Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Astone, Matteo (2015) A novel Yap/Taz zebrafish reporter reveals a role of Hippo pathway transducers in angiogenesis. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (A novel Yap/Taz zebrafish reporter reveals a role of Hippo pathway tranducers in angiogenesis)
4Mb

Abstract (inglese)

YAP and TAZ, by orchestrating cell proliferation, cell death and cell-fate decisions, are key players of a complex network of signaling pathways acting during development. Deregulation of YAP/TAZ signaling causes robust organ overgrowth during organogenesis, which translates to loss of tissue homeostasis in the adult and consequent cancer development. YAP/TAZ are transcriptional co-activators that interact with TEAD transcription factors to promote cell proliferation and survival. Their transcriptional activity is regulated by nucleocytoplasmic shuttling and nuclear accumulation, which are controlled by the Hippo kinase cascade, but also by mechanical cues sensed by the cell and by other pathways. Among these, Wnt/β-catenin takes on a particular relevance, since it was recently shown to regulate YAP/TAZ activity through AXIN-mediated sequestration of YAP/TAZ in the β-catenin destruction complex.
Here, we describe the generation, validation and characterization of a novel biosensor zebrafish reporting the activity of Yap/Taz. It expresses nuclear mCherry, eGFP or the destabilized green fluorescent protein VenusPEST under the control of a promoter fragment of the human YAP/TAZ target gene CTGF, that contains 3 TEAD DNA-binding sites. Several independent founder fish transmitting the transgene to the germline were identified and used to establish the stable reporter lines. All stable transgenic fish shared a similar expression pattern, which was maintained in subsequent generations. Knockdown and overexpression approaches were used to validate the reporter. Co-injection of two morpholinos targeting Yap and Taz pre-mRNAs reduced the reporter signal, whereas injection of mRNAs coding for a constitutively active form of Yap, Taz and Tead (YAP-5SA, TAZ-4SA, TEAD-VP16) increased it. The CTGF-based transgenic lines represent therefore bona fide Yap/Taz reporters.
During development, strong reporter signal is visible mainly in the lens and otic vesicles, the pharyngeal arches, the heart, the pectoral fin and the vasculature, but the reporter protein expression is also detected in many other tissues and organs. The almost ubiquitous activation of Yap/Taz observed during early embryogenesis, consistent with the general role of YAP/TAZ in promoting cell proliferation and organ growth, is largely silenced in the adult fish, where the reporter signal is restricted to the lens, the ovary, the heart and the whole vasculature. We also showed that the CTGF-based biosensor zebrafish is able to report Yap/Taz activation during larval and adult fin regeneration, as expected from the role that YAP/TAZ signaling plays in the regenerative processes.
The zebrafish CTGF-based reporter permitted to show in a living organism during development the regulation that the Wnt/β-catenin pathway exerts on Yap/Taz activity. Our results in terms of variations of the reporter signal, after both genetic and pharmacological modulation of the Wnt pathway activity, are in accordance with the model recently depicted in vitro.
The general and sustained reporter activity we observed in the endothelium during embryogenesis suggested a functional involvement of Yap/Taz signaling in developmental angiogenesis. Yap/Taz knockdown impaired the intersegmental vessels (ISVs) growth, while the overactivation of Yap/Taz-mediated transcription caused an aberrant sprouting from the ISVs. The vessel sprouting-promoting capacity of Yap/Taz is cell-autonomous, as the same phenomenon was observed by expressing TAZ-4SA under the control of an endothelium-specific promoter.
The CTGF-based zebrafish reporter is a new powerful tool to study in vivo Yap/Taz pathway activation, with possible applications in drug screening, regeneration and cancer biology. It permitted to confirm in vivo during development the crosstalk between Wnt/β-catenin and Yap/Taz pathways and to discover a novel role of Yap/Taz in vessel sprouting, suggesting a pro-angiogenic function of YAP/TAZ transcriptional activity.

Abstract (italiano)

YAP e TAZ, orchestrando la proliferazione, la morte e il differenziamento cellulari, rappresentano elementi chiave di una complessa rete di vie di segnalazione che agiscono durante lo sviluppo. L’alterazione della segnalazione YAP/TAZ causa una crescita fuori controllo degli organi durante l’organogenesi, che si traduce nella perdita dell’omeostasi tissutale nell’adulto e conseguente sviluppo tumorale. YAP/TAZ sono co-attivatori trascrizionali che interagiscono con i fattori di trascrizione TEAD per promuovere la proliferazione e la sopravvivenza cellulari. La loro attività trascrizionale è regolata dal trasporto nucleo-citoplasmatico e dall’accumulo nucleare, che sono controllati dalla cascata chinasica della via di Hippo, ma anche dagli stimoli meccanici percepiti dalla cellula e da altre vie. Fra queste, la via di Wnt/β-catenina assume una particolare rilevanza, dal momento che è stato recentemente dimostrato che essa regola l’attività di YAP/TAZ attraverso il loro sequestro nel complesso di degradazione della β-catenina mediato da AXIN.
In questa tesi vengono descritte la generazione, la validazione e la caratterizzazione di un nuovo zebrafish biosensore che riporta l’attività di Yap/Taz. Esso esprime le proteine mCherry nucleare, eGFP o la proteina verde fluorescente destabilizzata VenusPEST sotto il controllo di un frammento promotoriale del gene umano CTGF target di YAP/TAZ, contenente 3 siti di legame per TEAD. Sono stati identificati diversi pesci fondatori indipendenti in grado di trasmettere il transgene alla linea germinale, i quali sono stati utilizzati per instaurare le linee reporter stabili. Tutti i pesci transgenici condividevano un pattern di espressione similare, mantenuto nelle generazioni successive. Per validare il reporter sono stati usati approcci di downregolazione e overespressione. La co-iniezione di due morfolini diretti contro i pre-mRNA di Yap e Taz ha ridotto il segnale reporter, mentre l’iniezione di mRNA codificanti per una forma costitutivamente attiva di Yap, Taz o Tead (YAP-5SA, TAZ-4SA, TEAD-VP16) lo ha aumentato. Le linee transgeniche basate sul gene CTGF rappresentano perciò bona fide dei reporter dell’attività di Yap/Taz.
Durante lo sviluppo, un forte segnale reporter è visibile principalmente nella lente, la vescicola otica, gli archi faringei, il cuore, la pinna pettorale e la rete vascolare, ma l’espressione della proteina reporter è rilevabile in molti altri tessuti e organi. L’attivazione quasi ubiquitaria di Yap/Taz osservata durante l’embriogenesi precoce, consistente con il ruolo generale di YAP/TAZ nel promuovere la proliferazione cellulare e la crescita degli organi, è ampiamente silenziata nel pesce adulto, dove il segnale reporter è ristretto a lente, ovario, cuore e intera rete vascolare. Lo zebrafish biosensore è anche in grado di riportare l’attivazione di Yap/Taz durante la rigenerazione della coda nella larva e nell’adulto, come atteso dal ruolo che riveste la segnalazione YAP/TAZ nei processi rigenerativi.
Lo zebrafish reporter basato sul gene CTGF ha permesso di mostrare in un organismo vivente durante lo sviluppo la regolazione che la via di Wnt/β-catenina esercita sull’attività di Yap/Taz. I nostri risultati in termini di variazione del segnale reporter, in seguito alla modulazione genetica e farmacologica dell’attività della via di Wnt, sono in linea con il modello disegnato di recente in vitro.
L’attività generale e sostenuta del reporter nell’endotelio durante l’embriogenesi ha suggerito un coinvolgimento funzionale della segnalazione Yap/Taz nell’angiogenesi precoce. La downregolazione di Yap/Taz è risultata in una compromissione della crescita dei vasi intersegmentali (ISVs), mentre l’attivazione spinta della trascrizione mediata da Yap/Taz ha causato un ramificarsi anomalo degli ISVs. La capacità di Yap/Taz di promuovere tale ramificazione vascolare è “cell-autonomous”, dal momento che lo stesso fenomeno è stato osservato esprimendo TAZ-4SA sotto il controllo di un promotore endotelio-specifico.
Lo zebrafish reporter sviluppato è un nuovo potente strumento per studiare in vivo l’attivazione della via di Yap/Taz, con possibili applicazioni nello screening farmacologico e nella biologia della rigenerazione e del cancro. Ha permesso di confermare in vivo durante lo sviluppo l’interazione fra le vie di Wnt/β-catenina e Yap/Taz e di scoprire un nuovo ruolo di Yap/Taz nella ramificazione vascolare, suggerendo una funzione pro-angiogenica dell’attività trascrizionale di YAP/TAZ.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Argenton, Francesco
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > BIOSCIENZE E BIOTECNOLOGIE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:30 Gennaio 2015
Anno di Pubblicazione:30 Gennaio 2015
Parole chiave (italiano / inglese):Yap, Taz, Hippo, zebrafish, reporter, Wnt, angiogenesis, in vivo
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:7776
Depositato il:12 Nov 2015 12:27
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aaronson, D.S., and Horvath, C.M. (2002). A road map for those who don’t know JAK-STAT. Science 296, 1653–1655. Cerca con Google

Aase, K., Ernkvist, M., Ebarasi, L., Jakobsson, L., Majumdar, A., Yi, C., Birot, O., Ming, Y., Kvanta, A., Edholm, D., et al. (2007). Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev. 2055–2068. Cerca con Google

Adler, J.J., Johnson, D.E., Heller, B.L., Bringman, L.R., Ranahan, W.P., Conwell, M.D., Sun, Y., Hudmon, A., and Wells, C.D. (2013). Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc. Natl. Acad. Sci. U. S. A. 110, 17368–17373. Cerca con Google

Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059. Cerca con Google

Azzolin, L., Zanconato, F., Bresolin, S., Forcato, M., Basso, G., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2012). Role of TAZ as mediator of wnt signaling. Cell 151, 1443–1456. Cerca con Google

Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., Bresolin, S., Frasson, C., Basso, G., Guzzardo, V., et al. (2014). YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response. Cell 158, 157–170. Cerca con Google

Bai, H., Zhang, N., Xu, Y., Chen, Q., Khan, M., Potter, J.J., Nayar, S.K., Cornish, T., Alpini, G., Bronk, S., et al. (2012). Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 56, 1097–1107. Cerca con Google

Barbazuk, W.B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J.A., McPherson, J.D., and Johnson, S.L. (2000). The syntenic relationship of the zebrafish and human genomes. Genome Res. 10, 1351–1358. Cerca con Google

Barolo, S. (2006). Transgenic Wnt/TCF pathway reporters: all you need is Lef? Oncogene 25, 7505–7511. Cerca con Google

Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., and Downward, J. (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23. Cerca con Google

Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E., and Stocker, H. (2010). The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell 18, 309–316. Cerca con Google

Beis, D., Bartman, T., Jin, S.-W., Scott, I.C., D’Amico, L.A., Ober, E.A., Verkade, H., Frantsve, J., Field, H.A., Wehman, A., et al. (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193–4204. Cerca con Google

Bendinelli, P., Maroni, P., Matteucci, E., Luzzati, A., Perrucchini, G., and Desiderio, M.A. (2013). Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WWdomain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer. Eur. J. Cancer 49, 2608–2618. Cerca con Google

Burns, C.G., Milan, D.J., Grande, E.J., Rottbauer, W., MacRae, C.A., and Fishman, M.C. (2005). High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat. Chem. Biol. 1, 263–264. Cerca con Google

Cai, J., Zhang, N., Zheng, Y., de Wilde, R.F., Maitra, A., and Pan, D. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388. Cerca con Google

Camargo, F.D., Gokhale, S., Johnnidis, J.B., Fu, D., Bell, G.W., Jaenisch, R., and Brummelkamp, T.R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060. Cerca con Google

Chan, E.H.Y., Nousiainen, M., Chalamalasetty, R.B., Schäfer, A., Nigg, E.A., and Silljé, H.H.W. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086. Cerca con Google

Chan, S.W., Lim, C.J., Chong, Y.F., Pobbati, A. V., Huang, C., and Hong, W. (2011). Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 286, 7018–7026. Cerca con Google

Chan, S.W., Lim, C.J., Guo, F., Tan, I., Leung, T., and Hong, W. (2013). Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J. Biol. Chem. 288, 37296–37307. Cerca con Google

Chen, B., Dodge, M.E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W., Kilgore, J., Williams, N.S., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107. Cerca con Google

Chen, Z., Friedrich, G.A., and Soriano, P. (1994). Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301. Cerca con Google

Choi, H.J., Park, H., Lee, H.W., and Kwon, Y.G. (2012). The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life 64, 724–731. Cerca con Google

Choi, J., Mouillesseaux, K., Wang, Z., Fiji, H.D.G., Kinderman, S.S., Otto, G.W., Geisler, R., Kwon, O., and Chen, J.-N. (2011). Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development 138, 1173–1181. Cerca con Google

Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480. Cerca con Google

Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. (2011). The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772. Cerca con Google

Dai, X., She, P., Chi, F., Feng, Y., Liu, H., Jin, D., Zhao, Y., Guo, X., Jiang, D., Guan, K.L., et al. (2013). Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J. Biol. Chem. 288, 34041–34051. Cerca con Google

Dejana, E., Tournier-Lasserve, E., and Weinstein, B.M. (2009). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221. Cerca con Google

Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133. Cerca con Google

Dorsky, R.I., Sheldahl, L.C., and Moon, R.T. (2002). A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev. Biol. 241, 229–237. Cerca con Google

Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., et al. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46. Cerca con Google

Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183. Cerca con Google

Ernkvist, M., Luna Persson, N., Audebert, S., Lecine, P., Sinha, I., Liu, M., Schlueter, M., Horowitz, A., Aase, K., Weide, T., et al. (2009). The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 113, 244–253. Cerca con Google

Farrance, I.K.G., Mar, J.H., Ordahlo, P., and Francisco, S. (1992). CAT Binding Factor Is Related to the SV40 Enhancer Binding. J. Biol. Chem. 267, 17234–17240. Cerca con Google

Fearon, E.R. (2009). PARsing the phrase “all in for Axin”- Wnt pathway targets in cancer. Cancer Cell 16, 366–368. Cerca con Google

Field, H.A., Ober, E.A., Roeser, T., and Stainier, D.Y.R. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 279–290. Cerca con Google

Gao, T., Zhou, D., Yang, C., Singh, T., Penzo-Méndez, A., Maddipati, R., Tzatsos, A., Bardeesy, N., Avruch, J., and Stanger, B.Z. (2013). Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144, 1543–1553, 1553.e1. Cerca con Google

Garnaas, M.K., Moodie, K.L., Liu, M., Samant, G. V, Li, K., Marx, R., Baraban, J.M., Horowitz, A., and Ramchandran, R. (2008). Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ. Res. 103, 710–716. Cerca con Google

Gemberling, M., Bailey, T.J., Hyde, D.R. and Poss, K.D. (2014). The zebrafish as a model for complex tissue regeneration. Trends Genet. 29, 1–19. Cerca con Google

Genevet, A., Wehr, M.C., Brain, R., Thompson, B.J., and Tapon, N. (2010). Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell 18, 300–308. Cerca con Google

George, N.M., Day, C.E., Boerner, B.P., Johnson, R.L., and Sarvetnick, N.E. (2012). Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell. Biol. 32, 5116–5128. Cerca con Google

Von Gise, A., Lin, Z., Schlegelmilch, K., Honor, L.B., Pan, G.M., Buck, J.N., Ma, Q., Ishiwata, T., Zhou, B., Camargo, F.D., et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 109, 2394–2399. Cerca con Google

Goldsmith, J.R., and Jobin, C. (2012). Think small: zebrafish as a model system of human pathology. J. Biomed. Biotechnol. 2012, 817341. Cerca con Google

Gorelick, D.A., and Halpern, M.E. (2011). Visualization of estrogen receptor transcriptional activation in zebrafish. Endocrinology 152, 2690–2703. Cerca con Google

Grusche, F.A., Degoutin, J.L., Richardson, H.E., and Harvey, K.F. (2011). The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol. 350, 255–266. Cerca con Google

Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., et al. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36. Cerca con Google

Halder, G., Dupont, S., and Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600. Cerca con Google

Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R.L., and Martin, J.F. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461. Cerca con Google

Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J.T., Johnson, R.L., and Martin, J.F. (2013). Hippo signaling impedes adult heart regeneration. Development 140, 4683–4690. Cerca con Google

Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R. a, Shokat, K.M., and Stainier, D.Y.R. (2009). Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298. Cerca con Google

Hirate, Y., Hirahara, S., Inoue, K., Suzuki, A., Alarcon, V.B., Akimoto, K., Hirai, T., Hara, T., Adachi, M., Chida, K., et al. (2014). Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194. Cerca con Google

Hong, J.-H., Hwang, E.S., McManus, M.T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B.M., Sharp, P. a, et al. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078. Cerca con Google

Hossain, Z., Ali, S.M., Ko, H.L., Xu, J., Ng, C.P., Guo, K., Qi, Z., Ponniah, S., Hong, W., and Hunziker, W. (2007). Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc. Natl. Acad. Sci. U. S. A. 104, 1631–1636. Cerca con Google

Hsiao, S.J., and Smith, S. (2008). Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83–92. Cerca con Google

Hu, J., Sun, S., Jiang, Q., Sun, S., Wang, W., Gui, Y., and Song, H. (2013). Yes-associated protein (yap) is required for early embryonic development in zebrafish (danio rerio). Int. J. Biol. Sci. 9, 267–278. Cerca con Google

Huang, C., Lawson, N.D., Weinstein, B.M. and Johnson, S.L. (2013). reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev. Biol. 264, 263–274. Cerca con Google

Huang, S.-M.A., Mishina, Y.M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G.A., Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620. Cerca con Google

Hurlstone, A.F.L., Haramis, A.G., and Wienholds, E. (2003). The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 658, 633–637. Cerca con Google

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Kaini, P., Sander, J.D., Joung, J.K., Peterson, R.T., and Yeh, J.-R.J. (2013a). Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8, e68708. Cerca con Google

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.-R.J., and Joung, J.K. (2013b). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229. Cerca con Google

Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278–301. Cerca con Google

Jao, L.-E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U. S. A. 110, 13904–13909. Cerca con Google

Jensen, L.D., Rouhi, P., Cao, Z., Länne, T., Wahlberg, E., and Cao, Y. (2011). Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases. Birth Defects Res. Part C - Embryo Today Rev. 93, 182–193. Cerca con Google

Jiang, Q., Liu, D., Gong, Y., Wang, Y., Sun, S., Gui, Y., and Song, H. (2009). Yap Is Required for the Development of Brain, Eyes, and Neural Crest in Zebrafish. Biochem. Biophys. Res. Commun. 384, 114–119. Cerca con Google

Johnson, R., and Halder, G. (2014). The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13, 63–79. Cerca con Google

Karpowicz, P., Perez, J., and Perrimon, N. (2010). The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135–4145. Cerca con Google

Kaufman, C.K., White, R.M., and Zon, L. (2009). Chemical genetic screening in the zebrafish embryo. Nat. Protoc. 4, 1422–1432. Cerca con Google

Kawakami, A., Fukazawa, T., and Takeda, H. (2004a). Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev. Dyn. 231, 693–699. Cerca con Google

Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004b). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144. Cerca con Google

Khuchua, Z., Yue, Z., Batts, L., and Strauss, a W. (2006). A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function. Circ. Res. 99, 201–208. Cerca con Google

Kim, N.-G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U. S. A. 108, 11930–11935. Cerca con Google

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. Cerca con Google

Konsavage, W.M., and Yochum, G.S. (2013). Intersection of Hippo/YAP and Wnt/β-catenin signaling pathways. Acta Biochim. Biophys. Sin. 45, 71–79. Cerca con Google

Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., and Chien, C.-B. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099. Cerca con Google

Lai, D., Ho, K.C., Hao, Y., and Yang, X. (2011). Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 71, 2728–2738. Cerca con Google

Lambrechts, D., and Carmeliet, P. (2004). Genetics in zebrafish, mice, and humans to dissect congenital heart disease: insights in the role of VEGF. Curr. Top. Dev. Biol. 62, 189–224. Cerca con Google

Larkin, S.B., Farrance, I.K., and Ordahl, C.P. (1996). Flanking sequences modulate the cell specificity of M-CAT elements. Mol. Cell. Biol. 16, 3742–3755. Cerca con Google

Lawson, N.D., and Weinstein, B.M. (2002). Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3, 674–682. Cerca con Google

Lee, S.L.C., Rouhi, P., Dahl Jensen, L., Zhang, D., Ji, H., Hauptmann, G., Ingham, P., and Cao, Y. (2009). Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc. Natl. Acad. Sci. U. S. A. 106, 19485–19490. Cerca con Google

Lei, Q.-Y., Zhang, H., Zhao, B., Zha, Z.-Y., Bai, F., Pei, X.-H., Zhao, S., Xiong, Y., and Guan, K.-L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426–2436. Cerca con Google

Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.C., and Kain, S.R. (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975. Cerca con Google

Liao, D., and Johnson, R.S. (2007). Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 26, 281–290. Cerca con Google

Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367. Cerca con Google

Liu, S., and Leach, S.D. (2011). Zebrafish models for cancer. Annu. Rev. Pathol. 6, 71–93. Cerca con Google

Liu, C.-Y., Zha, Z.-Y., Zhou, X., Zhang, H., Huang, W., Zhao, D., Li, T., Chan, S.W., Lim, C.J., Hong, W., et al. (2010). The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J. Biol. Chem. 285, 37159–37169. Cerca con Google

Liu, C.-Y., Lv, X., Li, T., Xu, Y., Zhou, X., Zhao, S., Xiong, Y., Lei, Q.-Y., and Guan, K.-L. (2011). PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ. J. Biol. Chem. 286, 5558–5566. Cerca con Google

Lu, L., Li, Y., Kim, S.M., Bossuyt, W., Liu, P., Qiu, Q., Wang, Y., Halder, G., Finegold, M.J., Lee, J.-S., et al. (2010). Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl. Acad. Sci. U. S. A. 107, 1437–1442. Cerca con Google

Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., et al. (2014). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17. Cerca con Google

MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26. Cerca con Google

Mahoney, W.M., Hong, J.-H., Yaffe, M.B., and Farrance, I.K.G. (2005). The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem. J. 388, 217–225. Cerca con Google

Makita, R., Uchijima, Y., Nishiyama, K., Amano, T., Chen, Q., Takeuchi, T., Mitani, A., Nagase, T., Yatomi, Y., Aburatani, H., et al. (2008). Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am. J. Physiol. Renal Physiol. 294, F542–F553. Cerca con Google

Mateus, R., Brito, G., Valerio, F., Jacinto, A. (2013) Regulation of tissue growth during zebrafish caudal fin regeneration through the Hippo pathway. 8th European Zebrafish Meeting, Barcelona 9-13 July 2013. Book of abstracts. Cerca con Google

Mathew, L.K., Sengupta, S., Kawakami, A., Andreasen, E. a, Löhr, C. V, Loynes, C. a, Renshaw, S. a, Peterson, R.T., and Tanguay, R.L. (2007). Unraveling tissue regeneration pathways using chemical genetics. J. Biol. Chem. 282, 35202–35210. Cerca con Google

Miesfeld, J.B., and Link, B. a. (2014). Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway. Mech. Dev. 133, 177–188. Cerca con Google

Miyawaki, A. (2011). Proteins on the move: insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol. 12, 656–668. Cerca con Google

Moleirinho, S., Chang, N., Sims, A.H., Tilston-Lünel, A.M., Angus, L., Steele, A., Boswell, V., Barnett, S.C., Ormandy, C., Faratian, D., et al. (2013). KIBRA exhibits MST-independent functional regulation of the Hippo signaling pathway in mammals. Oncogene 32, 1821–1830. Cerca con Google

Molina, G.A., Watkins, S.C., and Tsang, M. (2007). Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol. 7, 62. Cerca con Google

Morin-Kensicki, E.M., Boone, B.N., Howell, M., Stonebraker, J.R., Teed, J., Alb, J.G., Magnuson, T.R., O’Neal, W., and Milgram, S.L. (2006). Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol. Cell. Biol. 26, 77–87. Cerca con Google

Moro, E., Ozhan-Kizil, G., Mongera, A., Beis, D., Wierzbicki, C., Young, R.M., Bournele, D., Domenichini, A., Valdivia, L.E., Lum, L., et al. (2012). In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366, 327–340. Cerca con Google

Moro, E., Vettori, A., Porazzi, P., Schiavone, M., Rampazzo, E., Casari, A., Ek, O., Facchinello, N., Astone, M., Zancan, I., et al. (2013). Generation and application of signaling pathway reporter lines in zebrafish. Mol. Genet. Genomics 288, 231–242. Cerca con Google

Müller-Taubenberger, A., and Anderson, K.I. (2007). Recent advances using green and red fluorescent protein variants. Appl. Microbiol. Biotechnol. 77, 1–12. Cerca con Google

Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90. Cerca con Google

Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410. Cerca con Google

Oka, T., Schmitt, a P., and Sudol, M. (2012). Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31, 128–134. Cerca con Google

Paramasivam, M., Sarkeshik, A., Yates, J.R., Fernandes, M.J.G., and McCollum, D. (2011). Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol. Biol. Cell 22, 3725–3733. Cerca con Google

Perrimon, N., Pitsouli, C., and Shilo, B.-Z. (2012). Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 4, a005975. Cerca con Google

Piccolo, S., Dupont, S., and Cordenonsi, M. (2014). The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiol. Rev. 94, 1287–1312. Cerca con Google

Praskova, M., Xia, F., and Avruch, J. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol. 18, 311–321. Cerca con Google

Ramos, and Camargo (2012). The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 22, 339–346. Cerca con Google

Del Re, D.P., Yang, Y., Nakano, N., Cho, J., Zhai, P., Yamamoto, T., Zhang, N., Yabuta, N., Nojima, H., Pan, D., et al. (2013). Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J. Biol. Chem. 288, 3977–3988. Cerca con Google

Reginensi, A., Scott, R.P., Gregorieff, A., Bagherie-Lachidan, M., Chung, C., Lim, D.-S., Pawson, T., Wrana, J., and McNeill, H. (2013). Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380. Cerca con Google

Ren, F., Wang, B., Yue, T., Yun, E.-Y., Ip, Y.T., and Jiang, J. (2010). Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl. Acad. Sci. U. S. A. 107, 21064–21069. Cerca con Google

Rojas-Muñoz, A., Rajadhyksha, S., Gilmour, D., van Bebber, F., Antos, C., Rodríguez Esteban, C., Nüsslein-Volhard, C., and Izpisúa Belmonte, J.C. (2009). ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev. Biol. 327, 177–190. Cerca con Google

Roman, B.L., and Weinstein, B.M. (2000). Building the vertebrate vasculature: research is going swimmingly. Bioessays 22, 882–893. Cerca con Google

Rouhi, P., Lee, S.L.C., Cao, Z., Hedlund, E.-M., Jensen, L.D., and Cao, Y. (2010). Pathological angiogenesis facilitates tumor cell dissemination and metastasis. Cell Cycle 9, 913–917. Cerca con Google

Santoro, M.M. (2014). Antiangiogenic cancer drug using the zebrafish model. Arterioscler. Thromb. Vasc. Biol. 34, 1846–1853. Cerca con Google

Sawada, A., Kiyonari, H., Ukita, K., Nishioka, N., Imuta, Y., and Sasaki, H. (2008). Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol. Cell. Biol. 28, 3177–3189. Cerca con Google

Schiavone, M., Rampazzo, E., Casari, A., Battilana, G., Persano, L., Moro, E., Liu, S., Leach, S.D., Tiso, N., and Argenton, F. (2014). Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis. Model. Mech. 7, 883–894. Cerca con Google

Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. (2011). Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795. Cerca con Google

Schwend, T., Loucks, E.J., and Ahlgren, S.C. (2010). Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish. PLoS One 5, e14396. Cerca con Google

Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408. Cerca con Google

Shaner, N.C., Steinbach, P. a, and Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909. Cerca con Google

Shaner, N.C., Patterson, G.H., and Davidson, M.W. (2007). Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260. Cerca con Google

Shaw, R.L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B.A., and Tapon, N. (2010). The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147–4158. Cerca con Google

Shimizu, N., Kawakami, K., and Ishitani, T. (2012). Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev. Biol. 370, 71–85. Cerca con Google

Song, H., Mak, K.K., Topol, L., Yun, K., Hu, J., Garrett, L., Chen, Y., Park, O., Chang, J., Simpson, R.M., et al. (2010). Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl. Acad. Sci. U. S. A. 107, 1431–1436. Cerca con Google

Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., Manfrin, A., Ingallina, E., Sommaggio, R., Piazza, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366. Cerca con Google

Staley, B.K., and Irvine, K.D. (2010). Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol. 20, 1580–1587. Cerca con Google

Stewart, D.N., Lango, J., Nambiar, K.P., Falso, M.J.S., FitzGerald, P.G., Rocke, D.M., Hammock, B.D., and Buchholz, B. a (2013). Carbon turnover in the water-soluble protein of the adult human lens. Mol. Vis. 19, 463–475. Cerca con Google

Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J., Hubbert, C., Major, M.B., Fausto, N., and Moon, R.T. (2007). Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489. Cerca con Google

Stork, P.J.S., and Schmitt, J.M. (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258–266. Cerca con Google

Thisse, C., Thisse, B., Schilling, T.F., and Postlethwait, J.H. (1993). Structure of the zebrafish snail1 gene and its expression in wild-type , spadetail and no tail mutant embryos. Development 119, 1203–1215. Cerca con Google

Tu, S., and Johnson, S.L. (2011). Fate restriction in the growing and regenerating zebrafish fin. Dev. Cell 20, 725–732. Cerca con Google

Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen, B.G., Rossant, J., and Wrana, J.L. (2010a). The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19, 831–844. Cerca con Google

Varelas, X., Miller, B.W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F. a, Sakuma, R., Pawson, T., Hunziker, W., McNeill, H., et al. (2010b). The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579–591. Cerca con Google

Vincent, L. (2002). Cerivastatin, an Inhibitor of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase, Inhibits Endothelial Cell Proliferation Induced by Angiogenic Factors In Vitro and Angiogenesis in In Vivo Models. Arterioscler. Thromb. Vasc. Biol. 22, 623–629. Cerca con Google

Vincent, L., Chen, W., Hong, L., Mirshahi, F., Mishal, Z., Mirshahi-khorassani, T., Vannier, J., Soria, J., and Soria, C. (2001). Inhibition of endothelial cell migration by cerivastatin , an HMG-CoA reductase inhibitor : contribution to its anti-angiogenic e ¡ ect. 495, 159–166. Cerca con Google

Walker, S.L., Ariga, J., Mathias, J.R., Coothankandaswamy, V., Xie, X., Distel, M., Köster, R.W., Parsons, M.J., Bhalla, K.N., Saxena, M.T., et al. (2012). Automated reporter quantification in vivo: High-throughput screening method for reporter-based assays in zebrafish. PLoS One 7. Cerca con Google

Wang, P., Bai, Y., Song, B., Wang, Y., Liu, D., Lai, Y., Bi, X., and Yuan, Z. (2011a). PP1A-mediated dephosphorylation positively regulates YAP2 activity. PLoS One 6, e24288. Cerca con Google

Wang, W., Huang, J., and Chen, J. (2011b). Angiomotin-like proteins associate with and negatively regulate YAP1. J. Biol. Chem. 286, 4364–4370. Cerca con Google

Weger, B.D., Weger, M., Nusser, M., Brenner-Weiss, G., and Dickmeis, T. (2012). A chemical screening system for glucocorticoid stress hormone signaling in an intact vertebrate. ACS Chem. Biol. 7, 1178–1183. Cerca con Google

Wehner, D., Cizelsky, W., Vasudevaro, M.D., Ozhan, G., Haase, C., Kagermeier-Schenk, B., Röder, A., Dorsky, R.I., Moro, E., Argenton, F., et al. (2014). Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep. 6, 467–481. Cerca con Google

Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene. Cerca con Google

Wu, C., Agrawal, S., Vasanji, A., Drazba, J., Sarkaria, S., Xie, J., Welch, C.M., Liu, M., Anand-Apte, B., and Horowitz, A. (2011). Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J. Biol. Chem. 286, 23511–23520. Cerca con Google

Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456. Cerca con Google

Xiao, L., Chen, Y., Ji, M., and Dong, J. (2011). KIBRA regulates Hippo signaling activity via interactions with large tumor suppressor kinases. J. Biol. Chem. 286, 7788–7796. Cerca con Google

Xin, M., Kim, Y., Sutherland, L.B., Murakami, M., Qi, X., McAnally, J., Porrello, E.R., Mahmoud, A.I., Tan, W., Shelton, J.M., et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl. Acad. Sci. U. S. A. 110, 13839–13844. Cerca con Google

Yan, L., Cai, Q., and Xu, Y. (2014). Hypoxic conditions differentially regulate TAZ and YAP in cancer cells. Arch. Biochem. Biophys. 562, 31–36. Cerca con Google

Yi, C., Troutman, S., Fera, D., Stemmer-Rachamimov, A., Avila, J.L., Christian, N., Persson, N.L., Shimono, A., Speicher, D.W., Marmorstein, R., et al. (2011). A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 19, 527–540. Cerca con Google

Yi, C., Shen, Z., Stemmer-Rachamimov, A., Dawany, N., Troutman, S., Showe, L.C., Liu, Q., Shimono, A., Sudol, M., Holmgren, L., et al. (2013). The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci. Signal. 6, ra77. Cerca con Google

Yin, F., Yu, J., Zheng, Y., Chen, Q., Zhang, N., and Pan, D. (2013). Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342–1355. Cerca con Google

Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W.-M., and Pan, D. (2010). Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell 18, 288–299. Cerca con Google

Zhang, H., Pasolli, H.A., and Fuchs, E. (2011). Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl. Acad. Sci. U. S. A. 108, 2270–2275. Cerca con Google

Zhang, N., Bai, H., David, K.K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R.A., and Pan, D. (2010). The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38. Cerca con Google

Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761. Cerca con Google

Zhao, B., Li, L., Lei, Q., and Guan, K.-L. (2010a). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862–874. Cerca con Google

Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y., and Guan, K.-L. (2010b). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24, 72–85. Cerca con Google

Zhao, B., Li, L., Lu, Q., Wang, L.H., Liu, C.Y., Lei, Q., and Guan, K.L. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25, 51–63. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record