Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

De Chiusole, Debora (2015) Sviluppo e Applicazioni di Modelli Formali per la Valutazione Adattiva della Conoscenza e dell'Apprendimento nell'Ambito della Knowledge Space Theory. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1145Kb

Abstract (inglese)

The five studies presented in this thesis have been carried out in the area of knowledge space theory (KST), a recent mathematical theory providing an important framework for the formal development of computerized web-based systems aimed at assessing individual knowledge and learning. The basic concept at the core of the entire theory is that of knowledge state, that is the set of problems that a student is able to solve, in a certain filed of knowledge. The collection of all knowledge states that occurs in a population of students is called the knowledge structure. A knowledge structure is a deterministic model of the organization of knowledge in a particular domain. Its empirical validation is possible by a probabilistic assessment of its plausibility. The basic local independence model (BLIM) is a probabilistic model developed to this aim. Despite it is the most widely used model in KST, issues relating its applicability were open. The overall objective of the first three studies presented in this thesis was to solve some of these problems, in order to improve the validity of empirical applications of the model. In the KST framework, the notion of knowledge state does not provide cognitive interpretations. Instead, in the competence-based KST (CbKST) the main objective of the assessment becomes that of identifying the competence state of a student, which is the set of skills she masters. The other two studies that are introduced were developed within this extended theoretical framework. The general aim was to fill some gaps regarding both the probabilistic and the deterministic levels of CbKST's models.

Abstract (italiano)

Le cinque ricerche che si presentano in questa tesi si sviluppano entro la knowledge space theory, una teoria matematica recente che fornisce un importante quadro di riferimento formale per lo sviluppo di sistemi computerizzati web-based che abbiano l'obiettivo di valutare la conoscenza e l'apprendimento degli individui. La nozione al centro dell'intera teoria è quella di di conoscenza, cioè l'insieme dei problemi che uno studente è capace di risolvere, in un certo dominio di conoscenza. La collezione di tutti gli stati di conoscenza osservabili in una popolazione di studenti costituisce una struttura di conoscenza. Le strutture di conoscenza sono un modello deterministico teorico dell'organizzazione della conoscenza all'interno di un particolare dominio. La loro validazione empirica è resa possibile grazie alla verifica probabilistica della loro plausibilità. Il basic local independence model (BLIM) è un modello probabilistico che è stato sviluppato a questo scopo. Nonostante sia il modello più utilizzato nella KST, problemi relativi alla sua applicabilità rimanevano ancora aperti. L'obiettivo generale delle prime tre ricerche che si presentano in questa tesi, è stato quello di risolvere questi problemi per conferire una maggiore validità alle applicazioni empiriche del modello. Nella KST, la nozione di stato di conoscenza non fornisce alcun tipo di interpretazione cognitiva. Invece, nella competence-based KST (CbKST) l'obiettivo principale della valutazione diviene quello individuare lo stato di competenza dello studente, ovvero l'insieme delle abilità che possiede. Le altre due ricerche che si presentano nella tesi si collocano all'interno di questo quadro teorico. Esse hanno avuto l'obiettivo di colmare alcune mancanze relative della CbKST, una di tipo probabilistico e l'altra di tipo deterministico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Stefanutti, Luca
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):knowledge space theory, basic local independence model, missing data, parameter invarinace, knowlab, knowledge, assessment, computerized adaptive assessment, intelligent tutoring system, knowledge space theory, basic local independence model, dati mancanti, invarianza dei parametri, knowlab, valutazione della conoscenza, valitazione adattiva computerizzata, intelligent tutoring system
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/03 Psicometria
Struttura di riferimento:Dipartimenti > Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata
Codice ID:7758
Depositato il:26 Nov 2015 10:10
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267-281). Academiai Kiado. Cerca con Google

Albert, D., & Lukas, J. (1999). Knowledge spaces: Theories, empirical research, and applications. Mahwah, NJ: Lawrence Erlbaum Associates. Cerca con Google

Andersen, E. B. (1973). A goodness of t test for the rasch model. Psychometrika, 38 (1), 123-140. Cerca con Google

Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. The journal of wildlife management, 912-923. Cerca con Google

Bamber, D., & van Santen, J. P. H. (1985). How many parameters can a model have and still be testable? Journal of Mathematical Psychology, 29 , 443-473. Cerca con Google

Bamber, D., & van Santen, J. P. H. (2000). How to assess a model's testability and identiability. Journal of Mathematical Psychology, 44, 20-40. Cerca con Google

Birkho, G. (1999). Lattice theory. Providence, R.I.: American Mathematical Society. Cerca con Google

Bolt, D. (2007). The present and future of IRT-based cognitive diagnostic models (ICDMs) and related methods. Journal of Educational Measurement, 44 (4), 377-383. Cerca con Google

de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130. Cerca con Google

de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. Cerca con Google

de la Torre, J., & Lee, Y.-S. (2010). A note on the invariance of the dina model parameters. Journal of Educational Measurement, 47 (1), 115-127. Cerca con Google

de Chiusole, D., & Stefanutti, L. (2013). Modeling skill dependence in probabilistic competence structures. Electronic Notes in Discrete Mathematics, 42, 41-48. Cerca con Google

de Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (2013). Assessing parameter invariance in the BLIM: Bipartition Models. Psychometrika, 78 (4), 710-724. Cerca con Google

de Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (2014). Modeling missing data in knowledge space theory. Manuscript under revision. Cerca con Google

de Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (in press). Naive tests of blim's invariance. The Spanish Journal of Psychology. Cerca con Google

Degreef, E., Doignon, J., Ducamp, A., & Falmagne, J. (1986). Languages for the assessment of knowledge. Journal of Mathematical Psychology, 30, 243-256. Cerca con Google

Dempster, A., Laird, N., & Rubin, D. (1997). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38. Cerca con Google

Desmarais, M. C., & Baker, R. S. (2012). A review of recent advances in learner and skill modeling in intelligent learning environments. User Modeling and User-Adapted Interaction, 22 (1-2), 9-38. Cerca con Google

DiBello, L. V., & Stout, W. (2007). Guest editors' introduction and overwiew: Irt-based cognitive diagnostic models and related methods. Journal of Educational Measurement, 44 (4), 285-291. Cerca con Google

Doignon, J. P. (1994). Knowledge spaces and skill assignments. In G. H. F. e D. Laming (Ed.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 111-121). New York: Springer-Verlag. Cerca con Google

Doignon, J.-P. (1994). Knowledge spaces and skill assignments. In G. Fischer & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics and methodology (p. 111-121). New York: Springer-Verlag. Cerca con Google

Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175-196. Cerca con Google

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge Spaces. Berlin, Heidelberg, and New York: Springer-Verlag. Cerca con Google

Dowling, C. E., & Hockemeyer, C. (2001). Automata for the assessment of knowledge. Knowledge and Data Engineering, IEEE Transactions on, 13 (3), 451-461. Cerca con Google

Duntsch, I., & Gediga, G. (1995). Skills and knowledege structures. British Journal of Mathematical and Statistical Psychology, 48, 9-27. Cerca con Google

Duntsch, I., & Gediga, G. (1995). Skills and knowledge structures. British Journal of Mathematical and Statistical Psychology, 48, 9-27. Cerca con Google

Duntsch, I., & Gediga, G. (1996). On query procedures to build knowledge structures. Journal of Mathematical Psychology, 40 (2), 160-168. Cerca con Google

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26. Cerca con Google

Falmagne, J.-C., Albert, D., Doble, C., Eppstein, D., & Hu, X. (2013). Knowledge spaces: Applications in education. Springer Science & Business. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (1988a). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 1-23. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (1988b). A Markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32, 232-258. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces. New York: Springer. Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., & Johanessen, L. (1990). Introduction to knowledge spaces: how to build, test and search them. Psychological Review, 97, 204-224. Cerca con Google

Gediga, G., & Duntsch, I. (2002). Skill set analysis in knowledge structures. British Journal of Mathematical and Statistical Psychology, 55, 361-384. Cerca con Google

Gill, J. (1999). The insignicance of null hypothesis signicance testing. Political Research Quarterly, 52 (3), 647-674. Cerca con Google

Glas, C., & Pimentel, J. L. (2008). Modeling nonignorable missing data in speeded tests. Educational and Psychological Measurement, 68 (6), 907-922. Cerca con Google

Glas, C., & Verhelst, N. (1995). Testing the Rasch model. In G. Fischer & I. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications. New York: Springer. Cerca con Google

Goodman, L. A. (1974). Exploratory latent structure analysis using both identiable and unidentiable models. Biometrika, 61 (2), 215-231. Cerca con Google

Heller, J., & Repitsch, C. (2012). Exploiting prior information in stochastic knowledge assessment. Methodology, 8, 12-22. Cerca con Google

Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2014). Cognitive diagnostic models and knowledge space theory: The non-missing link. Manuscript under revision. Cerca con Google

Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (under revision). On the link between cognitive diagnostic models and knowledge space theroy. Psychometrika. Cerca con Google

Heller, J., Unlu, A., & Albert, D. (2013). Skills, competencies and knowledge structures. In Knowledge spaces (pp. 229{242). Springer. Heller, J., & Wickelmaier, F. (2011). Parameter estimation in probabilistic knowledge structures. Manuscript in preparation. Cerca con Google

Heller, J., & Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42 (4), 49-56. Cerca con Google

Hockemeyer, C. (2002). A comparison of non-deterministic procedures for the adaptive assessment of knowledge. Psychologische Beitrag, 44, 495-503. Cerca con Google

Holman, R., & Glas, C. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical and Statistical Psychology, 58 (1), 1-17. Cerca con Google

Hurvich, C. M., & Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76 , 297-307. Cerca con Google

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. Cerca con Google

Kambouri, M., Koppen, M., Villano, M., & Falmagne, J.-C. (1994). Knowledge assessment: Tapping human expertise by the query routine. International Journal of Human-Computer Studies, 40 (1), 119-151. Cerca con Google

Kelvin, W. T. (1889). Popular lectures and adresses (in 3 volumes). (vol. 1: Constitution of matter, chater electrical units of measurement.). London: MacMillan. Cerca con Google

Koppen, M., & Doignon, J.-P. (1990). How to build a knowledge space by querying an expert. Journal of Mathematical Psychology, 34 (3), 311-331. Cerca con Google

Korossy, K. (1993). Modellierung von wissen als kompetenz und performance. Eine erweiterung der wissensstruktur-theorie von doignon und falmagne [Modelling knowledge as competence and performance. an extension of the theory of knowledge structures by doignon and falmagne]. Cerca con Google

Unpublished doctoral dissertation, University of Heidelberg, Heidelberg. Cerca con Google

Korossy, K. (1997). Extending the theory of knowledge spaces: A competence-performance approach. Zeitschrift fur Psychologie, 205, 53-82. Cerca con Google

Korossy, K. (1999). Modeling knowledge as competence and performance. In D. Albert & J. Lukas (Eds.), Knowledge spaces: Theories, empirical research, applications (p. 103-132). Mahwah, NJ: Lawrence Erlbaum Associates. Cerca con Google

Krantz, D., Luce, D., Suppes, P., & Tversky, A. (1971). Foundations of measurement: Vol. i. Cerca con Google

Lehmann, E. L. (1999). Elements of large-sample theory. New York: Springer-Verlag. Cerca con Google

Lehmann, E. L., & Casella, G. (1998). Theory of point estimation, second edition. New York: Springer-Verlag. Cerca con Google

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York: Wiley. Cerca con Google

Mislevy, R. J., & Chang, H.-H. (2000). Does adaptive testing violate local independence? Psychometrika, 65 (2), 149-156. Cerca con Google

Nickerson, R. S. (2000). Null hypothesis signicance testing: a review of an Cerca con Google

old and continuing controversy. Psychological methods, 5 (2), 241. Cerca con Google

Pastore, M. (2009). I limiti dell'approccio nhst e l'alternativa bayesiana. Cerca con Google

Giornale italiano di Psicologia, 36 , 925-938. Cerca con Google

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Cerca con Google

Numerical recipes: The art of scientic computing (3rd ed.). New York: Cambridge University Press. Cerca con Google

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581-592. Cerca con Google

Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall. Cerca con Google

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7 (2), 147-177. Cerca con Google

Schrepp, M. (1999). Extracting knowledge structures from observed data. British Journal of Mathematical and Statistical Psychology, 52 , 213-224. Cerca con Google

Schrepp, M. (2003). A method for the analysis of hierarchical dependencies between items of a questionnaire. Methods of Psychological Research Online, 19 , 43-79. Cerca con Google

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. Cerca con Google

Spoto, A., Stefanutti, L., & Vidotto, G. (2012). On the unidentifyability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56 (4), 248-255. Cerca con Google

Stefanutti, L., & de Chiusole, D. (2014). Eective skill assessment in competence based knowledge sace theory. Manuscript under revision. Cerca con Google

Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing the local identifyability of probabilistic knowledge structures. Behaviour Research Methods, 44 , 1197-1211. Cerca con Google

Stefanutti, L., & Koppen, M. (2003). A procedure for the incremental construction of a knowledge space. Journal of Mathematical Psychology, 47 (3), 265-277. Cerca con Google

Stefanutti, L., & Robusto, E. (2009). Recovering a probabilistic knowledge structure by constraining its parameter space. Psychometrika, 74, 83-96. Cerca con Google

Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classication models. Journal of the Royal Statistical Society Series C (Applied Statistics), 51, 337-350. Cerca con Google

Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Safto (Eds.), Monitoring skills and knowledge acquisition (p. 453-488). Hillsdale: Lawrence Erlbaum Associates. Cerca con Google

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press, Cambridge, MA. Cerca con Google

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p-values. Psychonomic bulletin & review, 14 (5), 779-804. Cerca con Google

Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44, 41-61. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record