Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Castelluccio, Ada (2015) TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione sottomessa
8Mb

Abstract (inglese)

The tectonic and thermal evolution of the Carpathian thrust and fold belt-foreland system is a topic of great interest both for the occurrence of potential oil and gas fields and for the presence of any enigmatic features that needs an alternative interpretation to the commonly accepted models proposed so far. This study is focussed on the area including the southern Poland, the western Ukraine and the crystalline complex and its sedimentary cover cropping out in the Western Slovakia.
The analysis of such a complex tectonic scenario is carried out by the construction of new balanced and sequentially restored cross-sections integrated with low-Temperature (low-T) thermochronometry. Coupling these data it is possible to provide a thermo-kinematic model honouring both the presented structural model and the thermochronometric data and, at the same time, validate the proposed tectonic scenario.
Five balanced cross-sections were constructed from the foreland to the Inner Carpathian domain. Cross-section building and balancing are performed using Move, software dedicated to the kinematic restoration. These sections were then integrated with new apatite fission track and apatite (U-Th)/He data to constrain the last cooling event. Although the cooling of the Inner and the Outer Carpathians are well documented in literature, no low-T thermochronometric data are present from the Pieniny Klippen Belt located between them. Apatite fission track and apatite (U-Th)/He analysis were performed on five samples made of siliciclastic sandstones coming from this narrow belt .Both the balanced sections and low-T thermochronometric data were processed with FETKIN, software developed at The University of Texas in Austin in collaboration with Ecopetrol and dedicated to low-T thermochronometric age prediction and forward modelling. This processing allows to define the evolution of the thermal field through time.
Basing on a review of the sedimentological and stratigraphic works, the Outer and the Inner Carpathian successions are interpreted as deposited in the same sedimentary domain and the Pieniny Klippen Belt as a sedimentary unit deposited in the proximal part of the Inner Carpathian foreland basin, overthrusted on the Outer Carpathian deposits during the Late Eocene. The Mesozoic olistoliths and olistostromes forming the Pieniny wildflysh are here interpreted as coming from the eroded Mesozoic cover of the IC range. New apatite fission track and apatite (U-Th)/He data coming from the Pieniny Klippen Belt constrained its last cooling event to the Middle-Late Miocene, coeval with the cooling of the Inner Carpathian region. The balanced cross-sections show a progressive increasing of the Outer Carpathian shortening moving to the east (from 60% in the Polish region to 64% in the Ukrainian Carpathians). Furthermore, the cross-sections constructed in the central part of our study area highlight the relevant role of the post-thrusting low-angle normal faults in the exhumation process of this area. On the other side, no evidences of post thrusting normal faults occur in the Ukrainian region, where published low-T thermochronometric data suggest an exhumation triggered mainly by regional uplift.
In this work the suggested tectonic scenario is successfully tested with FETKIN, to demonstrate that thrusting is the principal mechanism controlling the exhumation ages of the Western Polish Carpathians and to evaluate the effects of subsidence, topography and tectonics on the thermochronometric age prediction.

Abstract (italiano)

Lo studio dell’evoluzione tettonica e termica dei Carpazi è stato da sempre un argomento di grande interesse sia per la presenza di giacimenti ad olio e gas potenzialmente sfruttabili sia per questioni scientifiche. Il quadro geologico e geodinamico dell’area è caratterizzato da aspetti ancora enigmatici che potrebbero essere spiegati con modelli alternativi a quelli comunemente accettati in letteratura. In particolare, questo lavoro è incentrato sullo studio dell’area comprendente la Polonia Meridionale, la Slovacchia e l’ Ucraina occidentale e si basa sullo studio di sezioni geologiche bilanciate e retrodeformate integrate con dati termocronometrici di bassa temperatura. Combinando opportunamente questi dati è possibile definire un modello termo-cinematico strettamente connesso con il modello strutturale adottato e che, allo stesso tempo, ne consente la validazione.
In questo lavoro verranno presentate cinque sezioni geologiche che dall’avampaese polacco e ucraino si estendono fino alla regione dei Carpazi Interni. Queste sezioni sono state bilanciate e rerodeformate grazie all’utilizzo di Move, programma dedicato alla modellizzazione strutturale e successivamente integrate con dati di tracce di fissione e (U-Th)/He su apatite per vincolarne l’ultima fase esumativa. Sebbene l’età di esumazione dei Carpazi Interni ad Esterni sia ben documentata in letteratura, non si può dire lo stesso per la Pieniny Klippen Belt compresa fra i sopracitati domini tettonici. Sono stati prelevati ad analizzati cinque campioni di arenarie silicoclastiche lungo la Pieniny Klippen Belt sui quali sono state fatte analisi di tracce di fissione ed (U-Th)/He su apatite. Questi dati, insieme alle sezioni retrodeformate, sono stati processati con FETKIN, software sviluppato presso l’University of Texas in Austin in collaborazione con Ecopetrol e dedicato al calcolo delle età di raffreddamento lungo una sezione bilanciata. In questo modo è stato possibile anche definire l’evoluzione del campo termico nel tempo.
Sulla base della revisione dei lavori sedimentologici e stratigrafici fatti in quest’area, i Carpazi Esterni and Interni sono qui interpretati come appartenenti allo stesso dominio sedimentario pre-orogenico e la Pieniny Klippen Belt come un’unità sedimentaria depositatasi in una zona prossimale dell’avampaese dei Carpazi Interni. Durante l’Eocene Superiore questa unità è sovrascorsa sui depositi dei Carpazi Esterni. Gli olistoliti e olistostromi Mesozoici, che rappresentano una delle componenti principali del cosiddetto Pieniny wildflysch, sono qui interpretate come parte della successione Mesozoica dei Carpazi Interni, erosa durante l’Eocene e sedimentatasi nel relativo avampaese. L’età di esumazione di questi depositi risale al Miocene Medio-Superiore e risulta essere coeva all’esumazione registrata per i Carpazi Interni. Diverse età e processi esumativi sono stati invece riconosciuti nei Carpazi Esterni. In Polonia occidentale, nonostante la presenza di faglie normali ad alto angolo, l’esumazione è controllata principalmente dal thrusting. Un’ulteriore conferma viene dal modello termo-cinematico prodotto con FETKIN. Il settore orientale della Polonia, invece, risulta essere interessato da faglie normali a basso angolo successive al thrusting che ne controllano l’esumazione del blocco di letto. In Ucraina non ci sono evidenze di faglie normali. Qui l’esumazione è controllata da un sollevamento isostatico che ha interessato la regione successivamente al thrusting. La costruzione di sezioni geologiche bilanciate ha permesso inoltre di calcolare il raccorciamento che risulta essere crescente verso est. (dal 60% dei Carpazi Polacchi al 64% in quelli Ucraini).
Va sottolineata inoltre l’applicazione di FETKIN in regime compressivo. Questo software è stato testato con successo e ha permesso di valutare l’effetto che le variazioni topografiche, la tettonica e la subsidenza hanno sulla modellizzazione delle isoterme e quindi sul calcolo delle età di raffreddamento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zattin, Massimiliano
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE DELLA TERRA
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):sezioni bilanciate termocronologia/ balanced cross-sections thermochronology
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:7763
Depositato il:13 Nov 2015 09:05
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Almendral, A., W. Robles, M. Parra, A. Mora, and R. Ketcham, FETKIN: Coupling kinematic restorations and temperature to predict exhumation histories: AAPG Bull., doi:10.1306/07071411112. Cerca con Google

Anczkiewicz A. (2005), Verification of maximum paleo-temperatures on the basis of smectite illitization estimated for the Tatra Mts., Podhale Basin and adjacent area of the External Carpathians using fission track method. PhD. Thesis, Inst. Nauk Geol. Pol. Akad. Nauk, Osrodek Badawczy, 123 (in Polish). Cerca con Google

Anczkiewicz, A., M. Zattin and J. Środoń (2005), Cenozoic uplift of the Tatras and Podhale basin from the perspective of the apatite fission track analyses, Pol. Towarzystwo Mineralogiczne – Prace Specjalne, 25, 261-264. Cerca con Google

Anczkiewicz, A., J. Środoń, and M. Zattin (2013), Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses. Geol. Carpath., 64 (2), 141-151, doi: 10.2478/geoca-2013-0010. Cerca con Google

Anczkiewicz, A., and A., Świerczewska (2008), Thermal history and exhumation of the Polish Western Carpathians: evidence from combined apatite fission track and illite-smectite data, presented at 11th International Conference on Thermochronometry, Anchorage, Alaska. Cerca con Google

Andreucci, B., (2013), Thermochronology of the Polish and Ukrainian Carpathians, PhD thesis. Cerca con Google

Andreucci, B., A. Castelluccio, S. Corrado, L. Jankowski, S. Mazzoli, R. Szaniawski and Zattin, M. (2014), Interplay between the thermal evolution of an orogenic wedge and its retro wedge basin: an example from the Ukrainian Carpathians, GSA Bull., in press. Cerca con Google

Andreucci, B., A. Castelluccio, L. Jankowski, S. Mazzoli, R. Szaniawski, and M. Zattin (2013), Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension, Tectonophysics, 608, 866-883, doi.org/10.1016/j.tecto.2013.07.030. Cerca con Google

Andrusov, D. (1931), Étude géologique de la zone des Klippes internes des Carpathes occidentales. I: Introduction, II: Stratigraphie (Trias et Lias), Rozpr. St. Geol. Úst., 6. Cerca con Google

Andrusov, D. (1938), Etude geologique de la zone des Klippes internes des Carpathes occidentales. III: Tectonique, Ibidem, 9. Cerca con Google

Andrusov, D. (1945), Geologickỳvỳskum vnútorného bradlového pásma v Západnỳch Karpatoch: čast IV, Stratigrafia doggeru a malmu. čast V. Stratigrafia kriedy, Pr. Štátneho Geol, Úst. 13, 1- 176. Cerca con Google

Andrusov, D. (1950), La zone des Klippes entre la Vlära et Zilina. Geol. Sborn Slov. Akad. Vied, 1, 2-4. Cerca con Google

Andrusov, D. (1974), The Pieniny Klippen Belt (The Carpathians of Czechoslovakia), in Tectonics of the Carpathian-Balkan region, Geol. Inst. D. Štúr, edited by M. Mahel’, pp. 145-158, Bratislava. Cerca con Google

Artyushkov, E. V., M. A. Baer and N. A. Mörner (1996), The East Carpathians: Indications of phase transitions, lithospheric failure and decoupled evolution of thrust belt and its foreland, Tectonophysics, 262, 101-132. Cerca con Google

Bac- Moszaszwili, M. (1993), Structure on the western termination of the Tatra massif, Ann. Soc. Geol. Pol., 63, 167-193. (In Polish with English summary). Cerca con Google

Bancila, I. (1958), Geologia Carpatilor Orientali. Ed. stiintifica, Bucarest, 367 pp. (in Romanian). Cerca con Google

Baumgart-Kotarba M. and J. Král (2002), Young tectonic uplift of the Tatra Mts.(fission track data and geomorphological arguments), presented at 17th Congress of Carpathian-Balkan Geological Association, Bratislava, Slovakia. Cerca con Google

Behrmann, J.H., S. Stiasny, J. Milicka and M. Pereszlenyi (2000), Quantitative reconstruction of orogenic convergence in the northeast Carpathians, Tectonophysics 319, 111-127, doi:10.1016/S0040-1951(00)00020-2. Cerca con Google

Bieda, F., S. Geroch, L. Koszarski, M. Książkiewicz, and K. Żytko (1963), Stratigraphie des Karpates externes polonaises: Biul. Inst. Geol., 181, 5-174. Cerca con Google

Birkenmajer, K. (1956 b), Sedimentary characteristics of the Jarmuta Beds (Maestrichtian) of the Pieniny Klippen Belt (Central Carpathians), Bull. Acad. Polon. Sci., 3, 4, 10, Varsovie. Cerca con Google

Birkenmajer, K. (1957 c), Remarks on the sedimentation of the Aalenian Flysch and the Jarmuta Beds (Senonian) of the Pieniny Klippen Belt. Ann. Soc. Geol. Pol., 26, 2, Krakow. Cerca con Google

Birkenmajer, K. (1958 d), Przewodnik geologiczny po pienińskim pasie skałkowym, in Pieniny Klippen Belt of Poland, Geological guide (in Polish), Wyd. Geol., Warszawa. Cerca con Google

Birkenmajer, K. (1960), Geology of the Pieniny Klippen Belt of Poland (A review of latest researches ), Jb. Geol. Bundesanst., 103(1), 1-36. Wien. Cerca con Google

Birkenmajer, K., (1977), Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland, Stud.Geol. Pol., 45, 1-158. Cerca con Google

Birkenmajer, K. (1983), Strike-slip faults in the northern boundary zone of the Pieniny Klippen Belt, Carpathians, Stud. Geol. Pol., 77, 89-112. Cerca con Google

Birkenmajer, K. (1985a), Stage of structural evolution of the Pieniny Klippen Belt, Carpathians. Stud. Geol. Pol. 88, 7-31. Cerca con Google

Birkenmajer, K. (1986), Stage of structural evolution of the Pieniny Klippen Belt, Carpathians. Stud. Geol. Pol., 88, 7-32. Cerca con Google

Birkenmajer, K. (2003), Post-collisional Late Middle Miocene (Sarmatian) Pieniny Volcanic Arc, Western Carpathian, Bull. Pol. Acad. Sci., Earth Sci., 51, 79-89. Cerca con Google

Birkenmajer, K. (2008), The Szopka Limestone Formation- a new lithostratigraphic name for Upper Liassic beds of the Pieniny and Branisko successions, Pieniny Klippen Belt (West Carpathians) Stud. Geol. Pol., 131, 229-235. Cerca con Google

Birkenmajer, K., and J. Dudziak (1988), Age of Palaeogene flysch in the Pieniny Klippen Belt, Carpathians, Poland, based on calcareous nannoplankton, Bull. Pol. Acad. Sci. Earth Sci., 36, 15-24. Cerca con Google

Birkenmajer, K., P. Gedl, R. Myczyński and J. Tyszka (2008), ‘‘Cretaceous black flysch’’ in the Pieniny Klippen Belt, West Carpathians: a case of geological misinterpretation, Cretaceous Res., 29, 535-549, doi: 10.1016/j.cretres.2007.04.011. Cerca con Google

Botor, D., I. Dunkl, M. Rauch-Włodarska and H. von Eynatten (2006), Attempt to dating of accretion in the West Carpathian Flysch Belt: apatite fission track thermochronology of tuff layers. Proc. of VI Internat. Conference. Central European Tectonic Studies, Zakopane. Geolines, 41-43. Cerca con Google

Botor, D., I. Dunkl, M. Rauch-Włodarska and H. von Eynatten (2011), Timing of tectonic subsidence, accretion and exhumation of the Western Carpathian Flysch by apatite fission track and (U-Th)/He thermochronology. Europen Geosciences Union General Assembly (EGU) Vienna. Cerca con Google

Brewer, J. (1981), Thermal effects of thrust faulting. Earth and Planetary Science Letters, 56, 233-244. Cerca con Google

Bromowicz, J. (1999), Olistoliths-a proof for the Middle Eocene mobility of the Magura Basin, paper presented at International Geological Conference “Carpathian Geology 2000”, Smolenice. Cerca con Google

Brown R. W., & M. A Summerfield (1997), Some uncertainties in the derivation of rates of denudation from thermochronologic data, Earth Surface Processes and Landforms, 22, 3, 239-248. Cerca con Google

Burchart, J. (1972), Fission-track age determination of accessory apatite from the Tatra mountains, Poland. Earth Planet. Sci. Lett., 15, 418-422. Cerca con Google

Burtan, J., J. Chowaniec, and J. Golonka (1984), Wstępne wyniki badań nad egzotycznymi skałami węglanowymi z zachodniej części polskich Karpat fliszowych (Preliminary results of studies on exotic carbonate rocks in the western part of the Polish Flysch Carpathians), Biul. Inst. Geol., 346, 147-159. Cerca con Google

Carslaw, H. S., and J. C. Jeager (1986), Conduction of Heath in Solids (2. utg). London, UK: Oxford University Press. Cerca con Google

Carslaw, H. S. and J. C. Jeager (1986), Conduction of heat in solids (2. utg.) London, UK: Oxford University Press. Cerca con Google

Chamberlin, R. T. (1910), The Appalachian folds of Central Pennsylvania, J. Geol. Chicago, 18, 228-51. Cerca con Google

Chamberlin, R. T. (1919), The building of the Colorado Rockies. J. Geol. Chicago, 10, 95-144. Cerca con Google

Ciarcia, S., S. Mazzoli, S. Vitale, and M. Zattin (2012), On the tectonic evolution of the Ligurian accretionary complex in southern Italy, Geol. Soc. Am. Bull., 124, 463-483, doi: 10.1130/B30437.1. Cerca con Google

Ciarcia, S., S. Vitale, A. Di Staso, A. Iannace, S. Mazzoli, and M. Torre (2009), Stratigraphy and tectonics of an Internal Unit of the southern Appennines: implications for the geodymanic evolution of the peri-Tyrrhenian mountain belt, Terra Nova, 21, 88-96. Cerca con Google

Cieszkowski, M., N. Oszczypko and W. Zuchiewicz (1987), Late Cretaceous submarine slump in the Inoceramian Beds of the Magura nappe at Szczawa, Polish Western Carpathians, Ann. Soc. Geol. Polon., 57, 189-201. Cerca con Google

Csontos, L., A. Nagymarosy, F. Horváth, M. Kovác (1992), Cenozoic evolution of the Intra Carpathian area: a model, Tectonophysics, 208, 221–241. Cerca con Google

Csontos, L., and A. Vörös (2004), Mesozoic plate tectonic reconstruction of the Carpathian region, Palaeogeography, Palaeocl., 210, 1-56, doi:10.1016/j.palaeo.2004.02.033. Cerca con Google

Čverčko, J. (1975), Preliminary report about results of the deep structural well Prešov-1, Mns. Geofond, Bratislava (in Slovak). Cerca con Google

Dahlstrom, C.D.A. (1969a), Balanced cross sections, Canadian Journal of Earth Sciences, 6, 743-757. Cerca con Google

Danišìk, M., J. Kadlec, C. Glotzbach, A. Weisheit, I. Dunkl, M. Kohùt, N.J. Evans, M. Orvošová, B.J. McDonald (2011), Metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: a case study from the Nìzke Tatry Mts., Western Carpathians. Swiss J Geosci., 104, 285-298. Cerca con Google

Danišìk, M., M. Kohút, I. Broska and W. Frisch (2010), Thermal evolution of the Malá Fatra Mountains (Central Western Carpathians): insights from zircon and apatite fission track thermochronology, Geol. Carpath., 61, 19-27. Cerca con Google

Danišìk, M., T. Pánek, D. Matýsek, I. Dunkl and W. Frisch (2008), Apatite fission track and (U-Th)⁄He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians, Z. Geomorphol., 52(3), 273-289. Cerca con Google

Dal Piaz, G. V., S. Martin, I. M. Villa, G. Gosso, R. Marschalko (1995), Late Jurassic blueschist facies pebbles from the Western Carpathian orogenic wedge and paleostructural implications for Western Tethys evolution, Tectonics, 14, 4, 874-885. Cerca con Google

Dewey, J. F., M. L. Helman, E. Turco, D. W. H. Hutton, S. D. Knott (1989), Kinematics of the Western Mediterranean, in Alpine Tectonics, edited by M. P. Coward, D. Dietrich, R. G. Park, Spec. Publ.-Geol. Soc. Land., 45, 265-283. Cerca con Google

Dodson MH. (1973), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40,259-74. Cerca con Google

Dżułyński, S., and R. Gradziński (1960), Source of the Lower Triassic Clastics in the Tatra Mts., Bull. Acad. Polon. Sci. 8, 45-48. Cerca con Google

Duddy I.R., P.F. Green, G.M. Laslett (1988), Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour, Chem. Geol., 73, 25-38. Cerca con Google

Dunkl, I., (2002), TRACKKEY: a Windows program for calculation and graphical presentation of fission track data, Computational Geosciences 28,2, 3-12. Cerca con Google

Endignoux, L., and J. L. Mugnier (1990), The use of forward kinematic model in the construction of balanced cross sections, Tectonics, 9, 1249-1262. Cerca con Google

Elliot, D. (1983), The construction of balanced cross-sections, Journal of Structural Geology, 5, 101. Cerca con Google

Endignaux, L. and J. L. Mugnier (1990), The use of a forward kinematic model in the construction of balanced cross-sections, Tectonics, 9, 1249-1262. Cerca con Google

Ernst, T., J. Jankowski., V. Semenov , A. Adam, M. Hvozdara, W. Jówiak, J. Lefeld, J. Pawliszyn, L. Szarka and V. Wesztergom (1997), Electromagnetic Soundings across the Tatra Mountains., Acta Geophys. Pol., 45, 33-44. Cerca con Google

Faccenna, C., T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti (2001), History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int., 145, 809–820. Cerca con Google

Faccenna, C., M. Mattei, R. Funiciello, and L. Jolivet (1997), Styles of back-arc extension in the central Mediterranean, Terra Nova, 9, 126 - 130. Cerca con Google

Faccenna, C., C. Piromallo, A. Crespo-Blanc, L. Jolivet, and F. Rossetti (2004), Lateral slab deformation and the origin of the western Mediterranean arcs, Tectonics, 23, TC1012, doi:10.1029/2002TC001488. Cerca con Google

Farley K. A. (2000), ‘Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite’, Journal of Geophysical Research, 105, B2, 2903-2914. Cerca con Google

Farley K. A. (2002), (U-Th)/He dating: techniques, calibrations, and applications, in Noble Gases in Geochemistry and Cosmochemistry, Rev. Mineral. Geochem, vol. 47,. edited by D. Porcelli et al., pp. 819-44, Mineral. Soc. Am., Geochem. Soc., Chantilly, VA, doi: 10.2138/rmg.2002.47.18. Cerca con Google

Festa, A., Y. Dilek , G.A. Pini, G. Codegone, K. Ogata (2012), Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges, Tectonophysics 568 – 569, 7-24. Cerca con Google

Filo, I., and Z. Siranova (1998), Hornad and Chrast Member - new regional lithostratigraphic units of the Sub-Tatric Group, Geologicke Prace, Spravy, 103, 35-51. Cerca con Google

Fodor, L., Á. Magyari, M. Kázmér, A. Fogarasi (1992), Gravityflow dominated sedimentation on the Buda paleoslope (Hungary): record of Late Eocene continental escape of the Bakony unit, Geol. Rundsch., 81/3, 695– 716. Cerca con Google

Fodor, L., B. Jelen, E. Márton, D. Skaberne, J. Car, M. Vrabec (1998), Miocene–Pliocene evolution of the Slovenian Periadriatic fault: implications for Alpine Carpathian extrusion models, Tectonics ,17 (5), 690– 709. Cerca con Google

Fleuty, M. J. (1964), The description of folds, Geological Association Proceedings, 75, 461-492. Cerca con Google

Froitzheim, N., D. Plašienka and R. Schuster (2008), Alpine tectonics of the Alps and Western Carpathians, in The geology of Central Europe, II: Mesozoic and Cenozoic, edited by McCann T., Geol. Soc. Publ. House, London, pp. 1141-1232. Cerca con Google

Gągala, Ł., J. Vergés, E. Saura, T. Malata, J. Ringenbach, P.Werner, P. Krzywiec (2012), Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modeling, Tectonophysics 532-535, 223-241, doi:10.1016/j.tecto.2012.02.014. Cerca con Google

Galbraith, R.F., and G.M. Laslett (1993), Statistical models for mixed fission track ages. Nucl. Tracks 5, 3-14, doi: 10.1016/1359-0189(93)90185-C. Cerca con Google

Gallagher K. (1995), Evolving temperature histories from apatite fission-track data, Earth Planet. Sci. Lett., 136, 421–35. Cerca con Google

Gibbs, A. (1983), Balanced cross-section construction from seismic sections in the areas of extensional tectonics, Journal of Structural Geology, 5, 153–160. Cerca con Google

Gleadow, A. J. W. (1981), Fission-track dating methods: what are the real alternatives?: Nuclear Tracks, 5, 1-2, 3-14. Cerca con Google

Gleadow A.J.W., I.R. Duddy, P.F. Green, J.F. Lovering (1986), Confined track lengths in apatite: a diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol., 94,405-15. Cerca con Google

Gleadow, A.J.W., and P.G. Fitzgerald (1987), Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, Southern Victoria Land, Earth and Planetary Science Letters, 82, 1-14. Cerca con Google

Golonka, J. (2000), Cambrian-Neogene Plate Tectonic Maps, 1-125, Wyd. Uniw. Jagiell., Kraków. Cerca con Google

Golonka, J., L. Gahagan, M. Krobicki, F. Marko, N. Oszczypko and A. Ślączka (2005), Plate-tectonic evolution and Paleogeography of the Circum-Carpathian Region, in The Carpathians and their Foreland: Geology and Hydrocarbon Resources, AAPG Mem.,84, edited by J. Golonka and F. J. Picha, pp. 11-46. Cerca con Google

Green, P. F. (1995), Comparison of zeta calibration baselines for fission track dating of apatite, zircon and sphene, Chemical Geology: isotope Geoscience Section. Cerca con Google

Green, P. F., I. R. Duddy, A. J. W. Gleadow, and J. F. Lovering (1989a), Apatite Fission Track Analysis as a Paleotemperature Indicator for Hydrocarbon Exploration, in Thermal History of Sedimentary Basins-Methods and Case Histories: New York, Springer Verlag,edited by Naesser, N. D., and T. McCulloh, 181-195. Cerca con Google

Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow, , and J. F. Lovering, (1989b), Thermal Annealing of Fission Tracks in Apatite: 4. Quantitative Modelling Techniques and Extension to Geological Timescales: Chemical Geology (Isotope Geoscience section), 79, 2, 155-182. Cerca con Google

Green P.F, I.R. Duddy, A.J.W. Gleadow, P.R. Tingate, G.M. Laslett (1986), Thermal annealing of fission tracks in apatite, 1. A qualitative description, Chem. Geol., 59, 237–53. Cerca con Google

Gross, P. (1973), On the character of the Choč-sub-Tatra fault. Geol. Práce, Spr, 61, 315-319 (in Slovak). Cerca con Google

Gross, P., E. Köhler (Eds.), A. Biely, O. Franko, V. Hanzel, J. Hricko, G. Kupčo, J. Papšová, Z. Priechodská, V. Szalaiová, P. Snopková, M. Stránska, I. Vaškovský and L’. Zbořil (1980), Geology of the Liptovská kotlina Basin, GÚDŠ, Bratislava, 242 (in Slovak). Cerca con Google

Gross, P., E. Köhler, and O. Samuel (1984), A new lithostratigraphical division of the Inner-Carpathian Paleogene, Geol. Práce, 81, 103-117. [In Slovak with English summary] Cerca con Google

Gross, P., E. Köhler, J. Mello, J. Hasko, R. Halouzka, & A. Nagy (1993), Geology of Southern and Eastern Orava, Bratislava, pp. 292, D. Stur Inst. Geol. Cerca con Google

Hayward, A. B., and R. H. Graham (1989), Some geometrical characteristic of inversion, in Inversion tectonics: Geological Society (London) Special Publication Classics, edited by M. A. Cooper and G. D. Williams,17-39. Cerca con Google

Homza, T. X., and W. K. Wallace (1994), Geometric and kinematic models for detachment folds with fixed and variable detachment depths, J. Struct. Geol., 17, 4, 575-588, doi: 10.1016/0191-8141(94)00077-D. Cerca con Google

Hovorka, D., S. Meres, and P. Ivan (1994), Pre-Alpine Western Carpathians Basement Complexes: Lithology and Geodynamic Setting, Mitt. Österr. Geol. Ges. 86, 33-44. Cerca con Google

Hrušecký, I., D. Plašienka, and L. Pospíšil (2006), Identification of the North European platform below the eastern part of the Western Carpathian Flysch belt, in The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Mem. 84,edited by J. Golonka and F. J. Picha, pp. 717-727. Cerca con Google

Hrušecký, I., L. Pospíšil, and M. Kohút (2002), Geological interpretation of the reflection seismic profile 753⁄92, in Hydrocarbon potential of the Eastern Slovakian Basin and adjacent areas, Open File Report, edited by I. Hrušecký, Geol. Surv. Slovak Republic, Bratislava (in Slovakian). Cerca con Google

Huerta, A.D., and D.W. Rodgers (2006), Constraining rates of thrusting and erosion: Insights from kinematic thermal modeling, Geology, 34, 7, 541-544. Cerca con Google

Hurai, V., F. Marko, A.K. Tokarski, A. Świerczewska, J. Kotulová, A. Biroň, (2006), Fluid inclusion evidence for deep burial of the Tertiary accretionary wedge of the Carpathians, Terra Nova 18, 440-446. Cerca con Google

Hurford A.J. (1990a), International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting, Nucl Tracks, 17, 233-36. Cerca con Google

Hurford AJ, Green PF. (1982), A users’ guide to fission track dating. Earth Planet. Sci. Lett.,59:343–54. Cerca con Google

Hurford A.J., P.F. Green (1983), The zeta age calibration of fission-track dating. Chem. Geol., 1, 285-317 Cerca con Google

Ionesi, L. (1971), Flisul paleogen din bazinul vaii Moldovei, edited by Acad. RSR, 200 pp. (in Romanian). Cerca con Google

Jaglarz, P., and J. Szulc (2003), Middle Triassic evolution of the Tatricum sedimentary basin: an attempt of sequence stratigraphy to the Wierchowa Unit in the Polish Tatra Mountains, Ann. Soc. Geol. Polon., 73, 169-182. Cerca con Google

Jankowski, L. (2007), Chaotic complexes in Gorlice region, Biul. Państ. Inst. Geol., 426, 27-52(in Polish, English abstract). Cerca con Google

Jankowski, L., R. Kopciowski, W. Ryłko (2004), Geological Map of the Outer Carpathians: borderlands of Poland, Ukraine and Slovakia, Pol. Geol. Inst., Warszawa. Cerca con Google

Jankowski, L., R. Kopciowski, W. Ryłko (2004), Geological Map of the Outer Carpathians: borderlands of Ukraine and Romania, Pol. Geol. Inst., Warszawa. Cerca con Google

Jankowski, L., R. Kopciowski, W. Ryłko (2012), The state of knowledge of geological structures of the Carpathians between Biała and Risca River-Discussion, Biul. Państw. Inst. Geol. 449, 203-216. (In Polish with English summary). Cerca con Google

Janočko, J., M. Pereszlényi, D. Vass, V. Bezák, S. Jacko Jr., S. Jacko, M. Kohút, M. Polák , and J. Mello (2006), Geology and hydrocarbon resources of the Inner Western Carpathians, Slovakia, and Poland, in The Carpathian and their foreland: Geology and hydrocarbon resources, AAPG Mem. 84, edited by J. Golonka and F. J. Picha, 569-603. Cerca con Google

Johnston, S.T., and S. Mazzoli (2009), The Calabrian Orocline: buckling of a previously more linear orogeny, in Ancient Orogens and Modern Analogues, Geol. Soc., Lond., Sp. Publ., edited by J.B. Murphy, J.D. Keppie and A.J. Hynes, 327, 113-125. Cerca con Google

Joja, T., V. Mutihac, M. Muresan (1968), Crystalline–Mesozoic and Flysch Complexes of the East Carpathians (Northern Sector), in Guide to Excursion 46 AC, Romania, Int. Geol. Congr., XXIII Session, Prague, 5-63. Cerca con Google

Jurewicz, E. (1994), Structural analysis of the Pieniny Klippen Belt at Jeworki, Carpathians, Poland, Stud. Geol. Pol., 106, 7-87. (In Polish, English summary). Cerca con Google

Jurewicz, E. (2000a), Tentative reconstructions of the stress axes from the thrust-folding stage in the Tatra Mts. on the basis of slickensides in the granitoid core, southern Poland. Prz. Geol., 48, 239-246. [In Polish with English summary]. Cerca con Google

Jurewicz, E. (2000b), Tentative correlation of the results of structural analysis in the granitoid core and nappe units of the Tatra Mts., southern Poland. Prz. Geol., 48, 1014-1018. [In Polish with English summary]. Cerca con Google

Jurewicz, E. (2005), Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments, Acta Geologica Polonica, 55 ,3, 295-338. Cerca con Google

Jurewicz, E., and B. Bagiński (2005), Deformation phases in the selected shear zones within the Tatra Mts granitoid core. Geol. Carpath., 56, 17-28. Cerca con Google

Kaličiak, M., and L. Pospisil (1990), Neogene magmatism in Transcarpathian depression: geological and geophysical evaluation, Miner. Slovaca 22, 481-498, (in Slovakian). Cerca con Google

Kastens, K.A., et al. (1988), ODP Leg 107 in the Tyrrhenian Sea: Insight into passive margin and backarc basin evolution, GSA Bull., 100, 1140-1156. Cerca con Google

Kázmér, M., S. Kovács (1985), Permian– Palaeogene paleogeography along the Eastern part of the Insubric – Periadriatic Lineament system: evidence for continental escape of the Bakony – Drauzug Unit. Acta Geol. Hung., 28 (1–2), 71– 84. Cerca con Google

Keetley, J.T., Hill, K.C. (2000), 3D structural modeling of the Kutubu oil fields, PNG, presented at AAPG International Conference and Exhibition; Abstracts 84, AAPG, 1446 Cerca con Google

Ketcham, R.A. (2005), Forward and inverse modelling of low-temperature thermochronology data. Rev, Mineral. and Geochem., 58, 275-314. Cerca con Google

Ketcham, R.A., R. A. Donelick, W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales, Am. Mineral., 84, 1235-1255, doi: 10.2138/am.2006.464. Cerca con Google

Kohút, M. and S.C., Sherlock (2003), Laser microprobe Ar40- Ar39 analysis of pseudotachylyte and host-rocks from the Tatra Mountains, Slovakia: evidence for late Palaeogene seismic/tectonic activity, Terra Nova, 15, 417-424, doi: 10.1046/j.1365-3121.2003.00514.x. Cerca con Google

Korab, T., and T. Durkovic (1978), Geology of the Dukla unit (east Slovakian flysch) (in Slovakian with English summary), Bratislava, Geologicky Ustav D. Stura, pp. 194. Cerca con Google

Koszarski, L., and A. Ślączka (1976), The Outer (Flysch) Carpathians: The Cretaceous, in Geology of Poland, vol I, Stratigraphy part 2, edited by S. Cieslinski, pp. 495-498, 657-679, 740-748, Inst. Geol., Warszawa. Cerca con Google

Kotański, Z., (1961), Tectogénèse et reconstitution de la paléogéographie de la zone haut-tatrique dans les Tatras, Acta Geol. Polon., 11, 187-467. [In Polish with French summary] Cerca con Google

Kotański, Z., (1963a), On the character of the Western Carpathian Mesozoic geosyncline and the Podhale epimiogeosyncline, Acta Geol. Polon., 13, 13-25. [In Polish with English summary] Cerca con Google

Kotarba, M. J., Y. V. Koltun (2006), The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province, in The Carpathians and their foreland: Geology and hydrocarbon resources, edited by Golonka J. and F. J. Picha, AAPG Mem., 84, 395-442. Cerca con Google

Kotlarczyk, J. (1978), Stratigraphy of the Ropianka Formation in the Skole unit of the Flysch Carpathians (in Polish with the English summary). Polska Academia Nauk Oddział w Krakowie, Komisja Nauk Geologicznych Prace Geologiczne, 108, 1-82. Cerca con Google

Kotlarczyk, J., 1985, An outline of the stratigraphy of marginal tectonic units of theCarpathian orogen in theKrakow-Przemysl area: Guide to Excursion 4. Carpatho-Balkan Geological Association-XIII Congress, Krakow, Poland, 171 p. Cerca con Google

Kotlarczyk, J. (1985), An outline of the stratigraphy of marginal tectonic units of the Carpathian orogen in the Krakow-Przemysl area. Guide to Excursion 4, paper presented at the 13th Congress of Carpatho-Balkan Geological Association, Krakow, Poland, 171. Cerca con Google

Králiková, S., R. Vojtko, P. Andriessen, M. Kováč, B. Fügenschuh, J. Hók and J. Minár (2014 a), Late Cretaceous-Cenozoic thermal evolution of the northern part of the Central Western Carpathians (Slovakia): revealed by zircon and apatite fission track thermochronology, Tectonophysics, 615-616, 142-153, doi: 10.1016/j.tecto.2014.01.002. Cerca con Google

Králiková, S., R. Vojtko, L’. Sliva, J.Minár, B Fügenschuh, M. Kováč and J. Hók (2014 b), Cretaceous-Quaternary tectonic evolution of the Tatra Mts. (Western Carpathians): constraints from structural, sedimentary, geomorphological, and fission track data, Geologica Carpathica, 65, 4, 307-326, doi: 10.2478/geoca-2014-0021. Cerca con Google

Král’, J. (1977), Fission track ages of apatites from some granitoid rocks in West Carpathians, Geol. Zbor. Geol. Carpath., 28, 269-276. Cerca con Google

Kropotkin, P. N., (1991), Nappes of the Maramures zone of the Eastern Carpathians, Geotectonics, 25, 46-52. Cerca con Google

Krzywiec, P. (2001), Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian foredeep basin-results of seismic data interpretation, Mar. and Petrol. Geol., 18, 13-38, doi: 10.1016/S0264-8172(00)00037-4. Cerca con Google

Krzywiec, P., & P. Jochym (1997), Characteristics of the Miocene subduction zone of the Polish Carpathians: results of flexural modelling, Przegla Îd Geologiczny, 45 (8), 785-792 (in Polish with English summary). Cerca con Google

Kruglov, S. S., (1965), O prirode marmaroshskikh utiosov Sovetskikh Karpat (About the nature of the Marmarosh Klippens of the Soviet Carpathians) (in Russian): Geologicheskiy Sbornik Lvovskogo Geologiceskogo Obsestva, 9, 41-54. Cerca con Google

Kruglov, S. S., (1969), Pro stratyhrafichne polozhennya pudynhovych piskovykiv i hravelitiv v zoni peninskyh skel (Zakarpattia) (About stratigraphical position of pudding sandstones and gritstones within the Pieniny Klippen zone (Zakarpatia) (in Ukrainian): Proceedings of the Academy of Sciences of the Ukrainian SSR, 10, 874-877. Cerca con Google

Kruglov, S. S., (2001), The problems of tectonics and paleogeodynamics of western Ukraine (a critical survey of the new publications) (in Ukrainian), Ukrainian Interdisciplinary Committee for Tectonics, 83 p. Cerca con Google

Książkiewicz, M. (1957), Geology of the Northern Carpathians, Geol. Rdsch., 45, 369-411. Cerca con Google

Książkiewicz, M. (1960), Palaeogeographic outline of the Polish Flysch Carpathians, Prace Inst. Geol., 33, 209-231. Cerca con Google

Książkiewicz, M. (1962), Geological atlas of Poland: Stratigraphic and facial problems, Inst. Geol., Wyd. Geol., Warsaw, Poland, 16 maps. Cerca con Google

Książkiewicz, M. (1965), Les Cordilléres dans les mers crétacées et paleogenes des Carpthes du Nord, Bull. Soc. Géol. France, 7, 443-455. Cerca con Google

Książkiewicz, M. (1977), Tectonics of the Carpathians, in Geology of Poland, Tectonics, Wyd. Geol., vol. 4, edited by W. Pozaryski, pp. 476–604, Warsaw, Poland. Cerca con Google

Książkiewicz, M. (1977), Plate movement hypothesis and Carpathian development, Ann. Soc. Géol. Pol., 47, 321-353 (in Polish). Cerca con Google

Laslett G.M., P.F. Green, I.R. Duddy, A.J.W. Gleadow (1987), Thermal annealing of fission tracks in apatite, 2. A quantitative analysis, Chem. Geol., 65,1-13. Cerca con Google

Leško, B., and O. Samuel (1968), Geology of the Eastern Slovakian Flysch (in Slovakian with English summary), Bratislava, Slovenska Akademia ved., 256. Cerca con Google

Lewandowski, M., M. Krobicki, B.A. Matyja, and A. Wierzbowski (2005), Palaeogeographic evolution of the Pieniny Klippen Basin using stratigraphic and palaeomagnetic data from the Veliky Kamenets section (Carpathians, Ukraine), Palaeogeogr. Palaeocl., 216, 53-72. Cerca con Google

Lexa, J., V. Bezák, M. Elečo, J. Mello, M Polák, M. Potfaj, J. Vazár, (2000), Geological map of Western Carpathians and adjacent areas 1:500000, Geological Survey of Slovak Republic, Bratislava. Cerca con Google

Lock, J., and S. Willet (2008), Low-temperature thermochronometric ages in fold-and- thrust belts, Tectonophysics, 456, 3-4, 147-162. Cerca con Google

Lomize, M.G., 1968. Late Jurassic volcanism in the Eastern Carpathians. Vest. Mord. Univ. 6, 42- 58. (in Russian only). Cerca con Google

Ludwiniak, M. (2010), Multi-stage development of the joint network in the flysch rocks of western Podhale (InnerWestern Carpathians, Poland), Acta Geol. Polon., 60 (2), 283-316. Cerca con Google

Mahel’, M. (1981), Island character of Klippen Belt; Vahicum - continuation of Southern Penninicum in West Carpathians, Geol. Zbor. - Geol. Carpath., 32, 293-305. Cerca con Google

Mahel’, M. (1986), Geological structure of the Czechislovakian Carpathians. Paleoalpine units I. Veda, Bratislava, pp. 503 (in Slovak). Cerca con Google

Mahel’, M, and T. Buday (1968), Regional geology of Czechoslovakie: Part 2, The West Carpathians: Praha, Geol. Survey of Czechoslovakia, 723. Cerca con Google

Malata, T. and K. Żytko (2006), Kuźmina-1 (in Polish). Profile Głębokich Otworów Wiertniczych, Państwowego Instytutu Geologicznego, 110, pp. 68. Cerca con Google

Malinowski, M., A. Guterch, M. Narkiewicz, J. Probulski, A. Maksym, M. Majdański, P. Środa, W. Czuba, E. Gaczyński, M. Grad, T. Janik, L. Jankowski, and A. Adamczyk (2013), Deep seismic reflection profile in Central Europe reveals complex pattern of Paleozoic and Alpine accretion at the East European Craton margin, Geophys. Res. Lett., 40, 1-6, doi: 10.1002/grl.50746. Cerca con Google

Maliverno, A., and W.B.F. Ryan (1986), Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227–245. Cerca con Google

Maluski, H., P. Rajlich, and P. Matte, (1993), 40Ar-39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting, Tectonophysics 22(3), 313-337. Cerca con Google

Mancktelow N.S., B. Grasemann (1997), Time-dependent effects of heat advection and topography on cooling histories during erosion, Tectonophysics, 270, 167-195. Cerca con Google

Marchegiani, L., Bertotti, G., Cello, G., Deiana, G, Mazzoli, S., Tondi, E. (1999), Pre-orogenic tectonics in the Umbria-Marche sector of the Afro-Adriatic continental margin, Tectonophysics, 315, 123-143, doi: 10.1016/S0040-1951(99)00277-2. Cerca con Google

Marciniec, P., and Z. Zimnal (2006), Borzęta IG-1 (in Polish), Profile Głębokich Otworów Wiertniczych, Państwowego Instytutu Geologicznego, 109, pp. 66. Cerca con Google

Márton, E., P. Pagác, I. Túnyi (1992), Paleomagnetic investigations on Late Cretaceous - Cenozoic sediments from the NW part of the Pannonian Basin, Geol. Carpath. 43, 363–369. Cerca con Google

Márton, E., L. Fodor (1995), Combination of palaeomagnetic and stress data-a case study from North Hungary.,Tectonophysics, 242, 99–114. Cerca con Google

Márton, E., P. Márton (1999), Tectonic aspects of a palaeomagnetic study on the Neogene of the Mecsek Mountains, Geophys. Trans, 42 (3– 4), 159–180. Cerca con Google

Matĕjka, A., (1929), Quelques remarques sur la zone des Klippes internes des environs de Novoselica en Russie subcarpathique. Vĕstn. Státneho Geol. Úst. Úst. Ceskoslov. Repub. 5, 359- 363. Cerca con Google

Matenco, L., and G. Bertotti (2000), Tertiary tectonic evolution of the external East Carpathians (Romania), Tectonophysics, 316, 255-286. Cerca con Google

Matyszkiewicz, J., and T. Słomka (1994), Organodetrital conglomerates with ooids in the Cieszyn Limestone (Tithonian-Berriasian) of the Polish Flysch Carpathians and their paleogeographic significance, Ann. Soc. Geol. Polon., 63, 211-248. Cerca con Google

Mazzoli, S., and A.M. Algarra (2011), Deformation partitioning during transpressional emplacement of a ‘mantle extrusion wedge': the Ronda peridotites, western Betic Cordillera, Spain, J. Geol. Soc., 168, 2, 373-382, doi: 10.1144/0016-76492010-126. Cerca con Google

Mazzoli, S., L. Jankowski, R. Szaniawski and M. Zattin (2010), Low-T thermochronometric evidence for post-thrusting (<11 Ma) exhumation in the Western Outer Carpathians, Poland., Comptes Rendues Geosci., 342, 162-169, doi: 10.1016/j.crte.2009.11.001. Cerca con Google

Meesters A. G. C. A., and T. J. Dunai (2002b), Solving the production-diffusion equation for finite diffusion domains of various shapes Part II. Application to cases with a-ejection and nonhomogeneous distribution of the source, Chem. Geol.,186, 347-363. Cerca con Google

Milička, J., M. Pereszlényi and A. Nagy (2011), Hydrocarbon potential of Northern promontories of the Pannonian Basin System in Slovakia, Mineralia Slovaca, 43, 351-364. Cerca con Google

Mora, A., W. Casallas, R. A. Ketcham, D. Gomez, M. Parra,.J. Namson,.D. Stockli, A. Almendral, W. Robles .and B. Ghorbal (2014), Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling, AAPG Bull., in press, doi:10.1306/04281411108. Cerca con Google

Morley, C.K. (1996), Models for relative motion of crustal blocks within the Carpathian region, based on restorations of the Outer Carpathian thrust sheets, Tectonics, 15, 885-904, doi: 10.1029/95TC03681. Cerca con Google

Mount, V. S., J. Suppe and S.C. Hook (1990), A forward modeling strategy of cross section, Am. Assoc. Pet. Geol. Bull., 74, 521-531. Cerca con Google

Myśliwiec, M., Z. Borys, B. Bosak, B. Liszka, K. Madej, A. Maksym, K. Oleszkiewicz, M. Pietrusiak, B. Plezia, G. Staryszak, G. Świętnicka, C. Zielińska, K. Zychowicz, P. Gliniak, R. Florek, J. Zacharski, A. Urbaniec, A. Górka, P. Karnkowski and P. H. Karnkowski (2006), Hydrocarbon resources of the Polish Carpathian Foredeep: Reservoirs, traps, and selected hydrocarbon fields, in The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Mem. 84,edited by J. Golonka and F. J. Picha, 351-393, doi: 10.1306/985613M843073. Cerca con Google

Nemcok, M. (1993), Transition from convergence to escape: field evidence from the West Carpathians. Tectonophysics, 217, 117-142. Cerca con Google

Nemčok, J.,(ed.), V. Bezák, A. Biely, A. Gorek, P. Gross, R. Halouzka, M. Janák, Š. Kahan, Z. Kotański, , J. Lefeld, J. Mello, P. Reichwalder, W. Rackowski, P. Roniewicz, W. Ryka, J. Wieczorek, and J. Zelman (1994), Geologická mapa Tatier 1: 50 000. MŽP SR-GÚDŠ, MOSZNL, PIG, Bratislava. Cerca con Google

Nemčok, M., M.P. Coward, W.J. Sercombe, R.A. Klecker (1999), Structure of the West Carpathian accretionary wedge: Insights from cross-section construction and sandbox validation, Phys. Chem. Earth, 24, 659-665, doi:10.1016/S1464-1895(99)00096-4. Cerca con Google

Nemčok, M., P. Krzywiec, M. Wojtaszek, L. Ludhová, R. A. Klecker, W. J. Sercombe and M. P. Coward (2006a), Tertiary development of the Polish and eastern Slovak parts of the Carpathian accretionary wedge: insights from balanced cross sections, Geol. Carpath., 57, 355-370. Cerca con Google

Nemčok, M., J. Nemčok, M. Wojtaszek, L. Ludhová, R.A. Klecker, W.J. Sercombe, M.P. Coward, J. Franklin, J. Keith (2000), Results of 2D balancing along 20° and 21°30' longitude and pseudo-3D in the Smilno Tectonic Window: implications for shortening mechanisms of the West Carpathian accretionary wedge, Geol. Carpath., 51, 281-300. Cerca con Google

Nemčok, M., J. Nemčok, M. Wojtaszek, L. Ludhová, N. Oszczypko, W.J. Sercombe, M. Cieszkowski, Z. Paul, M.P. Coward and A. Ślączka (2001), Reconstruction of Cretaceous rifts incorporated in the Outer West Carpathian wedge by balancing, Mar. Petrol. Geol., 18, 39-64, doi: 10.1016/S0264-8172(00)00045-3. Cerca con Google

Nemčok, J., and D. Poprawa, coord., (1988-1989), Geological Atlas of Western Outer Carpathian and their Foreland. Państwowy Instytut Geologiczny. Warszawa. Cerca con Google

Nemčok, M., L. Pospíšil, I. Hrušecký, and T. Zsíros (2006), Subduction in the remnant Carpathian Flysch Basin, in The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Mem., 84,edited by J. Golonka and F. J. Picha, pp. 767-785, doi: 10.1306/985628M843083. Cerca con Google

Olszewska, B. W., and J. Wieczorek (1998), The Paleogene of the Podhale Basin (Polish Inner Carpathians)-micropaleontological perspective, Przeg. Geol., 46 (8/2), 721-728. Cerca con Google

Oszczypko, N. (1991), Stratigraphy of the Palaeogene deposits of the Bystrica subunit (Magura nappe, Polish Outer Carpathians), Bull. Pol. Acad. Sci. Earth Sci., 39, 415-431. Cerca con Google

Oszczypko, N. (2004), The structural position and tectonosedimentary evolution of the Polish Outer Carpathians, Przeg. Geol., 52, 8-2. Cerca con Google

Oszczypko, N. (2006), Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland), Geol. Quart., 50 (1), 169–194. Cerca con Google

Oszczypko, N., J. Dudziak, and E. Malata (1990), Stratygrafia osadów płaszczowiny magurskiej (kreda-paleogen) w Beskidzie Sądeckim, Karpaty, Stud. Geol. Polon., 97, 109-181. Cerca con Google

Oszczypko, N., M. Oszczypko-Clowes, J. Golonka, and F. Marko (2005c), Oligocene-Lower Miocene sequences of the Pieniny Klippen Belt and adjacent Magura Nappe between Jarabina and Poprad River (East Slovakia and South Poland): their tectonic position and paleogeographic implications, Geol. Quart., 49 (4), 379-402. Cerca con Google

Oszczypko, N., P. Krzywiec, I. Popadyuk, and T. Peryt (2006), Carpathian foredeep basin (Poland and Ukraine): its sedimentary, structural, and geodynamic evolution, in The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Mem., 84, edited by J. Golonka and F. J. Picha, pp. 293-350, doi: 10.1306/985612M843072. Cerca con Google

Panaiotu, C. (1998), Paleomagnetic constraints on the geodynamic history of Romania. Rep. Geod. 7 (37), 205– 216. Cerca con Google

Parrish, R. R. (1983), Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia 1. Fission-track dating, apparent uplift rates, and patterns of uplift, Tectonics, 2, 601-631. Cerca con Google

Paul, Z., and D. Poprawa (1992), Budowa geologiczna płaszczowiny magurskiej w strefie przypienińskiej w świetle badań uzyskanych z wiercenia Nowy Targ PIG 1, Przeg. Geol., 7, 404-409. Cerca con Google

Peszat, C. (1967), The lithological development and condition of sedimentation of the Cieszyn Limestones (with English summery), Prace Geol. Odd. Pan w Krakowie, 44, 1-111. Cerca con Google

Petrik, I., P. Nabelek, M. Janák, and D. Plašienka (2003), Condition of formation and crystallization kinetics of highly oxidized pseudotachylytes from the High Tatras (Slovakia), J. Petrol., 44, 901-927. Cerca con Google

Picha, F., J. S. Zdeněk, and O. Kreci (2006), Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic, in The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Mem., 84, edited by J. Golonka and F. J. Picha, pp. 49-175, doi: 10.1306/985607M843067. Cerca con Google

Plašienka, D. (1995a), Passive and active margin history of the northern Tatricum (Western Carpathians, Slovakia), Geol. Rundsch., 84, 748-760, doi:10.1007/BF00240565. Cerca con Google

Plašienka, D. (1995 b), Mesozoic evolution of Tatric units in the Malé Karpati and Považský Inovec Mts.: Implications for the position of the Klape and related units in western Slovakia, Geol. Carpath., 46,101-112. Cerca con Google

Plašienka, D. (1998), Geodynamic development of Central Western Carpathians during Jurassic and Cretaceous, in Geodynamic Development of the Western Carpathians, edited by M. Rakúš, Geol. Surv. Slovak Republic D. Stur Publ., Bratislava, pp. 107-130. Cerca con Google

Plašienka, D. (2003), Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians. Mitt. Österr. Geol. G., 94, 79-98. Cerca con Google

Plašienka, D., and M. Mikuš (2010), Geological structure of the Pieniny and Šariš sectiors of the Klippen Belt between the Litmanová and Drienica villages in Eastern Slovakia. Bratislava, Miner. Slov., 42 (2), 155-178. (In Slovak, English summary). Cerca con Google

Plašienka, D. (2012), Early stage of structural evolution of the Carpathian Klippen Belt (Slovakian Pieniny sector), Miner. Slov., 44, 1-16. Cerca con Google

Polák, M. (2008), General geological map of the Slovak Republic. Map sheet 27 - Poprad. Śtatny Geologickỳ ústav Dionýza Śtúra. Cerca con Google

Prokešová, R., D. Plašienka, and R. Milovský (2012), Structural pattern and emplacement mechanisms of the Krížna cover nappe (Central Western Carpathians), Geol. Carpath. 63 (1), 13-32, doi: 10.2478/v10096-012-0001-y. Cerca con Google

Popadyuk, I., M. Vul, G. Ladyzhensky, and P. Shpak (2006), Petroleum geology of the Boryslav-Pokuttya zone, the Ukrainian Carpathians, in The Carpathians and their foreland: Geology and hydrocarbon resources, edited by J. Golonka and F. J. Picha, AAPG Mem. 84, 455-466. Cerca con Google

Rahn, M. K., & Grasemann, B. (1999). Fission track and numerical thermal modeling of differential exhumation of the Glarus thrust plane (Switzerland). Earth and Planetary Science Letters, 169(3), 245-259. Cerca con Google

Rakús, M., M. Misík, J. Michalík, R. Mock, T. Durkovic, T. Koráb, R. Marschalko, J. Mello, M. Polák, and J. Jablonsky (1990), Paleogeographic development of the West Carpathians: Anisian to Oligocene, in Evolution of the Northern Margin of Tethys, vol. 3, edited by M. Rakús et al., Mém. Soc. Géol. Fr., 154, 39-62. Cerca con Google

Ratschbacher, L., W. Frisch, H.G. Linzer, O. Merle (1991 a), Lateral extrusion in the Eastern Alps, part 2: structural analysis, Tectonics, 10, 257-271. Cerca con Google

Ratschbacher, L., O. Merle, P. Davy, and P. Cobbold (1991 b), Lateral extrusion in the eastern Alps, part 1, Boundary conditions and experiments scaled for gravity, Tectonics, 10, 245-256. Cerca con Google

Reiners, P. W., K. A. Farley and H. J. Hickes (2002a), He diffusion and (U-Th)/He themochronometry of zircon: Inizial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 249, 247-308. Cerca con Google

Reiners P. W., T. A. Ehlers, J. I. Garver, S. G. Mitchell, D. R. Montgomery, J. A. Vance, and S. Nicolescu (2002b), Late Miocene exhumation and uplift of the Washington Cascades, Geology, 30, 767-770 Cerca con Google

Reiners, P. W. (2005), Zircon (U-Th)/He Thermochronometry: Reviews in Mineralogy and Geochemistry, 58, 1, 151-179. Cerca con Google

Reiners P.W. and M. T. Brandon (2006), Using Thermochronology to Understand Orogenic Erosion, Annu. Rev. Earth Planet. Sci., 34, 419-66, Cerca con Google

Reiners, P.W., T.L. Spell, S. Nicolescu, K.A. Zanetti (2004), Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim. Cosmochim. Ac., 68, 1857-1887, doi: 10.1016/j.gca.2003.10.021. Cerca con Google

Roca, E., G. Bessereau, E. Jawor, M. Kotarba, and F. Roure (1995), Pre-Neogene evolution of the Western Carpathians: Constraints from the Bochnia-Tatra Mountains section (Polish Western Carpathians), Tectonics, 14(4), 855-873, doi: 10.1029/95TC00828. Cerca con Google

Roniewicz, P. (1959), Sedimentary characteristics in the High-Tatra Series. (In Polish, English symmary), Acta Geol. Polon., 9, 301-317. Cerca con Google

Rossetti, F., B. Goffé, P. Monié, C. Faccenna, and G. Vignaroli (2004), Alpine orogenic PTt deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of Northern Calabria revised with insights on the Tyrrhenian-Apennine system formation, Tectonics, 23, 1, TC 6011, doi:10.1029/2003TC001560. Cerca con Google

Roure, F., E. Roca, and W. Sassi (1993), The Neogene evolution of the Outer Carpathian flysch units (Poland, Ukraine and Romania): Kinematics of a foreland / fold-and-thrust belt system, Sediment. Geol., 86, 177-201, doi: 10.1016/0037-0738(93)90139-V. Cerca con Google

Royden, L.H. (1988), Late Cenozoic Tectonics of the Pannonian Basin System, in The Pannonian Basin, a Study in Basin Evolution, edited by L.H. Royden, and F. Horvath, AAPG Mem. 45, 27-48. Cerca con Google

Royden, L., & B. C. Burchfiel (1989), Are systematic variations in thrust belt style related to plate-boundary processes? (The Western Alps versus the Carpathians). Tectonics, 8 (1), 51-61. Cerca con Google

Royden, L., & G. Karner (1984), Flexure of lithosphere beneath Apennine and Carpathian foredeep basins: evidence for insufficient topographic load, AAPG Bull., 68, 704-712. Cerca con Google

Rutherford E. (1905), Present problems in radioactivity, Popular Science (May), l-34. Cerca con Google

Rudinec, R. (1978), Paleogeographical, lithofacial and tectonic development of the Neogene in eastern Slovakia and its relation to volcanism and deep tectonic. Geol. Zbor. (Bratislava), Geol. Carpath., 29, 2, 225-240. Cerca con Google

Safran, E. B. (2003), Geomorphic interpretation of low‐temperature thermochronologic data: Insights from two‐dimensional thermal modelling, J Geophys. Res.-Sol. Ea., 1978–2012, 108,B4. Cerca con Google

Sanderson, D.J. (1982), Models of strain variation in nappes and thrust sheets; a review, Tectonophysics, 88 (3-4), 201-233. Cerca con Google

Samuel, O., and O. Fusan (1992), Reconstruction of subsidence and sedimentation of Central Carpathian Paleogene. Zapadne Karpaty, Ser. Geol., 16, 7-46. Cerca con Google

Sandulescu, M. (1984), Geotectonica României, edited by Technica, Bucharest, 450 pp. (in Romanian). Cerca con Google

Săndulescu, M. (1988), Cenozoic tectonic history of the Carpathians, in The Pannonian Basin: A Study in Basin Evolution, edited by L. Royden and F. Horvath, AAPG Mem., 35, 17-25. Cerca con Google

Sandulescu, M., H.G. Krautner, I. Balintoni, D. Russo-Sandulescu, M. Micu (1981°), The structure of the East Carpathians (Moldavia–Maramures area), Carp.-Balc. Assoc., XII Congr. Cerca con Google

Sandulescu, M., M. Stefanescu, A. Butac, I. Patrut, P. Zaharescu, (1981b), Genetical and structural relations between flysch and molasse (The East Carpathians), Carp.-Balc. Assoc., XII Congr. Cerca con Google

Santantonio, M. (1993), Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic, Sedimentology, 40, 1039–1067, doi: 10.1111/j.1365-3091.1993.tb01379.x. Cerca con Google

Santantonio, M. (1994), Pelagic carbonate platform in the Geologic Record: their Classification, and Sedimentary and Paleotectonic evolution, Am Assoc Petr Geol Bull, 78, 122–141. Cerca con Google

Sartori, R. (2003), The Thyrrhenian backarc basin and subduction of the Ionian lithosphere, Episodes, 26, 217-221. Cerca con Google

Semyrka, G. (2009), Vitrinite reflectance and types of kerogen in well sections in the eastern part of the Polish Carpathians, Geologia, 35( 2/1), 49-59. Cerca con Google

Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139-183, doi: 10.1007/s00015-008-1247-3. Cerca con Google

Schmid, S.M., B. Fügenschuh, E. Kissling, and R. Schuster (2004 b), TRANSMED Transects IV, V and VI: Three lithospheric transects across the Alps and their forelands, in, The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle, edited by Cavazza W., F.M. Roure, W. Spakman, G.M.Stampfli and P.A. Ziegler Springer, Berlin and Heidelberg, attached CD (version of the explanatory text available from the first author as pdf-file upon request). Cerca con Google

Ślączka, A. (1971), Geology of the Dukla unit (in Polish with English summary): Prace Inst. Geol., 1, 1-63. Cerca con Google

Ślączka, A., and R. Unrug, (1976), Trends of textural and structural variations in turbidite sandstone (Oligocene, Outer Carpathians): Rocznik Polskiego Towarzystwa Geologicznego, 46, 55-75. Cerca con Google

Ślączka, A., S. Krugłov, J. Golonka, N. Oszczypko, and I. Popadyuk (2006), Geology and Hydrocarbon Resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: General Geology, Cerca con Google

in The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Mem. 84,edited by J. Golonka and F. J. Picha, pp. 221-258, doi: :10.1306/985610M843070. Cerca con Google

Slavin, W.J. (1963), Triasovye i jurskie otloženija Vostočnych Karpat i pannonskogo sredinnogo massiva, Gosgeoltechizdat, Moskva. Cerca con Google

Slavin, W.J. (1966), Yurskaya Sistema, in Geologiya SSSR, Karpaty, edited by Siemienienko, N.P., et al., vol 48, 77-92. Cerca con Google

Śmigielski, M., F.M. Stuart, P. Krzywiec, C. Persano, H.D. Sinclair, K. Pisaniec and K. Sobien (2012), Neogene exhumation of the Northern Carpathians revealed by low temperature thermochronology, Geophys. Res. Abstr., 14, EGU 2012-12063. Cerca con Google

Sokołowski, S. (1973), Geology of Palaeogene and Mesozoic basement of the Podhale Trough southern limb in then column of the Zakopane deep borehole (in Polish with English summary), Biul. Inst. Geol., 265, 5-103. Cerca con Google

Soták, J. (1998a), Sequence stratigraphy approach to the Central Carpathian Paleogene (Eastern Slovakia): eustasy and tectonics as controls of deep sea fan deposition, Slovak Geological Magazine, 4 (3), 185-190 (Bratislava). Cerca con Google

Soták, J. (1998b), Central Carpathian Paleogene and its constrains, Slovak Geological Magazine, 4 (3), 203-211. Cerca con Google

Soták J., M. Pereszlenyi, R. Marschalko, J. Milicka and D. Starek (2001), Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia), Mar. Petrol. Geol., 18, 87-114. Cerca con Google

Soták, J., D. Plašenka, J. Spišiak and P. Uher, (1993), Neptunian carbonate dykes hosted by basic volcanic rocks in the Považsky Inovec Mts. – Western Carpathians, Mineralia Slovaca, 25, 193-201. [In Slovak with English summary]. Cerca con Google

Soták, J., R. Rudinec, and J. Spišiak, (1993), The Peninic “pull-apart” dome in the pre-Neogene basement of the Transcarpathian Depression (Eastern Slovakia), Geol. Carpath., 44, 1, 11-16. Cerca con Google

Soták, J., J. Spisiak, I. Barath, J. Bebej, A. Biron, B. Hamrsmid, M. Hrncarova, N. Hudackova, V. Hurai, J. Kotulova, M. Kovac, F. Marko, R. Marschalko, J. Michalik, J. Milicka, M. Misik, A. Nagymarosy, P. Pitonak, M. Pereszlenyi, D. Plasienka, R. Prokesova, D. Rehakova, and L. Svabenicka (1996), Geological assessment of the Levocske vrchy Mts.-research report, pp.1193, Geofond Bratislava. Cerca con Google

Sperner, B. (1996), Computer programs for the kinematic analysis of brittle deformation structures and the Tertiary evolution of the Western Carpathians (Slovakia), Tubingen Geowissenschaftliche Arbeiten, Reihe A, 27, 1-81. Cerca con Google

Sperner, B., L. Ratschbacher, and M. Nemčok (2002), Interplay between subduction retreat and lateral extrusion: tectonics of the Western Carpathians, Tectonics, 21(6), 1051, doi: 10.1029/2001TC901028. Cerca con Google

Spiegel C., B. Kohn, D. Belton, Z. Berner, A. Gleadow (2009), Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation, Earth and Planetary Sc. Lett., 285, 105-114, doi: 10.1016/j.epsl.2009.05.045. Cerca con Google

Środoń, J., M. Kotarba, A. Biroň, P. Such, N. Clauer and A. Wójtowicz (2006), Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite, Clay Miner., 41, 751-774. Cerca con Google

Stefaniuk, M. (2006), Some results of a new magnetotelluric survey in the area of the Polish Outer Carpathians, in The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Mem., 84, edited by J. Golonka and F. J. Picha, pp. 707-716, doi: 10.1306/985624M843081. Cerca con Google

Steiger, R. H. and E. Jäger, (1977), Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology, Earth. Planet. Sc. Lett., 36, 359-362. Cerca con Google

Strutt, R.J. (1905), On the radio-active minerals, Proceedings of the Royal Society of London. Cerca con Google

Struzik, A.A., M. Zattin, and R. Anczkiewicz (2002), Apatite fission track analyses from the Polish Western Carpathians, Geolines, 14, 87-89. Cerca con Google

Stüwe, K., L. White, and R. Brown (1994), The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters, 124(1), 63-74. Cerca con Google

Suppe, J. (1983), Geometry and kinematics of fault-bend folding, Am. J. Sci., 283, 684-721. Cerca con Google

Sviridenko, V.G., (1976), Geological structure of the PreNeogene substratum of the Transcarpathian Depression. Miner. Slovaca (Kosice), 8, 5, 395-406 (English summary). Cerca con Google

Świdziński, H. (1948), Stratigraphical index of the Northern Flysch Carpathians, Bull. Panst. Inst. Geol., 37, 1-128. Cerca con Google

Świerczewska, A. (2005), The interplay of the thermal and structural histories of the Magura Nappe (Outer Carpathians) in Poland and Slovakia, Miner. Polon., 36(2), 91-144. Cerca con Google

Szaniawski, R., M. Ludwiniak, and J. Rubinkiewicz (2012), Minor counterclockwise rotation of the Tatra Mountains (Central Western Carpathians) as derived from paleomagnetic results achieved in hematite-bearing Lower Triassic sandstones, Tectonophysics, 560-561, 51-61, doi:10.1016/j.tecto.2012.06.027. Cerca con Google

Tözsér, J., and R. Rudinec (1975), Geological structures and mineral resources of the Neogene in Eastern Slovakia and Its Substratum. Miner. Slovaca (Kosice), 7, 3, 81-104, (English summary). Cerca con Google

Tomek, Č. (1993), Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics, 226, 417-431. Cerca con Google

Tomek, Č., and J. Hall (1993), Subducted continental margin in the Carpathians of Czechoslovakia: Geology, 21, 535-538. Cerca con Google

Uchman, A. (2004), Tatry, ich skały osadowe i badania sedymentologiczne in Geologia Tatr: Ponadregionalny Kontekst Sedymentologiczny,edited by W: Kędzierski, M., Leszczyński, S. and A. Uchman, pp. 5-21. Cerca con Google

Uhlig, V. (1890), Ergebnisse geologischer Aufnahmen in den westgalizischen Karpathen. II. Th. Der pieninische Klippenzug, Jb. geol. B.-A., Bd. 40, H. 3-4. Cerca con Google

Unrug, R. (1968), Kordyliera śląska jako obszar źródłowy materiału klastycznego piaskowców fliszowych Beskidu Śląskiego i Beskidu Wysokiego (Polskie Karpaty zachodnie), Rocz. Pol. Tow. Geol., 38 (1), 81-164. Cerca con Google

Vass, D., and J. Čverčko (1985), Neogene lithostratigraphic units in Eastern Slovakian Lowland, Geol. Práce, Správy, 82, 111-126, (English summary). Cerca con Google

Vermeesch, P., D. Seward, C. Latkoczy, M. Wipf, D. Guenther and H. Baur (2007), Alpha-emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it. Geochim. Cosmochim. Ac. 71, 1737-1746, doi: 10.1016/j.gca.2006.09.020. Cerca con Google

Vermeesch, P. (2009), RadialPlotter: a Java application for fission track, luminescence and other radial plots, Radiat. Meas. 44, 409-410, doi: 10.1016/j.radmeas.2009.05.003. Cerca con Google

Verrall, P. (1981), Structural interpretation with application to North Sea problems. Course note no. 3, join. Association for Petroleum Exploration courses (UK). Cerca con Google

Vitale, S., S. Ciarcia, S. Mazzoli, M. N. Zaghloul (2011), Tectonic evolution of the ‘Liguride’ accretionary wedge in the Cilento area, southern Italy: a record of early Appennine geodynamics, J. Geodynam., 51, 25-36. Cerca con Google

Vitale, S., L. Fedele, F. d. A. Tramparulo, S. Ciarcia, S. Mazzoli, and A. Novellino (2013), Structural and petrological analyses of the Frido Unit (southern Italy): New insights into the early tectonic evolution of the southern Apennines–Calabrian Arc system, Lithos, 168-169, 219-235, doi: 10.1016/j.lithos.2013.02.006. Cerca con Google

Voigt, S., and M. Wagreich (co-ord.), F. Surlyk, I. Walaszczyk, D. Uličny, S. Čech, T. Voigt, F. Wiese, M., Wilmsen, B. Niebuhr, M. Reich, H. Funk, J. Michelín, J. W. M. Jagt., P. J. Felder and A. S. Schulp (2008) Cretaceous, in The Geology of the Central Europe II: Mesozoic and Cenozoic, edited by McCann T., pp. 923-998. Cerca con Google

Vörös, A. (2001), Paleobiogeographical analysis: a tool for the reconstruction of Mesozoic Tethyan and Penninic basins, Acta Geol. Hung., 44 (2-3), 145-158. Cerca con Google

Wagner, M. (2011), Petrologic studies and diagenetic history of coaly matter in the Podhale flysch sediments, Southern Poland, Ann. Soc. Geol. Pol., 81, 173-183. Cerca con Google

Wessely, G. (1988), Structure and development of the Vienna Basin in Austria, in The Pannonian Basin, A study in Basin Evolution, edited by L. Royden, F. Horvath, AAPG Mem., 45, 333-346. Cerca con Google

Wójcik, A., P. Marciniec, P. Nescieruk (2006), Tokarnia IG-1 (in Polish). Profile Głębokich Otworów Wiertniczych, Państwowego Instytutu Geologicznego, 108, pp.58. Cerca con Google

Wójcik-Tabol, P. (2003), Reflectance of disperced organic matter particles in shales of the Magierowa Member in the Pieniny Klippen Belt compared with clay crystallinity and isotopical data, Miner. Soc. Pol.- Special Papers, 22, 236-239. Cerca con Google

Wolf R.A. , K.A. Farley, D.M. Kass (1998), Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer, Chemical Geology,148, 105-114. Cerca con Google

Zattin, M., B. Andreucci, L. Jankowski, S. Mazzoli and R. Szaniawski (2011), Neogene exhumation in the Outer Western Carpathians, Terra Nova, 00, 1-9, doi:10.1111/j.1365-3121.2011.01011.x. Cerca con Google

Ziegler, P.A., and S. Cloetingh (2004), Dynamic processes controlling evolution of rifted basins, Earth Sci. Reviews, 64, 1-50, doi: 10.1016/S0012-8252(03)00041-2. Cerca con Google

Zlínska, A. (1992), Zur Biostratigraphischen Gliederung des neogens des Ostslowakischen Beckens, Geol. Práce, Spr., 96, 51-57. Cerca con Google

Zoetemeijer, R., C. Tomek, & S. Cloetingh (1999), Flexural expression of European continental lithosphere under the Western Outer Carpathians, Tectonics, 18, 843-861. Cerca con Google

Zoetemeijer, R., and W. Sassi (1992) 2D reconstruction of thrust evolution using the fault-bend fold method, in Thrust tectonics, edited by Mc Clay, 133-140. Cerca con Google

Zuchiewicz, W., N. Oszczypko (2008), Topography of the Magura floor thrust and morphotectonics of the Outer West Carpathians, Poland. Ann. Soc. Geol. Pol., 78, 135-149. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record