Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Saccà, Alessandro (2015) Designing, Manufacturing and Test of a Nonimaging Optics particularly for Concentrated Photovoltaics. TwinFocus: a case study. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
32Mb

Abstract (inglese)

The idea behind concentrated photovoltaics (CPV) is straightforward: concentrate the sunlight onto a small solar cell in order to shift largest part of the system cost from the semiconductor to the balance of system components. CPV systems designed for high concentration factors use solar cells with the highest achieved efficiency, which are the triple-junction (3J) ones. The rapid growth of flat panels PV market during last years attracted the world attention to photovoltaic technologies, particularly for the achievement of the grid-parity goal. In the meanwhile CPV technology attracted researchers and investors particularly for the introduction in the PV market of high efficiency triple-junction solar cells designed for terrestrial applications. An accurate design of CPV system, pushed by a growth of the CPV market, can make CPV technology competitive in the near future. This PhD work is integrated into this research and market scenarios. The main goal of this work is to design a nonimaging optics for CPV technology. Starting from a constraint analysis of the problem some initial choices are made. This first step is also the most important one, because it needs a deep knowledge of the technologies involved, from the mechanical tolerances to the production costs. At this level a key choice is the main optical element, which in this work is a polycarbonate substrate that is then aluminized. This choice was made basically to take advantage of injection molding technology know-how, particularly for automotive lighting application. After these initial choices a work flow is adopted for the subsequent design of the optical scheme, the tolerance analysis and the manufacturing process, analyzing carefully in particular the realization of the primary optical element. For this purpose a dedicated experiment was performed in order to optimize its injection molding process. The work concludes with an outdoor test of the first prototype manufactured and with a comparison of its performances with the electrical distributed model developed. All the activities presented were supported by Polo Fotovoltaico Veneto and Centro Studi e Ricerche E.Fermi of Rome. The outdoor measurements on the experimental installations were performed within the Laboratori Nazionali di Legnaro (LNL-INFN), while the experiment designed around the injection mold was performed within the company Unica Srl in Conegliano Veneto, Treviso.

Abstract (italiano)

L'idea alla base del fotovoltaico a concentrazione (CPV) è molto semplice: concentrare la radiazione solare su piccole celle fotovoltaiche allo scopo di ridurre il costo del semiconduttore impiegato verso gli altri componenti costituenti il sistema fotovoltaico. I sistemi CPV progettati per alte concentrazioni utilizzano celle solari che attualmente risultano le più efficienti mai realizzate, le celle fotovoltaiche a tripla giunzione (3J). La rapida crescita del mercato del fotovoltaico (PV) piano avvenuta negli ultimi anni ha destato l'attenzione di tutto il mondo nei confronti di questa tecnologia, in particolar modo grazie al raggiungimento della grid-parity. Nel frattempo la tecnologia CPV ha richiamato ricercatori ed investitori, attirati in particolare dall'introduzione sul mercato delle celle solari a tripla giunzione per applicazioni terrestri. Una progettazione accurata del sistema CPV, aiutata da una crescita del mercato del CPV, potrà portare questa tecnologia ad essere competitiva in un breve futuro. Questo lavoro di dottorato si integra in questo scenario accademico ed industriale. Lo scopo principale del lavoro è consistito nel progettare un'ottica nonimaging per la tecnologia CPV. A partire dall'analisi dei vincoli progettuali sono state affrontate alcune scelte iniziali. Questo primo step è il più importante durante l'intera fase progettuale perché richiede un'approfondita conoscenza dei processi produttivi coinvolti, a partire dalle tolleranze meccaniche fino ai costi di realizzazione. In questa fase della progettazione un punto importante è stato la scelta dell'elemento ottico primario, un substrato in policarbonato successivamente alluminato. Questa scelta è stata fatta per trarre vantaggio dal know-how della tecnologia degli stampi ad iniezione, particolarmente usati nel mondo dell'illuminazione automotive. Successivamente a questa fase di progettazione delle superfici ottiche, si è passati all'analisi delle tolleranze e alla realizzazione dei componenti, ponendo particolare attenzione alla realizzazione dell'elemento ottico primario. A questo proposito è stato allestito un esperimento volto ad ottimizzare la procedura di stampo ad iniezione di tale elemento ottico. Il lavoro si conclude con un test outdoor del primo prototipo realizzato e con il confronto delle prestazioni elettriche di una cella 3J simulata grazie ad un modello dedicato. Tutte le attività presentate sono state svolte grazie al supporto del Polo Fotovoltaico Veneto e del Centro Studi e Ricerche E.Fermi di Roma. Le misure sulle installazioni sperimentali sono state svolte presso i Laboratori Nazionali di Legnaro (LNL-INFN) mentre l'esperimento realizzato attorno allo stampo ad iniezione è stato svolto presso la ditta Unica Srl di Conegliano Veneto.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rossetto, Luisa
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):Nonimaging optics, freeform, Concentrated Photovoltaics
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/09 Sistemi per l'energia e l'ambiente
Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:7768
Depositato il:23 Nov 2015 15:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] A. K. Gupta and C. A. Hall, "A review of the past and current state of EROEI data," Sustainability, vol. 3, no. 10, pp. 1796-1809, 2011. Cerca con Google

[2] M. Raugei, P. Fullana-i Palmer, and V. Fthenakis, "The energy return on energy investment (EROEI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, vol. 45, pp.576-582, 2012. Cerca con Google

[3] G. F. Nemet, "Beyond the learning curve: factors inuencing cost reductions in photovoltaics," Energy policy, vol. 34, no. 17, pp. 3218-3232, 2006. Cerca con Google

[4] A. Luque, G. Sala, and I. Luque-Heredia, "Photovoltaic concentration at the onset of its commercial deployment," Progress in Photovoltaics: Research and Applications, vol. 14, no. 5, pp. 413-428, 2006. Cerca con Google

[5] M. Bosi and C. Pelosi, "The potential of III-V semiconductors as terrestrial photovoltaic devices," Progress in Photovoltaics: Research and Applications, vol. 15, no. 1, pp. 51-68, 2007. Cerca con Google

[6] G. S. Kinsey, R. A. Sherif, P. Pien, P. Hebert, R. R. King, and D. Aldrich, "Towards commercialization of concentrator multijunction photovoltaic modules," in Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008, pp. 1-3. Cerca con Google

[7] M. Yamaguchi and A. Luque, "High efficiency and high concentration in photovoltaics," Electron Devices, IEEE Transactions on, vol. 46, no. 10, pp. 2139-2144, 1999. Cerca con Google

[8] R. M. Swanson, "The promise of concentrators," Progress in Photo-voltaics Research and Applications, vol. 8, no. 1, pp. 93-111, 2000. Cerca con Google

[9] "http://optics.org/news/4/8/23," August 2013. Vai! Cerca con Google

[10] "http://semprius.com/wordpress2/wp-content/uploads/semprius-35-5-percent-efficiency-sets-new-record-for-commercially-available-solar-modules.pdf," September 2013. Vai! Cerca con Google

[11] "http://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record-for-concentrator-photovoltaics?set language=en," July 2014. Vai! Cerca con Google

[12] K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, "Design tools for freeform optics," in Optics & Photonics 2005. International Society for Optics and Photonics, 2005, pp. 58 740A-58 740A. Cerca con Google

[13] J. Jiang, C. Cheung, S. To, K. Cheng, K. Wang, and W. Lee, "Design and fabrication of freeform reector for automotive headlamp," in Power Electronics Systems and Applications, 2006. ICPESA'06. 2nd International Conference on. IEEE, 2006, pp. 220-224. Cerca con Google

[14] S. Lee, "Optimum design and selection of heat sinks," in Semiconductor Thermal Measurement and Management Symposium, 1995. SEMI-THERM XI., Eleventh Annual IEEE. IEEE, 1995, pp. 48-54. Cerca con Google

[15] H. Ye, "Thermal management of solid state lighting module," Ph.D. dissertation, TU Delft, Delft University of Technology, 2014. Cerca con Google

[16] D. H. McClelland, "Investigation of solar concentrating photovoltaic power generators," DTIC Document, Tech. Rep., 1961. Cerca con Google

[17] W. Beckman, P. Schoffer, W. Hartman Jr, and G. Lof, "Design considerations for a 50-watt photovoltaic power system using concentrated solar energy," Solar Energy, vol. 10, no. 3, pp. 132-136, 1966. Cerca con Google

[18] A. A. Salim and N. N. Eugenio, "A comprehensive report on the performance of the longest operating 350 kW concentrator photovoltaic power system," Solar Cells, vol. 29, no. 1, pp. 1-24, 1990. Cerca con Google

[19] M. O'Neill and A. McDanal, "Fourth-generation concentrator system: From the lab to the factory to the field," in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conferenceon, vol. 1. IEEE, 1994, pp. 816-819. Cerca con Google

[20] G. Sala and A. Luque, "Past experiences and new challenges of PV concentrators," Concentrator Photovoltaics(Springer Series in Optical Sciences Volume 130), vol. 130, pp. 1-23, 2007. Cerca con Google

[21] R. Sinton, Y. Kwark, J. Gan, and R. M. Swanson, "27.5-percent silicon concentrator solar cells," Electron Device Letters, IEEE, vol. 7, no. 10, pp. 567-569, 1986. Cerca con Google

[22] S. Bedair, M. Lamorte, and J. Hauser, "A two-junction cascade solarcell structure," Applied Physics Letters, vol. 34, no. 1, pp. 38-39, 1979. Cerca con Google

[23] J. Olson, S. Kurtz, A. Kibbler, and P. Faine, "A 27.3% efficient Ga0:5In0:5P=GaAs tandem solar cell," Applied physics letters, vol. 56, no. 7, pp. 623-625, 1990. Cerca con Google

[24] N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin et al., "Recent developments in high-effciency Ga0.5In0.5P/GaAs/Ge dual-and triple-junction solar cells: steps to next-generation PV cells," Solar energy materials and solar cells, vol. 66, no. 1, pp. 453-466, 2001. Cerca con Google

[25] R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, "40% efficient metamorphic GaInP=GaInAs=Ge multijunction solar cells," Applied physics letters, vol. 90, no. 18, pp. 183 516-183 516, 2007. Cerca con Google

[26] F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli et al., "Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency," Progress in Photovoltaics: Research and Applications, vol. 22, no. 3, pp. 277-282, 2014. Cerca con Google

[27] P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. King et al., "Direct semiconductor bonded 5J cell for space and terrestrial applications," IEEE Journal of Photovoltaics, vol. 4, no. 1, 2013. Cerca con Google

[28] A. Luque, "Will we exceed 50% efficiency in photovoltaics?" Journal of Applied Physics, vol. 110, no. 3, p. 031301, 2011. Cerca con Google

[29] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," Journal of applied physics, vol. 32, no. 3, pp. 510-519, 1961. Cerca con Google

[30] "http://www.azurspace.com." Vai! Cerca con Google

[31] A. W. Bett, F. Dimroth, and G. Siefer, Multijunction concentrator solar cells. Springer, 2007, vol. 130, ch. 4, pp. 67-87. Cerca con Google

[32] L. Zhao, "High efficiency mechanically stacked multijunction solar cells for concentrator photovoltaics," Ph.D. dissertation, University of Ku Leuven, 2011. Cerca con Google

[33] K. Emery, D. Myers, and S. Kurtz, "What is the appropriate reference spectrum for characterizing concentrator cells?" in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE. IEEE, 2002, pp. 840-843. Cerca con Google

[34] C. Gueymard, D. Myers, and K. Emery, "Proposed reference irradiance spectra for solar energy systems testing," Solar energy, vol. 73, no. 6, pp. 443-467, 2002. Cerca con Google

[35] R. King, A. Boca, W. Hong, X. Liu, D. Bhusari, D. Larrabee, K. Edmondson, D. Law, C. Fetzer, S. Mesropian et al., "Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells," in 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, vol. 21, 2009. Cerca con Google

[36] J. Ermer, R. Jones, P. Hebert, P. Pien, R. King, D. Bhusari, R. Brandt, O. Al-Taher, C. Fetzer, G. Kinsey et al., "Status of C3MJ+ and C4MJ production concentrator solar cells at spectrolab," Photovoltaics, IEEE Journal of, vol. 2, no. 2, pp. 209-213, 2012. Cerca con Google

[37] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, "Concentrator multijunction solar cell characteristics under variable intensity and temperature," Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 503-508, 2008. Cerca con Google

[38] C. Karcher, H. Helmers, M. Schachtner, F. Dimroth, and A. W. Bett, "Temperature-dependent electroluminescence and voltages of multijunction solar cells," Progress in Photovoltaics: Research and Applications, 2013. Cerca con Google

[39] K. P. Thompson and J. P. Rolland, "Freeform optical surfaces: a revolution in imaging optical design," Optics and Photonics News, vol. 23, no. 6, pp. 30-35, 2012. Cerca con Google

[40] J. P. Rolland and K. P. Thompson, "Freeform optics: Evolution? No, revolution!" SPIE Newsroom, 2012. Cerca con Google

[41] I. Livshits, D. Mouromtsev, and V. Vasiliev, Modern Information Systems. Ontology Approach in Lens Design. InTech, 2012, ch. 2, pp. 23-40. Cerca con Google

[42] G. W. Forbes and A. E. Jones, "Towards global optimization with adaptive simulated annealing," in 1990 Intl Lens Design Conf. International Society for Optics and Photonics, 1991, pp. 144-153. Cerca con Google

[43] T. G. Kuper and T. I. Harris, "Global optimization for lens design: an emerging technology," in Optical Systems Design'92. International Society for Optics and Photonics, 1993, pp. 14-28. Cerca con Google

[44] F. Bociort, Encyclopedia of optical engineering. CRC press, 2003, vol. 2, ch. Optical System Optimization. Cerca con Google

[45] R. J. Koshel, Illumination Engineering: design with nonimaging optics. John Wiley & Sons, 2012. Cerca con Google

[46] R. Winston, J. C. Mi~nano, and P. Benitez, Nonimaging optics. Academic Press, 2005. Cerca con Google

[47] J. Chaves, Introduction to nonimaging optics. CRC Press, 2008. Cerca con Google

[48] J. C. Minano and P. Benitez, Concentrator optics for the next-generation photovoltaics, ser. Series in Optics and Optoelectronics. Taylor & Francis, 2004, ch. 13, pp. 285-325. Cerca con Google

[49] A. Cvetkovic, "Free-form Optical Systems for Nonimaging Applications," Ph.D. dissertation, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, 2009. Cerca con Google

[50] D. C. Miller, M. D. Kempe, C. E. Kennedy, and S. R. Kurtz, "Analysis of transmitted optical spectrum enabling accelerated testing of cpv designs," in SPIE Solar Energy+ Technology. International Society for Optics and Photonics, 2009, pp. 74 070G-74 070G. Cerca con Google

[51] D. C. Miller and S. R. Kurtz, "Durability of fresnel lenses: a review specific to the concentrating photovoltaic application," Solar Energy Materials and Solar Cells, vol. 95, no. 8, pp. 2037-2068, 2011. Cerca con Google

[52] R. Leutz and A. Suzuki, Nonimaging Fresnel lenses: design and performance of solar concentrators. Springer, 2001, vol. 83. Cerca con Google

[53] T. Levi-Civita, "Complementi al teorema di Malus-Dupin. Nota I," Rend. Sedute R. Accad. Dei Lincei IX (1), pp. 185-189, 1900. Cerca con Google

[54] P. Benitez, J. C. Minano, O. Dross, M. Herna, W. Falicoff et al., "Simultaneous multiple surface optical design method in three dimensions," Optical Engineering, vol. 43, no. 7, pp. 1489-1502, 2004. Cerca con Google

[55] F. Duerr, P. Benitez, J. C. Minano, Y. Meuret, and H. Thienpont, "Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles," Optics express, vol. 20, no. 5, pp. 5576-5585, 2012. Cerca con Google

[56] H. Ries and J. A. Muschaweck, "Tailoring freeform lenses for illumination," in International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2001, pp. 43-50. Cerca con Google

[57] V. Oliker, "Optical design of freeform two-mirror beam-shaping systems," JOSA A, vol. 24, no. 12, pp. 3741-3752, 2007. Cerca con Google

[58] S. A. Kochengin and V. I. Oliker, "Determination of reector surfaces from near-field scattering data II. Numerical solution," Numerische Mathematik, vol. 79, no. 4, pp. 553-568, 1998. Cerca con Google

[59] D. Michaelis, S. Kudaev, R. Steinkopf, A. Gebhardt, P. Schreiber, and A. Brauer, "Incoherent beam shaping with freeform mirror," in Optical Engineering+ Applications. International Society for Optics and Photonics, 2008, pp. 705 905-705 905. Cerca con Google

[60] F. Fournier, "Freeform reector design with Extended Sources," Ph.D. dissertation, College of Optics and Photonics, University of Central Florida, 2010. Cerca con Google

[61] W. B. Elmer, The optical design of reectors, ser. Wiley series in pure and applied optics. Wiley, 1980. Cerca con Google

[62] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, "Fast freeform reector generation using source-target maps," Optics express, vol. 18, no. 5, pp. 5295-5304, 2010. Cerca con Google

[63] S. A. Kochengin and V. I. Oliker, "On the numerical solution of the problem of reector design with given far-field scattering data," Contemporary Mathematics, vol. 226, pp. 13-32, 1999. Cerca con Google

[64] L. Wang, K. Qian, and Y. Luo, "Discontinuous free-form lens design for prescribed irradiance," Applied optics, vol. 46, no. 18, pp. 3716-3723, 2007. Cerca con Google

[65] P. Benitez and J. C. Minano, "Three-dimensional simultaneous multiple-surface method and free-form illumination-optics designed therefrom," Aug. 24 2006, WO Patent App. PCT/US2004/024,330. Cerca con Google

[66] M. Montecchi, "Deeper investigation of Dow Corning 3145 and Bayer Silicones rtv 615 glue," ENEA, Tech. Rep., 2000. Cerca con Google

[67] R. Herrero, M. Victoria, C. Dominguez, S. Askins, I. Anton, and G. Sala, "Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells," Progress in Photovoltaics: Research and Applications, vol. 20, no. 4, pp. 423-430, 2012. Cerca con Google

[68] D. V. Rosato, D. V. Rosato, and M. G. Rosato, Injection Molding Handbook. Kluwer Academic Publishers, 2000. Cerca con Google

[69] D. C. Mongomery, Design and analysis of experiments. John Wiley & Sons, 2008. Cerca con Google

[70] W. C. Sinke, C. Ballif, A. Bett, B. Dimmler, D. Dimova-Malinovska, P. Fath, N. Mason, F. Ferrazza, H. Gabler, M. Hall et al., "A Strategic Research Agenda for Photovoltaic Solar Energy Technology," Working Group 3: Science, Technology and Applications, Tech. Rep., 2011. Cerca con Google

[71] P. Benitez, J. C. Minano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernandez, "High performance Fresnel based photovoltaic concentrator," Optics express, vol. 18, no. 101, pp. A25-A40, 2010. Cerca con Google

[72] J. C. Minano, P. Benitez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaria, "Free-form optics for Fresnel-lens-based photovoltaic concentrators," Optics express, vol. 21, no. 103, pp. A494-A502, 2013. Cerca con Google

[73] S. R. Kurtz, M. Muller, B. Marion, K. Emery, R. McConnell, S. Surendran, and A. Kimber, "Considerations for how to rate CPV," in CPV 6 conference, 2011. Cerca con Google

[74] "Standard iec 62670-1, Concentrator Photovoltaic (CPV) Performance Testing Part 1," 2013. Cerca con Google

[75] "$http://www.spectrolab.com/DataSheets/PV/CPV/C3MJ PLUS 2011.pdf$," 2011. Vai! Cerca con Google

[76] J. Maroto and G. Araujo, "Three-dimensional circuit analysis applied to solar cell modelling," in Proceedings of the 13th European Photovoltaic Solar Energy Conference, vol. 1246, 1995. Cerca con Google

[77] A. Antonini, M. Stefancich, D. Vincenzi, C. Malagu, F. Bizzi, A. Ronzoni, and G. Martinelli, "Contact grid optimization methodology for front contact concentration solar cells," Solar energy materials and solar cells, vol. 80, no. 2, pp. 155-166, 2003. Cerca con Google

[78] K. Araki and M. Yamaguchi, "Extended distributed model for analysis of non-ideal concentration operation," Solar energy materials and solar cells, vol. 75, no. 3, pp. 467-473, 2003. Cerca con Google

[79] B. Galiana, C. Algora, I. Rey-Stolle, and I. G. Vara, "A 3-D model for concentrator solar cells based on distributed circuit units," Electron Devices, IEEE Transactions on, vol. 52, no. 12, pp. 2552-2558, 2005. Cerca con Google

[80] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, "Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell's structure focusing on series resistance for high-efficiency concentrator photovoltaic systems," Solar Energy Materials and Solar Cells, vol. 90, no. 9, pp. 1308-1321, 2006. Cerca con Google

[81] Y. Martin, P. D. Kirchner, T. van Kessel, B. Wacaser, R. Sandstrom, D. Patel, B. Kim, A. Badahdah, H. Khonkar, R. Leutz et al., "High concentration photovoltaics. Effect of inhomogeneous spectral irradiation," IEEE Journal of Photovoltaics, vol. 5, no. 1, pp. 454-460, 2014. Cerca con Google

[82] E. Duran, M. Piliougine, M. Sidrach-de Cardona, J. Galan, and J. Andujar, "Different methods to obtain the I-V curve of PV modules: a review," in Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008, pp. 1-6. Cerca con Google

[83] M. Guvench, C. Gurcan, K. Durgin, and D. MacDonald, "Solar simulator and IV measurement system for large area solar cell testing," in Proceedings of the 2004 american society for engineering education annual conference & exposition, 2004. Cerca con Google

[84] F. Recart, H. Mackel, A. Cuevas, and R. Sinton, "Simple data acquisition of the current-voltage and illumination-voltage curves of solar cells," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, vol. 1. IEEE, 2006, pp. 1215-1218. Cerca con Google

[85] G. Segev, G. Mittelman, and A. Kribus, "Equivalent circuit models for triple-junction concentrator solar cells," Solar Energy Materials and Solar Cells, vol. 98, pp. 57-65, 2012. Cerca con Google

[86] R. King, D. Bhusari, A. Boca, D. Larrabee, X.-Q. Liu, W. Hong, C. Fetzer, D. Law, and N. Karam, "Band gap-voltage offset and energy production in next-generation multijunction solar cells," Progress in Photovoltaics: Research and Applications, vol. 19, no. 7, pp. 797-812, 2011. Cerca con Google

[87] R. King, D. Law, K. Edmondson, C. Fetzer, R. Sherif, G. Kinsey, D. Krut, H. Cotal, and N. Karam, "Metamorphic and lattice-matched solar cells under concentration," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, vol. 1. IEEE, 2006, pp. 760-763. Cerca con Google

[88] D. C. Giancoli and J. J. Boyle, Physics: principles with applications. Pearson Education, 2005. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record