Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bassan, Fabio (2015) Optimization of industrial processes for forging of carbon and stainless steels. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
10Mb

Abstract (inglese)

The possibility to produce stainless steel components at limited cost and characterized by elevated mechanical properties, has gained more importance in the last years. Nowadays, the cold and warm forging processes of carbon steels are widely used to form industrial parts due to their economic advantages, but there is still lack of extensive research on industrial process design and evaluation of the microstructural properties of cold-warm forged stainless steel parts.
In the last few decades, the environment concerning the recent forging industry has been rapidly changed. Now, near-net-shape or net-shape manufacturing processes are becoming a useful practice in metal forming, resulting in saving material and energy.
Many parts produced with machining can be manufactured at lower cost by cold and warm forging. Traditionally, forging design is carried out using mainly empirical guidelines, experience, and trial-and-error, which results in a long process development time and high production costs.
In order to avoid this, in recent years, computer-aided simulation approaches have proved to be powerful tools to predict and analyze material deformation during a metal forming operation. There are now many commercial finite-element (FE) packages to simulate forging and bulk metalworking processes. To date, most have focussed on predicting the shape of the final product after simple or complex single- or multi-stage forming operations. On the other hand, other aspects are being included in these numerical models, such as an improved understanding of the constitutive material behaviour, friction and lubrication conditions, and the properties of the final product, in order to predict more complicated phenomena such as tool life prediction, ductile fracture and microstructure evaluation.
The focus of this PhD thesis is the development of an innovative approach based on the design of integrated experimental procedures and modelling tools, in order to accurately re-design a range of industrial single-stage cold-warm forming processes to form stainless steel components and investigate the microstructural evolution of forged parts obtained at different forging temperatures. In addition, the design of a multi-stage cold forging process of a low-carbon steel and the prediction of surface defects that occur in each stage of the forming-sequence have been carried out.
To this aim, a series of tensile tests were conducted to evaluate the influence of temperature and strain rate on the materials elasto-plastic properties.
Futhermore, an innovative experimental setup was used to reproduce the realistic friction conditions at the tool-workpiece interface, in order to accurately predict metal flow during forging cycles.
Experimental data were subsequently validated and implemented in a commercial 3D-FE software and accurately calibrated to perform fully coupled numerical simulations for the reference processes.
Finally, the forged parts obtained were characterized by macro- and microstructural inspections in order to evaluate the presence of underfilling problems and surface defects, which were consistent with the numerical FE results coming from both simulated processes (i.e. single- and multi-stage forging), and to analyze the microstructural evolution of α- and γ-phase during single-stage tests both at room temperature and from 400 to 700 °C.

The materials investigated in this work are low-carbon AISI 1005 ferritic-pearlitic steel (Wr. N. 1.0303), AISI 304L austenitic (Wr. N. 1.4307) and commercially named Duplex 2205 ferritic-austenitic stainless steel (Wr. N. 1.4462). The developed experimental tests are suitable to proper evaluation of steels behaviour in terms of mechanical properties, and to precisely calibrate coupled numerical models when they are applied to conventional and re-design forging processes.

The techniques used in this work include: tensile tests, T-shape compression tests, visual inspections (i.e. supported by vernier calliper and micrometer measurements), hardness and micro-hardness tests, LOM (Light Optical Microscopy), FEG-ESEM (Field-Emission Gun Environmental Scanning Electron Microscope), EDS (Energy Dispersive X-ray Spectroscopy), EBSD (Electron Back Scattering Diffraction) and numerical models carried out with FORGE2011®-3D.

Abstract (italiano)

La possibilità di produrre componenti in acciaio inossidabile a costo limitato e caratterizzati da elevate proprietà meccaniche, ha assunto notevole importanza negli ultimi anni. Al giorno d'oggi, i processi di stampaggio a freddo e a semicaldo di acciai al carbonio sono ampiamente usati per produrre componenti industriali, grazie ai loro vantaggi economici, ma è ancora assente in letteratura un'ampia ricerca di nuovi metodi di progettazione industriale di processi di deformazione plastica a freddo e a semicaldo di prodotti in acciaio inossidabile, con la successiva valutazione delle proprietà microstrutturali.
Negli ultimi decenni, l'industria dei processi di stampaggio è cambiata rapidamente. Ora i processi produttivi near-net-shape o net-shape stanno diventando una pratica utile nella formatura dei metalli, garantendo notevoli risparmi di materiale ed energetici. Molti componenti, ottenuti con lavorazioni per asportazione di truciolo, possono essere prodotti a basso costo mediante stampaggio a freddo o a semicaldo. Tradizionalmente, la progettazione dei processi di forgiatura avviene utilizzando linee guida empiriche, basate sull'esperienza e su tentativi trail-and-error da parte dei progettisti, che si traducono poi in tempi di sviluppo del processi e costi di produzione elevati.
Per evitare ciò, negli ultimi anni, gli approcci di simulazione numerica si sono dimostrati strumenti potenti per prevedere e analizzare la deformazione del materiale mediante processo di formatura. Attualmente sul mercato sono presenti molti pacchetti commerciali adatti a simulare i processi di forgiatura dei metalli e la maggior parte di essi sono concentrati sulla previsione della forma del prodotto finale dopo operazioni di formatura semplici o complesse, mono- o multi-stadio. Altri aspetti vengono inclusi in questi modelli numerici, quali una migliore comprensione del comportamento del materiale, delle condizioni di attrito e lubrificazione e delle proprietà del prodotto finale, per poter prevedere fenomeni più complicati come la stima della vita dell'utensile, delle condizioni di frattura duttile e la valutazione della microstruttura.
Lo scopo della presente tesi di dottorato è lo sviluppo di un approccio innovativo basato sulla progettazione di procedure sperimentali integrate con strumenti di modellazione numerica, per riprogettare accuratamente una serie di processi di forgiatura industriali mono-stadio adatti alla produzione di componenti in acciaio inossidabile a diverse temperature.
Inoltre è stata effettuata la riprogettazione di un processo di formatura multi-stadio a freddo di un acciaio a basso tenore di carbonio, con la successiva previsione dei difetti superficiali che si verificano in ogni fase della sequenza di formatura.
A tale scopo sono stati condotti una serie di test di trazione, per valutare l'influenza della temperatura e della velocità di deformazione sulle proprietà elasto-plastiche dei materiali considerati. Inoltre è stato realizzato un innovativo apparato sperimentale per riprodurre le condizioni di attrito reali all'interfaccia tra lo spezzone e l'utensile, al fine di prevedere con precisione il flusso del metallo in fase di deformazione plastica.
I dati sperimentali sono stati validati e implementati in un software commerciale agli elementi finiti 3D-FE e successivamente calibrati con precisione, per effettuare accurate simulazioni numeriche dei processi di riferimento.
I componenti forgiati ottenuti sono stati oggetto di indagini macro e microstrutturali, per valutare l'eventuale presenza di difetti superficiali, e analizzare l'evoluzione microstrutturale della fase α e γ a diverse temperature di forgiatura (i.e. 20, 400, 500, 600, 700 °C). I risultati sperimentali sono stati successivamente validati mediante simulazione numerica.
I materiali studiati in questo lavoro sono: acciaio ferritico-perlitico AISI 1005 a basso tenore di carbonio (Wr. N. 1.0303), AISI 304L austenitico (Wr. N. 1.4307) e ferritico-austenitico Duplex 2205 (Wr. N. 1.4462). Le prove sperimentali sviluppate sono adatte ad una corretta valutazione del comportamento degli acciai in termini di proprietà meccaniche, calibrando con precisione i modelli numerici se applicate a processi industriali di forgiatura tradizionali e riprogettati.

Le tecniche utilizzate in questo lavoro prevedono: test di trazione, test di compressione T-shape, controlli visivi (mediante calibro cinquantesimale e micrometro), misure di durezza e microdurezza, microscopia ottica (LOM), microscopia elettronica a scansione ad emissione di campo (FEG-ESEM), spettroscopia a dispersione di energia (EDS), diffrazione da retrodiffusione elettronica (EBSD) e modelli numerici sviluppati in FORGE2011®-3D.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Ferro, Paolo
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE DEL PRODOTTO
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):Forging, Low-carbon steel, Stainless steel
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/21 Metallurgia
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:7730
Depositato il:13 Nov 2015 12:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] T. Altan, S.-I. Oh, H.L. Gegel, "Metal forming: Fundamentals and applications", ASM International, 1983. Cerca con Google

[2] H. Cather, R. Morris, M. Philip, C. Rose, "Design engineering", Butterworth Heinemann, Oxford, 2001. Cerca con Google

[3] Forming and Forging, Vol. 14, ASM Handbook, ASM International, 1988, p 6. Cerca con Google

[4] K. Lange et al., "Handbook of metal forming", McGraw-Hill, 1985, p 2.3, 9.19. Cerca con Google

[5] T. Altan, "Short course on near net shape cold, warm and hot forging without flash", Engineering Research Center for Net Shape Manufacturing, The Ohio State University, 2002. Cerca con Google

[6] S. Kalpakjian, S. Schmid, "Manufacturing engineering and technology", Prentice Hall, 2001. Cerca con Google

[7] "Tool and manufacturers engineering handbook", Desk Edition (1989), 4th ed., Society of Manufacturing Engineers, 1989, p 15-8. Cerca con Google

[8] H.D. Feldmann, "Cold forging of steel", Hutchinson and Company Ltd., London, 1961. Cerca con Google

[9] C.H. Wick, "Chipless machining", Industrial Press, New York, 1961. Cerca con Google

[10] J. Billigmann, H.D. Feldmann, "Upsetting and pressing", Carl Hansen Verlag, Munich, 1973 (in German). Cerca con Google

[11] M.T. Watkins, "Cold forging and extrusion of steel", Review 176, International Metallurgical Review, Vol 18, 1973 (Part I: Basic Principles, p 123; Part II: Properties and Tooling, p 147; Part III: Economics and Future Applications, p 162). Cerca con Google

[12] H.D. Feldmann, "Cold extrusion of steel", Merkblatt 201, prepared for Beratungsstelle fuer Stahlverwendung, Dusseldorf, 1977 (in German). Cerca con Google

[13] A.N. Bramley, D.J. Mynors, "The use of forging simulation tools", Mater. Des. 21 (2000) 279-286. Cerca con Google

[14] S.L. Semiatin, "Introduction to bulk-forming processes", ASM Handbook, Metalworking: Bulk Forming (#06957G), vol. 14A, 2005. Cerca con Google

[15] K. Serope, R. Steven Schmid, "Manufacturing engineering and technology", Prentice-Hall, Upper Saddle River, NJ, 2006. Cerca con Google

[16] ICFG, "Steels for cold forging: their behavior and selection", Document No. 11/01, International Cold Forging Group, 2001. Cerca con Google

[17] M. Hillert, "The formation of pearlite, in decomposition of austenite by diffusional processes", V.F. Zackay and H.I. Aaronson, Ed., Interscience, 1962, pp 197-247. Cerca con Google

[18] R.A. Lula, "Stainless steel", American Society for Metals, 1986. Cerca con Google

[19] J. Beddoes, J.G. Parr, "Introduction to stainless steels", 3rd edition, ASM International, Materials Park, OH, USA, 1999. Cerca con Google

[20] D. Peckner, I.M. Bernstein (Eds.), "Handbook of stainless steels", McGraw-Hill Inc., 1977. Cerca con Google

[21] Anonymous, "Advanced materials and processes", February, 2007, p 20. Cerca con Google

[22] www.worldstainless.org (website of International Iron and Steel Institute, accessed on 14 March 2008). Vai! Cerca con Google

[23] People’s Daily Online, 13 February 2007. Cerca con Google

[24] B.F. Brown, "Stress corrosion cracking control measures", Monograph 156, National Bureau of Standards, U.S. Department of Commerce, June 1977. Cerca con Google

[25] S.W. Dean, "Review of recent studies on the mechanism of stress corrosion cracking in austenitic stainless steels", in Stress Corrosion-New Approaches, STP 610, H.L. Craig, Jr., Ed., American Society for Testing and Materials, 1976, pp 308-337. Cerca con Google

[26] G. Fontana, "Corrosion engineering", 3rd ed., McGraw-Hill, 1986. Cerca con Google

[27] M. Kobayashi, "Duplex statistics 2008", www.outokumpu.com. Vai! Cerca con Google

[28] J-C. Gagnepain, "Duplex stainless steels: success story and growth perspectives", Stainless Steel World America 2008 Conference & Expo. Cerca con Google

[29] K.H. Lo, C.H. Shek, J.K.L. Lai, "Recent developments in stainless steels", Materials Science and Engineering R 65 (2009), 39. Cerca con Google

[30] J. Charles, "Past, present and future of the duplex stainless steels", Proc. 7th Duple2007 Int. Conf & Expo, Grado, Italy (2007). Cerca con Google

[31] R. Dakhalaoui, C. Braham, A. Baczmanski, S. Wronski, K. Wierbanoski, E.C. Oliver, "Analyze of phase’s mechanical behaviour of duplex stainless steels by X-ray and neutron diffraction". Duplex, Grado, Italy (2007). Cerca con Google

[32] H.W. Hayedn and S. Floreen, Trans. ASM, 61 (1968) 474. Cerca con Google

[33] M. Jacobsson, "Fatigue testing of the duplex grades SAF 2304, SAF 2205 and SAF 2507", Internal Report no. 6060, Sandvik Steel, Sandviken, Sweden (1991). Cerca con Google

[34] J. Charles, "Duplex stainless steels, a review after DSS ’07 held in Grado", Rev. Met. Paris, 3 (2008) 155-171. Cerca con Google

[35] H. Sieurin, "Fracture toughness properties of duplex stainless steels", Doctoral Thesis (2006). Cerca con Google

[36] J-B. Vogt, "Fatigue properties of high nitrogen steels", Mater. Proc. Tech., 117 (2001) 364-369. Cerca con Google

[37] A. Mateo, L. Llanes, N. Akdut, M. Anglada, "High cycle fatigue behaviour of a standard duplex stainless steel plate and bar", Mater. Sci. Eng. A, 319-321 (2001) 516-520. Cerca con Google

[38] D.S. Bergstrom, "Benchmarking of duplex stainless steels versus conventional stainless steel grades", Proc. 7th Duplex 2007 Int. Conf & Expo, Grado, Italy (2007). Cerca con Google

[39] M. Holmquist, "Consider duplex stainless steels for corrosive exchangers’ service", Hydrocarbon Processing (2001). Cerca con Google

[40] D. Zuili, The Use of Duplex Stainless Steel in Oil & Gas Industry, Conf proc Duplex Stainless Steels (2010). Cerca con Google

[41] M. Kobayashi, "Duplex statistics 2008", www.outokumpu.com. Vai! Cerca con Google

[42] P-J. Cunat, "Stainless steel properties for structural automotive applications", Metal Bulletin International Automotive Materials Conference, Cologne, 21st to 23rd ( 2000). Cerca con Google

[43] A. Geleji, "Forge equipment, rolling mills and accessories", (in English), Akademaii Kiado, Budapest, 1967. Cerca con Google

[44] E. Mueller, "Hydraulic forging presses", Springer Verlag, Berlin, 1969. Cerca con Google

[45] K.H. Peters, "Design features of the hydraulic press and its field of application", Sheet Metal Ind., Vol 46, March 1969, pp 221-226. Cerca con Google

[46] H. Bohringer, K.H. Kilp, "Development of the direct-drive percussion press", Sheet Metal Ind., Vol 43, Nov 1966, p 857. Cerca con Google

[47] Schuler, "Metal forging handbook", Springer, Goppingen, Germany, 1998. Cerca con Google

[48] L. Lazzarotto, L. Dubar, A. Dubois, P. Ravassard, J. Oudin, "Three selection criteria for the cold metal forming lubricating oils containing extreme pressure agents", J. Mater. Process. Technol. 80–81 (1998) 245-250. Cerca con Google

[49] N. Bay, "The state of the art in cold forging lubrication", Journal of Materials Processing Technology 46 (1994) 19-40. Cerca con Google

[50] ICFG Doc. 8/91: "Lubrication aspects in cold forging of carbon steels and low alloy steels". The Int. Cold Forging Group, 1991. Cerca con Google

[51] ICFG Doc. 10/95: "Lubrication aspects in cold forging of aluminium and aluminium alloys". The Int. Cold Forging Group, 1991. Cerca con Google

[52] N. Bay (1994), "The state of the art in cold forging lubrication", in: Invited paper at the 2nd International Cold & Warm Forging Conference, Columbus, Ohio, September 27-29, Journal of Materials Processing Technology 46: 19-40. Cerca con Google

[53] N. Bay (1995), "Aspects of lubrication in cold forging of aluminium and steel". Keynote paper. Proceedings of International Cold Forging Congress, Solihull, England, 135-146. Cerca con Google

[54] R. Geiger (1983), "Surface treatment for the cold forging of steel: Part I". Wire 33(1):11-13. and vol. 33 no. 3: 75-78. Cerca con Google

[55] H.J. Haupt (1979), "Oberflächenvorbehandlung fu ̈r das Kaltmassivumformen". wt-Z ind Fertig 69: 555-558. Cerca con Google

[56] H.Y. Oei (1988), "Einflu ̈sse auf werkstu ̈ck und verfahren beim phosphatieren von teilen fu ̈r das kaltumformen". Maschinenmarkt 94(7): 24-28. Cerca con Google

[57] D.H. Jang, T.K. Ryou, D.Y. Yoon, B.B. Hwang, "The process sequence design of a power-assisted steering part", J. Mater. Process. Technol. 113 (1-3) (2001): 87-92. Cerca con Google

[58] J. Monaghan, M. O' Reilly, "Influence of lubrication on the surface finish of cold forged components", J. Mater. Process. Technol. 56 (1996): 678-690. Cerca con Google

[59] J. Donofrio, "Zinc phosphating", Metal Finish. 98 (6) (2000): 57-73. Cerca con Google

[60] J.A. Schey, "Tribology in metalworking: friction, lubrication and wear", American Society for Metals-(ASM), Metal Park, Ohio, 1984. Cerca con Google

[61] W. Rausch, "The phosphating of metals", Finishing Publications Ltd., London, 1990. Cerca con Google

[62] P. Hivart, J. Bricout, J. Oudin, "New real-time test for prediction of zinc phosphate-stearate coatings breakdown: optimal stearate settlings parameters for steel billets in cold forging", Tribology International 25 (1) (1992): 45-51. Cerca con Google

[63] B. Bhushan, B.K. Gupta, "Handbook of tribology: materials, coatings, and surface trea[t]ments", McGraw-Hill, New York, 1997. Cerca con Google

[64] N. Bay, "State of the art in cold forging lubrication", Journal of Materials Processing Technology 46 (1-2) (1994): 19-40. Cerca con Google

[65] N. Bay (1994), "The state of the art in cold forging lubrication". Journal of Materials Processing and Technology 46: 19-40. Cerca con Google

[66] ICFG Doc. 8/91 (1991), "Lubrication aspects in cold forging of carbon steels and low alloy steels". The International Cold Forging Group. Cerca con Google

[67] L. Dubar, J.P. Bricout, C. Wierre, P. Meignan (1998), "New surface processes for cold forging of steels". Surface and Coatings Technology 102: 159-167. Cerca con Google

[68] M. Geiger (1995), "Towards clean forming technologies". Annals of the CIRP 44(2):581-592. Cerca con Google

[69] T. Nakamura, I. Ishibashi (2004), "Environmentally friendly lubrication system for forging". English translation of Report from JSTP’s Sub-Committee on Process-Tribology. Cerca con Google

[70] D. Schmoeckel, M. Rupp (1997), "More environment friendly cold massive forming-production of steel without zinc phosphate layer". Proceed. Neuere Entwicklundeg der Massivumformung, Stuttgart, 183-200. (in German). Cerca con Google

[71] S. Shida (2002), "Environmentally friendly lubricants for cold forging". Proceed. 215th Symp. of JSTP, 215, 33-39. (in Japanese). Cerca con Google

[72] N. Yamamoto (2002), "Tribology in forging". Tribologist 47-6: 451-456. (in Japanese). Cerca con Google

[73] S. Komatsuzaki, T. Uematsu, T. Narahara (1998), "Effects of extreme pressure additives in forward extrusion". Journal of the JSTP 29-330: 748-754. (in Japanese). Cerca con Google

[74] S. Komatsuzaki (1986), "Extreme pressure additives for cold forging lubricant". Journal of the Japan Society of Lubrication Engineers 31(6): 381-386. (in Japanese). Cerca con Google

[75] T. Ohmori, N. Kitamura, A. Danno, M. Kawamura (1991), "A cold forging oil containing phosphorus type EP additives". Tribology Transactions 34-3: 458-464. Cerca con Google

[76] T. Ohmori, N. Kitamura, A. Danno, M. Kawamura (1991), "Lubricity of lubricants added phosphate extreme pressure additives for cold forging". Tribologist 36(6): 452-458. (in Japanese). Cerca con Google

[77] N. Asaba (2001), "Non-conversion coating lubricants for cold forging". Anticorrosion Management 45(87): 426-429. (in Japanese). Cerca con Google

[78] T. Horita (2001), "Non-chlorinated lubricants for cold forging". Technical Review by Forging Technology Institute of Japan 26(87): 59-62. (in Japanese). Cerca con Google

[79] M. Yoshida (2001), "Characteristics and application of recent lubricants for cold forging". Technical Review by Forging Technology Institute of Japan 26(87): 53-58. (in Japanese). Cerca con Google

[80] G. Cortellaro, E. Bucci, P. Anelli, M. Yoshida (2004), "E-Phos1 technology for wiredrawing". Wire Journal International 37(6): 67-69. Cerca con Google

[81] N. Kobatashi, A. Moriyama, M. Yoshida (2005), "Electrolytical phosphating process for steel wire drawing". Nihon Parkerizing, Technical report No. 17. Cerca con Google

[82] K.D. Nittel (2008), "Neue beschichtungen und trends beim kaltfliesspressen und kaltstauchen". Proceed. 23th Jahrestreffung der Kaltmassivumformer, Du ̈sseldorf, VDI. (in German). Cerca con Google

[83] N.J. Bjerrum, E. Christensen, T. Steenberg (1996/2002), "Method for electrochemical phosphating of metal surfaces", Danish patent, No. 0910/96/US patent, US 6,346,186 B1. Cerca con Google

[84] P.T. Olesen, T. Steenberg, E. Christensen, N.J. Bjerrum (1998), "Electrolytic depositions of amorphous and crystalline Zn/Ca-phosphates on stainless steel". Journal of the Materials Science 33: 3059-3063. Cerca con Google

[85] O. Wibom (1998), "Tribology in cold forging of stainless steel". Ph.D. Thesis, Technical Univ. of Denmark. (in Danish). Cerca con Google

[86] http://www.coldforming.chemetall.com. Vai! Cerca con Google

[87] H. Utsunomiya, S. Kawajiri, N. Takahira, J. Miyamoto, T. Sakai, T. Tanaka (2007), "Porosification of steel surface-new lubrication system for cold forging". In Azushima A, (Ed.) Proceed. 3rd Int. Conf. on Tribology in Manuf. Process., ICTMP 363-72. Cerca con Google

[88] M. Arentoft, N. Bay, T. Tang, J.D. Jensen (2009), "A new lubricant carrier for metal forming". Annals of the CIRP 58(1): 243-246. Cerca con Google

[89] P.T. Tang, M. Arentoft, N. Bay, M. Borrild, I. Mizushima, J.D. Jensen, N.A. Paldan (2008), "A microporous layer for lowering friction in metal forming processes", Patent PCT/DK2008/000233. Cerca con Google

[90] T. Nakamura, Y. Sumioka, Y. Sagisaka, I. Ishibashi, M. Sekizawa (2008), "Lubrication performance of environmentally friendly lubricants for forging", 1st Report. Proceed. 59th Japanese Joint Conference for the Technology of Plasticity, 579-580. Cerca con Google

[91] T. Nakamura, Y. Sumioka, K. Sakoda, S. Miyano, Y. Ishiizumi, I. Ishibashi, M. Sekizawa (2008), "Lubrication performance of environmentally friendly lubricants for forging". 2nd Report. Proceed. of the 59th Japanese Joint Conference for the Technology of Plasticity, 333-334. Cerca con Google

[92] L. Lazzarotto, L. Dubar, A. Dubois, P. Ravassard, J. Oudin (1998), "Three selection criteria for the cold metal forming lubricating oils containing extreme pressure agents". Journal of Material Processing Technology 80-81: 245-250. Cerca con Google

[93] T. Nakamura, I. Ishibashi (2004), "Environmentally friendly lubrication system for forging". English translation of Report from JSTP’s Sub-Committee on Process-Tribology. Cerca con Google

[94] N. Kashimura, M. Takeuchi, F. Oda, F. Kawahara, H. Ojima, M. Tomono (2000), "Development of environmentally friendly lubricant for cold forging with high performance and simple treatment". Journal of the JSTP 41(469): 109-114. (in Japanese). Cerca con Google

[95] K. Morishita (2001), "Trends of environmentally friendly lubricants for cold forging". Technical Review by Forging Technology Institute of Japan 26(87): 12-18. (in Japanese). Cerca con Google

[96] M. Takeuchi, F. Ikesue, N. Kashimura (1999), "Development of environmentally friendly lubricant with high performance and simple treatment for cold forging". In Geiger M, (Ed.) Advanced Technology of Plasticity. Proc. 6th ICTP 383-389. Cerca con Google

[97] A. Uno, S. Shida, M. Tomono, T. Shimizu, T. Sano (2002), "Development of waste free water-system lubricant for cold forging". In Kiuchi M, (Ed.) Advanced Technology of Plasticity. Proc. 7th ICTP 1669-1673. Cerca con Google

[98] Anon, "Replaceable lubricants to phosphate/soap treatment", Technical Bulletin of Daido Chemical Industry Co. Cerca con Google

[99] M. Gariety, G. Ngaile, T. Altan (2007), "Evaluation of new cold forging lubricants without zinc phosphate precoat". International Journal of Machine Tools and Manufacture 47: 673-681. Cerca con Google

[100] K. Hirai (1984), "Lubricants for deformation processes". Journal of JSTP 25(285): 878-885. (in Japanese). Cerca con Google

[101] M. Morishita (2007), "Tribology in manufacturing processes of automobiles at Toyota". In Azushima A, (Ed.) Proceed. 3rd Int. Conf. on Tribology in Manufacturing Processes, ICTMP 31-9. Cerca con Google

[102] T. Nakamura (1993), "Counter measures for seizure phenomena in deformation processes". Journal of the JSTP 34(393): 1082-1090. (in Japanese). Cerca con Google

[103] C. Maccormack, J. Monaghan. Failure analysis of cold forging dies using FEA [J]. J Mater Process Technol, 2001, 117: 209-215. Cerca con Google

[104] T. Nakamura, I. Ishibashi (2004), "Environmentally friendly lubrication system for forging". English translation of Report from JSTP’s Sub-Committee on Process-Tribology. Cerca con Google

[105] J. Bolton, "Modern developments in sintered high speed steels". Met Powder Rep 1996; 51: 30-8. Cerca con Google

[106] G. Hoyle, "High speed steels". London: Butterworths; 1988. p. 222. Cerca con Google

[107] Steel Products Manual, "Tool Steels", Iron and Steel Society, 1988. Cerca con Google

[108] "Tool steels, heat treater's guide: practices and procedures for irons and steels", H. Chandler, Ed., ASM International, 1995, pp. 517-669. Cerca con Google

[109] J.G. Gensure, D.L. Potts, "International metallic materials cross-reference", 3rd ed., Genium Publishing, 1988. Cerca con Google

[110] M. Boccalini, H. Goldenstein, "Solidification of high speed steels". International Materials Review, 2001, 46: 92. Cerca con Google

[111] "Tool steels, heat treater's guide: practices and procedures for irons and steels", H. Chandler, Ed. ASM International, 1995, pp. 517-669. Cerca con Google

[112] E.S. Lee, W.J. Park, K.H. Baik, S. Ahn, "Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel". Scripta Materialia, 1998, 39: 1395. Cerca con Google

[113] C. Rodenburg, W.M. Rainforth, "A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact". Acta Materialia, 2007, 55: 2443. Cerca con Google

[114] H. Takigawa, H. Manto, N. Kawai, K. Homma, Powder Metall. 24 (4) (1981) 196. Cerca con Google

[115] P. Matteazzi, F. Wolf, Mater. Sci. Eng. A 248 (1998) 19. Cerca con Google

[116] D. Jakubeczyova, J. Blach, M. Fáberová, Kovove Mater. 39 (2001) 278. (in Slovak). Cerca con Google

[117] E. Pippel, J. Woltersdorf, G. Pöckl, G. Lichtenegger, Mater. Characterisation 43 (1999) 41. Cerca con Google

[118] F. Preisser, Proceedings of 18th National Conference on Heat Treatment with International Participation, Brno, Czech Republic, 28-30 November, Asociace pro tepelné zpracováníkovů, Praha, 2002, p. 189. Cerca con Google

[119] S. Kheirandish, Y.H.K. Kharrazi, S. Mirdamadi, ISIJ Int. 37 (7) (1997) 721. Cerca con Google

[120] O. Sandberg (2008), "Advanced low-friction tool steel for metal processing: properties and industrial experiences". International Journal of Microstructure and Materials Properties 3(2-3): 391-400. Cerca con Google

[121] O. Sandberg, B. Högman, B. Johansson, A. Thuvander (2008), "New tool concept for stamping of HSS and AHSS sheet". Proceed. Int. Conf. on Deep Drawing, IDDRG, Olofström, Sweden, 591-602. Cerca con Google

[122] Anon (2003), "Development of replacements for phoscoating used in forging", Extrusion and Metal Forming Processes. National Center for Manufacturing Sciences, Ann Arbor, MI, USA. Cerca con Google

[123] S.G. Harris, E.D. Doyle, A.C. Vlasveld, J. Audy, J.M. Long, D. Quick, "Influence of chromium content on the dry machining performance of cathodic arc evaporated TiAlN coatings", Wear 254 (1-2) (2003) 185-194. Cerca con Google

[124] F. Klocke, M. Massmann, K. Gerschwiler (2005), "Combination of PVD tool coatings and biodegradable lubricants in metal forming and machining". Wear 259: 1197-1206. Cerca con Google

[125] Ngaile, G., and Altan, T., “Simulations of Manufacturing Processes: Past, Present and Future,” Proceedings of the Seventh ICTP, Oct 2002, Japan, p. 271. Cerca con Google

[126] Kobayashi, S., Oh, S.I., Altan, T., 1989. Metal Forming and the Finite Element Method. Oxford University Press. Cerca con Google

[127] Lee, C.H., Kobayashi, S., 1973. New solutions to rigid-plastic deformation problems using a matrix method. Trans. ASME J. Eng. Ind. 95, 865-873. Cerca con Google

[128] Oh, S.I., 1982. Finite element analysis of metal forming processes with arbitrarily shaped dies. Int. J. Mech. Sci. 24, 479-493. Cerca con Google

[129] Park, J.J., Kobayashi, S., 1984. Three-dimensional finite element analysis of block compression. Int. J. Mech. Sci. 26, 165-176. Cerca con Google

[130] Mori, K., Osakada, K., 1990. Finite element simulation of three dimensional deformation in shape rolling. Int. J. Numer. Methods Eng. 30, 1431-1440. Cerca con Google

[131] Im, Y.T., Kang, S.H., Cheon, J.S., Kim, S.Y., 2003. Finite element investigation of tip test with an aluminum alloy. JSME Int. J. Ser. A Mech. Mater. Eng. 46, 224-229. Cerca con Google

[132] Vasquez, V., Walters, J., and Altan, T., “Forging Process Simulation-State of the Art in USA,” Proceedings of the Conference on New Developments in Forging Technology, Stuttgart, Germany, May 19-20, 1999. Cerca con Google

[133] Howson, T.E., and Delgado, H.E., “Computer Modeling Metal Flow in Forging,” JOM, Feb. 1989, pp. 32-34. Cerca con Google

[134] Oh, S.I., “Finite Element Analysis of Metal Forming Problem with Arbitrarily Shaped Dies,” Int. J. Mech. Science, Vol. 24 (No. 4) 1982, p. 479. Cerca con Google

[135] Sellars, C.M., “Modeling Microstructural Development during Hot Rolling,” Materials Science and Technology, Vol. 6, 1990, p. 1072. Cerca con Google

[136] Shen, G., “Microstructure Modeling of Forged Components of Ingot Metallurgy Nickel Based Superalloys,” Advanced Technologies for Superalloy Affordability, K.M. Chang, S.K. Srivastava, D.U. Furrer, and K.R. Bain, Ed., TMS, 2000, pp. 223-231. Cerca con Google

[137] A. Erman Tekkaya, A guide for validation of FE simulations in bulk metal forming. The Arabian Journal for Science and Engineering, Vol 30, 2005, pp. 113-136. Cerca con Google

[138] FORGE2 Technical Documentation, Transvalor SA, 2000. Cerca con Google

[139] Shen, G., Denkenberger, R., Furrer, D., “Aerospace Forging-Process and Modeling", Materials Design Approaches and Experiences, J.C. Zhao, M. Fahrmann, and T.M. Pollock, Ed., TMS, 2001, pp. 347-357. Cerca con Google

[140] Wu, W.T., Li, G.J., Arvind, A., Tang, G.P., “Development of a Three Dimensional Finite Element Based Process Simulation Tool for the Metal Forming Industry," Proceedings of the Third Biennial Joint Conference on Engineering Systems Design and Analysis, Montpellier, France, 1996. Cerca con Google

[141] P.F. Bariani, T. D. Negro, and S. Bruschi, "Testing and Modelling of Material Response to Deformation in Bulk Metal Forming," Annals of the CIRP Vol. 53/2/2004 573-598. Cerca con Google

[142] J.C. Fisher and J. H. Hollomon, "Dislocation glide as an aid to precipitation at low temperatures", Acta metallurgica, vol. 3/6: 608, 1955. Cerca con Google

[143] E. Voce, "A practical strain-hardening function", Acta metallurgica, vol. 51, pp. 219-226, 1948. Cerca con Google

[144] D. Lorenz and K. Roll, "Simulation of Hot Stamping and Quenching of Boron alloyed Steel", presented at 7th Int. ESAFORM Conf. on Mat. Forming, Trondheim, Norway, 2004. Cerca con Google

[145] Czichos H. Tribology - a system approach to the science and technology of friction, lubrication and wear. Amsterdam: Elsevier Scientific Publishing Company, 1978. Cerca con Google

[146] Schey JA. Tribology in metalworking: friction, lubrication and wear. Metals Park (OH): American Society For Metals, 1983. Cerca con Google

[147] Bay N. Friction and adhesion in metal forming and cold welding. D. Sc. thesis (MM.85.43), Institute of Manufacturing Engineering, Technical University of Denmark, 1985. Cerca con Google

[148] Kalpakjian S. Recent progress in metal forming tribology. Ann. CIRP 1985; 34(2): 585-92. Cerca con Google

[149] Lenard JG. Tribology in metal rolling: keynote paper. Ann. CIRP 2000; 49(2): 567-90. Cerca con Google

[150] Von Karman Th. On the theory of rolling. Z. angew. Math. Mech. 1925; 5: 139-41. Cerca con Google

[151] Siebel E. Resistance and deformation and the flow material during rolling. Stahl und Eisen 1930; 50: 1769-75. Cerca con Google

[152] Wanheim T. Friction at high normal pressures. Wear 1973; 25: 225-44. Cerca con Google

[153] Wanheim T., Bay N., Petersen A.S., "A Theoretically Determined Model for Friction in Metal Working Processes", Wear, 28 (1974), pp. 251-258. Cerca con Google

[154] Wanheim T, Bay N. A model for friction in metal forming processes. Ann. CIRP 1978; 27(1): 189-94. Cerca con Google

[155] Tan X. "Comparisons of Friction Models in Bulk Metal Forming", Tribology International, v.35, pp. 385-393, 2002. Cerca con Google

[156] V.K. Jain, B.J. Foster. Investigation of friction behaviour during non-isothermal deformation-processing, ASME Paper PED 54, Atlanta, 1991, S187-S201. Cerca con Google

[157] Hansen B.G., Bay N. Two new methods for testing lubricants for cold forging. J. Mech. Work. Technol. 13, 1986, 189-204. Cerca con Google

[158] Groche P., Kappes B. Tribologie der Massivumformung-Modellpru ̈fsta ̈nde der Tribologie. In: Bartz, W.J. (Ed.), Tribologie und Schmierung bei der Massivumformung, vol. 13. Expert Verlag, Renningen-Malmsheim, Germany, 2004, pp. 1-14. Cerca con Google

[159] Doege E., Alasti M., Schmidt-Ju ̈rgensen, 2002b. An innovative procedure for the numerical identification of accurate friction and heat transfer laws for precision forging processes. In: Proceedings of the Ninth ISPE International Conference on Concurrent Engineering: Research and Application-Advances in Concurrent Engineering, pp. 199-207. Cerca con Google

[160] Ngaile G., Saiki H., Ruan L., Marumo Y., 2007. A tribo-testing method for high performance cold forging lubricants. Wear 262, 684-692. Cerca con Google

[161] Daouben E., Dubar L., Dubar M., Deltombe R., Dubois A., Truong-Dinh N., Lazzarotto L., 2007. Friction and wear in hot forging of steels. In: Proceedings of the 10th ESAFORM Conference on Material Forming, pp. 505-508. Cerca con Google

[162] Kunogi M., 1954. On plastic deformation of hollow cylinder under axial compression. Rep. Scient. Res. Inst. 30, pp. 63-92. Cerca con Google

[163] Male A.T., Cockcroft M.G., 1965. A method for determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J. Inst. Metals 93, pp. 38-46. Cerca con Google

[164] Sofuoğlu H., Gedikli H., Rasty J. Determination of Friction Coefficient by Employing the Ring Compression Test, Transactions of ASME, Journal of Engineering Materials and Technology, Vol. 123, 2001, pp. 338-348. Cerca con Google

[165] Rao KP, Sivaram K. A review of ring-compression testing and applicability of the calibration curves. J Mater Process Technol 1993; 37: 295-318. Cerca con Google

[166] Sofuoglu H, Rasty J. On the measurement of friction coefficient utilizing the ring compression test. Tribol Int 1999; 32: 327-35. Cerca con Google

[167] Sofuoglu H, Gedikli H. Determination of friction coefficient encountered in large deformation processes. Tribol Int 2002; 35: 27-34. Cerca con Google

[168] Joun MS, Moon HG, Choi IS, Lee MC, Jun BY. Effects of friction laws on metal forming processes. Tribol Int 2009; 42: 311-9. Cerca con Google

[169] Geiger R., 1976. Metal flow in combined can extrusion. In: Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, No. 36. Verlag Giradet, Essen, Germany. (in German). Cerca con Google

[170] Buschhausen A., Lee J.Y., Weinmann K., Altan T., 1992. Evaluation of lubrication and friction in cold forging using a double backward extrusion process. J. Mater. Process. Technol.33, pp. 95-108. Cerca con Google

[171] Arentoft M., Vigsø C., Lindegren M., Bay N., 1996. A study of the double cup extrusion process as a friction test. In: Proceedings of the Advanced Technology of Plasticity, vol. I, 5th ICTP, pp. 243-250. Cerca con Google

[172] Kim H., Padwad S., Altan T., 2004. Evaluation of new lubricants for cold forging without zinc phosphate coating. In: Proceedings of the 37th Plenary Meeting of the International Cold Forging Group. Cerca con Google

[173] Forcellese A., Gabrielli A., Barcellona A., Micari A., “Evaluation of Friction in Cold Metal Forming”, Journal of Materials Processing Technology, 45(1994), pp. 619-624 Cerca con Google

[174] Schrader T., Shirgaokar M., Altan T., 2007. A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J. Mater. Process. Technol. 189, 36-44. Cerca con Google

[175] Sheljaskow S., 2001. Tool lubricating systems in warm forging. J. Mater. Process. Technol. 113, 16-21. Cerca con Google

[176] A. Tarantola, Inverse problem theory: Elsevier, 1987. Cerca con Google

[177] J.D. Coolins, G. C. Hart, T. K. Hassleman and B. Kennedy, "Statistical identification of structures," AAIA Journal, vol. 12, pp. 185-190, 1974. Cerca con Google

[178] J.V. Beck and K.J. Arnold. Parameter estimation in Engineering and Science: John Wiley & Sons, 1986. Cerca con Google

[179] A. Badrinarayanan, A. Constantinescu and N. Zabras, "Preform in metal forming", presented at Proceedings of the 1995 Numiform Conference (Balkema). Cerca con Google

[180] D.S. Schnur and N. Zabras, "An inverse method for determining elastic material properties and a material interface", International Journal for Numerical Methods in Engineering, vol. 33, pp. 2039-2057, 1992. Cerca con Google

[181] D.M. Bates and D. G. Watts, Nonlinear regression Analysis and its Application, 1988. Cerca con Google

[182] Kimura F., Suzuki H., Takahashi K. Product design evaluation based on effect of shape errors for part assembly. CIRP Annals: Manufacturing Technology 1992; 41(1): 193-6. Cerca con Google

[183] Chan WL, Fu MW, Lu J, Chan LC. Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. Journal of Materials Processing Technology 2009; 209(11): 5077-86. Cerca con Google

[184] Tahir A., 2007. A study of barreling profile and effect of aspect ratio on material flow in lateral extrusion of gear-like forms, Ind. J. Eng. Mater. Sci. 14 (3), 184-192. Cerca con Google

[185] Liu G, Zhang LB, Hu XL, Wang ZR, Wang RW, Huang SD, et al. Applications of numerical simulation to the analysis of bulk-forming processes-case studies. Journal of Materials Processing Technology 2004; 150(1-2): 56-61. Cerca con Google

[186] Narayanasamy R., Thaheer A.S.A., Baskaran K., 2006. Comparison of barreling unlubricated truncated cone billets during cold upsetting forging of various metals, Indian Journal of Engineering and Materials Science 13 (3): 202-208. Cerca con Google

[187] Baskaran K., Narayanasamy R., 2006. Effects of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant, Indian Journal of Engineering and Materials Science 13 (4): 281-292. Cerca con Google

[188] Yilmaz C, Tahir AM, Erol AH. An investigation on forging loads and metal flow in conventional closed-die forging of preforms obtained by open-die indentation. Indian Journal of Engineering and Materials Science 2004; 11(6): 487-92. Cerca con Google

[189] Lu C., Zhang L.W., 2006. Numerical simulation on forging process of TC4 alloy mounting parts, Transactions of Nonferrous Metals Society of China 16 (6), 1386-1390. Cerca con Google

[190] Song J.H., Im Y.T., 2007. Process design for closed-die forging of bevel gear by finite element analyses, J. Mater. Process. Technol. 192, 1-7. Cerca con Google

[191] Qamar S.Z., 2010. Shape complexity, metal flow, and dead metal zone in cold extrusion, Materials and Manufacturing Processes 25, 1454-1461. Cerca con Google

[192] Sheu J.J., Yu C.H., 2008. The die failure prediction and prevention of the orbital forging process, J. Mater. Process. Technol. 201 (1-3), 9-13. Cerca con Google

[193] Vries M. de. Inclusion of defect avoidance in expert systems for cold forging, Reading University, RUEL Report No. 101/92, 1992, pp. 1-30. Cerca con Google

[194] Arentoft M., Wanheim T., 1997. The basis for a design support system to prevent defects in forging, J. Mater. Process. Technol. 69, 227-232. Cerca con Google

[195] Okamoto T., T. Fukuda and H. Hagita. Material fracture in cold forging Systematic classification of working methods and types of cracking in cold forging. The Sumitomo Search No.9, May 1973, pp. 46-56. Cerca con Google

[196] Kudo H. Towards net-shape forming, Journal of Materials Processing Technology. 22, 1990, pp. 307-342. Cerca con Google

[197] R.D. Doherty, G. Gottstein, J.R. Hirsch, W.B. Huttchinson, K. Lucke, E. Nes, P.J. Wilbrandt, in: J.S. Kallend, G. Gottstein (Eds.), Panel Discussion on Recrystallization Texture, ICOTOM 8, TMS, Warrendale, PA, 1988, p. 369. Cerca con Google

[198] F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004. Cerca con Google

[199] S.F. Medina and A. Quispe. Improved Model for Static Recrystallization Kinetics of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels, ISIJ Int., 2001, 41(7), p. 774-781 (in English). Cerca con Google

[200] R. Abad, A.I. Fernandez, B. Lopez and J.M. Rodriguez. Interaction Between Recrystallization and Precipitation During Multipass Rolling in a Low Carbon Niobium Microalloyed Steel. ISIJ Int., 2001, 41(7), p. 1373-1382 (in English). Cerca con Google

[201] J.E. Burke and D. Turnbull, Prog. Met. Phys. Vol. 3, 1952, p. 200. Cerca con Google

[202] H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A 40A (2009) 1175. Cerca con Google

[203] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207. Cerca con Google

[204] R.Z. Valiev, T.G. Langdon, Adv. Eng. Mater. 12 (2010) 677-691. Cerca con Google

[205] Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782-817. Cerca con Google

[206] C. Kobayashi, T. Sakai, A. Belyakov, H. Miura, Philos. Mag. Lett. 87 (2007) 751-766. Cerca con Google

[207] A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Philos. Mag. A 81 (2001) 2629-2643. Cerca con Google

[208] N. Dudova, A. Belyakov, T. Sakai, R. Kaibyshev, Acta Mater. 58 (2010) 3624-3632. Cerca con Google

[209] T. Sakai, J.J. Jonas, in: K.H. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan (Eds.), Encyclopedia of materials: science and technology, vol. 7, Elsevier, Oxford, 2001. Cerca con Google

[210] Y. Huang, J.D. Robson, P.B. Prangnell, Acta Mater. 58 (2010) 1643-1657. Cerca con Google

[211] R. Kaibyshev, S. Malopheyev, V. Kulitskiy, M. Gazizov, Mater. Sci. Forum 783-786 (2014) 2641-2646. Cerca con Google

[212] L.S. Toth, Y. Estrin, R. Lapovok, C. Gu, Acta Mater. 58 (2010) 1782-1794. Cerca con Google

[213] T. Watanabe, Mater. Sci. Forum 94–96 (1992) 209. Cerca con Google

[214] L. Kestens, J.J. Jonas, Metall. Mater. Trans. 27A (1996) 155. Cerca con Google

[215] T. Urabe, J.J. Jonas, ISIJ Int. 34 (1994) 435. Cerca con Google

[216] Y.B. Park, D.N. Lee, G. Gottstein, Proc. 11th Int. Conf. on Textures of Materials ICOTOM-11, Nonferrous Metals Society of China, Beijing, 1996, p. 531. Cerca con Google

[217] Ph. Bocher, Ph.D. Thesis, McGill University, Montreal, Canada, 1997. Cerca con Google

[218] L.S. Tóth, J.J. Jonas, Scr. Metall. Mater. 27 (1992) 359. Cerca con Google

[219] Okamura T., Sakashita A., Fukuda T., Yamashita H., Futami T., 2003. Latest SCC issues of core shroud and recirculation piping in Japanese BWRs. Transactions of 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, WG01-1 Cerca con Google

[220] Krieger Lassen N.C., Juul Jensen D., Conradsen K. (1994). Automatic recognition of deformed and recrystallized regions in partly recrystallized samples using electron backscattering patterns. Mater. Sci. Forum 157-162, 149-158. Cerca con Google

[221] Field D.P. (1995). Quantification of partially recrystallized polycrystals using electron backscatter diffraction. Mater. Sci. Eng. A 190, 241-246. Cerca con Google

[222] Wardle S.T., Lin L.S., Cetel A.D., Adams B.L. (1994). Orientation imaging microscopy: Monitoring residual stress profiles in single crystals using and imaging quality parameter, IQ. In Proceedings of the 52nd Annual Meeting of the Microscopy Society of America, Bailey G.W., Garratt-Reed A.J. (Eds.), pp. 680-681. San Francisco CA: San Francisco Press. Cerca con Google

[223] Kunze K., Wright S.I., Adams B.L., Dingley D.J. (1993). Advances in automatic EBSP single orientation measurements. Text. Microstruc. 20(1-4), 41-54. Cerca con Google

[224] Nowell M.M., Wright S.I. (2005). Orientation effects on indexing of electron backscatter diffraction patterns. Ultramicroscopy 103(1), 41-58. Cerca con Google

[225] Y. Zhou, K.T. Aust, U. Erb, G. Palumbo, Scripta Materialia 45 (2001) 49. Cerca con Google

[226] H. Kokawa, Journal of Materials Science 40 (2005) 927. Cerca con Google

[227] R. Singh, S.G. Choedhury, B.R. Kumar, S.K. Das, P.K. De, I. Chattoraj, Scripta Materialia 57 (2007) 185. Cerca con Google

[228] J.F. dos Santos, C.M. Garzon, A.P. Tschiptschin, Materials Science and Engineering A 382 (2004) 378. Cerca con Google

[229] T. Watanabe, Materials Forum 11 (1988) 284. Cerca con Google

[230] A.H. Advani, R.J. Romero, L.E. Murr, D.J. Matlock, W.W. Fisher, P.M. Tarin, C.M. Cedillo, J.M. Maldonado, R.C. Miller, E.A. Trillo, Scripta Metallurgica et Materialia 27 (1992) 1759. Cerca con Google

[231] J. Mizera, A. Garbacz, K.J. Kurzydlowski, Scripta Metallurgica et Materialia 33 (1995) 515. Cerca con Google

[232] A.J. Schwartz, W.E. King, JOM 50 (1998) 50. Cerca con Google

[233] E.M. Lechockey, G. Palumbo, P. Lin, Metallurgical and Materials Transactions A 29 (1998) 3069. Cerca con Google

[234] O.V. Mishin, V.Y. Gertsman, I.V. Alexandrov, R.Z. Valiev, Materials Science and Engineering A 212 (1996) 281. Cerca con Google

[235] D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, P.K. De, Acta Materialia 50 (2002) 4587. Cerca con Google

[236] E.A. Trillo, L.E. Murr, Acta Materialia 47 (1999) 235. Cerca con Google

[237] L. Valentini, A. Di Schino, J.M. Kenny, Y. Gerbig, H. Haefke, Wear 253 (2002) 458. Cerca con Google

[238] A. Di Schino, J.M. Kenny, Journal of Materials Science Letters 21 (2002) 1969. Cerca con Google

[239] G. Bregliozzi, A. Di Schino, S.I.-U. Ahmed, J.M. Kenny, H. Haefke, Wear 258 (2005) 503. Cerca con Google

[240] M. Richert, Q. Liu, N. Hansen, Materials Science and Engineering A 260 (1999) 275. Cerca con Google

[241] A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Philosophical Magazine A 81 (2001) 2629. Cerca con Google

[242] A. Belyakov, W. Gao, H. Miura, T. Sakai, Metallurgical and Materials Transactions A 29 (1998) 2957. Cerca con Google

[243] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Materialia 45 (1997) 4733. Cerca con Google

[244] I.A. Yakubtsov, A. Ariapour, D.D. Perovic, Acta Materialia 47 (1999) 1271. Cerca con Google

[245] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki, Acta Materialia 50 (2002) 1547. Cerca con Google

[246] A. Belyakov, Y. Kimura, K. Tsuzaki, Acta Materialia 54 (2006) 2521. Cerca con Google

[247] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, Philosophical Magazine Letters 80 (2000) 711. Cerca con Google

[248] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, ISIJ International 39 (1999) 592. Cerca con Google

[249] A. Belyakov, Y. Kimura, K. Tsuzaki, Materials Science and Engineering A 403 (2005) 249. Cerca con Google

[250] D.A. Hughes, N. Hansen, Acta Materialia 45 (1997) 3871. Cerca con Google

[251] A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Kimura, Y. Mishima, Materials Science and Engineering A 456 (2007) 323. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record