity, but worsen the symptoms and the histologic damage in CD patients.
This thesis aimed to study the mechanism underlying the nicotine anti-inflammatory effect on CU patients (but not in CD patients), verifying the hypothesis that different expression levels of nicotinic receptor in IBD patients are responsible for its antithetic effects on diseases progress. Our main purpose was to verify first nicotinic receptor levels on mucosal macrophages during inflammation, and consequently whether macrophages’ sensibility to the anti-inflammatory pathway, could be influenced by the integrity of the enteric nervous system (ENS).
Expression levels and functionality of α7nAchR in UC and CD patients in clinical remission or mild activity was compared to control subjects (HV, healthy volunteers or patients in screening for colonic cancer) in peripheral blood-derived macrophages and intestinal macrophages isolated from colon-sigma biopsies. In blood-derived macrophages α7nAchR levels were comparable between the three groups both at mRNA, quantified by Real Time-PCR, and protein, quantified by α-bungarotoxin-Alexa Fluor 488 binding, levels. On the contrary, the nicotinic receptors were more expressed in intestinal mucosal macrophages in UC patients than in healthy subjects and CD patients. Moreover, nicotine, the exogenous ligand of α7nAchR, significantly reduced LPS-induced TNFα synthesis in mucosal macrophages from UC but not MC and HV.
To determine the mechanism responsible for the altered expression of α7nAchR in CD patients, we studied the cholinergic anti-inflammatory pathway in murine models of ENS neuropathy, since structural and functional damages in enteric neurons is well established in IBD patients. Our neuropathy models comprise TLR2 deficient mice (TLR2-/-) and mice infected by Herpes Simplex Virus type-1 (HSV-1). We quantified α7nAchR expression and inflammatory activation markers (F4/80 and caspase-1 activation) of intestinal macrophages in basal conditions and during early and late phases of experimental colitis induced by DSS. Mucosal macrophages showed no significant differences in α7nAchR expression in WT and TLR2-/- mice, while HSV-1 induced neuropathy caused a significant increase of α7nAchR levels. However, after three days of DSS administration, a significant increase of α7nAchR occurred in WT mice, but not in mice with enteric neuropathy. In parallel, in mucosal macrophages of WT mice, but not in mice with ENS neuropathy, we observed the activation of caspase-1 and surface F4/80 overexpression. Moreover, only in WT mice, nicotine reduced caspase-1 activation induced by LPS+ATP in mucosal macrophages. Furthermore, in vivo nicotine administration reduced the gravity of colitis in WT mice, but was ineffective in TLR2-/- mice. Finally, by correcting the integrity of ENS of TLR2-/- mice by administration in vivo of glial-derived neurotrophic factor (GDNF), caspase-1 activation in mucosal macrophages during colitis was normalized.
All together our data suggest that for the cholinergic anti-inflammatory pathway to have an optimal action, it is required an increased expression of α7nAchR in mucosal macrophages in response to an inflammatory stimulus. Lack of α7nAchR up-regulation in mucosal macrophages, such as in MC patients, causes the loss of nicotine anti-inflammatory effects. The presence of a neuropathy might contribute to the inadequate expression of α7nAchR in mucosal macrophages during inflammatory processes, thus paving the way to amplified mucosal damage. Mediators that directly regulate α7nAchR expression in mucosal macrophages are now under investigation.

Abstract (italiano)

Il recettore nicotinico α7 è coinvolto nel sistema colinergico anti-infiammatorio, il meccanismo attraverso il quale il sistema nervoso regola la risposta infiammatoria dei leucociti. Il nervo vago rilascia acetilcolina che lega i recettori nicotinici α7 (α7nAChR) presenti nella superficie dei macrofagi, inibendo il rilascio di mediatori della risposta pro-infiammatoria, quali TNFα e IL1β.
Le malattie infiammatorie croniche (in inglese IBD, Intestinal Bowel Disease) sono malattie idiopatiche caratterizzate da flogosi cronica che comprendono malattia di Crohn (MC) e colite ulcerosa (CU). Nell’uomo, studi epidemiologici hanno dimostrato che il fumo ha un effetto soppressivo su macrofagi e linfociti migliorando il decorso della CU mentre aggrava il quadro istologico della MC. I meccanismi responsabili di questa dicotomia non sono attualmente noti.
Questo lavoro di tesi si è proposto di studiare i meccanismi alla base dell’attività anti-infiammatoria espletata dalla nicotina nei pazienti affetti da CU ma non da MC verificando l’ipotesi che diversi livelli di espressione dei recettori nicotinici nei pazienti con CU ed MC possano giustificare il diverso effetto della nicotina sul decorso della malattia. Si è quindi verificato se l’espressione dei recettori nicotinici nei macrofagi mucosali in corso di infiammazione, e quindi la loro sensibilità al riflesso anti-infiammatorio colinergico, potesse essere influenzata dal sistema nervoso enterico.
I livelli di espressione e la funzionalità del recettore nicotinico α7nAChR in pazienti affetti da CU e MC in remissione clinica o in fase di attività lieve rispetto a soggetti di controllo (VS, volontari sani o soggetti in screening per cancro colico) sono stati studiati in macrofagi differenziati da monociti ottenuti da sangue periferico ed in macrofagi intestinali isolati da biopsie di colon-sigma. Nei macrofagi derivati dal sangue periferico, il recettore nicotinico α7nAChR è risultato paragonabile tra i tre gruppi sia a livello di mRNA, quantificato mediante Real Time-PCR, che di proteina, quantificata determinando il legame di α-bungarotossina-Alexa Fluor 488. Al contrario, il recettore nicotinico è risultato invece maggiormente espresso nei macrofagi della mucosa intestinale dei soggetti con CU rispetto ai soggetti sani o con MC. Inoltre la nicotina, ligando esogeno di α7nAChR, ha ridotto in maniera significativa l’espressione di TNFα stimolata da LPS nei macrofagi mucosali di CU ma non di MC.
Al fine di determinare il meccanismo responsabile dell’alterata espressione del α7nAChR nella MC, il sistema colinergico anti-infiammatorio è stato studiato in diversi modelli murini caratterizzati dalla presenza di una neuropatia del sistema nervoso enterico, poiché è nota la presenza di danni strutturali e funzionali ai neuroni enterici nei pazienti con MC. In particolare sono stati utilizzati topi deficienti del recettore TLR2 (TLR2-/-) o topi con infezione nel sistema nervoso enterico da Herpes Virus simplex di tipo 1 (HSV-1). In questi animali è stata determinata, in condizioni basali e durante le fasi precoci e tardive di una colite sperimentale da DSS, l’espressione di α7nAChR nei macrofagi intestinali e il grado di attivazione pro-infiammatoria di queste cellule. I macrofagi della mucosa colica hanno evidenziato che in condizioni basali non vi è una significativa differenza tra topi WT e topi TLR2-/- nei livelli di espressione del recettore α7nAChR nei macrofagi intestinali, mentre nella neuropatia nei topi inoculati con HSV-1 si registra un significativo aumento del recettore α7nAChR. Tuttavia, a seguito della somministrazione di DSS per tre giorni si è osservato un significativo aumento del recettore α7nAChR in topi WT, ma non nei topi portatori di neuropatia enterica, TLR2-/- e infettati per via orogastrica con HSV-1. Parallelamente l’attivazione dei macrofagi mucosali è stata determinata quantificando l’espressione del marcatore di superficie F4/80 e l’attivazione della caspasi-1. Nei macrofagi della mucosa colica di topi WT ma non in topi portatori di neuropatia del SNE si osserva l’attivazione della caspasi-1 e la sovra-espressione di F4/80 durante le fasi iniziali della colite indotta da DSS. Inoltre, solo nei macrofagi ottenuti da topi WT la nicotina è in grado di ridurre l’attivazione della caspasi-1 indotta da LPS+ATP. La somministrazione in vivo di nicotina riduce la gravità della colite nei topi WT ma risulta inefficace nei topi TLR2-/-. Infine, abbiamo quindi verificato che ristabilendo l’integrità del SNE mediante la somministrazione di fattore neurotrofico derivante dalla glia (GDNF) in vivo a topi TLR2-/-, viene ripristinata una normale attivazione della caspasi-1 nei macrofagi mucosali in corso di colite.
In conclusione, un’ottimale azione del sistema colinergico anti-infiammatorio richiede l’aumentata espressione di α7nAChR nei macrofagi mucosali in risposta ad un processo flogistico. Tuttavia, in presenza di neuropatia (i.e. virale o trofica) l’aumentata espressione di α7nAChR nei macrofagi mucosali può risultare insufficiente portando eventualmente ad un danno mucosale amplificato. I mediatori che direttamente regolano l’espressione di α7nAChR nei macrofagi mucosali sono attualmente oggetto di studio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sturniolo, Giacomo Carlo
Correlatore:Castagliuolo, Ignazio
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):α7nAChR antiinfiammatorio IBD macrofagi mucosa sistema nervoso enterico α7nAChR anti-inflammatory IBD macrophages mucosa enteric nervous system
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/12 Gastroenterologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze del Farmaco
Codice ID:7723
Depositato il:12 Nov 2015 11:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abbas AK, Lichtman AH, Pillai S. (2010) Immunologia cellulare e molecolare. Elsevier srl. Cerca con Google

Abraham C, Medzhitov R. (2011) Interactions Between the Host Innate Immune System and Microbes in Inflammatory Bowel DiseaseGastroenterology. 2011 May;140(6):1729-37. Review Cerca con Google

Akira S, Takeda K. (2004) Toll-like receptor signaling.Nat Rev Immunol.4(7):499-511. Review. Cerca con Google

AlSharari SD, Akbarali HI, Abdullah RA, Shahab O, Auttachoat W, Ferreira GA, White KL, Lichtman AH, Cabral GA, Damaj MI. (2013) Novel insights on the effect of nicotine in a murine colitis model. J Pharmacol Exp Ther. 344(1):207-17. Cerca con Google

Ananthakrishnan AN. (2013) Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (NY). 9(6):367-74. Cerca con Google

Ardizzone S, Porro GB.(2005) Biologic Therapy for Inflammatory for Inflammatory bowel disease. Drugs. 65(16):2253-86. Review. Cerca con Google

Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B, Agace WW and Mowat AMcI. (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol.6:49810. Cerca con Google

Bandzar S, Gupta S, Platt MO (2013). Crohn disease: A review of treatment options and current research. Cell Immunol; 286(1-2):45-52. Review. Cerca con Google

Basso PJ, Fonseca MT, Bonf¡ G, Alves VB, Sales-Campos H, Nardini V, Cardoso CR. (2014) Associationamong genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatorybowel disease. Braz J Med Biol Res. 47(9):727-37. Cerca con Google

Bassotti G, Antonelli E, Villanacci V, Baldoni M, Dore MP. (2014) Colonic motility in ulcerative colitis. United European Gastroenterol J. 2(6):457-62. Cerca con Google

Bastida G, Beltr¡n B. (2011) Ulcerative colitis in smokers non-smokers and ex-smokers. World J Gastroenterol. 17(22):2740-7. Cerca con Google

Bernard JK, McCann SP, Bhardwaj V, Washington MK, Frey MR. (2012) Neuregulin-4 is a survival factor for colon epithelial cells both in culture and in vivo. J Biol Chem. 287(47):39850-8. Cerca con Google

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 94(2):329-54. Cerca con Google

Bonaz BL, Bernstein CN. (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 144(1):36-49. Cerca con Google

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ.(2000) Vagus nerve stimulation attenuates the sistemi inflammatory response to endotoxin. Nature. 405(6785):458-62. Cerca con Google

Britsch S. (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol. 190:1-65. Review. Cerca con Google

Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D, Zaninotto G, Pal G, Castagliuolo I. (2013) Toll-Like Receptor 2 Regulates Intestinal Inflammation by Controlling Integrity of the Enteric Nervous System. Gastroenterology.145(6):1323-33. Cerca con Google

Brun P, Giron MC, Zoppellaro C, Bin A, Porzionato A, De Caro R, Barbara G, Stanghellini V, Corinaldesi R,Zaninotto G, Pal G, Gaion RM, Tonini M, De Giorgio R, Castagliuolo I (2010) Herpes simplex virus type 1 infection of the rat enteric nervous systeme evokes small-bowel neuromuscular abnormalities. Gastroenterology.138(5):1790-801. Cerca con Google

Burgio VL, Fais S, Boirivant M, Perrone A, Pallone F. (1995) Peripheral monocyte and nave T-cell recruitment and activation in Crohn's disease. Gastroenterology. 109(4):1029-38. Cerca con Google

Cabarrocas J, Savidge TC, Liblau RS (2003) Role of enteric glial cells in inflammatory bowel disease. Glia. 41(1):81-93. Review. Cerca con Google

Cader MZ, Kaser A. (2013) Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut. 62(11):1653-64. Review. Cerca con Google

Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Nmethova A, Matteoli G, Boeckxstaens GE. (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 9(1):e87785. Cerca con Google

Cario E, Gerken G, Podolsky DK. (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 132(4):1359-74. Cerca con Google

Casanova JL, Abel L. (2009) Revisiting Crohn's disease as a primary immunodeficiency of macrophages. J Exp Med.206(9):1839-43. Review. Cerca con Google

Conte MP,Longhi C,Marazzato M,Conte AL,Aleandri M,Lepanto MS,Zagaglia C,Nicoletti M,Aloi M,Totino V,Palamara AT,Schippa S.(2014) Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn disease patients: phenotypic and genetic pathogenic features. BMC Res Notes.7:748. Cerca con Google

Coquenlorge S, Duchalais E, Chevalier J, Cossais F, Rolli-Derkinderen M, Neunlist M. (2014) Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. J Neuroinflammation. 11(1):202. Cerca con Google

Costa M, Brookes SJ, Hennig GW. (2000) Anatomy and physiology of the enteric nervous system. Gut. 47 Suppl 4:iv15-9 Cerca con Google

De Jager PL, Franchimont D,Waliszewska A, Bitton A,Cohen A, Langelier D, Belaiche J, Vermeire S, Farwell L, Goris A, Libioulle C, Jani N, Dassopoulos T, Bromfield GP, Dubois B, Cho JH, Brant SR, Duerr RH, Yang H, Rotter JI, Silverberg MS, Steinhart AH, Daly MJ, Podolsky DK,Louis E, Hafler DA, Rioux JD. (2007) The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun.8(5):387-97. Cerca con Google

Doecke JD, Simms LA, Zhao ZZ, Huang N, Hanigan K, Krishnaprasad K, Roberts RL, Andrews JM, Mahy G, Bampton P, Lewindon P, Florin T, Lawrance IC, Gearry RB, Montgomery GW, Radford-Smith GL. (2013) Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease. Inflamm Bowel Dis. 19(2):240-5. Cerca con Google

Ek WE, D'Amato M, Halfvarson J. (2014) The history of genetics in inflammatory bowel disease. Ann Gastroenterol. 27(4):294-303. Cerca con Google

Fairweather D, Cihakova D. (2009) Alternatively activated macrophages in infection and autoimmunità . J Autoimmun.33(3-4):222-30. Review. Cerca con Google

Fakhoury M, Negrulj R, Mooranian A, Al-Salami H.(2014) Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 7:113-20. Cerca con Google

FehE, Altdorfer K, Bagamr J. (2001) Neuroimmuneinteractions in experimentalcolitis. An immunoelectron microscopic study. Neuroimmunomodulation. 9(5):247-55. Cerca con Google

Ferreira CM, Vieira AT, Vinolo MA, Oliveira FA, Curi R, Martins Fdos S.(2014) The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014:689492. Cerca con Google

Ford AC, Bernstein CN, Khan KJ, Abreu MT, Marshall JK, Talley NJ, Moayyedi P. (2011) Glucocorticosteroid therapy in inflammatory bowel disease: systemic review and meta-analysis. Am J Gastroenterol. 106(4):590-9. Cerca con Google

Friswell M, Campbell B, Rhodes J.(2010) The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver.4(3):295-306. Cerca con Google

Frolova L, Drastich P, Rossmann P, Klimesova K, Tlaskalova-Hogenova H. (2008) Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem 56(3): 267-74. Cerca con Google

Furness JB. (2012) The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology.9:286-294. Cerca con Google

Furness JB. (2008) The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil. 20 Suppl 1:32-8 Cerca con Google

Galitovskiy V, Qian J, Chernyavsky AI, Marchenko S, Gindi V, Edwards RA, Grando SA. (2011) Cytokine-induced alterations of 7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. J Immunol. 187(5):2677-87. Cerca con Google

Geboes K, Collins S. (1998) Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis. Neurogastroenterol Motil. 10(3):189-202. Cerca con Google

Goldstein AM, Hofstra RM, Burns AJ. (2013) Building a brain in the gut: development of the enteric nervous system.Clin Genet. 83(4):307-16. Review. Cerca con Google

Gonz¡lez H, Elgueta D, Montoya A, Pacheco R. (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 274(1-2):1-13. Cerca con Google

Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kndig TM, Frei K, Ginhoux F, Merad M, Becher B. (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 37(6):1050-60. Cerca con Google

Grimm MC, Pavli P, Van de Pol E, Doe WF.(1995) Evidence for a CD14+ population of monocytes in inflammatory bowel disease mucosa-implications for pathogenesis. Clin Exp Immunol. 100(2):291-7. Cerca con Google

Guo AY, Stevens BW, Wilson RG, Russell CN, Cohen MA, Sturgeon HC, Thornton A, Giallourakis C, Khalili H, Nguyen DD, Sauk J, Yajnik V, Xavier RJ, Ananthakrishnan AN. (2014) Early life environment and natural history of inflammatory bowel diseases. BMC Gastroenterol. 14(1):216 Cerca con Google

Hansen MB. (2003) The enteric nervous system I: organisation and classification. Pharmacol Toxicol. 92(3):105-13 Cerca con Google

Hayashi R, Wada H, Ito K, Adcock IM. (2004) Effects of glucocorticoids on gene transcription. Eur J Pharmacol. 500(1-3):51-62. Cerca con Google

Heiman A, Pallottie A, Heary RF, Elkabes S. (2014) Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun. 42:232-45. Cerca con Google

Hirota SA,Ng J,Lueng A,Khajah M,Parhar K,Li Y,Lam V,Potentier MS,Ng K,Bawa M,McCafferty DM,Rioux KP,Ghosh S,Xavier RJ,Colgan SP,Tschopp J,Muruve D,MacDonald JA,Beck PL. (2011) The NLRP3 inflammasome plays key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 17(6):1359-72. Cerca con Google

Huang S, Li SX, Bren N, Cheng K, Gomoto R, Chen L, Sine SM. (2013) Complex between α-bungarotoxin and α7 nicotinic receptor ligand-binding domain chimaera. Biochem J. 454(2):303-10 Cerca con Google

Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM, Krumbiegel D. (2013) Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol. 108(7):1066-74. Cerca con Google

Jones DT, Osterman MT, Bewtra M, Lewis JD. (2008) Passive smoking and inflammatory bowel disease: a meta-analysis. Am JGastroenterol 103: 2382-2393. Cerca con Google

Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K, Nakai T, Hasegawa A, Inoue N, Watanabe N, Akagawa KS, Hibi T. (2005) Abnormally Differentiated Subsets of Intestinal Macrophage Play a Key Role in Th1-Dominant Chronic Colitis through Excess Production of IL-12 and IL-23 in Response to Bacteria. J Immunol. 175(10):6900-8. Cerca con Google

Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, Sakuraba A, Kitazume MT, Sugita A, Koganei K, Akagawa KS, Hibi T. (2008) Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest. 118:2269-2280. Cerca con Google

Karrer M, Lopez MA, Meier D, Mikhail C, Ogunshola OO, Mller AF, Strauss L, Tafti M, Fontana A. (2014). Cytokine-induced sleep: Neurons respond to TNF with production of chemokines and increased expression of Homer1a in vitro. Brain Behav Immun. pii: S0889-1591(14)00523-6. Cerca con Google

Kelsen JR, Rosh J, Heyman M, Winter HS, Ferry G, Cohen S, Mamula P, Baldassano RN. (2010) Phase I trial of sargramostim in pediatric Crohn's disease. Inflamm Bowel Dis. 16(7):1203-8. Cerca con Google

Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol. 258:5-16. Cerca con Google

Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ; Sargramostim in Crohn's Disease Study Group. (2005) Sargramostim for active Crohn's disease. N Engl J Med. 352(21):2193-201. Cerca con Google

Kostic AD, Xavier RJ, Gevers D. (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 146(6):1489-99. Cerca con Google

Kraneveld AD, Rijnierse A, Nijkamp FP, Garssen J. (2008) Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: future therapeutic targets. Eur J Pharmacol. 585(2-3):361-74. Cerca con Google

Lakhan SE, Kirchgessner A. (2011) Anti-infiammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med. 2;9:129. Cerca con Google

Lee CY. (1972) Chemistry and pharmacology of polypeptide toxins in snake venoms.Annu. Rev. Pharmacol. 12, 265-286. Cerca con Google

Leone VA, Cham CM, Chang EB. (2014) Diet, gut microbes, and genetics in immune function: can we leverage ourcurrent knowledge to achieve better outcomes in inflammatory boweldiseases? Curr Opin Immunol. 31:16-23. Cerca con Google

Lopez-Siles M, Martinez-Medina M, Busquets D, Sabat-Mir M, Duncan SH, Flint HJ, Aldeguer X, Garcia-Gil LJ. (2014) Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. Int J Med Microbiol. 304(3-4):464-75. Cerca con Google

Lucena EE, Guzen FP, Cavalcanti JR, Marinho MJ, Pereira WO, Barboza CA, Costa MS, do Nascimento Jnior ES, Cavalcante JS. (2014) Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2. ScientificWorldJournal. 2014:457380. Cerca con Google

Lundin A, Bok CM, Aronsson L, Bjrkholm B, Gustafsson JA, Pott S,Arulampalam V, Hibberd M, Rafter J, Pettersson S. (2008) Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 10(5):1093-103. Cerca con Google

Mahid SS, Minor KS, Stevens PL.Galandiuk S. (2007) The role of smoking in Crohns disease as defined by clinical variables. Dig Dis Sci. 52(11):2897-903. Review. Cerca con Google

Manolakis AC, Kapsoritakis AN, Kapsoritaki A, Tiaka EK, Oikonomou KA, Lotis V, Vamvakopoulou D, Davidi I, Vamvakopoulos N, Potamianos SP. (2013) Readressing the role of Toll-like receptor-4 alleles in inflammatory bowel disease: colitis, smoking, and seroreactivity.Dig Dis Sci. 58(2):371-80. Cerca con Google

Marks DJ.(2011) Defective innate immunity in inflammatory bowel disease: a Crohn's disease exclusivity? Curr Opin Gastroenterol. 27(4):328-34. Review. Cerca con Google

Martin TD, Chan SS, Hart AR. (2014) Environmental factors in the relapse and recurrence of Inflammatory Bowel Disease: A review of the literature. Dig Dis Sci. DOI 10.1007/s10620-014-3437-3 Cerca con Google

Martinez-Medina M, Aldeguer X, Lopez-Siles M, Gonz¡lez-Huix F, Lpez-Oliu C, Dahbi G,Blanco JE, Blanco J, Garcia-Gil LJ, Darfeuille-Michaud A. (2009) Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis. 15(6):872-82. Cerca con Google

Matteoli G, Boeckxstaens GE. (2013) The vagal innervation of the gut and immune homeostasis. Gut. 62(8):1214-22. Cerca con Google

McKnight AJ, Macfarlane AJ, Dri P, Turley L, Willis AC, Gordon S. (1996) Molecular cloning of F4/80, a murine macrophage-restricted cell surface glycoprotein with homology to the G-protein-linked transmembrane 7 hormone receptor family. J Biol Chem. 271(1):486-9. Cerca con Google

Mencel M, Nash M, Jacobson C. (2013) Neuregulin upregulates microglial α7 nicotinic acetylcholine receptor expression in immortalized cell lines: implications for regulating neuroinflammation. PLoS One. 8(7):e70338. Cerca con Google

Mikami Y, Mizuno S, Nakamoto N, Hayashi A, Sujino T, Sato T, Kamada N, Matsuoka K, Hisamatsu T, Ebinuma H, Hibi T, Yoshimura A, Kanai T. (2014) Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation. PLoS One. 9(1):e84619. Cerca con Google

Mowat AM, Bain CC. (2011). Macrophages in intestinal homeostasis and inflammation. J Innate Immun. 3(6):350-64. Review. Cerca con Google

Moynes DM, Lucas GH, Beyak MJ, Lomax AE. (2014) Effects of inflammation on the innervation of the colon. Toxicol Pathol. 42(1):111-7. Cerca con Google

Murray PJ, Wynn TA.Protective and pathogenic functions of macrophage subsets. Murray PJ, Wynn TA.Review. Cerca con Google

Nakata K, Yamamoto M, Inagawa H, Soma G.(2013) Effects of Interactions Between Intestinal Microbiota and Intestinal Macrophages on Health. Anticancer Res.33(7):2849-53. Review. Cerca con Google

Netea MG, Simon A, Van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA. (2010) IL-1bProcessing in Host Defense: Beyond the Inflammasomes. PLoS Pathog. 6(2):e1000661. Cerca con Google

Nezami BG, Srinivasan S. (2010) Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications. Curr Gastroenterol Rep. 12(5):358-65 Cerca con Google

Ng SC, Tsoi KK, Kamm MA, Xia B, Wu J, Chan FK, Sung JJ. (2012) Genetics of inflammatory bowel disease in Asia: systematic review andmeta-analysis. Inflamm Bowel Dis. 18(6):1164-76. Cerca con Google

Niarchos A, Zouridakis M, Douris V, Georgostathi A, Kalamida D, Sotiriadis A, Poulas K, Iatrou K, Tzartos SJ. (2013) Expression of a highly antigenic and native-like folded extracellular domain of the human α1 subunit of muscle nicotinic acetylcholine receptor, suitable for use in antigen specific therapies for Myasthenia Gravis. PLoS One. 8(12):e84791 Cerca con Google

O'Mahony C, Van der Kleij H, Bienenstock J, Shanahan F, O'Mahony L. (2009) Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am J Physiol Regul Integr Comp Physiol. 297(4):R1118-26. Cerca con Google

Pavlov VA, Tracey KJ. (2005) The colinergic anti-infiammatory pathway. Brain Behav Immun. 19(6):493-9. Review. Cerca con Google

Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmodulation. Mol Med. 9(5-8):125-34. Review. Cerca con Google

Persson PG, Ahlbom A, Hellers G (1990) Inflammatory bowel disease and tobacco smoke- a case-control study. Gut 31(12):1377-1381. Cerca con Google

Platt AM, Mowat AM. (2008) Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett. 119(1-2):22-31. Review. Cerca con Google

Ponder A, Long MD. (2013) A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 5:237-47 Cerca con Google

Pullan RD, Rhodes J, Ganesh S, Mani V, Morris JS, Williams GT, Newcombe RG, Russell M, Feyerabend C, Thomas G, Sawe U. (1994) Transdermal nicotine for active ulcerative colitis. N Engl J Med. 330:811-815. Cerca con Google

Rhee SH, Pothoulakis C, Mayer EA. (2009) Principles and clinical implication of the brain-gut-enteic microbiota axis. Nat Rev Gastroenterol Hepatol. 6(5):306-14. Cerca con Google

Rodrigues DM, Li AY, Nair DG, Blennerhassett MG. (2011) Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil. 23(2):e44-56. Cerca con Google

Rogler G. (2014): Chronic ulcerative colitisand colorectal cancer. Cancer Lett. 345(2):235-41 Review. Cerca con Google

Rumessen JJ, Vanderwinden JM, Horn T. (2011) Crohn's disease: ultrastructure of interstitial cells in colonic myenteric plexus. Cell Tissue Res. 344(3):471-9. Cerca con Google

Sales-Campos H, Basso PJ, Alves VB, Fonseca MT, Bonf¡ G, Nardini V, Cardoso CR. (2014) Classical and recent advantaces in the treatment of inflammatory bowel diseases. Braz J Med Biol Res.http://dx.doi.org/10.1590/1414-431X20143774. Vai! Cerca con Google

Sandborn WJ, Tremaine W, Offord KP, Lawson GM, Petersen BT, Batts KP, Croghan IT, Dale LC,Schroeder DR, Hurt RD. (1997) Transdermal nicotine for mildly to moderately active ulcerative colitis, a randomised, doubleblind, placebo-controlled trial. Ann Intern Med. 126:364-371. Cerca con Google

Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Bo¡koski I, Bruno G, Petito V, Laterza L, Cammarota G, Gaetani E, Sgambato A, Gasbarrini A. (2013) Gut microbial flora, prebiotic and probiotics in IBD: their current usage and utility.Biomed Res Int. 2013:435268. Cerca con Google

Schoultz L, Verma D, Halfvarsson J, Trkvist L, Fredrikson M, Sjrdal M, Tysk C, Lerm M, Sderholm JD. (2009) Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohns disease in Swedish men. Am J Gastroenterol. 104(5):1180-8. Cerca con Google

Schreiber S, Nikolaus S, Hampe J, Hmling J, Koop I, Groessner B, Lochs H, Raedler A. (1999) Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet. 6;353(9151):459-61. Cerca con Google

Shibolet O,Podolsky DK.(2007) TLRs in the Gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol. 292(6):G1469-73. Cerca con Google

Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J. (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 89(2):337-43. Cerca con Google

Sine SM, Huang S, Li SX, DaCosta CJ, Chen L. (2013) Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors. Biochem J.454(2):311-21. Cerca con Google

Smith AM, Rahman FZ, Hayee B, Graham SJ, Marks DJ, Sewell GW, Palmer CD, Wilde J, Foxwell BM, Gloger IS, Sweeting T, Marsh M, Walker AP, Bloom SL, Segal AW. (2009) Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. J Exp Med. 206(9):1883-97 Cerca con Google

Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. (2011) Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 4(1):31-42. Review. Cerca con Google

Sobczak M, Fabisiak A, Murawska N, Wesoowska E, Wierzbicka P, Wlazowski M, Wjcikowska M, Zatorski H, Zwoliska M, Fichna J. (2014) Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharmacol Rep. 66(5):766-75. Cerca con Google

Speight RA, Mansfield JC. (2013) Drug advances in inflammatory bowel disease. Clin Med. 13(4):378-82. Cerca con Google

Thomas CW, Myhre GM, Tschumper R, Sreekumar R, Jelinek D, McKean DJ, Lipsky JJ, Sandborn WJ, Egan LJ. (2005) Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther. 312(2):537-45. Cerca con Google

Thomas GA, Rhodes J, Ingram JR. (2005) Machanisms of disease: nicotine- a review of its context of gastrointestinal disease. Nat Clin Pract Gastroenterol Hepatol. 2(11):536-44. Cerca con Google

Thomas S, Baumgart DC. (2012) Targeting leukocyte migration and adhesion in Crohn's disease and ulcerative colitis. Inflammopharmacology.20(1):1-18. Cerca con Google

T HP, Glas J, Endres I, Tonenchi L, Teshome MY, Wetzke M, Klein W, Lohse P, Ochsenkhn T, Folwaczny M, Gke B,Folwaczny C, Mller-Myhsok B, Brand S.(2009) Epistasis between Toll-like receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn's disease. Am J Gastroenterol.104(7):1723-33. Cerca con Google

Tracey KJ. (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 117(2):289-96. Review. Cerca con Google

Uesaka T, Nagashimada M, Enomoto H. (2013) GDNF signaling levels control migration and neuronal differentiation ofenteric ganglion precursors. J Neurosci.33(41):16372-82. Cerca con Google

Van der Heide F, Dijkstra A, Albersnagel FA, Kleibeuker JH, Dijkstra G. (2010) Active and passive smoking behaviour and cessation plans of patients with Crohns disease and ulcerative colitis. J Crohns Colitis. 4(2):125-31. Cerca con Google

Vasina V, Barbara G, Talamonti L, Stanghellini V, Corinaldesi R, Tonini M, De Ponti F, De Giorgio R. (2006) Enteric neuroplasticity evoked by inflammation. Auton Neurosci. 126-272. Review. Cerca con Google

Voltan S, Martines D, Elli M, Brun P, Longo S, Porzionato A, Macchi V, D'Inc  R, Scarpa M, Pal G, Sturniolo GC, Morelli L, Castagliuolo I. (2008) Lactobacillus crispatus M247-derived H2O2 acts as a signal transducing molecule activating peroxisome proliferator activated receptor-gamma in the intestinal mucosa. Gastroenterology. 135(4):1216-27. Cerca con Google

Von Boyen GB, Schulte N, Pflger C, Spaniol U, Hartmann C, Steinkamp M. (2011) Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 11:3. Cerca con Google

Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. (2003) Nicotinic acetylcholine receptor alpha7 subunnit i san essential regulator of inflammation. Nature. 421(6921):384-8. Cerca con Google

Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, Bracey NA, Trpkov K, Bonni S, Duff HJ, Beck PL, Muruve DA. (2013) Inflammasome-independent NLRP3 augments TGF- signaling in kidney epithelium.J Immunol. 190(3):1239-49. Cerca con Google

Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M. (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 13(8):753-60. Cerca con Google

Wouters MM, Boeckxstaens GE. (2011) Neuroimmune mechanisms in functional bowel disordes. Neth J Med.69(2):55-61. Review. Cerca con Google

Wu H, Li L, Su X. (2014) Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. Biomed Res Int. 2014:283525. Cerca con Google

Zenlea T, Peppercorn MA. (2014) Immunosoppressive terapie for inflammatory bowel disease. World J Gastroenterol. 20(12):3146-52. Cerca con Google

Zhang Y, Bitner D, Pontes Filho AA, Li F, Liu S, Wang H, Yang F, Adhikari S, Gordon J, Srinivasan S, Hu W. (2014) Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil. 26(1):77-97. Cerca con Google

Zheng B,Morgan ME, Van de Kant HJ,Garssen J,Folkerts G,Kraneveld AD. (2013) Transcriptional modulation of pattern recognition receptors in acute colitis in mice. Biochim Biophys Acta. 1832(12):2162-72. Cerca con Google

Zoheir N, Lappin DF, Nile CJ. (2012) Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm Res. 61(9):915-26. Cerca con Google

Zouridakis M, Giastas P, Zarkadas E, Chroni-Tzartou D, Bregestovski P, Tzartos SJ. (2014) Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat Struct Mol Biol. 21(11):976-80. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record