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Abstract

The constantly increasing number of power generation devices based on renewables calls for a

transition from the centralized control of electrical distribution grids to a distributed control

scenario. In this context, distributed generators are exploited to achieve other objectives

beyond supporting loads, such as the minimization of the power losses along the distribution

lines, the sustainability of the electrical network when operated in islanded-mode (i.e., when

the the energy flow from the main energy supplier is not available) and the power peaks

shaving.

In order to fulfill the aforementioned goals, optimized techniques aimed at managing the

electrical behavior of the distributed generators (i.e., the amount of active and reactive power

injected into the grid by the distributed generators at any given time), are needed. These

techniques, in order to dispatch information regarding the actual state of the network agents,

rely on smart metering devices (measuring instantaneous electrical quantities as, for example,

active and reactive power, loads impedance and loads voltage) and on a communication

infrastructure (i.e., Powerline Communication - PLC) interconnecting the smart-grid agents

and allowing for the exchange of the measured quantities. Moreover, suitable communication

protocols, supporting the transmission channel access and data routing, are needed.

In this doctoral thesis, firstly, a full-fledged system that extends existing state-of-the-art

algorithms for the distributed minimization of power losses in smart micro grids is presented.

There, practical aspects such as the design of a communication and coordination protocol

that is resilient to link failures and manages channel access, message delivery and distributed

generator coordination is taken into account. Design rules for the networking strategies

that best fit the selected optimization approaches are provided. Finally, in the presence of

lossy communication links, the impact of communication and electrical grid features is as-
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ii Abstract

sessed. Specifically, communication failures, scheduling order for the distributed control, line

impedance estimation error, network size and number of distributed generators are considered

as major issues.

Next, it will be shown that the convergence rate of the optimization algorithms, imple-

mented in the aforementioned system, can be improved by suitably scheduling the order in

which the smart-grid agents are activated. For stability purposes, a token ring approach is

often implemented for the control, where at any given time a single node with communication

and control capabilities (referred to as smart node) has the token and is the only node in charge

of implementing the control action entailed by the algorithms (i.e., power injection). It will

be shown that the token ring approach does not always ensure the fastest convergence rate.

In order to improve the convergence rate of the selected optimization techniques, optimal-

ity criteria are defined and a lightweight, distributed and heuristic (suboptimal) scheduling

algorithm is designed.

Another important aspect considered in this thesis, is the one concerning the power de-

mand peak shaving. Algorithms that exploit the distributed energy sources and rely on

the smart-grid communication infrastructure in order to level out the peaks in the electrical

power demand, can greatly reduce the workload of the main energy supplier, thus prevent-

ing unexpected hardware failures and blackouts. The importance of leveling out the power

demand peaks is even greater when dealing with smart-grids operating in islanded mode,

since avoiding power demand peaks can substantially improve the self-sustainability of the

electrical grid. To this end, a lightweight and effective approach for the management of pro-

sumer communities through the synergistic control of the power electronic converters acting

therein is designed. An islanded operating mode is considered, and the control strategy aims

at leveling peaks in the use of energy drained from or injected into the connection point with

the main power supplier.

All the aforementioned techniques rely on the use of distributed generators (whose energy

comes from renewable sources) to contribute to the overall grid electrical efficiency. In a real-

world setting, such control actions will however depend on market models and on the revenue

(monetary income) that the final users will accrue through energy trading with other users

and with the smart grid operator. For this reason, an optimized market model accounting for

electrical efficiency constraints, along with the demand-offer rule, is designed. Novel market
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rules designed to provide economical benefits to all the smart grid players (i.e., the users and

the grid operator), while also driving the power grid toward a satisfactory solution in terms of

electrical performance are designed. To the best of the author’s knowledge, a general frame-

work for the study of the interaction between power grid optimization algorithms (electrical

performance) and energy pricing and trading strategies (revenue) is not yet available in the

related scientific literature.





Sommario

In questi anni, si sta verificando una costante diffusione di dispositivi atti alla produzione di

energia elettrica basati su fonti energetiche naturali e rinnovabili. Questo fenomeno, a sua

volta, sta portando a una decentralizzazione del controllo delle reti di distribuzione elettrica.

I generatori di energia elettrica basati su fonti rinnovabili, chiamati nel seguito generatori

distribuiti, oltre che per l’alimentazione dei carichi elettrici delle sedi in cui sono installati,

possono altres̀ı essere utilizzati per numerosi altri scopi, come, ad esempio: la minimizzazione

della potenza dissipata lungo le linee di trasmissione elettrica; il pantenimento delle condizioni

operative della rete anche qualora il principale fornitore di energia venisse disconnesso e,

infine, il livellamento dei picchi di domanda di potenza elettrica.

Al fine di supportare queste funzionalità addizionali, è necessario che vengano imple-

mentate politiche efficienti di controllo del comportamento dei generatori distribuiti. Tali

politiche dovranno permettere a ciascun generatore distribuito di conoscere, in ogni momen-

to, gli esatti riferimenti di potenza attiva e reattiva che debbono essere iniettati nella rete

elettrica. Affinché le suddette tecniche possano essere implementate, è necessaria l’esistenza

di un’infrastruttura di comunicazione che permetta agli elementi attivi della rete elettrica di

scambiare informazioni.

In questa tesi, verranno considererati aspetti pratici, fondamentali al corretto funziona-

mento di una rete elettrica intelligente quali, ad esempio la progettazione di protocolli di

comunicazione e di controllo robusti rispetto agli errori di comunicazione e in grado di ga-

rantire la corretta sincronizzazione dei generatori distribuiti nell’applicazione della politica di

controllo selezionata. Verranno inoltre studiate tecniche in grado di incrementare la velocità

di convergenza di alcuni algoritmi atti alla minimizzazione della potenza dissipata nella fase

di distribuzione. Verrà, a questo proposito, presentato un algoritmo euristico e distribuito
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in grado di uncremente la velocità di convergenza delle tecniche selzionate senza, tuttavia,

influire in misura degna di nota sul numero di messaggi che è necessario scambiare per la

corretta esecuzione delle suddette tecniche.

Un secondo aspetto di considerevole importanza considerato in questa tesi, è il livellamen-

to dei picchi nella potenza totale richiesta dai carichi presenti nella rete. A tal proposito verrà

presentato un algoritmo distribuito in grado di livellare con successo i picchi di domanda sia

nel caso la rete elettrica sia connessa al fornitore ufficiale di energia sia nel caso contrario.

Infine, basandosi sulla considerazione che, affinché i generatori distribuiti collaborino

all’efficienza energetica della rete elettrica, è necessario questi ultimi ottengano un ritor-

no economico derivante dal loro comportamento virtuoso, verrà definito un nuovo modello

di mercato energetico. Tale modello permetterà la compravendita diretta di energia (non ci

sarà quindi più bisogno che il fornitore ufficiale agisca da intermediario) e, allo stesso tempo,

consentirà ad un’entità regolatrice di indirizzare il mercato verso configurazioni energetiche

efficienti.
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1
Introduction

The term Smart Grid refers to the integration of the traditional power distribution network

with communication and information technologies and the constantly increasing number of

distributed energy production plants based on renewables [1]. The grid resulting from this

integration allows for the implementation of autonomous control and actuation systems.

Among the many opportunities offered by the emerging Smart Grids, in this work we

focus on three main topics:

• distribution power loss minimization;

• peak shaving;

• new energy market models accounting for the concurrent maximization of the power

grid efficiency (e.g., using the techniques of the previous two points).

In particular, the distribution power loss minimization allows the boosting of the grid electri-

cal efficiency. Effective power loss minimization techniques have been proposed in previous

work [2–7] and have been shown to effectively reduce the main energy supplier workload,

allowing to serve more users with a higher electrical power quality. In this doctoral thesis,

we explore the performance of state-of-the-art control schemes for the power loss minimiza-

tion in residential micro grids [5–7] providing design rules for the networking strategies that

best fit the selected optimization approaches. In the presence of lossy communication links

the impact of communication and electrical grid features is assessed. Specifically, as major

issues we consider communication failures, scheduling order for the distributed control, line

impedance estimation error, network size and number of DGs. The performance of control
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2 Chapter 1

algorithms is evaluated in terms of power loss reduction, reduction of aggregate power de-

mand, convergence rate, resilience to impairments and injected current from DGs. Once the

impact of communication impairments on the selected power loss minimization techniques

has been assessed, the effect of the control actions scheduling is taken into account. To this

respect, we investigate the impact of the control action scheduling on the convergence rate of

selected optimization techniques, defining optimality criteria, devising lightweight subopti-

mal rules and assessing the performance of the optimal and suboptimal but online techniques.

The performance of the selected techniques has been assessed by extensive simulation cam-

paigns using topologies generated through a statistical approach [8] and real-world energy

photovoltaic production [9] and power demand profiles.

Peak shaving strategies aim at leveling peaks in the use of the energy drained from or

injected into the main power supplier. In this thesis, we investigate and evaluate a lightweight

and effective approach for the management of prosumer communities. The management

process is made possible by the presence of controllable elements cooperating through a

common communication infrastructure. These controllable elements are the utility interface,

installed at the point of common coupling with the electrical utility, and the energy gateways,

interfacing distributed generation units and energy storage devices with the distribution grid.

The user interface acts as the control master for the microgrid, that collects information on

generators and loads activity and dispatches a control parameter that regulates both energy

storage devices and generators. The proposed control strategy is tested on a residential

microgrid model, 100 kVA rated, which has been developed and utilized to analyze selected

performance metrics. As for the previous case, real-world energy photovoltaic production

and power demand profiles have been used.

Both power loss minimization and peak shaving rely on the collaboration of the distributed

energy production plants to drive the power grid toward a stable and electrically efficient

operating regime. In real-world scenarios, this collaboration is mainly driven by economical

benefits. For this reason, an optimized market model accounting for electrical efficiency

constraints, is designed. Novel market rules conceived to provide economical benefits to all

the smart grid players (i.e., the end-users and the grid operator), while also driving the power

grid toward a satisfactory solution in terms of electrical performance are designed. To the best

of our knowledge, a general framework for the study of the interaction between power grid
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optimization algorithms (electrical performance) and energy pricing and trading strategies

(economical benefit) is not yet available in the related scientific literature. This framework

is then validated, accounting for the salient characteristics of power grids, i.e., electrical

optimization, communication infrastructure and a dynamic and distributed energy market.

The developed market model is finally optimized by means of multi-objective optimization

tools that allows to find the set of all the optimal energy trading policies.

The rest of this work is structured as follows.

Chapter 2: In this chapter, the impact of communication impairments on the performance

of four selected distributed power loss minimization techniques is assessed.

Chapter 3: In this chapter, the impact of the control action scheduling on two selected

power loss minimization techniques is assessed. Moreover, a heuristic scheduling opti-

mization technique is presented and evaluated.

Chapter 4: In this chapter, a new peak shaving procedure leveling peaks in the use of

energy drained from or injected into the main power supplier is presented.

Chapter 5: In this chapter, a new energy market model, jointly accounting for distributed

power generation and electrical efficiency enforcement is presented. A multi-objective

optimization problem yielding the optimal energy trading policies is defined and its

solution is discussed.

Chapter 6: In this chapter, we draw our conclusions.





2
Networking for Power Loss Minimization in Smart Micro Grids:

Design Rules and Performance Assessment

2.1 Introduction

The traditional centralized power distribution grid is nowadays facing two important trends:

the constantly increasing power demand and the worldwide diffusion of electrical power gen-

eration devices based on renewables [1]. While the former calls for radical changes in the

way the energy is generated and delivered to the final users, we note that electrical power

generation is still mostly based on biofuels, fossil fuels and nuclear plants [10]. Currently,

distributed generation devices are used either to sell power to the energy provider or to fulfill

the owner’s power demand, without interactions with the distribution grid, other users, or

the utility provider. However, a more flexible use of the distributed generator (DG) devices

is expected both to boost the grid efficiency [11–14] in terms of power distribution, reac-

tive power compensation and frequency stability, and to relieve electricity production plants

from some of the power load [15]. This however requires the addition of communication and

smart metering capabilities to the power grid. In the last few years, several grid optimiza-

tion techniques have been proposed [16–18], each exploiting some existing communication

infrastructure and relying on online smart metering procedures [19].

In this chapter, we target residential micro grids where some of the end users behave as

DGs, due to the exploitation of some form of renewable energy such as solar, wind, biomass,

geothermal, etc. Instead of injecting all excess power into the grid, after local load satisfac-

tion, the end users control their energy injection into the electricity grid in order to reduce

the distribution power losses and the total power demand to the mains. Our objective is

5



6 Chapter 2

twofold: a) providing an insight into the impact of communications on control strategies, and

b) assessing relevant performance metrics of control algorithms over a set of comprehensive

and realistic network topologies. For the first objective, we focus on the communication in-

frastructure, devising suitable communication protocols and assessing the impact of routing

of control messages and communication failures on the performance of selected algorithms

(discussed shortly) for the distributed control of the DGs. As a reasonable starting point for

an initial design of distributed control schemes, previous research has taken the communi-

cation infrastructure for granted [2], assuming fully connected communication networks and

perfect (and real time) estimation of salient grid parameters. However, practical networks

are subject to communication link failures, and grid features (e.g., line lengths or network

topology) must be estimated through dedicated algorithms that rely on communication pro-

tocols. These algorithms are explicitly designed and evaluated in this chapter. For the second

objective, we devise an accurate co-simulation (electricity grid, communication and control)

framework that allows the assessment of relevant performance metrics in the presence of

realistic network topologies and time varying power demand and energy inflow from solar

sources. Our models are statistically generated so as to faithfully mimic the characteristics

of real-world networks. This allows the evaluation of the performance metrics of interest over

a large number of network realizations, as opposed to what is currently done in the Smart

Grid literature, where a single network setup is often considered [3]. Our methodology makes

it possible to control all network parameters, such as the number of nodes, the communica-

tion and electrical topologies, the impedance of network lines, the number of DGs and their

renewable energy availability. Thus, we obtain accurate and statistically relevant results,

characterizing the selected control algorithms in terms of convergence rate, resilience to com-

munication failures, impact of the number of nodes with DG capabilities and of electrical

parameters (such as line impedances).

Control techniques for DGs have been initially studied through centralized approaches [4].

Subsequently, concerns on the required computational power and on the required information

about the grid status [20] have led to the study of distributed optimization techniques [5–7].

These distributed approaches still require some network knowledge, e.g., its topology to build

clusters of generators and loads (to be used in the distributed control of the DGs), or its line

impedances (to estimate power losses). Here, we consider four state-of-the-art distributed
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optimization techniques, namely a) local control (LC) [5], b) current based surround con-

trol (CBSC) [6], c) voltage based surround control (VBSC) [6], and d) distributed optimal

reactive power flow control (DORPF) [7]. For a powerline communication (PLC) communi-

cation infrastructure [21–23], we focus on its most critical issues for the selected optimization

approaches, i.e., the communication requirements for clustering, practical communication

protocols for the exchange of control signals, and the robustness of the communication and

control solutions to link failures.

Hence, we present a thorough comparison of the four selected algorithms in terms of

power loss reduction, reduction of the aggregate power demand to the distribution network,

convergence rate and resilience to communication link failures. In order to obtain statistically

relevant results, we use the smart grid topology generator proposed in [24] (see also [25]),

which is based on the small world model of [8]. Hence, by spanning a wide range of networks

we provide more extensive (and general) results with respect to those in the existing literature,

which are obtained for example networks and, in turn, can not be easily extended to more

general cases.

To summarize, the main contributions of this chapter are:

• a communication and coordination protocol designed to operate on residential smart

grids in the presence of nodes with communication and metering capabilities. This

protocol ensures that the channel access is contention free, the shortest path is chosen

in multi-hop communication scenarios and only one node performs a control action at

any given time;

• a new design of clustering for CBSC [6] able to further reduce the distribution power

losses with respect to those obtained by the original protocol;

• a comparative study of the performance, in terms of distribution power loss reduction

and convergence rate, of four selected control techniques for micro-grids [5–7], which

are recent and promising distributed techniques for power loss minimization;

• a comparative study of the performance, in terms of resilience to link failures, conver-

gence time, and impact of line impedance of the four selected control techniques over a

relevant number of network topologies;
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• a detailed assessment of the impact of realistic power demand and distributed generation

from solar sources.

Our results reveal that the convergence and stability performance of the selected algo-

rithms vary greatly. Typical network configurations provide convergence of the optimization

algorithms within five to ten communication steps. When just 30% of the nodes are DGs,

the aggregate power demand is roughly halved. Also, some of the considered approaches

are quite robust against link failures as they still provide gains with respect to the localized

solutions for failure rates as high as 50%.

The rest of this chapter is structured as follows. In Section 2.2 we introduce the electrical

grid model (see Section 2.2.1) and we subsequently describe (see Sections 2.2.2, 2.2.5) the

four distributed optimization techniques that we analyze in this work.

In Section 2.3 we discuss an original clustering technique to further enhance the perfor-

mance of the selected schemes. In Section 2.4 we present the communication infrastructure,

discussing the communication requirements of the distributed control algorithms and present

a novel resilient token ring protocol, specifically designed for tree networks. In Section 2.5

we detail the simulation setup and we also describe the procedure used to generate the test

networks for the simulations. In Section 2.6 we present and discuss the numerical results.

Finally, in Section 2.7 we draw our final considerations.

2.2 Background

In this section, we specify the electrical model used to characterize the micro grid. In addi-

tion, four different distribution losses minimization techniques are reviewed. Note that the

complexity of the algorithms is minimal, also considering the fact that they must be operated

on rather relaxed time-scales with respect to the typical processing and communication speed

provided by state-of-the-art controllers.

2.2.1 Grid Model

TokenRing,SurroundControl,dyngridmap,DORPF,DORPFConvergence

We consider a power micro grid modeled as a directed tree. The root of the tree repre-

sents the point of common coupling (PCC) and the other nodes represent loads, distributed
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Figure 2.1. Power micro grid example.

Lengths [m]

B0 B1 B2 B3 B4 B5 B6 B7 B8

100 23 45 26 35 67 32 12 66

Table 2.1. Branch Lengths of Fig. 2.1 in meters

generators (DGs) and connection points. Loads are represented either by constant complex

impedances or by constant current sources, the PCC is modeled as a voltage generator setting

the voltage reference for the entire grid, while DGs are modeled as current generators. This

model has been widely considered in the literature, and in particular for power loss mini-

mization algorithms [6,7,26–28]. Considering both constant-impedance and constant-current

loads allows a large flexibility in the model.

Fig. 2.1 shows an example of a power grid. Node i is denoted by label Ni, load z and

DG m are denoted respectively by Lz and Gm, and the impedance of branch j is denoted

by Bj . Moreover, we assume that all the branches have constant impedance per unit length

[6, 7]. Note that each DG has an associated load. This models, for example, a house (i.e.,

an aggregated load fed by photovoltaic panels on the rooftop). DGs, besides feeding the

respective associated loads, are operated in order to reduce the power distribution losses

through suitable control algorithms. From Fig. 2.1 we see that two main portions of the grid

can be identified: one connecting nodes PCC, N0, . . . ,N3 (see right hand side of Fig. 2.1) and

the other one connecting nodes N4, . . . ,N8 (left hand side). These two portions are electrically

independent and hence the DGs can be controlled separately. Generalizing this concept, if

a power grid has n ∈ N branches exiting from the PCC node, then the corresponding n
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sub-grids can be controlled in parallel. Note that Fig. 2.1 is only an example network, while

the results presented in this chapter are obtained for a broad range of randomly generated

networks according to suitable statistics, as described in Section 2.5.

The control algorithms considered in this chapter require a communication network among

the controlled nodes, which is here assumed to be a powerline communication (PLC) infras-

tructure [23]. Nodes equipped with PLC transceivers are referred to as smart nodes (SNs)

and suitable communication protocols are assumed to allow the communication between any

pair of SNs, possibly by appropriate routing of messages through intermediate SNs, as we

detail shortly. We assume that SNs are also capable of measuring instantaneous electrical

quantities (i.e., voltage, current and power) absorbed (by the loads) or injected (by DGs).

2.2.2 Local Control

With the local control (LC) technique [5,29], each DG provides the reactive power absorbed

by its associated load. Assuming that only the reactive component injected by the inverter

is controllable by the optimization process [5, 29], LC only uses local information available

at the inverter, namely the active and reactive powers absorbed by the load connected to

the same node. As an extension of LC, we consider the case where both the active and the

reactive power generated by the DG are the powers absorbed by its associated load and we

denote this control technique as extended LC (ELC).

2.2.3 Current Based Surround Control

According to the current based surround control (CBSC) [6], the grid is divided into clusters.

Each cluster is composed of a pair of DGs (GA and GB) such that the path connecting the

DGs only contains loads. Considering a single cluster, let IGAGB
be the current injected by

node GA towards GB and, conversely, refer to IGBGA
as the current from GB to GA. The aim

of CBSC is to find, for each cluster, the optimal currents IGAGB
and IGBGA

, as we describe

next. According to [6], fixing the initial DG, termed GA, we find all the possible generators,

termed Gh, that form a cluster with it, i.e., the portion of network between GA and Gh

only contains loads. N (GA) is the set of indices of all generators Gh (including the PCC)

found through this procedure. Hence, the optimal current injected by GA that minimizes the
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distribution losses is found as:

ICBSC
GA

=
∑

h∈N (GA)

IoptGAGh
, (2.1)

where:

IoptGAGh
=

1

RGA,Gh

∑
i∈L(GA,Gh)

IiRGh,Li (2.2)

and:

• RGA,Gh
is the real part of the impedance ZGA,Gh

of the lines connecting DGs GA and

Gh;

• RGh,Li is the real part of the (total) impedance ZGh,Li of the lines connecting DG Gh

and load Li;

• L(GA,Gh) is the set of indices of the loads in cluster (GA,Gh);

• Ii, i ∈ L(GA,Gh) is the current absorbed by load Li.

A variant of CBSC provides that only the reactive current injected by the DGs is con-

trolled in order to reduce distribution losses, while the active current is regulated by other

mechanisms, e.g., business contracts, or fully injected into the grid. In this case, the current

injected by DG GA is 0 + jIm(ICBSC
GA

).

In order to operate CBSC, GA first builds a list of the clusters it belongs to. This list con-

tains the set N (GA) and, ∀h ∈ N (GA), the set L(GA,Gh). Moreover, ∀h ∈ N (GA) and

∀ i ∈ L(GA,Gh), GA estimates the resistances RGhLi and RGA,Gh
. Once the list of clusters

has been set up, Algorithm 1 shows the actions taken by GA in order to estimate and inject

ICBSC
GA

. Firstly GA creates and sends to Gh a special packet denoted as DataGathering-

Packet (see line 2). This packet is routed to its destination by the loads whose indices are in

L(GA,Gh). Once Gh receives the DataGatheringPacket, it sends back an acknowledgment

which, according to line 3, is stored in the Ack variable. Each load involved in the routing

process adds to the acknowledgment its own index and actual current demand. Function

UpdateCluster(Ack) called in line 4 builds the vector CurrentDemand containing the current

demands stored in the Ack variable. The elements of CurrentDemand are indexed using the

indices of L(GA,Gh), as shown in line 7. Once the optimum current has been computed, GA

injects ICBSC as dictated by the function InjectCurrent in line 12.
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Algorithm 1 CBSC Pseudocode

Require: List of clusters

1: for all h ∈ N (GA) do

2: SendDataGatheringPacket(h)

3: Ack ← WaitForGatheringAck()

4: CurrentDemand ← UpdateCluster(Ack)

5: I ← 0

6: for all i ∈ L(GA,Gh) do

7: Ii ← CurrentDemand[i]

8: I ← I + 1
RGA,Gh

IiRGh,Li

9: end for

10: ICBSC ← ICBSC + I

11: end for

12: InjectCurrent(ICBSC)

Since the voltage reference imposed by the PCC stabilizes the grid, the current injected

by the DGs does not influence the loads’ total current demand. Hence CBSC requires that

each DG runs Algorithm 1 only once in order to drive the grid’s state towards the minimum

distribution loss.

2.2.4 Voltage Based Surround Control

The voltage based surround control (VBSC) algorithm [6] aims at reducing the communica-

tion requirements with respect to CBSC. VBSC is based on the observation that losses are

minimized when all DG voltages are as close as possible to the PCC voltage. Let UGi be the

voltage of DG Gi and let GA be the generator performing the control action, then the voltage

that GA should reach is:

UoptGA
=

∑
h∈N (GA)

RGA,Gh

|ZGA,Gh
|2UGh∑

h∈N (GA)

RGA,Gh

|ZGA,Gh
|2

. (2.3)

Given (2.3), the variation of the current injected by GA is:

∆IGA
=
UoptGA

− U0
GA

ZeqGA

, (2.4)
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Algorithm 2 VBSC Pseudocode

Require: List of neighbors N (GA)

Require: Impedance ZGA,Gh
∀h ∈ N (GA)

1: IVBSC ← current required by GA’s load

2: U0
GA
← GetMyVoltage()

3: Unum ← 0

4: Uden ← 0

5: for all h ∈ N (GA) do

6: SendVoltageGatheringPacket(h)

7: Ack ← WaitForGatheringAck()

8: UGh
← UpdateNeighborVoltage(Ack)

9: Unum ← Unum +
real(ZGA,Gh

)

abs(ZGA,Gh
)2UGh

10: Uden ← Uden +
real(ZGA,Gh

)

abs(ZGA,Gh
)2

11: end for

12: ZeqGA
← MeasureEquivalentImpedance()

13: UoptGA
← Unum

Uden

14: IVBSC ← IVBSC +
UoptGA

− U0
GA

ZeqGA

15: InjectCurrent(IVBSC)

where U0
GA

is the actual voltage of GA and ZeqGA
is the Thevenin impedance of the whole grid

as seen by GA. As for CBSC, if the active power is regulated by mechanisms other than

power loss minimization, only the reactive current can be injected (see [6]). In this case, the

variation of the current injected by GA will be 0 + jIm(∆IGA
).

Note that the update of the current according to (Eq. 2.4) changes the voltages of all

the other nodes, including the value of UGh
, ∀h ∈ N (GA). Therefore, the optimum voltage

is obtained through multiple control actions that gradually drive towards zero the absolute

voltage difference between the DGs and the PCC. In order to operate VBSC, GA must know

the indices of the neighboring DGs (N (GA)) and the impedance of the path connecting

GA and Gh, ∀h ∈ N (GA). Algorithm 2 shows the procedure that GA executes every time

it performs the control action. According to line 2, GA firstly stores its voltage, then for

each DG whose index is in N (GA) it sends a VoltageGatheringPacket (see line 6). Once
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Gh receives the VoltageGatheringPacket, it measures its istantaneous voltage and sends it

back to GA as an acknowledgment. Once the acknowledgment is received and the neighbor’s

voltage has been updated (see lines 7 and 8), GA computes the numerator and denominator

of (Eq. 2.3) corresponding to neighbor Gh. Once this operation has been performed for all

neighboring DGs, the equivalent Thevenin impedance seen by GA (see line 12) is measured

and the current step is computed (see lines 13 and 14).

2.2.5 Distributed Optimal Reactive Power Flow Control

The distributed optimal reactive power flow control (DORPF) algorithm, proposed in [7],

assumes that only the reactive power is controlled for distributed loss minimization. DORPF

groups the DGs into (possibly overlapping) clusters and, for each cluster, a portion of the

full optimization problem is solved using an approximate representation of the grid. DORPF

is based on a distributed linearization of the optimal reactive power flow problem which is

not reported here for the sake of conciseness (see [7]). The most effective clustering strategy

appears to be that of [6], used also for CBSC.

2.3 Clustering

As discussed in the previous sections, the ability to build clusters of DGs is an essential

feature of all the considered distributed algorithms. In this section we describe an online

procedure to build clusters in a distributed fashion, by also describing a novel approach that

extends the work of [6], and makes the optimization more robust to certain topologies. Here

we do not build the neighbors table for each DG, but we rather assume that a neighbors table

exists, which is a reasonable assumption due to the static nature of electrical grid topologies.

In [6] and [7] pairs of generators (including the PCC) such that the path connecting them

only includes loads (and no generators) are defined as clusters. According to this definition,

considering Fig. 2.1, four clusters can be identified: C1 with the PCC and G0; C2 with G0

and G3; C3 with the PCC and G5; C4 with G5 and G8.

For VBSC and DORPF only distributed generators are required to have metering and

communication capabilities (in the following, nodes with these features will be referred to as

smart nodes, SNs), hence the clustering process is reduced to a neighbor discovery process.

The CBSC algorithm, on the contrary, requires detailed information about the loads (which



2.3. Clustering 15

are SNs too) along each cluster’s path. Let GA be the DG performing the clustering procedure

shown in Algorithm 3, then to obtain this information, once N (GA) has been set up, GA

sends a special information gathering packet (called BuildClusterPacket, see line 2) to all

DGs Gh : h ∈ N (GA). Each load Lk : k ∈ L(GA,Gh) appends to this packet its current

demand, the impedance of the lines connecting it to GA and its identifier k, and forwards it

to the next node in the path between GA and Gh. This procedure is repeated for all nodes

in the path, until the BuildClusterPacket reaches the destination, as shown in Algorithm 4

(see lines 2, 3 and 4). Gh stores the received load current demands and impedances from GA

in the clusters table in the position corresponding to the sender’s identifier and then sends

back an acknowledgment which piggybacks the loads’ current demands and line impedances.

Once the clusters table has been set up, changes in loads current demands can be dynamically

updated by the loads.

Since CBSC requires that all the nodes are SNs, the optimization process can be improved.

The clustering obtained through Algorithms 3 and 4 considers only couples of neighboring

DGs, thus leaving out of the optimization process portions of the network ending with a leaf

node with a single connected load. In Fig. 2.1 two portions of the network are isolated: one

made by edge B1 and node N1 and the other made by edge B6 and node N6. Since the leaf

nodes have just one neighbor, they are able to determine their position in the network and

hence to communicate to the nearest DG the presence of a portion of the network that would

not be optimized using the standard clustering approach. Once a DG learns of such a portion

of the network, which can be achieved through a simple probing procedure, it considers it as

a special cluster and fully feeds such portion of the grid. This clustering procedure (called

enhanced clustering, EC) enhances the performance of CBSC, with respect to the standard

clustering scheme, when an appropriate number of DGs is accounted for. As an example,

Fig. 2.2 shows the performance in terms of dissipated power when EC is used. For this plot,

CBSC has been executed on the topology of Fig. 2.1 using the parameters reported in the

same figure and a specific line impedance of (0.8 + j0.8)10−6 Ω/m. In Section 2.6.5, EC is

further investigated for a higher number of topologies and system parameters.



16 Chapter 2

Algorithm 3 Basic Clustering Pseudocode, Generator side

Require: Nodes are synchronized to central clock

Require: List of neighboring generators N

1: for all Neighbor n in N do

2: SendBuildClusterPacket(CurrentTime);

3: WaitForAck();

4: if ReceivedAck() then

5: D←SetImpVector(Ack.Impedances);

6: PW←Ack.CurrentDemand;

7: UpdateClusterTable(n, D, Pw);

8: end if

9: end for

Algorithm 4 Basic Clustering Pseudocode, Load side

Require: Nodes are synchronized to central clock

1: if BuildClusterPacketRx() then

2: d←EstimateImpFromSource();

3: UpdatePacket(GetCurrentDemand(), d);

4: SendPacket(Packet);

5: end if
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Figure 2.2. Dissipated power vs optimization steps for CBSC for standard clustering and the

enhanced clustering technique. Active and reactive current injection.

2.4 Communication Procedures

In this Section we first analyze the communication requirements of LC, CBSC, VBSC and

DOPRF and then we propose a token ring protocol tailored for the distributed solution and

for tree networks.

2.4.1 Communication Infrastructure and Requirements

The control algorithms considered in this chapter require a communication network among

the controlled nodes, which is here assumed to be a powerline communication (PLC) infras-

tructure. SNs are equipped with PLC transceivers and suitable communication protocols

are assumed to enable the communication between any pair of SNs, possibly by appropriate

routing of messages through intermediate SNs, as we detail shortly. We assume that SNs

are also capable of measuring instantaneous electrical quantities (i.e., voltage, current and

power) absorbed (by the loads) or injected (by DGs).

The communication requirements for the distributed control algorithms of Section 2.2 are:
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Figure 2.3. Token ring network example. The arrows indicate the token’s path.

2.4.1.0.1 LC and ELC these schemes only use local information and, in turn, do not

require any communication among SNs.

2.4.1.0.2 CBSC for this algorithm, very fast convergence rates are obtained at the cost

of requiring that each node is a SN, which means that each node must have communication

and metering capabilities (to measure or estimate the quantities required by the scheme).

This may be difficult to achieve in practice, especially when retrofitting existing grids that

use old equipment.

2.4.1.0.3 VBSC this scheme does not collect any information about the loads and re-

quires that only the DGs are SNs. This considerably reduces the communication requirements

of VBSC with respect to CBSC. The reduced amount of information needed to perform the

optimization makes the implementation of this technique easier, while yielding a slower con-

vergence rate.

2.4.1.0.4 DORPF for this algorithm, the DGs in a cluster are required to estimate

the PCC’s voltage, the line impedance, and the neighbor’s voltage. In order to acquire this

information, only DGs need to be SNs and, thus, the communication requirements of DORPF

are similar to those of VBSC.

An update in the current injected by the DGs alters the operating points of all other

grid nodes. To ensure convergence, an iterative approach to update the injected currents has

been proposed in [26], which uses a round robin scheme whereby token-passing is utilized to

arbitrate control among the nodes.
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To make sure that, at any one time, the token is owned by a single node (which per-

forms the control actions as dictated by the selected algorithm), a token ring communication

protocol is exploited. The token ring protocol (known as IEEE 802.5) has originally been

developed for networks whose nodes are connected in a ring fashion. Hence, a special packet

called token is circulated in the network and node n receiving the token has the right to

transmit packets while all the other nodes remain silent, unless they receive a specific request

from node n. Once the token’s owner has completed its operations, it sends the token to the

next neighbor, selected according to a certain schedule. Fig. 2.3 shows an example of a token

ring network. Solid lines connecting the nodes numbered from 1 to 8 represent the actual

communication links between them, while the counterclockwise pointed lines represent the

token’s path in the network.

2.4.2 Token Ring Protocol for Tree Networks

In this section, we propose a failure resilient token ring protocol for tree networks. This

protocol is then used in conjunction with the clustering algorithm of Section 2.3, obtaining

the final distributed algorithms that will be evaluated in Section 2.6.

To adapt the standard token ring protocol to the tree topology treated in this work, a

new token’s owner selection procedure is devised. Let N > 1 be the number of SNs. Let

the SNs be identified by the unique identifiers 0, . . . , N − 1 and let the current token’s owner

identifier be i ∈ N with i < N , then the next token’s owner is obtained as j = (i+ 1) modN .

This owner selection rule ensures that when SN i releases the token, all the other SNs will

receive it before i owns it again, thus promoting fairness in the communication process.

Fig. 2.4 shows an example of the token path on the power grid of Fig. 2.1 assuming that all

nodes are SNs (i.e., N = 9). Nodes receive the token on the basis of their identifiers (on the

contrary, in regular token ring networks the token exchange is based on the actual physical

position of the nodes). It is also worth noting that, by correctly setting the nodes’ identifiers,

the token’s path can be forced into a depth first path search on the tree, as illustrated in

Fig. 2.4. Note that this minimizes the number of jumps of the token between non-adjacent

nodes.

Lost Token Recovery The circulating token can be lost for various reasons such as, for

example, external electromagnetic interference, communication link and device failures on the
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Figure 2.4. Example of the token’s path in the communication network associated to the power

grid of Fig. 2.1.

token’s path. In order to recover from these events, the token reception must be acknowledged

to the sender. Node i releasing the token remains the owner until it successfully receives the

acknowledgment sent by node j. If after a timeout time T (also dependent on the network

size and on the transmission rate) no acknowledgment is received, then the token exchange

procedure is repeated until either the token reception is acknowledged or the maximum

number of transmission attempts is exceeded. In the latter case, we skip the next node in

the path and start a new exchange procedure with the following node j′ = (j + 1) modN . If

the token is correctly received by node j, but the acknowledgment is lost, the aforementioned

procedure is performed as for the lost token case. After the reception of the new token, node

j will send back an acknowledgment and discard the newly received token.

Handling Disconnected Portions of the Network When a portion of the network gets

disconnected from a communication perspective, the nodes therein first have to discover that

such an event has occurred. To this end, each SN utilizes the following approach. A timeout

timer is reset at every node, every time the token is received (the timeout period must be

the same for all the SNs and must be dispatched by a coordinator). If the timeout timer of

a given SN counts down to zero, then the SN promotes itself as the new coordinator for the

disconnected portion of the network and from a communication standpoint starts acting as

the coordinator. It performs a new neighbor discovery, and each node involved in such process

updates its routing tables according to the new information it receives. Once this process is

completed, the obtained subtree will be optimized independently, using as a reference voltage

the PCC’s voltage estimated (or measured) by the new coordinator before the failure.
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Figure 2.5. Regular ring lattice with eight nodes.

2.5 Simulation setup

Numerical results (obtained through the use of our simulation framework, implemented in

Matlab) comparing the performance of the considered algorithms have been obtained over a

large set of randomly generated grids. Instead of relying on standard test feeders as proposed

in [30] or on a single case study as in [3], we have adopted the approach of [25]. Using

the generator from [24], we generated more than a thousand power distribution grids and

averaged the numerical results obtained by testing the optimization techniques on every single

grid. The impact of communication and clustering protocols has also been assessed.

After assessing the performance of the selected algorithms in the ideal case (i.e., in the

case in which all the DGs are able to inject the optimal power), we assessed the performance

of the selected algorithms (in terms of power loss reduction) in the case in which the available

power is limited to a 28 Ah battery installed at each DG and charged by photovoltaic panels,

and the power demand from the loads is based on a statistical model derived from real world

data.

Random Grid Generation For a meaningful performance evaluation, we have considered

a large number of networks, which have been obtained using a network generator that ac-

counts for the theoretical and experimental results of [8] and has been adopted for topology

design [24] and performance assessment of smart grids [25]. According to this approach, power

micro grids are modeled as directed graphs (with the orientation of the edges determined by

the direction of the active current). These graphs are included in the class of small-world
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Figure 2.6. Small world graph obtained from Fig. 2.5.

networks which are connected graphs characterized by a large number of vertices with sparse

connections and fill the gap between completely random graphs and regular graphs. With

this approach, we can generate numerous synthetic networks by fixing their relevant param-

eters such as the number of nodes, the number of generators, the depth of the tree, etc.,

by making sure that the generated networks have statistical properties resembling those of

real power grids. In order to build a small-world network we start from a ring lattice. Then

for each edge e a so called rewiring procedure is performed: one of its endpoints is replaced

with probability p (called rewiring probability) by another node, chosen uniformly at random

among all other nodes.

Tree networks with n nodes and n− 1 branches and shaped according to a given rewiring

probability are generated. Branch lengths are then generated according to an exponential

distribution with tunable mean. The number of nodes, the rewiring probability and the mean

of the exponential distribution generating the branch lengths are user defined parameters.

The rewiring probability determines the shape of the generated tree: when this probability is

zero, the generated tree has exactly 1 leaf, when this probability is one, the generated tree has

exactly n− 1 leaves. Fig. 2.5 shows an example of regular ring lattice with 8 nodes. Instead,

Fig. 2.6 shows a small-world graph generated from the regular lattice of Fig. 2.5 when edges

ea and eb connecting nodes (6, 7) and (4, 6) are rewired to links (4, 7) and (4, 8), respectively.

Electrical Parameters Setup We assume that the generated grids operate in steady state

and that they are single phased electrical networks whose distribution lines have a constant
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specific impedance of (0.08 + j0.08)10−6 Ω/m. The phase voltage at the PCC is set at 230 V

and the voltage drops along the distribution lines are neglected in determining the loads’

instantaneous power demand, as assumed in [6]. DGs with associated loads automatically

feed them with the required current. Moreover, we do not assume any limitations on the

maximum current that can be injected by the DGs.

Communication Assumptions From a communication standpoint, a first assumption is

that a routing protocol connecting each pair of SNs in the grid exists. A second assumption

is that no packet is lost or corrupted along a communication path unless at least one of the

links in the path is broken (which is accounted for using an independent and identically dis-

tributed process with a certain probability). In order to obtain statistically relevant results,

the optimization methods treated in Section 2.2 and the communication procedures treated

in Section 2.3 and Section 2.4 have been tested over a large number of grids and the cor-

responding communication network conditions. In particular, we have considered networks

with 30 nodes, a specific line impedance of (0.08 + j0.08)10−6 Ω/m, average line length of

30 m, and a rewiring probability of 0.5.

Renewable source model energy traces for photovoltaic (PV) sources have been obtained

using the SolartStat tool [9]. In detail, energy generation statistics (cumulative distribution

functions, cdf) have been generated for each month of the year and for each hour of the day

for the city of Los Angeles. For the solar modules, we have considered the Panasonic N235B

solar panel technology, accounting for a surface of about 10 m2 (delivering a nominal power

of about 4 kW), which represents a reasonable size for residential users. The solar modules

have a tilt angle of 45◦ and an azimuthal displacement, with respect to the real South, of 30◦.

The statistics generated for this setup have been utilized to generate the current harvested

from each solar module with a time granularity (time slot) of 1 minute.

Modeling power demand an accurate statistical model has been derived from the house-

hold electric power consumption data set of [31]. This database contains fine-grained (one

per minute) measurements of active and reactive power demands from residential structures,

collected between December 2006 and November 2010. Following the approach of [9], we have

obtained power demand statistics for each month of the year, day of the week and hour of the
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day. A power demand process is then updated for each end-user every minute according to

these statistics. Note that although the same cdf is considered for different end-users within

the same time slot, their demands are independently drawn from this cdf.

2.6 Numerical Results

In this section, we show the numerical results obtained considering the simulation setup

described in Section 2.5.

2.6.1 Dissipated Power

Figs. 2.7 and 2.8 show the average dissipated power over one hundred random network real-

izations where both active and reactive current injection is allowed and where only reactive

current injection is allowed, respectively. For each network, 30% of the nodes are DGs. For

all algorithms, the starting point of the iterative optimization procedure provides that the

DGs do not inject any current.

When both active and reactive current is injected, only ELC, CBSC and VBSC are

considered. A first important result is that CBSC and VBSC achieve a considerably lower

power distribution loss than ELC, due to their exploitation of communication capabilities.

With reference to Fig. 2.7, while ELC reduces the power loss by more than 4 kW with respect

to the starting point, CBSC further reduces losses by over 2 kW in less than ten iterations.

VBSC exhibits a much slower convergence rate while reducing power loss by nearly 1 kW with

respect to ELC (at convergence, not shown in the plot, see also Fig. 2.9 for the convergence

rate of VBSC).

When only reactive current is controlled (Fig. 2.8), LC reduces the power losses by nearly

1.75 kW with respect to the starting point. It is worth noting that all the distributed

algorithms exploiting communication capabilities still allow the reduction of the power loss

by (up to) 0.5 kW with respect to ELC. Overall, CBSC outperforms all other approaches,

relying on a complete knowledge of the clusters, since each DG has a complete knowledge

of the branches connecting it to other neighboring DGs, and hence can compute the exact

amount of power that is needed in each branch to minimize the loss.
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Figure 2.7. Average dissipated power vs optimization steps for ELC, CBSC and VBSC. 30% of

nodes are DGs. Active and reactive current injections.

2.6.2 Convergence Time

As shown in Figs. 2.7 and 2.8, all algorithms converge to a minimum dissipated power after a

certain number of iterations. In Fig. 2.9, we show the average number of control steps (over

the network realizations) that are required, for each algorithm, so that its performance falls

within 5% of the associated minimum power loss. This number of steps is plotted against the

dissipated power by varying, as a free parameter, the percentage of DGs from 10% to 95% of

the nodes.

A first important result is that CBSC, VBSC and DORPF guarantee that the dissipated

power is comparable to that of LC even when only 10% of the nodes are DGs. Moreover, the

aforementioned algorithms achieve a power loss very close to zero when the DGs are about

70% of the nodes (or more). CBSC, once again, exhibits the fastest convergence rate and the

lowest power loss at each point. It is remarkable that this algorithm always converges within

a few (at most twenty for the considered networks) iterations and that this number weakly

depends on the percentage of DGs.

When only the DGs are SNs, only DORPF and VBSC can be applied, as explained in

Section 2.4.1. In this case, we note that DORPF ensures the best convergence time for the
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Figure 2.8. Average dissipated power vs optimization steps for LC, ELC, CBSC, VBSC and

DORPF. 30% of nodes are DGs. Reactive current injection.

same dissipated power performance. Nevertheless, from Fig. 2.10, we note that when the

specific line impedance grows, the performance gap between DORPF and VBSC increases,

leading to a higher dissipated power, up to 25%, for DORPF with respect to VBSC for

a specific line impedance of (0.08 + j0.08)10−3 Ω/m. Thus, DORPF appears to be less

robust for increasing line impedance, and this fact should be carefully evaluated in practical

implementations of this algorithm. In particular, when the specific line impedance is well

known and ensures that the voltage drops along the power lines are less than 3% of the PCC’s

voltage, DORPF can be successfully used (see [28]). On the contrary, when the specific line

impedance is not known in advance or the voltage drops are not within the 3% range (as it

may occur in rural or isolated areas), optimization should be performed through VBSC since

this technique exhibits a higher robustness with respect to the grid parameters.

2.6.3 Resilience to Link Failures

In the two previous sections we assumed a communication network with error free links. In

this section, instead, the algorithms’ resilience to link failures is considered. In the following
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Figure 2.9. Average convergence time vs dissipated power for ELC, CBSC, VBSC and DORPF.

DGs are from 10% to 95% of nodes. Reactive current injection.

results, broken links are chosen uniformly at random among all links according to a given

percentage.

Fig. 2.11 shows the average dissipated power as a function of the percentage of broken

links; we note that despite high percentages of broken links, CBSC and VBSC achieve a lower

dissipated power than ELC. On the contrary, when the percentage of broken links exceeds

25%, DORPF performs worse than ELC. We recall that, when only DGs are SNs only VBSC

and DORPF can be used. VBSC exhibits a considerably higher degree of resilience to link

failures with respect to DORPF. The higher resilience to link failures, together with the

independence from the specific line impedance discussed in the previous section, make VBSC

the best algorithm when scarce information is available about the grid or when link failures

are frequent.

2.6.4 PCC Workload

Fig. 2.12 shows the average PCC’s workload as a function of the percentage of DGs in the

grid. A first noticeable result is that, for at least 10% of DGs, at least 40 kWare saved

when using LC. When ELC is used, at least 60 kWcan be saved. Distributed optimization
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techniques appear to be useful when the number of DGs is between 10% and 50% of the

total number of nodes, regardless of the actual size of the grid. In this range, the distributed

optimization techniques allow to save up to 15 kWwith respect to ELC. When, instead, more

than 50% of the nodes are DGs, the gain in terms of power loss with respect to the LC

technique may not be worth the communication infrastructure needed by the distributed

optimization techniques.

Fig. 2.13 shows the average PCC workload as a function of the percentage of broken links

in the communication network. We note that when the percentage of broken links is in the

range of 10%-50%, CBSC and VBSC significantly outperform the localized approach (ELC)

which, as expected, is insensitive to link failures. However, when the percentage of broken

links exceeds 50% of the total number of links, the gain with respect to ELC is modest and

may not motivate a distributed approach. Thus, when link failures can be detected, a good

option could be that of switching between distributed control (CBSC or VBSC) and ELC as

a function of the percentage of broken links in the network.
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Figure 2.11. Average dissipated power vs the percentage of broken links for ELC, CBSC, VBSC

and DORPF. 30 nodes, 9 nodes are DGs. Reactive current injection.

2.6.5 Impact of the EC Procedure

In Fig. 2.14 we show the average relative gain (expressed as a percentage), in terms of PCC

workload reduction, obtained using CBSC together with EC as opposed to using CBSC in

conjunction with the standard clustering technique of Fig. 2.12. In this plot we vary the

percentage of DG nodes from 10% to 95%. Notably, when DGs are between 50% and 95% of

the nodes, the gain ranges from 15% to 85%. However, in practice having more than 75% of

the nodes that are DGs may be unlikely and, in addition, although the gain in this case is

high in terms of percentage, the PCC workload reduction in terms of absolute value is rather

small (see Fig. 2.12).

On the one hand, when DGs are between 40% and 75% of the nodes, the PCC workload

reduction ranges between 3 and 8 kW. Note also that when the percentage of DGs is between

20% and 35%, standard clustering performs slightly better than EC. The highest gap in this

case is obtained when 30% of the nodes are DGs, where standard clustering provides a 5%

gain (i.e., about 3 kW) with respect to EC. This is due to the fact that when the percentage of

DGs is small, the special clusters optimized by EC have bigger length on average with respect

to the case where the percentage of DGs is higher (i.e., above 35%). Hence, a higher fraction
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of the power fed by the DGs to the leaf nodes is wasted along the distribution lines. The

PCC tries to compensate for the power dissipated on these branches injecting more reactive

power and, in turn, the total power loss slightly grows.

2.6.6 Performance Assessment with Time Varying PV Generation and

Power Demand

In this subsection, the performance of CBSC, VBSC and DOPRF is assessed when these

operate in conjunction with time varying (and realistic) photovoltaic power generation and

power demand, as described in Section 2.5. For the location we selected the city of Los Angeles

(CA, US). All quantities in the simulations (energy generation, demand, control actions)

evolve with a time granularity of 1 minute. With the described setup, the performance of

CBSC, VBSC and DORPF in terms of PCC power delivery, dissipated power and reduction

in power losses turned out to be very close. For this reason, the performance of these schemes

is shown through a single line, referred to in the following plots as “Optimized”.

Figs. 2.15 and 2.16 show the power delivered by the PCC during a typical day of April
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Figure 2.13. Average PCC workload vs the percentage of broken links for ELC, CBSC, VBSC

and DORPF. 30 nodes, 9 nodes are DGs. Reactive current injection.

and December, respectively. The simulated traces start at 6 am and last for 24 hours. Each

DG has a solar plant featuring a 28 Ah energy buffer (assumed full when simulations start)

and a 4 kW-rated solar module, see Section 2.5.

Analyzing Fig. 2.15, it can be noticed that the optimized system provides improvements

for roughly 20 hours, halving the PCC workload (“power demand” in the figure) in the best

cases. Similar results are obtained when simulating a typical day of December, as shown in

Fig. 2.16. However, in this case the period of time during which the optimized approach is

effective shortens to about 14 hours. This result is expected and is due to the reduced light

time experienced during the winter months in the northern hemisphere that, in turn, results

in a diminished current inflow in the distributed energy buffers.

Fig. 2.17 shows the amount of power being dissipated along the distribution lines during

a typical day of April. We observe that the power distribution losses are also halved by

the optimization algorithms and that, during daytime, there are periods of time where the

current generated by the PV plants exceeds that drained from the energy buffers. In these

cases, the DGs effectively contribute to the grid’s electrical efficiency, while also being able

to recharge their local batteries.
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Fig. 2.18 shows the average gain in terms of reduction of power losses, computed for a

typical day of April. This gain increases linearly with the percentage of DGs in the grid. Also,

even in the case where 100% of the nodes are DGs (not shown in the plot), the gain remains

considerably smaller than 100%. In the considered scenario, this occurs as the distributed

energy storage is not capable of sustaining the associated loads for a full day and this has to be

compensated for through the injection of a certain amount of power by the PCC. Increasing

the capacity of the local energy buffers would ameliorate this, but then the battery would be

sizable and too expensive for its adoption by residential users.

We have also experimented with the network size by increasing it from 10 to 100 nodes.

Our results reveal that the performance (normalized gain in terms of distribution losses and

dissipated power) of the selected optimization techniques is invariant to the grid size and, in

turn, the optimized approach can be effectively applied to a wide range of scenarios. These

plots are not shown here due to space limitations.

Tab. 2.2 shows the average maximum gain Gm (reduction of distribution losses) and the

number of hours in a day Tm during which the optimized solution provides a positive gain in

terms of reduction of power losses, i.e., the DGs inject a non-zero energy flow. m indicates
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Figure 2.15. PCC power delivery vs time of a typical day of April. 50% of nodes are DGs.

Reactive current injection.

the month, i.e., April or December. We observe that, while the maximum gain steadily

increases when increasing the percentage of DGs, the increase in Tm becomes marginal as the

DG percentage grows beyond 30%. In this case, due to the abundance of DGs sharing the

control action, the percentage of energy that each of them is required to inject into the grid

becomes a small fraction of that entering the node during the day. Thus, Tm is dominated by

the energy inflow (meteorological conditions, size and type of harvester), by the end user’s

battery capacity and its power demand (which governs the amount of energy that is drained

from the local battery for self-powering).

2.6.7 Lessons Learned

Our performance evaluation reveals the impact of communications on the selected optimiza-

tion techniques over a large number of power grid topologies (generated so as to resem-

ble actual power grids structures) and sheds some light on the effectiveness of the selected

schemes. Specifically, when detailed information about the grid state can be retrieved, the

CBSC algorithm gives the best results in terms of power loss minimization, reduction in the

aggregate power demand, and resilience to communication link failures. When, instead, only
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Figure 2.16. PCC power delivery vs time of a typical day of December. 50% of nodes are DGs.

Reactive current injection.

partial information can be retrieved (i.e., when each DG can only collect information about its

neighboring DGs) the optimization technique should be carefully selected. When the specific

line impedance is small and link failures are rare events, the DORPF algorithm ensures the

fastest convergence rate. On the other hand, when no exact information about the specific

line impedance is available or link failures happen frequently, VBSC, despite exhibiting a slow

convergence rate, is the most robust solution. CBSC, VBSC and DORPF exhibit a slightly

oscillatory behavior with respect to the dissipated power when the percentage of DGs or the

percentage of broken communication links varies. This is an intrinsic characteristic of the

distributed optimization techniques and does not depend on the number of samples collected

to obtain the presented numerical results.

Notably, the algorithms’ performance, in terms of convergence time, resilience to link

failures and specific line impedance, varies widely. However, configurations exist for which

convergence is achieved within only ten communication steps and the aggregate power demand

of the micro-grid can be roughly halved even when just 30% of the nodes have communication

and control capabilities.

Finally, results in the presence of realistic power demand and distributed generation from
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current injection.

solar sources reveal that the optimized techniques can be quite beneficial for prolonged periods

of time during typical days of April (considered here as the best case) and December (worst

case). That is, distribution losses will be halved in the best cases and the same will occur

for the power demand from the PCC. These results encourage further research, such as the

adaptive temporal management of the energy reserve in the distributed buffers, to adapt the

algorithms’ behavior to the power demand profile or other quality of service criteria.

2.7 Conclusions

In this chapter, we have considered the design of a communication infrastructure to be ex-

ploited by power loss minimization schemes in micro-grids, which are assessed using a novel

co-simulation methodology. Clustering and communication protocols have been designed to

fit at best the considered technical scenario. Our co-simulation approach made it possible to

obtain statistically relevant measures for the various optimization schemes, highlighting the

respective strengths and weaknesses in the presence of realistic communication and electricity

grid topologies, power demand and energy inflow from photovoltaic sources. We stress that
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the evaluation framework presented here can promptly be extended to future optimization

techniques and different performance objectives.
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Table 2.2. Effectiveness of optimal algorithms vs percentage of DGs. Maximum gains in terms

of reduction of power losses and number of hours in a day during which the optimal distributed

power injection is effective.

DGs % GDec [%] TDec [h] GApr [%] TApr [h]

10 25.5 14.15 24.8 19.7

20 41.3 14.97 40.5 20.08

30 57 15.13 56.5 20.2

40 68.6 15.2 68.3 20.21

50 77.5 15.2 77.2 20.26

60 84.8 15.23 84.6 20.33

70 90.3 15.33 90.1 20.36





3
When Order Matters

3.1 Introduction

We consider electricity grids where distributed energy sources (DESs) from renewables (e.g.,

photovoltaic panels or wind-powered micro turbines) exist and may act as energy producers

to provide ancillary services. In the considered scenario, an overlay communication infras-

tructure [23] is utilized to orchestrate the DESs in a distributed fashion with the objective

of minimizing power losses. In this respect, various options are possible, going from the use

of wireless cellular networks to the ad hoc deployment of optical fiber cables. However, a

preferred option, that reduces deployment costs while guaranteeing complete control by the

utility, is to exploit the power cables for communication, implying the adoption of powerline

communication (PLC) technology [21]. Among the possible capabilities of a communica-

tion and control architecture for smart grids [11], in the present chapter we focus on the

minimization of power losses.

We note that the current flowing in the electrical transmission cables yields a partial

power dispersion (in the form of heat) that contributes to economical and environmental

costs. By suitably setting the amount of active/reactive power injected by DESs these power

losses can be reduced, whilst sustaining the connected local loads. This translates into a

decreased power demand to the mains, which lessens the use of high voltage lines and the

associated operational cost for the utility.

Early works on the reduction of power losses focused on centralized solutions [4,25], which

are however hardly scalable as the grid size increases and new DESs are dynamically added.

Moreover, they require a full knowledge of the grid, in terms of topology, load activity and

39
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DES power availability, thus also inducing a significant communication overhead. Distributed

solutions were investigated in, e.g., [5–7, 27]. While often being suboptimal, these are more

flexible and have lighter requirements in terms of communication.

We observe that in the existing literature the communication infrastructure was often

taken for granted and the communication patterns among nodes were not optimized. Most

papers considered a sequential adjustment of the current injected from the smart nodes, i.e.,

at any given time, a single node updates the amount of current injected, while the remaining

ones do not apply any change. This approach assures grid stability and induces a token-ring

communication strategy where, at any given time, a single node has the token and implements

the control action, requesting and sending data over the communication network. We stress

that the order by which the token is passed among the nodes has not been considered in

previous works, although this affects the convergence rate of the control algorithms as well

as the power drained during the optimization process.

In this chapter, we aim at optimizing the token exchange procedure among smart nodes in

order to either reduce the token path length or to maximize the convergence rate of selected

optimization algorithms for power loss minimization. Specifically, we investigate the impor-

tance of the scheduling rule that is utilized for the token assignment, assessing the impact of

optimal control sequences as well as that of an original and lightweight heuristic approach.

Two relevant power loss minimization algorithms, namely, the current based surround con-

trol (CBSC) [6,26], and the distributed optimal reactive power flow control (DORPF) [7,28],

which have been proven to significantly reduce power losses in smart micro grids are consid-

ered. The performance of these schemes is then tested over a large number of grids that are

statistically generated according to established literature models [24].

The rest of the chapter is organized as follows. Section 3.2 presents the considered elec-

trical grid model, and provides a short overview of the two selected control techniques. The

optimization of the token assignment strategy is addressed in Section 3.3. Details on the

grid generation methodology are provided in Section 3.4, which is then used in Section 3.5

to obtain numerical results in terms of total dissipated power. Our concluding remarks are

given in Section 3.6.
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Figure 3.1. Power micro grid example. Think lines represent line impedances, whereas dashed

lines represent logical communication links.

3.2 System Model

In this section, we specify the electrical and communication models for the micro grid. In

addition, we briefly review the selected optimization techniques, highlighting their commu-

nication requirements.

3.2.1 Grid Model

We model the micro grid electrical topology as a directed tree. The root of the tree represents

the point of common coupling (PCC), the other nodes represent loads, distributed energy

sources (DESs) and connection points. Loads are represented either as constant resistive-

inductive series impedances or as constant current sources. DESs are modeled as current

sources, which may be connected in parallel to a load, which is referred to as the associated

load (DESs are always assumed to feed their associated loads). Some of the nodes are

equipped with smart meters and powerline communication (PLC) transceivers and, in turn,

are able to take electrical measures and to communicate using the power lines. These nodes

are referred to as smart nodes (SNs) and are identified by indices 1, . . . , N with N being the

total number of SNs. SNs identifiers are assigned by the PCC and remain fixed during the

optimization.

The communication capability of SNs induces a logical overlay communication network
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built on top of the power grid physical topology. The communication network is exploited

to exchange local electrical measurements to minimize the distribution power losses and the

total power demand to the PCC.

Fig. 3.1 shows a micro grid example with added communication capabilities. The set

of nodes and branches are respectively denoted by N = {PCC, Ni : i = 1, . . . , 9} and

B = {Bj : j = 1, . . . , 9}. Load Li is connected to node Ni for i = 1, . . . , 9. DESs G3

and G8 are connected to nodes N3 and N8 and respectively feed the associated loads L3

and L8. In Fig. Fig. 3.1 the SNs are the PCC, N3 and N8.1 The dashed lines connecting

these SNs highlight the logical communication network structure, while communication data

is exchanged over power cables thanks to PLC.

3.2.2 Distributed Optimization Algorithms

Local Control (LC) [5,29] decreases the amount of power injected by the PCC by allowing

DESs to directly feed their associated loads. This technique requires no communication

among nodes and, in turn, the set of SNs is empty. The following distributed optimization

algorithms apply this technique as the starting point for their distributed optimization.

Current Based Surround Control (CBSC) [6,26] groups the nodes into clusters. Clus-

ters are defined by checking, for any pair of DESs, whether their connecting path includes

any other DES or the PCC. If this is not the case, a cluster is defined as the set containing

the two DESs, the associated nodes, and all the nodes between them in the electrical network

topology. For each cluster, the DES that is closest to the PCC is elected as the cluster head

(CH). In the case where one of the two DESs in the cluster is the PCC, this is elected as the

CH (i.e., we assume that the PCC has better communication and computational resources

with respect to the other nodes). Clusters in Fig. 3.1 are C1 = {PCC, N1, N2, N3} and

C2 = {PCC, N5, N6, N8}. The DESs inject the current (complex or reactive depending on

the optimization policy) that is required by the loads in the respective cluster. The current

injected for optimization purposes is scaled by a real factor 0 ≤ α ≤ 1 such that, referring to

IC as the total current needed in the cluster, the currents injected by the two DESs in the

cluster are αIC and (1− α)IC . The parameter α is determined for each cluster according to

1Note that communication can only occur among smart nodes, as the remaining ones are not equipped

with the required PLC communication capabilities.
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the instantaneous power demand from the loads therein and branch impedances. Hence, this

technique requires that every node is a SN.

Distributed Optimal Reactive Power Flow Control (DORPF) [7, 28] requires that

DESs are grouped into possibly overlapping clusters and that, for each of them, one of the

nodes becomes the cluster head (CH). Also, within each cluster, the gradient of the power

distribution loss is estimated through local measurements. Relying on the estimated gradient,

the CH computes the set of reactive powers that have to be injected by the two DESs in

its own cluster (one being associated with the CH) in order to minimize the distribution

power losses and spreads this information among its neighboring DESs. While different

clustering procedures are possible, as stated in [7], the most effective clustering technique

is the one proposed in [6] (see CBSC above). This technique requires that only the nodes

that are connected to DESs are SNs, thus relaxing the requirements on the nodes in terms of

communication and complexity. Due to this, the same clustering approach of CBSC is also

considered for DORPF.

3.3 Token Ring Control

CBSC and DORPF require that groups of nodes iteratively take a control action (i.e., inject

a certain amount of power in the grid) in order to reduce as much as possible the distribution

power loss. The PCC is considered as a SN during the optimization process and its identifier

is 0. The procedure of having at any given time a single SN allowed to modify the injected

current, before letting the next SN to operate is similar to the token ring approach widely

used in communication networks. For the sake of clarity, we recall that the access to the

communication medium is arbitrated through a special packet called token. At any given

step, one of the SNs owns the token, being in charge of implementing the control action

and communicating with other SNs. All the other SNs are only allowed to answer explicit

requests from the token owner, but are not allowed to contact it in the first place. For what

has been said so far, the communication network can be considered collision free. Therefore,

we will use here the related terminology, where however token ownership is associated to the

current control, rather than to the possibility to transmit information. Indeed, when a node

has the token it may communicate (in a two-way fashion) with other nodes in order to collect

the information need for the control action. However, only SN with the token initiates the
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communications, while other nodes are only allowed to answer its requests. When the current

token owner releases the token, the next owner is chosen according to a specific policy. Note

that choosing the next owner corresponds to establishing an order (also referred to as control

scheduling) for the execution of the control actions. Two policies for the owner selection

are now discussed. The first ordering strategy aims at maximizing the convergence rate of

the optimization algorithms. The second ordering strategy is considered as a comparison

reference and simply aims at minimizing the length of the token path in each token round,

i.e., minimize the communication overhead needed to move the token.

Heuristic for Convergence Rate Maximization: improving the convergence rate of the

considered optimization algorithms has two main benefits. First, the optimization becomes

more responsive to changes in the power demand from the loads. Second, further power

is saved during optimization. The convergence rate can be improved by suitably tuning the

order in which nodes perform the control action, i.e., defining a new token owner selection rule.

The optimal (in the sense of maximum convergence rate) selection rule requires that at least

one SN has a full knowledge of the network state, but, in this case, a centralized optimization

approach would be the best choice. For this reason a heuristic selection rule, that does not

increase the amount of information that each SN has to collect for the optimization purpose,

is proposed. This rule is based on the observation that updates in clusters with a higher

power demand should have a larger impact on the total power loss.

In details, any two clusters are referred to as adjacent if at least one pair of nodes belonging

to the two clusters is connected by a line with no nodes in between. Hence, if a node belonging

to the two clusters exists, the two clusters are adjacent. At the beginning of the optimization

process, the token owner is uniformly chosen at random among the SNs by the PCC. At each

optimization step, the token owner collects information about the actual power demand of

all the adjacent clusters. The token is then passed to the head of the cluster with the highest

power demand. If more CHs are eligible, one of them is chosen uniformly at random.

Token Path Length Minimization: as a baseline strategy we consider that obtained by

minimizing the length of the token path. To this end, suitable SNs identifiers and a next

owner updating rule have to be defined. The identifiers have to be assigned starting from

1 and visiting the nodes with a depth first pre-ordered tree traversal. If the current token

owner is the SN with identifier i, then the next owner identifier will be j = (i+ 1) mod N .
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Figure 3.2. Random trees generated according to different rewiring probabilities p (from the left,

p = {0, 0.5, 1}).

This procedure assures that the number of times the token has to jump between different

subtrees is minimized, thus providing a more efficient communication solution, although in

general suboptimal in terms of control algorithm convergence.

3.4 Electrical Grid Topology Generation

For a meaningful performance analysis, the selected optimization and scheduling algorithms

are evaluated over a large number of power grid topologies. Toward this end, in this section a

random power grid generation procedure, based on [8,24] and used in [25], is briefly reviewed.

According to [8], many real world networks can be successfully represented as small-world

graphs. These graphs are generated starting from a regular ring lattice with V vertices and

degree k (which are user defined parameters). The generation process considers each edge

of the graph and, according to a user defined rewiring probability probability p, one of the

endpoints of the edge is changed. The rewiring probability is a tunable parameter determining

the degree of randomness of the generated graph. A zero rewiring probability leads to a

completely regular graph, while a unitary rewiring probability leads to a completely random

graph. Most real world scenarios are neither suitable to a completely regular representation,

nor to a completely random one, thus an intermediate probability is often best suited to

represent real networks.

In [24], it is pointed out that the small-world graph generation procedure does not account

for some peculiar characteristics of real world power grids. In particular, actual grid topologies

exhibit a quite low average degree, which would lead to disconnected graphs. For this reason,

in this chapter we adopt an ad hoc random graphs generation procedure based on small-world
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graphs. Specifically, starting from a tree with V vertices, V − 1 branches, and exactly one

leaf, each branch of the tree is iteratively rewired to a new endpoint according to the rewiring

probability p. This process is carried out while ensuring that the graph remains connected and

that no loops are generated. The procedure ends when all branches have been visited. The

length property of each branch is then generated according to an exponential distribution.

Also, an increasing p has two main effects on the generated graphs: the tree height is reduced

and the maximum degree of the graph is increased. This implies that the PCC has a higher

number of direct neighbor nodes as p increases.

Fig. 3.2 shows three examples of graphs generated using the described procedure. Note

that with this technique the generated graphs are all trees, which is consistent with actual

electrical network topologies. The leftmost graph of Fig. 3.2 has been generated using a

rewiring probability p = 0, and hence it is the same tree as that from which the generation

procedure starts (no rewiring is executed). The central graph and the rightmost one have

been generated with rewiring probabilities of p = 0.5 and p = 1, respectively. We remark that

increasing the rewiring probability has two main effects on the generated graphs: the tree

height is reduced and the maximum degree of the graph is increased. This implies that the

PCC has a higher number of direct neighbor nodes as p increases.

3.5 Numerical Results

In this section, the optimization algorithms of Section 3.2 are tested using the the two ordering

(or token path selection) strategies of Section 3.3 over a large number of power grids, generated

according to the procedure described in Section 3.4.

We considered networks with 15 and 50 nodes and two values of the rewiring probability:

p = 0.3 and p = 0.7. Branch lengths are sampled (independently at random for each branch)

from an exponential distribution with mean µ = 100m. Power distribution cables are assumed

to have constant section and, hence, constant impedance per meter. This impedance has been

set to (8 + j8)10−6Ω/m. 30% of the nodes are connected to a DES. The nodes connected to

DESs are chosen uniformly at random among the set of all nodes except the PCC. Each node

(but the PCC) is connected to a load and loads are modeled as RL series impedances, whose

values are chosen uniformly at random among the load types in Table 3.1. The PCC imposes a

voltage reference of 230V and the grid frequency is 50Hz. The overlay communication network
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Figure 3.3. Dissipated power vs optimization steps for DORPF-S and DORPF-H and the power

optimal strategy DORPF-Opt. 15 nodes, p = 0.3.

is assumed to be collision free. Moreover, it assumed that a routing protocol connecting each

pair of SNs exists and that the communication links are error free.

Table 3.1. Resistance and inductance values of loads impedances.

Load type R [Ω] L [mH]

LT1 8.79 12.7

LT2 19.5 18.1

LT3 3.39 8.1

Next, we compare the two methods of Section 3.3 in terms of convergence rate and power

expenditure during the optimization process. In the following, CBS and DORPF with the

shortest token path policy will be denoted by CBSC-S and DORPF-S, respectively, while

the same algorithms with the proposed heuristic for convergence rate maximization will be

denoted by CBSC-H and DORPF-H, respectively.

Heuristic vs optimal scheduling: as a first set of results, in Fig. 3.3 we show the average

power drained during the optimization process by DORPF-S, DORPF-H and an idealized

version of DORPF, referred to here as “DORPF-Opt”, that has been obtained by adopting
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the power optimal control sequence. The term optimal means that the sequence of nodes

along the token path minimizes the energy drained during the execution of the algorithm.

This optimal scheduling has been found through extensive search, an impractical approach

whose complexity grows exponentially in the number of nodes and also requires full knowledge

of electrical and communication topologies, DES and load (i.e., power demand) states. From

Fig. 3.3, we see that our heuristic path selection (DORPF-H) performs very close to the

power optimal scheme (DORPF-Opt), leading to gains in terms of convergence rate and

energy expenditure.

Convergence rate: in Figs. 3.4 and 3.5 we compare DORPF against CBSC for p ∈ {0.3, 0.7}

and increasing the number of nodes to 50. A first noticeable result is that the rewiring prob-

ability p considerably affects the convergence rate of the considered optimization techniques.

Specifically, from Fig. 3.4 we see that CBSC-S and DORPF-S converge within 17 optimization

steps. For p = 0.7 (see Fig. 3.5) the convergence rate remains almost constant for DORPF-S,

while for CBSC-S about 10 additional optimization steps are required.

These results demonstrate that the convergence rate of the selected algorithms is sensitive

to the grid topology. In detail, when the grid topology exhibits a low degree of randomness
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(i.e., p = 0.3, Fig. 3.4), with the given setup, the maximum performance gap between CBSC-S

and CBSC-H and between DORPF-S and DORPF-H is 0.5 kW and 0.4 kW, respectively. As

the degree of randomness increases (i.e., p = 0.7, Fig. 3.5) the maximum gap between CBSC-

S and CBSC-H rises to 0.7 kW, while the maximum gap between DORPF-S and DORPF-H

remains almost constant. However, DORPF-H converges in only 11 optimization steps, while

DORPF-S takes approximately 30 optimization steps to converge. We observe that a higher

p, in terms of electrical topology, means that nodes have a higher number of direct neighbors.

This implies a much richer setting for the optimization, as a higher number of choices in

terms of neighbor selection is available at each optimization step. The better performance

of CBSC demonstrates that this algorithm, in spite of its simplicity, has a more efficient

search strategy in the solution space and this comes at the expense of its longer convergence

time. Note also that there are two main benefits arising from the adoption of our heuristic

approach. The first benefit is that the power grid becomes more responsive to power demand

variations due to a faster optimization phase (shorter convergence time). The second benefit

is that, a faster convergence makes it possible to save a certain amount of energy during the

optimization, as we discuss in greater detail below.
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Energy savings: in Fig. 3.6 we show the complementary cumulative distribution function

(CCDF) describing the probability of saving an amount of energy greater than or equal to

the value in the abscissa when using CBSC-H or DORPF-H. This graph has been obtained

for grid topologies with 50 nodes and p = 0.7 by respectively integrating the power difference

between CBSC-S and CBSC-H and between DORPF-S and DORPF-H for control steps of

1 minute each. For both CBSC and DORPF, the probability of saving energy during the

optimization phase is greater than 90%. When using CBSC-H, savings can be as high as 2 MJ

and this graph confirms the better optimization ability of this scheme. As an example, the

probability of saving more than 0.5 MJ is 0.4 for CBSC, whereas it is 0.2 for DORPF. Also, it

is worth noting that a small number of grid topologies exist for which CBSC-H and DORPF-

H converge slower than CBSC-S and DORPF-S, respectively, although they converge to the

same final point, which is algorithmic dependent but only weakly dependent on the selected

token path. While these topologies do not affect the average performance (shown in Fig. 3.4),

their impact can be observed in Fig. 3.6. In fact, there is a small but positive probability

that the energy gain provided by our heuristic scheduling is negative. Similar results, not

shown here due to space constraints, are obtained for p = 0.3.

To summarize, Fig. 3.6 shows that, for most of the grid topologies the heuristic approach

proposed in this chapter provides considerable energy savings during each optimization phase.

In addition, since the optimization is repeated whenever the electrical grid state changes (es-

pecially in terms of variation of power demands) the cumulative gain is much higher and

proportional to the rate at which the optimization algorithms are executed. It is neverthe-

less worth noting that, since configurations exist for which the shortest token path procedure

(DORPF-S and CBCS-S) guarantees faster convergence rates, the choice of the heuristic con-

vergence rate enhancement procedure (DORPF-H and CBCS-H), despite its average behavior

shown in Figs. 3.4 and 3.5, should be carefully evaluated before deployment.

3.6 Conclusions

In this chapter we have analyzed optimal and heuristic scheduling rules to arbitrate the

current injection from distributed energy resources in electricity grids. To this aim, we have

considered two recent optimization schemes for the reduction of power distribution losses,

discussing their communication requirements and comparing their performance against that
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of an idealized power optimal scheme. Our results reveal that the execution order (scheduling)

for the distributed control actions matters and that substantial energy savings are possible

though its careful design.





4
Peak Shaving

L
ow-voltage microgrids will play a major role in future smart grids [32]. The presence

of distributed micro-generation and energy storage owned by end users (referred to here

as prosumers) results in a new paradigm for electrical grids and in a potentially new and

vibrant market for technology manufacturers, service providers, energy traders, distributors,

and regulatory boards. However, several challenges are still to be faced, in terms of tech-

nology, standards, rules, and economic models [33, 34]. According to this new paradigm,

the distribution grid can be seen as a patchwork with the microgrids being its basic tiles and

supporting the utility in terms of power quality, management of network dynamics, etc. Also,

microgrids could be engineered so as to assure electrical continuity to the loads even in the

case of grid failure. A major goal of microgrids is to integrate and effectively manage dis-

tributed energy resources (DERs), either as micro-generation (MG) or energy storage (ES).

In fact, the increasing pervasiveness of renewable energy sources, mainly photovoltaic (PV),

may lead to the misbehavior of the distribution grid due to over-production during daytime,

while having a negative impact on the electrical market. Thus, the capability to control the

energy in- and out-flow of microgrids, seen as an aggregate of entities (prosumer communi-

ties), plays a major role in ensuring stability, efficiency and cost-effectiveness of future smart

grids. Toward this objective, each energy gateway (EG, i.e., the controller placed at the user’

premises) must be properly driven, and the control architecture must be flexible and scalable,

so as to accommodate any number of DERs and autonomously adapt to the power variations

due to the loads and to the intermittent energy sources [35–41].

In this chapter, we propose a lightweight control approach to realize this vision, extending

the work of [42] through a control architecture capable of guaranteeing the correct operation

53
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of prosumer communities in an islanded operated scenario. In detail, the proposed control

strategy adopts a master-slave approach, where the master role is played by the utility inter-

face (UI), i.e., a three-phase inverter located at the point of common coupling (PCC) between

the microgrid and the utility. The UI is equipped with energy storage (battery or super-cap)

and, if necessary, with a backup generator (such as a micro-turbine, fuel cell, diesel gen-set,

etc.), permanently performing as a voltage source. We assume that the microgrid operates

in islanded mode, the UI acts as a grid-forming voltage source, as the mains, while the EGs

act as current sources [42]. The purpose of the control strategy is to level peaks in the user

demand, thus limiting the stage/production requirements to the UI. We achieve this goal by

a semi-distributed approach, where the UI collects information on load and source activity

and distributes a single control parameter that is then used locally to regulate the operation

of ES and generators.

Note that an islanded operation mode entails an additional number or issues, including

frequency and voltage control, which are not within the scope of this chapter. Here, we

assume that some other control strategy takes care of these issues by operating at a suitably

fast rate. Instead, our control operates at a slower rate (addressing slower variations of loads

and sources) with the aim of ensuring the long-term sustainability of the microgrid.

A major advantage of our approach is the additional degree of freedom gained in the

internal optimization of the microgrid, which is now seen by the utility as an aggregate user,

with improved efficiency and control capabilities. Note that this might create new market

opportunities and monetization strategies, since prosumer communities could upgrade their

role and increase their contracting clout, by taking advantage of autonomous management.

As a by-product, we are also able to control the microgrid when operating in a grid-connected

mode, with the UI behaving as a grid-interactive UPS, and playing the role of the central

controller for the microgrid.

To validate the proposed control strategy, a residential microgrid model, 100 kVA rated,

is developed to simulate realistic power demand and energy generation processes. This model

integrates real life data regarding power consumption (demand) and photovoltaic generation,

featuring validated statistical models for both processes. Thanks to these tools, we evaluate

the impact of the proposed control strategy (dealing with peak shaving at different time scales)

on the performance of the microgrid and assess its peculiarities in terms of required energy
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Figure 4.1. Schematic representation of the considered microgrid topology.

storage and load balancing capabilities. We note that the considered statistical approach for

the energy sources and the loads leads to a more realistic system design methodology than

considering, e.g., worst case scenarios.

The remainder of this chapter is structured as follows. In Section 4.1 we describe the

system model, whereas our control algorithm is presented in Section 4.2. Simulation results

are presented in Section 4.3 and our conclusions are drawn in Section 4.4.

4.1 System Model

We consider a low voltage, single phase residential microgrid, schematically represented in

Fig. 4.1, with K = 50 end user nodes. At the PCC (node 0), the microgrid is equipped with

a distinct unit, denoted three-phase utility interface (UI) with energy storage (UI-ES) capa-

bilities and power capability of 100 kVA. Downstream from the PCC, the grid is composed of

10 topologically identical sections, each comprising 5 end users. The electrical network is rep-

resented by a tree with three levels of depth, with the end-users being its leaves (in Fig. 4.1,

end-users are univocally identified by a triplet “i.j.k”). Each tree level is characterized by

a characteristic interconnection impedance. As a result, besides the UI output impedance

(Z0), three additional interconnection impedances are considered, as reported in Tab. 4.1.

The UI is controlled as a voltage source and is capable of bidirectional communication (via

power line or wireless) with any other node of the microgrid. N = 15 grid nodes, randomly

distributed within the microgrid, are active nodes with micro-generation and energy storage
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Table 4.1. Microgrid interconnection impedances

Tree level Value Unit

Zero level (PCC) Z0 +j26 mΩ

Level 1 Z1 173 + j44 mΩ

Level 2 Z2 267 + j75 mΩ

Level 3 Z3 705 + j157 mΩ

capabilities. These nodes are interfaced to the grid through an energy gateway (EG), which

operates as a current source and is capable of bidirectional communication with the UI. The

remaining M = K − N = 35 nodes are passive nodes. Passive nodes, although possibly

equipped with smart meters (SM), are not necessarily endowed with intelligent measurement

or control devices. In grid-connected mode, the UI voltage reference is set by suitable active

and reactive power control loops, while in islanded mode, the UI becomes the grid-forming

voltage source for the entire microgrid. The EGs make their energy resources available,

including their local energy storage. The active nodes perform as slaves and their EGs

communicate with the UI, implementing distributed control actions. Although different power

definitions can be used within the proposed approach, we consider conservative quantities for

the active and reactive power, see [43]. Also, without loss of generality, we refer to single-

phase variables, being aware that single-phase and three-phase loads may coexist in the same

microgrid.

In grid-connected operation, the UI only supplies reactive power to perform ancillary

functions, like power factor control at the PCC and load imbalance compensation. Moreover,

the UI dispatches active and reactive power commands to the EGs. The EGs, in turn, make

their residual power capability available to the UI, and possibly perform as active filters

to mitigate current distortion. In grid-connected mode, any errors or delays in the power

commands dispatched to EGs are non time-critical, since the power balance is ensured by

the mains, at any time and in any condition. Instead, in islanded mode the UI becomes

the voltage source for the entire microgrid, and makes use of its ES and/or backup unit to

maintain the PCC voltage at the desired level. The power references dispatched to current-

controlled EGs become then time-critical, since the power balance within the microgrid must
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now be autonomously provided by the EGs and the UI. Therefore, suitably fast-rate control

strategies must be deployed to ensure stability. Here we do not address this fast control.

Rather, we focus on a longer-term control that avoids long lasting overconsumption. A degree

of freedom is offered by load control, if any. In fact, if the power balance cannot be ensured

by the available energy sources, the UI can ask the EGs to disconnect some low-priority loads

to reduce the power demand.

4.2 Microgrid control strategy

Next, we describe how the microgrid can be controlled in grid-connected and islanded opera-

tion modes. At the beginning of every control period TS (whose duration is a few line cycles)

the UI, as the control master, polls all the nodes of the microgrid. The active nodes return

the values of active and reactive power available for microgrid control. Note that the number

of active and passive nodes can dynamically change, depending on how many end-users are

actually connected to the microgrid. Moreover, active nodes perform as passive ones when

their generated power is fully used to feed their local loads. Therefore, the control algorithm

must be devised to allow dynamic adjustment of microgrid parameters. In detail, the data

packet sent by the n-th EG (slave unit) to the UI (master controller) at the end of the `-th

control cycle includes:

• PGn(`), QGn(`), the active and reactive power generated by the local power source

during the `-th cycle,

• Pmax
Gn (`+ 1) and Pmin

Gn (`+ 1), the estimate of the upper (max) and lower (min) limits of

the active power from the local energy source in cycle `+1, also taking into account the

power that can be fed into (P in
Sn) or drained from (P out

Sn ) the local ES. Since P out
Sn > 0

and P in
Sn < 0, it holds:

Pmin
Gn (`+ 1) = PGn(`)− P in

Sn(`+ 1) , (4.1)

Pmax
Gn (`+ 1) = PGn(`) + P out

Sn (`+ 1) ; (4.2)

• PGn(`+1), the estimate of the active power that will be generated in the `+1-th cycle,

• AGn(`+ 1), the estimate of the nominal power flow capability of the EG, and
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• Aover
Gn (`+ 1), the estimate of the overload power flow that can be temporarily sustained

by the EG (e.g., for 10− 100 grid cycles). The overload power rating is related to the

instantaneous physical capability of the energy gateway. This parameter can vary in

time, for example, as a consequence of thermal stresses.

Finally, the UI determines the active and reactive power, PPCCtot (`) and QPCCtot (`), respectively,

absorbed by the microgrid from the PCC and measured during the `-th cycle.

To derive the subsequent control actions, the UI estimates the energy state of the micro-

grid by computing, on the basis of the collected data, the following quantities:

• the total power generated by the EGs in the `-th cycle:

PGtot(`) =
N∑
n=1

PGn(`) , QGtot(`) =
N∑
n=1

QGn(`) , (4.3)

• the total power absorbed by the loads in the `-th cycle:

PLtot(`) = PPCCtot (`) + PGtot(`) , (4.4)

QLtot(`) = QPCCLtot (`) +QGtot(`) , (4.5)

• the estimated power absorbed by the loads in the next cycle `+ 1:

PLtot(`+ 1) = PLtot(`)− PG0(`+ 1) , (4.6)

QLtot(`+ 1) = QLtot(`)−QG0(`+ 1) , (4.7)

where PG0(`+1) and QG0(`+1) are the estimates of the active and reactive power that

the UI expects to generate in the next control cycle `+ 1.

• the expected available active and reactive power, in normal or overload conditions, from

the distributed EGs in the next control cycle `+ 1:

PGtot(`+ 1) =

N∑
n=1

PGn(`) , (4.8)

Pmin
Gtot(`+ 1) =

N∑
n=1

Pmin
Gn (`+ 1) , (4.9)

Pmax
Gtot(`+ 1) =

N∑
n=1

Pmax
Gn (`+ 1) , (4.10)
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Qmax
Gn (`+ 1) =

√
AGn(`+ 1)2 − PGn(`+ 1)2 , (4.11)

Qmax
Gtot(`+ 1) =

N∑
n=1

Qmax
Gn (`+ 1) , (4.12)

Qover
Gn (`+ 1) =

√
Aover
Gn (`+ 1)2 − PGn(`+ 1)2 , (4.13)

Qover
Gtot(`+ 1) =

N∑
n=1

Qover
Gn (`+ 1) . (4.14)

Then, the above estimates are used by the power-based control algorithm to determine the

power contributions of the distributed generators.

The amount for power injected by the active nodes is finally obtained by means of two

variables, αP and αQ, calculated by the UI and then broadcast to all EGs. In the following

paragraphs, we describe how these coefficients are determined for the various operating modes.

4.2.1 Islanded Operation – Active Power

Next, we consider four cases, that are related to the amount of predicted power genera-

tion/consumption at the next cycle.

4.2.1.1 PLtot(`+ 1) < Pmin
Gtot(`+ 1)

in this case, the aggregated power demand (PLtot(`+ 1)) is smaller than the minimum power

that can be generated by the active nodes, although local accumulators are fully exploited.

Thus αP = 0. Correspondingly, each active node generates a power reference:

P ∗Gn(`+ 1) = Pmin
Gn (`+ 1) . (4.15)

In case the total injected power exceeds the power demand, the surplus is stored in the UI

accumulators, so as to assure the power balance of the microgrid.

4.2.1.2 Pmin
Gtot(`+ 1) ≤ PLtot(`+ 1) < PGtot(`+ 1)

here, the power absorbed by the loads can be directly provided by the active nodes. We set:

αP =
PLtot(`+ 1)− Pmin

Gtot(`+ 1)

PGtot(`+ 1)− Pmin
Gtot(`+ 1)

, 0 ≤ αP ≤ 1 . (4.16)

Correspondingly, each active node generates an active power reference equal to:

P ∗Gn(`+ 1) = Pmin
Gn (`+ 1)+

+ αP
(
PGn(`+ 1)− Pmin

Gn (`+ 1)
)
.

(4.17)



60 Chapter 4

4.2.1.3 PGtot(`+ 1) ≤ PLtot(`+ 1) ≤ Pmax
Gtot(`+ 1)

the power absorbed by the loads can be delivered by the active nodes with the support of the

distributed ES. Also in this case, the UI does not necessarily exchange active power with the

grid, although it can restore the state of charge of its ES by summing the additional power

to the load power. We set:

αP = 1 +
PLtot(`+ 1)− PGtot(`+ 1)

Pmax
Gtot(`+ 1)− PGtot(`+ 1)

, 1 ≤ αP ≤ 2 . (4.18)

Correspondingly, each active node generates an active power reference equal to:

P ∗Gtot(`+ 1) = PGn(`+ 1)+ (4.19)

+ (αP − 1) (Pmax
Gn (`+ 1)− PGn(`+ 1)) .

4.2.1.4 PLtot(`+ 1) > Pmax
Gtot(`+ 1)

the power demand exceeds the maximum power that can be generated within the microgrid,

even though distributed ES were fully exploited. In this case we set αP = 2. Correspondingly,

each active node generates an active power reference equal to:

P ∗Gn(`+ 1) = Pmax
Gn (`+ 1) . (4.20)

In case the total power injected by the EGs is insufficient to satisfy the loads, the needed

additional power is drained from the UI.

4.2.2 Islanded Operation – Reactive Power

4.2.2.1 QLtot(`+ 1) ≤ Qmax
Gtot(`+ 1)

here, the reactive power can be delivered by the distributed EGs without overloading their

power interfaces. In this case we set:

αQ =
QLtot(`+ 1)

QGtot(`+ 1)
, 0 ≤ αQ ≤ 1 . (4.21)

Correspondingly, each active node generates a reactive power reference of:

Q∗Gn(`+ 1) = αQ ·Qmax
Gn (`+ 1) . (4.22)
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4.2.2.2 QLtot(`+ 1) > Qmax
Gtot(`+ 1)

in this case, the desired reactive power can be generated through a controlled overload of the

electronic power interfaces. In this case we set:

αQ = 1 +
QLtot(`+ 1)−Qmax

Gtot(`+ 1)

Qover
Gtot(`+ 1)−Qmax

Gtot(`+ 1)
, 1 < αQ ≤ 2 . (4.23)

Correspondingly, each active node generates a reactive power reference:

Q∗Gn(`+ 1) = Qmax
Gn (`+ 1)+ (4.24)

+ (αQ − 1) (Qover
Gn (`+ 1)−Qmax

Gn (`+ 1)) ,

The αP and αQ coefficients allows the calculation of the power reference at the EGs. In

compact form, for all the cases above it holds:

P ∗Gn(`+ 1) = Pmin
Gn + (PGn − Pmin

Gn ) ·min(αP , 1)+

+ (Pmax
Gn − PGn) ·max(αP − 1, 0), (4.25)

Q∗Gn(`+ 1) = Qmax
Gn ·min(αQ, 1)+

+ (Qover
Gn −Qmax

Gn ) ·max(αQ − 1, 0), (4.26)

4.2.3 Grid connected operation

In this case the UI is turned off, and the PCC delivers all the required power which is not

provided by the local generators. In particular, as observed above, the control is non-critical

since the mains ensure the power balance. The control master may ask the EGs to deliver

any power level within their capacity (depending on the type of power source). For wind

turbines or PV plants the best solution is to fully exploit their renewable energy, while for

other types of sources (small hydro, fuel-cells, gas turbines) cost issues must be considered.

In any event, the EGs can feed reactive power to demanding loads, thus reducing distribution

losses, improving node voltage stability, and increasing the power factor at the PCC. Upon

request from the UI, the EGs can also deliver or absorb more active power, at the expense

of the energy reserve in their energy storage units. This can be done to meet internal needs

such as node voltage stabilization, current limitation in the feeders or to respond to power

demand from the utility.

The control strategy of Sections 4.2.1 and 4.2.2 can be directly adapted to the on-grid

case. Indeed, setting PLtot(` + 1) = PGtot(` + 1), we get αP = 1, forcing the distributed
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sources to inject all the power they generate into the grid. Note that, we may overestimate

the amount of generated power, PGtot(` + 1), to accommodate several factors such as the

amount of power needed to restore the state of charge of the local ESs. In any case, the UI

provides the power required to maintain the balance between generated and absorbed powers.

The UI may contribute to the reactive power compensation by computing QG0 in (Eq. 4.7),

and injecting the corresponding reactive power QLtot(`+ 1) in the next cycle `+ 1.

Pmin
Gn = sat−An

(
PGn + Pmin

Sn

)
,

Pmax
Gn = sat+An (PGn + Pmax

Sn ) .
(4.27)

In (Eq. 4.27) the saturation function satUL (·) points out that the actual power than can be

delivered is bounded by the power rating An of the EG inverter. Once these data have been

collected from all grid nodes, the control master computes the total power consumed and

generated within the microgrid as:

PLtot =
k=1∑
K

PLk =
m=1∑
M

PLm +
n=1∑
N

PLn (4.28)

PGtot =
n=1∑
N

PGn,

PminGtot =
n=1∑
N

PminGn ,

PmaxGtot =
n=1∑
N

PmaxGn .

(4.29)

Finally the control master executes a control algorithm that depends on the operating mode

(grid-connected or islanded) and on the relative amount of generated and absorbed power.

In the past, distance-based power sharing algorithms [44] have been explored. In this case, a

simpler and almost equally effective algorithm can be used, that is now detailed.

Basically, EGs are driven by a couple of coefficients αP and αQ, referring respectively to

the active and reactive power demand, which are computed by the UI and broadcasted to all

EGs. Given αP and αQ, each EG controls the local power flow to the grid according to the
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expressions:

P ∗Gn(l + 1) = Pmin
Gn + (PGn − Pmin

Gn ) ·min(αP , 1)+

+ (Pmax
Gn − PGn) ·max(αP − 1, 0), (4.30)

Q∗Gn(l + 1) = Qmax
Gn ·min(αQ, 1)+

+ (Qover
Gn −Qmax

Gn ) ·max(αQ − 1, 0), (4.31)

where, in (Eq. 4.30), the term P ∗Gn(l + 1) is the local active power reference for the next

control cycle. Similarly, in (Eq. 4.31), Q∗Gn(l+ 1) represents the reactive power reference for

the next control cycle and Qover
Gn is the temporarily deliverable reactive power, exploiting the

EGs overcurrent capability.

4.2.4 Islanded operation.

In this case the power balance must be ensured within the microgrid. We distinguish two

situations:

4.2.4.1 Over-generation (PGtot > PLtot)

in this case, under steady-state conditions, the extra-power generated by renewable sources is

stored in the distributed ES units depending on their state of charge, and the EGs are driven

accordingly. The load transients are faced initially at the expense of the energy stored in UI-

ES, and UI acts as a voltage source which automatically meets any dynamic power requests.

Within few line cycles the EGs power commands are adapted to the new situation. The state

of charge of UI-ES must be carefully controlled to ensure the capability to temporary store

the excess of energy produced by the distributed generators or supply of the extra energy

requested by the loads. If over-generation lasts too long, the power generated by renewable

sources must be scaled down to meet the actual load power consumption. Also in this case

the reactive power can be controlled by the EGs so as to meet local loads consumption and

to stabilize node voltages. The coefficients αP and αQ for the (l+1) control cycle are derived

as a function of the generated and absorbed powers as follows:

αP =
PLtot(l)− PminGtot(l)

PGtot(l)− PminGtot(l)
⇒ 0 ≤ αP ≤ 1 (4.32)

αQ =
QLtot(l)

QGtot(l)
⇒ 0 ≤ αQ ≤ 1 (4.33)
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4.2.4.2 Under-generation (PGtot < PLtot)

this is the most critical condition. Indeed, the power generated within the microgrid is not

enough to fulfill loads demand, and the excess power must be provided by distributed ES

units according to their state of charge. Obviously, this condition can be maintained for a

limited time, during which the power balance must be ensured while preventing full discharge

of UI-ES. There are two sub-cases to be considered.

• PLtot ≤ PmaxGtot : in this case, the extra power can be met by distributed ES units,

without requiring the intervention of UI-ES. The control master shares the power and

energy demand among the EGs according to a proper criterion. A good solution is to

keep control over the state of charge of distributed ES (by active power control) while

reducing the distribution loss within the microgrid (by reactive power control). This

also limits the thermal stress in the feeders and helps stabilizing the voltage profiles.

• PLtot > PmaxGtot : in this case, the control master temporarily asks distributed EGs to

deliver maximum power PmaxGtot , and takes the missing energy from UI-ES. Then, the

backup generator is switched on, and its generated power is kept above load demand

for some time, to restore the state of charge of ES devices. Reactive power contributions

can be managed in the same way. Once the more stringent constraints on active power

sharing among energy gateways are satisfied, the principle described above can be

directly applied also for the reactive power. To this purpose, the reactive power available

for distributed compensation can be computed on the basis of the data provided by

microgrid nodes.

4.3 Results

In this section, we discuss the performance of the proposed control strategy considering the

power microgrid of Section 4.1. The system, in terms of control, energy production and power

demand, evolves in slotted time, where the slot duration is TS = 1 minute. Before delving

into the analysis of the results, in the following paragraphs, we briefly discuss the considered

statistical models for the renewable energy sources and the end-user demand.

Also, we provide insights for a proper sizing of the UI when operated in islanded mode.

To this end, we assume a UI with infinite generation and storage capabilities, and operate
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the microgrid in islanded mode. By observing the requirements on the UI, we are then able

to infer its sizing in a realistic deployment.

Renewable source model: energy traces for the photovoltaic sources have been obtained

using the SolartStat tool [9]. In detail, energy generation statistics (cumulative distribution

functions, cdf) have been generated for each month of the year and for each hour of the day

for the city of Los Angeles. For the solar modules, we have considered the Panasonic N235B

solar panel technology, accounting for a surface of about 10m2 (delivering a nominal power

of about 4kW). The solar modules have a tilt angle of 45◦ and an azimuthal displacement,

with respect to the real South, of 30◦. Hence, these cdfs have been utilized to generate the

current harvested from each solar module with a time granularity of TS .

Modeling power demand: an accurate statistical model has been derived from the house-

hold electric power consumption data set, available at [31]. This database contains fine-

grained (one per minute) measurements of active and reactive power demand from residential

structures, collected between December 2006 and November 2010. Following the approach

of [9], we have obtained power demand cdfs for each month of the year, day of the week and

hour of the day. A power demand process is then updated for each end-user every TS seconds

according to these statistics. Note that although the same cdf is considered for different

end-users in the same time slot, their demands are independently drawn from this cdf.

Performance analysis: for comparison purposes, we introduce a simple algorithm, referred

to as Self Support, where each EG makes local decisions without interacting with the UI. In

detail, the highest priority of each EG corresponds to using the harvested energy to feed the

local load. The excess energy, if any, is used to charge the local battery and the residual

energy is injected into the grid.

Figs. 4.2 and 4.3 show the total power demand at the UI when the Self Support algorithm

and the proposed control solution (referred to as Power Based) are used. In Fig. 4.4, we

instead show the corresponding average state of charge of the local ESs. Moreover, we show

the performance when no energy production / injection is accounted for (referred to in the

plots as Power Demand). For these results, each active user has a battery with capacity of

28Ah operating at 240V. When the harvested energy is abundant (see Fig. 4.2), the proposed

algorithm performs similarly to Self Support. As shown in Fig. 4.4, in April, Self Support and

Power Based provide peak leveling while also charging the local batteries. From Fig. 4.3 we
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Figure 4.2. Total power demand at the UI for a typical day of April.

see that, as expected, the total demand is increased in December. In this case, the harvested

energy is insufficient to fulfill the end-user demand and the distributed energy storage is

utilized to support the loads and perform peak leveling. Power Demand accomplishes this

task quite successfully, leveling the total demand at around PG0(`) = 40kW (that is an

input parameter for the algorithm). The total power demand is thus more than halved

at the expense (see Fig. 4.4) of a reduced energy reserve at the end-users. Note that our

algorithm can effectively level the required power as long as there is some residual charge in

the distributed batteries. In the considered example, the state of charge decreases of about

8Ah in an hour. This means that, considering an ideal behavior for the discharge process,

the adopted storage units can guarantee a full support for about 3.5 hours in the considered

setup (i.e, number of active users and reference value PG0(`)).

The results of Figs. 4.5 and 4.6 are obtained as follows. We have considered a typical

day of April and obtained the power demand and energy generation traces for all users (one

sample per slot per trace). Thus, for each time slot, we have computed the difference between

the total demand and the generated energy. The temporal average of this time series has

been then used as the reference value PG0(`) ≈ 15kW for the Power Based algorithm. Thus,

we have run the Power Based algorithm for this same day, for these same traces and by
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Figure 4.3. Total power demand at the UI for a typical day of December.
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assuming a sufficiently large battery capacity (e.g., 200Ah at 240V) at each active user, so

that the performance of the algorithm will not be affected by it. The rationale behind this

is that we are trying to operate the network so that the minimum possible amount of power

is required from the UI, by exploiting as much as possible the distributed energy generation

capability of the active users. Fig. 4.5 shows the results of this experiment for a typical

April’s day and we see that Power Based effectively accomplishes the task of leveling the

power demand around PG0(`) ≈ 15kW. We also observe that Power Based has a somewhat

bimodal behavior: i) for a small energy (before 8 a.m. and after 3 p.m.) a more conservative

behaviour is observed, slightly relaxing the total demand with respect to the target PG0(`);

ii) when the energy income is abundant (between 8 a.m. and 3 p.m.) a better peak leveling is

observed, taking advantage of (and lowering) the distributed energy reserve. Fig. 4.6 shows

the state of charge of the battery of a typical end-user during the entire day. As seen from this

plot, the required capacity is quite high and impractical due to economical and technological

arguments. However, that capacity would assure the maximum exploitation of the energy

production capabilities in the considered settings. As future avenues of research, note that

increasing the number of active nodes would decrease the required capacity and we may also

put a cap on it and check how that affects the performance as a function of the various system

parameters.

4.4 Conclusions

In this chapter we have proposed a lightweight and effective algorithm for the energy man-

agement of prosumer communities. This algorithm provides satisfactory results, fulfilling its

design objectives at the expense of a truly limited communication overhead (the transmission

of a pair of reference values to each active user per time slot). We shed some light on battery

sizing showing that, given a proper dimensioning of the storage capacity, self-sustainability

is indeed possible and the proposed approach is able to reduce the total power required to

the mains from a minimum of one half to a maximum of one sixth for the considered network

setup. These figures, as well as the required storage capacity at the end-user side, highly

depend on the number of users with energy harvesting and storage capabilities. A more

detailed study of these tradeoffs is left as a future work.
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Figure 4.5. Total power demand at the UI for a typical day of April.
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5
Optimized Energy Pricing for Smart Grid Efficiency

Enforcement

5.1 Introduction

Two main phenomena are nowadays affecting traditional power distribution grids: on the

one hand, the constantly increasing power demand calls for radical changes in the way the

energy is generated and delivered to the final users, on the other hand, we are facing the

worldwide diffusion of electrical power generation devices based on renewables [1, 10]. If

injected into standard power lines without any coordination or control from grid operators,

this ever increasing amount of renewable energy may destabilize current power grids, leading

to instability problems, including power outages.

On this matter, recent work has shown how Distributed Energy Resources (DERs) can

be used to boost the grid efficiency [11–14] in terms of power distribution losses minimization

and reactive power compensation, frequency stability, peak shaving and to relieve electric-

ity production plants from some of the power load [15]. In the last few years, several grid

optimization techniques have been proposed [16–18], each exploiting some existing commu-

nication infrastructure and relying on online smart metering procedures [19]. This is to say

that a coordinated and intelligent control of the distributed generation capabilities (from

renewables) holds the potential on enhancing the electrical grid performance, controlling the

aforementioned stability problems and, at the same time, increasing its hosting capacity.

In this chapter, we target residential micro grids where some of the end users behave as

DERs, due to the exploitation of some form of renewable energy such as solar, wind, biomass,

geothermal, etc. Each DER is equipped with an energy storage device (i.e., a battery) and

71
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it is assumed to fulfill its own power needs. In addition, during each network cycle DERs

can independently decide to either sell part of the stored energy to the main power supplier,

which is addressed in this chapter as the Point of Common Coupling (PCC), or directly to

some selected end users. In this chapter, end users buying energy are addressed as loads.

Without any further regulation, DERs would sell their energy to the agents ensuring the

highest revenues. This behavior could lead to non-efficient electrical conditions for the grid

(i.e., high distribution power losses).

Previous work has shown how control techniques for DERs [4–7, 20] can significantly

reduce distribution power losses while, at the same time, relieving the PCC from some of the

power load. Instead of injecting all excess power into the grid, after local load satisfaction,

the end users control their energy injection into the electricity grid in order to reduce the

distribution power losses and the total power demand from the mains. It is worth noting,

however, that in real-world scenarios the power injection performed by the DERs is based on

economical advantages. Nowadays, each DER is willing to sell its surplus energy to the PCC

in order to amortize the initial investment for the energy production plant (e.g., solar panels

and energy storage) and its maintenance cost. For this reason, a new market model enforcing

the DERs collaboration to the grid electrical efficiency is needed.

New market models for the smart grid have been studied so far in terms of demand

response control and dynamic pricing strategies. Some work addressed the case where a single

energy provider determines the best real time pricing policy, maximizing its own economical

benefit [45,46] or a specific quality of service function accounting for the main supplier revenue

and the aggregated end users experience [47, 48]. Other research works exploit dynamic

pricing policies in order to control the end users power demand, thus reducing the chance of

events as, for example, power outages [49, 50]. None of these papers, however, accounts for

actual grid electrical optimization techniques.

In this chapter we move a step forward, by recognizing that real users will only change

their behavior and positively contribute to the grid optimization if this will lead to economical

benefits (i.e., a monetary income). This entails the definition of new market models, whose aim

is to incentivize the collaboration from the end-user possessing generation capabilities so that

they will contribute to the energy efficiency of the power grid. Here, we devise an optimization

framework accounting for, on the one hand, the end users economical benefit (i.e., lowering
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the energy consumers expenses and guaranteeing higher profit to the DERs) and, on the other

hand, for the proper execution of a selected electrical optimization technique (so as to increase

the energy efficiency of the power grid and assure its stability). The proposed market model

is formulated as a multi-objective optimization problem. Each grid user (i.e., loads, DERs

and the PCC) is assumed to act as a rational agent and hence it is assumed to always try

to maximize its own benefit. In the considered scenario, each DER maximizes its own profit,

each load minimizes its own expense and the PCC aims at maximizing the grid electrical

efficiency. Energy can be traded directly among end users (i.e., DERs and loads) or among

end users and the PCC. Each DER proposes to the loads individual prices for the energy

trading. The loads can then decide whether to buy energy from the DERs (according to the

proposed prices) or from the PCC (according to a fixed common price). The PCC enforces

the grid electrical efficiency by applying a discount policy to the prices the DERs propose to

the loads. This policy drives the best trading strategy (in terms of economical benefit) for

each end-user while also driving the system toward the best electrical condition (according

to a selected grid optimization technique). It is worth noting that the proposed model is

transparent to the chosen grid optimization technique, and hence its range of application

does not reduce to a single scenario and it does not exclude future improvements in terms

of electrical optimization. Moreover, our model allows the PCC (i.e., the electrical utility)

to decide the importance that is given into the optimization to each performance objective,

i.e., end-user revenue vs grid electrical efficiency. This is achieved by means of a maximum

discount factor that limits the individual discount that can be applied in the energy trading

between DERs and loads. Our optimization must be performed at every network cycle in

order to obtain the greatest benefit from it, however, the PCC is also able to set its own

prices for buying and selling energy, so that our model can account for dynamic pricing and

other long-term demand-response optimization techniques.

The rest of this chapter is structured as follows. Section 5.2 introduces the considered

scenario. There, we present the electrical details of the considered grid model. Moreover, the

communication requirements and infrastructure needed to support the proposed model are

defined. Finally, the proposed market model and the interactions among the system agents

are discussed.

Section 5.3 introduces the mathematical notation that is used throughout the chapter for
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the market model, the associated multi-objective optimization problem and its solution.

Section 5.4 presents the multi-objective optimization problem that needs to be solved

to find the energy trading strategy that best fits all the involved agents. In this section,

we show that the considered optimization problem is not convex. Nevertheless, a bijective

transformation yielding a convex version of the original problem is found and the solution of

the new convex problem is discussed.

In Section 5.5, the electrical grid topology and the parameters used to obtain the numerical

results are discussed.

In Section 5.6, the numerical results obtained through the setup discussed in Section 5.5

are shown and discussed.

Finally, in Section 5.7, the conclusions that can be drawn from the obtained results,

assessing the validity of the proposed model are discussed.

5.2 Scenario

In this section, the electrical, communication and market scenarios considered in this chapter

are presented.

5.2.1 Electrical Scenario

G2L2 L1 G1

PCCB4 B3 B1 B2

Figure 5.1. Electrical network example.

We consider a steady-state power micro grid. For computational ease, and without loss of

generality, the considered grid is modeled as a directed tree. The root of the tree represents

the Point of Common Coupling (PCC) and the other nodes represent loads and Distributed

Energy Resources (DERs). Loads are either represented by constant complex impedances or

by constant current sources, the PCC is modeled as a voltage generator setting the voltage

reference for the entire grid, while DERs are modeled either as power or current generators.
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This model has been widely considered in the literature, and in particular for power loss

minimization algorithms [6, 7, 26–28].

In Fig. 5.1, an example of a power grid is shown. DER i and load j are denoted respectively

by Gi and Lj . Distribution lines are assumed to have a constant section [6, 7], and hence

each line has a constant impedance per unit length. The length of the z-th distribution

line is denoted by Bz. Each DER is equipped with a finite-size energy storage device (e.g.,

rechargeable battery). The size of the energy storage devices determines the total amount

of available power. Moreover, each DER is assumed to be feeding an associated load and to

have the capability of injecting part of its energy surplus into the grid. The surplus power

that DER Gi can inject in the grid is denoted by Ei. For the sake of terminology, the quantity

Ei will be referred to as Gi’s surplus energy. In this chapter, it is assumed, without loss of

generality, that Ei > 0 ∀ i. Each load is assumed to have a non-zero power demand. The

Lj ’s power demand is denoted by Dj .

In the considered electrical scenario, a specific grid optimization technique is taken into

account. It is worth noting that the proposed model is transparent with respect to the

selected (electrical) grid optimization strategy as long as it deals with the selection of the

amount of power that each DER must inject into the grid to boost its electrical efficiency.

5.2.2 Communication Scenario

Each node (i.e., loads, DERs and the PCC) in the grid is assumed to be equipped with a

communication transceiver. The specific communication technology to be adopted depends on

the requirements of the selected electrical optimization technique. These details are however

neither considered here nor fundamental to the solution of presented optimization problem.

In fact, our optimization framework is independent of the specific communication technology

and infrastructure, as long as these allow the bi-directional communication between each pair

of nodes.

5.2.3 Market Scenario

We propose a market scenario where each DER can either sell its surplus power to the PCC

or directly to the loads. The monetary revenue that each DER obtains by selling (part of)

its energy to the PCC is determined by a PCC-imposed unitary buying price. The monetary
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PCC

Gi Lj

PCC buying price: γPCC
i

DER → PCC

PCC selling price: πPCC
j

Discount: ψji

Buy from PCC: πPCC
j

Buy from DER: πij − ψji

DER i Load j

...Micro Grid

Energy Price: πij

Figure 5.2. Market scenario example.

revenue that each DER obtains by selling its power directly to a specific load is determined

by a DER-imposed unitary selling price. The latter price can differ from load to load, and is

not controlled by the PCC. Also, each load can fulfill its power demand by buying the needed

power form the PCC or directly from the DERs. DERs and loads are assumed to behave as

rational agents. Thus, each DER will sell its power to the agents (PCC and loads) ensuring

the highest revenue, while each load will buy the power it needs from the agents (PCC and

DERs) ensuring the lowest expense.

Fig. 5.2 shows an example of the proposed market scenario. On the one hand, for each

DER Gi, the PCC determines the unitary price γPCC
i . This is the unitary price that the

PCC pays when buying power from DER Gi. On the other hand, for each load Lj the PCC

determines the unitary price πPCC
j . This is the unitary price that load Lj pays when buying

power from the PCC. Moreover, each DER Gi proposes a unitary price πij to each load Lj .

The unitary price πij determines the monetary revenue that Gi obtains when selling power

to Lj . In order to move the grid electrical state toward the optimal solution (dictated by

the selected electrical grid optimization technique), the PCC can apply a discount to the

unitary prices proposed by the DERs to the loads. The discount proposed by the PCC to Lj

when buying from Gi is denoted by ψji, and the unitary price that Lj will pay to Gi will be

πij − ψji.

It is worth noting that, in the proposed model, the amount of power that Gi sells to the

PCC is not injected into the grid. It is, instead, stored into Gi’s battery assuming that, at
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any time, the PCC can claim its ownership and, in turn, force Gi to inject a fraction of that

power into the grid. This assumption is needed so that the PCC can buy power from the

DERs while, at the same time, enforcing the electrical grid’s efficiency. In fact, in the DERs

would inject into the grid the power they sell to the PCC, then all the available power would

always be injected into the grid, making it impossible to minimize the distribution power

losses.

5.3 Notation

In this section, the quantities involved in the optimization problem definition and solution

and the corresponding notation are introduced.

Let G be the set of active DERs in the grid, |G|= G. Let L be the set of active loads in

the grid, |L|= L.

5.3.1 Domains

Let:

Π = {x ∈ RG×L++ : xij ≤ Pi, ∀ i ∈ G} (5.1)

be the set of matrices representing the unitary prices that the DERs can propose to the loads.

The elements of Π will be denoted by Πij . The (ij)-th element of the matrix Πij is denoted

by πij and represents the unitary price that Gi proposes to Lj , ∀ i ∈ G, ∀ j ∈ L. Let πi· and

π·j denote the i-th row and the j-th column of Πij , respectively. Moreover, let Pi,∀ i ∈ G be

the PCC imposed maximum unitary price that Gi can propose to the loads.

Let:

H = {x ∈ RG×(L+1)
+ :

L∑
j=0

xij = Ei, ∀ i ∈ G} (5.2)

be the set of matrices representing the amount of power that the DERs can sell to each buyer

(the loads or the PCC). The elements of H are denoted by Hij . The (ij)-th element of matrix

Hij is denoted by ηij and represents the amount of power that Gi sells to the j-th buyer

(where j = 0 denotes the PCC and j = 1, . . . , L denotes load Lj). Let ηi· and η·j denote the

i-th row and the j-th column of Hij , respectively.

Let:

∆ = {x ∈ RL×(G+1)
+ :

G∑
j=0

xij = Di, ∀ i ∈ L} (5.3)
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be the set of matrices representing the amount of power that the loads can buy from each

seller (the DERs or the PCC). The elements of ∆ are denoted by ∆ij . The (ij)-th element

of matrix ∆ij is denoted by dij and represents the amount of power that load Li buys from

the j-th seller (where j = 0 denotes the PCC and j = 1, . . . , G denotes Gj). Let di· and d·j

denote the i-th row and the j-th column of ∆ij , respectively.

Let:

Ψ = {x ∈ RL×G+ : xij ≤ απji,∀ i ∈ L,∀ j ∈ G} (5.4)

be the set of matrices representing the discounts that the PCC is willing to apply to the

unitary prices that the DERs propose to the loads. We remark that the discount policy is

meant to drive the electrical grid state towards the optimal one, determined by the selected

electrical optimization technique. The elements of Ψ will be denoted by Ψij . The (ij)-th

element of the matrix Ψij is denoted by ψij and represents the discount that the PCC is

willing to apply to the unitary price that Gj proposes to Li. Moreover, let 0 ≤ α ≤ 1 be the

PCC defined maximum discount factor (i.e., the PCC is willing to discount at most (100α)%

for each proposed unitary price).

Proposition 1. The sets defined in Eqs. 5.1, 5.2, 5.3 and 5.4 are convex.

Convexity of Π. Let x1, x2 ∈ Π and 0 ≤ θ ≤ 1. Let x3 = θx1 + (1− θ)x2, then:

L∑
j=1

x3ij = θ

L∑
j=1

x1ij + (1− θ)
L∑
j=1

x2ij

Since x1, x2 ∈ Π, it holds true that: ∀ i ∈ G,
L∑
j=1

x1ij ≤ Pi and ∀ i ∈ G,
L∑
j=1

x2ij ≤ Pi, hence:

L∑
j=1

x3ij ≤ θPi + (1− θ)Pi = Pi, ∀ i ∈ G

thus x3 ∈ Π

Convexity of H. Let x1, x2 ∈ H and 0 ≤ θ ≤ 1. Let x3 = θx1 + (1− θ)x2, then:

L∑
j=0

x3ij = θ
L∑
j=0

x1ij + (1− θ)
L∑
j=0

x2ij
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Since x1, x2 ∈ H, it holds true that: ∀ i ∈ G,
L∑
j=0

x1ij = Ei and ∀ i ∈ G,
L∑
j=0

x2ij = Ei, hence:

L∑
j=0

x3ij = θEi + (1− θ)Ei = Ei, ∀ i ∈ G

thus x3 ∈ H

Convexity of ∆. Let x1, x2 ∈ ∆ and 0 ≤ θ ≤ 1. Let x3 = θx1 + (1− θ)x2, then:

G∑
j=0

x3ij = θ
G∑
j=0

x1ij + (1− θ)
G∑
j=0

x2ij

Since x1, x2 ∈ ∆, it holds true that: ∀ i ∈ L,
G∑
j=0

x1ij = Di and ∀ i ∈ L,
G∑
j=0

x2ij = Di, hence:

G∑
j=0

x3ij = θDi + (1− θ)Di = Di, ∀ i ∈ L

thus x3 ∈ ∆

Convexity of Ψ. Let x1, x2 ∈ Ψ and 0 ≤ θ ≤ 1. Let x3 = θx1 + (1 − θ)x2, then x3ij =

θx1ij +(1−θ)x2ij , ∀ i ∈ L, ∀ j ∈ G. Moreover x1 ∈ Ψ =⇒ x1ij ≤ απji, ∀ i ∈ L, ∀ j ∈ G and

x2 ∈ Ψ =⇒ x2ij ≤ απji, ∀ i ∈ L, ∀ j ∈ G, hence: x3ij ≤ α(θπji + (1 − θ)πji) = απji, ∀ i ∈

L, ∀ j ∈ G =⇒ x3 ∈ Ψ

Let Hij ∈ H, then define: H̃i,· = {k ∈ {1, . . . , L}, k : ηi,k 6= 0} and H̃·,j = {k ∈

{1, . . . , G}, k : ηk,j 6= 0}. These two sets determine the row and column indices, respectively,

of the non zero elements of Hij . Similarly, define:

∆̃i· = {k ∈ {0, . . . , G} : dik 6= 0}

∆̃·j = {k ∈ {1, . . . , L} : dkj 6= 0}
(5.5)

5.4 Multi-Objective Optimization Problem

The goal of this chapter is to propose an optimized market model aiming at increasing the

DERs monetary revenue and reducing the loads expenses while enforcing the grid electrical

efficiency. This goal is obtained by setting up and solving a multi-objective optimization

problem. In this section, the multi-objective optimization problem will be defined and a

convex formulation of this problem, allowing for standard interior-point solution methods,

will be derived.
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5.4.1 Objective Functions

Each DER will support the proposed market model only if it guarantees a higher monetary

revenue with respect to the one that is nowadays implemented.

UGi (Πi·,Hi·) =
L∑
j=1

πijηij + (Ei −
L∑
j=1

ηij))γ
PCC
i (∀ i ∈ G) (5.6)

Let (Eq. 5.6) represent the monetary revenue of the i-th DER when selling the Ei amount

of energy to the loads, as specified by the vector Hi· and using the unitary prices defined by

Πi·.

In opposition to the DERs behavior, each load will endorse the proposed market model

only if it guarantees lower expenses with respect to the current market model.

ULi (Π·i,∆i·,Ψi·) =

G∑
j=1

(πji − ψij)dij + (Di −
G∑
j=1

dij)π
PCC
i (∀ i ∈ L) (5.7)

Let (Eq. 5.7) represent the expense incurred by Li when buying Di energy from the DERs,

as specified by the vector ∆i· and according to the discounted unitary prices Π·i −Ψi·.

In order to drive the grid towards the optimal working condition from the electrical point

of view, the power demand vectors ∆i·, ∀ i ∈ L must be as close as possible to the optimal

ones (i.e., ∆�i·, ∀ i ∈ L). The proposed market model gives the PCC the capability to enforce

this condition by imposing a discount ψij to each unitary price πji that Gj proposes to Li.

UPCC
i (∆i·) = ||∆i· −∆�i·||22 (∀ i ∈ L) (5.8)

The effect of the imposed discounts is determined, for each load Li, by computing the squared

distance between the Li chosen demand vector ∆i· and the most electrically efficient one

∆�i·. Let (Eq. 5.8) represent this distance. The goal of the PCC is to determine the best

discount matrix Ψij allowing the individual minimization of the distance between the Li

chosen demand vector and the most electrically efficient one. Each individual discount ψij is

upper bounded by a common quantity 0 ≤ α ≤ 1 representing the maximum fraction of πji

that the PCC is willing to discount (i.e., ψij ≤ απji).

5.4.2 Constraints

The electrical state of the system induces a set of constraints modeling the physical consis-

tency of the grid. Moreover, the PCC’s will to enforce the electrical efficiency of the grid
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induces an additional set of constraints limiting the maximum prices that the DERs can

propose to the loads and the maximum discounts that can be applied to the aforementioned

prices. In this subsection, these constraints will be presented and discussed.

L∑
j=1

ηij ≤ Ei ∀ i ∈ G (5.9)

(Eq. 5.9) imposes that each DER Gi ∈ G sells exactly the surplus energy Ei. The meaning of

this constraint is twofold: on the one hand, it means that Gi can not sell more energy than

the amount remaining after fulfilling its own needs; on the other hand, it models the fact

that the PCC is always willing to buy any excessing energy that the DERs are selling (as it

happens in nowadays distribution grids).

G∑
j=1

dij ≤ Di ∀ i ∈ L (5.10)

(Eq. 5.10) models the fact that the loads are not equipped with energy storage devices, and

hence each load must buy the exact amount of energy needed to fulfill the present power

demand.

ηij = dji ∀ i ∈ G, ∀ j ∈ L (5.11)

(Eq. 5.11) models the fact that the amount of energy that DER Gi ∈ G is selling to load

Lj ∈ L must be equal to the amount of energy that Lj is buying from Gi. Imposing these

constraints assures that no agent in the grid can act maliciously compromising the electrical

state of the grid.

πij ≤ Pi ∀ i ∈ G, ∀ j ∈ L (5.12)

(Eq. 5.12) models the limits that the PCC imposes to the prices that the DERs propose to

the loads. The goal of these limits is twofold: on the one hand, they act as market regulators

preventing the prices from growing without control; on the other hand, they determine the

maximum unitary discount that the PCC is willing to apply.

ψij ≤ απji ∀ i ∈ L, ∀ j ∈ G (5.13)
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(Eq. 5.13) determines the maximum fraction of the unitary prices proposed by the DERs

that can be discounted by the PCC.

5.4.3 Optimization Problem

According to the objective functions defined in (Eq. 5.6), (Eq. 5.7) and (Eq. 5.8) and the

constraints introduced in (Eq. 5.9), (Eq. 5.10), (Eq. 5.11), (Eq. 5.12) and (Eq. 5.13), the

following minimization problem can be formulated.

minimize
Πij ,Hij ,∆ij ,Ψij


1

UGi (Πi·,Hi·)
∀ i ∈ G

ULi (Π·i,∆i·,Ψi·) ∀ i ∈ L

UPCC
i (∆i·) ∀ i ∈ L

s.t.

L∑
j=1

ηij ≤ Ei ∀ i ∈ G, ∀ j ∈ L

G∑
j=1

dij ≤ Di ∀ i ∈ L

πij ≤ Pi ∀ i ∈ G, ∀ j ∈ L

ψji ≤ απij ∀ i ∈ G, ∀ j ∈ L

ηij = dji ∀ i ∈ G, ∀ j ∈ L

(5.14)

Considering (Eq. 5.14), a first characterization of the solution can be given.

Proposition 2. Let πji(1 − α) > πPCC
i for some j ∈ {1, . . . , G} and let ∆∗i· be the i-th row

of the optimal demand matrix ∆∗ij ∈ ∆, then d∗ij = 0 ∀ψij ∈]0, απji] and hence the optimal

discount value ψ∗ij admits infinite solutions.

Proof of proposition 2. Let πji(1− α) > πPCC
i and let ∆∗i· be the optimal demand vector for

load i. If d∗ij 6= 0, then a new vector ∆̄i· such that d̄ij = 0 and d̄i0 = d∗i0 + d∗ij can be defined.

It is true, by construction, that U ′Li (d̄i) < U ′Li (∆∗i·), but this is not possible because ∆∗i· is

optimal and hence d∗ij = 0.

According to Prop. (2), if applying the maximum discount factor α to the price that Gj

proposes to Li, this price is still higher than the PCC imposed price, then no feasible discount

can make Lj buy power from Gi.
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Proposition 3. Let πij < γPCC
i for some j ∈ {1, . . . , L} and let H∗i· be the i-th row of the

optimal allocation matrix H∗ij ∈ H, then η∗ij = 0 and hence the optimal discount value ψ∗ji

admits infinite solutions.

Proof of proposition 3. Let πij < γPCC
i and let H∗i· be the optimal allocation vector for DG

i. If η∗ij 6= 0, then a new allocation vector H̄i· such that η̄ij = 0 and η̄i0 = η∗i0 + η∗ij can be

defined. It is true, by construction, that U ′Gi (H̄i·) > U ′Gi (H∗i·), but this is not possible because

H∗i· is optimal and hence η∗ij = 0.

Prop. (3) states that if the revenue that Gi obtains selling its power to the PCC is greater

than the maximum revenue that can obtain by selling it to Lj , then again there is no way

for the PCC to enforce the electrical grid efficiency.

Prop. (2) and Prop. (3) state that, in order for the PCC to be able to enforce the grid

electrical efficiency by applying a discount policy, the following conditions must hold true

∀ i ∈ G, j ∈ L:

πij ≥ γPCC
i and πij(1− α) ≤ πPCC

j (5.15)

Proposition 4. Let η∗ij , d
∗
ji be the optimal ij-th allocation and ji-th demand values (according

to the respective indexing) for the optimization problem in (Eq. 5.14), then, according to

propositions 2 and 3, either:

1. η∗ij = d∗ji = 0 if πij(1− α) > πPCC
j or πij < γPCC

i

2. η∗ij = d∗ji 6= 0 otherwise.

Proof. Considering propositions 2 and 3, and recalling that both the DERs and the loads are

rational agents, the only case in which it is economically convenient for Gi to sell power to

Lj is when it can get a higher revenue than the one it would obtain selling the same amount

of power to the PCC.

Prop. (4) follows from Prop. (2) and Prop. (3). It states that the PCC can enforce the

grid efficiency only if the conditions of (Eq. 5.15) are met. Moreover, it states that if these

conditions are met, the rational behavior for DERs and loads will be to adhere to the discount

policy proposed by the PCC and trading energy with the agents guaranteeing bigger revenues

and smaller expenses for the DERs and loads respectively.
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Proposition 5. Let π∗ij be the optimal ij-th price value for the optimization problem in

(Eq. 5.14), and let η∗ij = d∗ji 6= 0. Then, according to propositions 2, 3 and 4, it must hold

true that:

1. πPCC
j < π∗ij − ψji for at least one value of ψji

2. π∗ij > γPCC
i

Proof. Considering propositions 2, 3 and 4 and recalling that loads are rational agents, the

only case in which Lj will buy power from Gi is when the discounted price proposed by Gi

is lower than the price it would pay to the PCC. Moreover, recalling that DERs are also

rational agents, the only case in which Gi will sell power to Lj is the one in which its revenue

is higher than the one it can get from the PCC.

Prop. (5) descends from Prop. (4). It states that, in order for the DERs and loads to

adhere to the proposed model, the proposed discounts (limited to a fraction α of the proposed

prices) must meet the rational behavior of the trading agents.

Solving the multi-objective minimization problem proposed in (Eq. 5.14) does not lead

to a unique solution. Since the goals of the objective functions defined in (Eq. 5.6), (Eq. 5.7)

and (Eq. 5.8) are contrasting. Hence, simultaneously minimizing these objective functions

leads to a set of solutions called Pareto Frontier (PF).

Proposition 6. The problem in (Eq. 5.14) is not convex.

Proof of proposition 6. In order to prove the non convexity of (Eq. 5.14) it is sufficient to show

that one of its objective functions is not convex. Considering UGi (Πi·,Hi·), since UGi (Πi·,Hi·)

is twice differentiable in its domain the Hessian matrix HUGi (Πi·,Hi·)
can be computed:

HUGi (Πi·,Hi·)
=

 A B

B A


where A ∈ {0}L×L and B is the L×L identity matrix. HUGi (Πi·,Hi·)

is a permutation matrix.

Let z ∈ R2L and let z1, z2 ∈ RL : zT = [zT1 z
T
2 ], then:

zTHUGi (Πi·,Hi·)
z = [zT2 z

T
1 ]z

and hence HUGi (Πi·,Hi·)
is not positive semidefinite nor it is negative semidefinite.
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According to Prop. (6), solving the problem in (Eq. 5.14) with standard convex multi-

objective solution methods could not lead to the actual PF. In the following subsection, a

convex transformation of the proposed problem, allowing for standard solution methods, will

be discussed.

5.4.4 Geometric Programming Formulation

Since the DERs’ and loads’ objective functions can be expressed in posynomial form, the

non-convex multi-objective minimization problem presented in (Eq. 5.14) can be formulated

in a geometric programming framework [51–53]. In this subsection, the steps leading to this

transformation will be presented and discussed.

Considering (Eq. 5.6), it can be expressed in the form:

UGi (Πi·,Hi·) =

L∑
j=1

πijηij + ηi0γ
PCC
i ∀ i ∈ G (5.16)

Defining:

αGj =


0 if j = 0

1 otherwise

(5.17)

and

cGij =


γPCC
i if j = 0

1 otherwise

(5.18)

and letting πi0 ∈ R ∀ i ∈ G, then (Eq. 5.16) can be formulated as a posynomial function:

UGi (Πi·,Hi·) =

L∑
j=0

cGijπ
αGj
ij ηij ∀ i ∈ G (5.19)

Similarly, (Eq. 5.7) can be re-formulated as:

ULi (Π·i,∆i·,Ψi·) =
G∑
j=1

(πji − ψij)dij + di0π
PCC
i ∀ i ∈ L (5.20)

Defining:

αLj =


0 if j = 0

1 otherwise

(5.21)

and

cLij =


πPCC
i if j = 0

1 otherwise

(5.22)
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Then (Eq. 5.20) can also be formulated as a posynomial function:

ULi (Π·i,∆i·,Ψi·) =

G∑
j=0

cLijπ
′α
L
j

ji dij ∀ i ∈ L (5.23)

Where π′ji = πji − ψij .

Applying the geometric programming transformation detailed in [52], (Eq. 5.19) and

(Eq. 5.23) can be transformed in convex functions:

U ′
G
i (Πi·,Hi·) =

∑
j∈H̃i·

eα
G
j log πij+log ηij+logcGij (5.24)

U ′
L
i (Π·i,∆i·,Ψi·) =

∑
j∈∆̃i·

eα
L
j log π′ji+log dij+logcLij (5.25)

For what has been said so far, the non-convex multi-objective minimization problem

defined in (Eq. 5.14) can be transformed in a convex multi-objective minimization problem:

min
(π)ij ,(η)ij ,(d)ij ,(ψ)ij


log

(
1

U ′
G
i (Πi·,Hi·)

)
∀ i ∈ G

log
(
U ′
L
i (Π·i,∆i·,Ψi·)

)
∀ i ∈ L

UPCC
i (∆i·) ∀ i ∈ L



s.t.

L∑
j=1

ηij ≤ Ei ∀ i ∈ G,∀ j ∈ L

G∑
j=1

dij ≤ Di ∀ i ∈ L

πij ≤ Pi ∀ i ∈ G, ∀ j ∈ L

ψji ≤ απij ∀ i ∈ G, ∀ j ∈ L

ηij = dji ∀ i ∈ G, ∀ j ∈ L

π′ji = πji − ψij ∀ i ∈ L, ∀ j ∈ G

(5.26)

5.4.5 Solution

The problem defined in (Eq. 5.26) can be addressed by mean of standard convex solution

methods. Since the problem in (Eq. 5.26) is convex, the duality gap is zero and the Karush-

Kuhn-Tucker (KKT) optimality conditions can be applied.

In order to apply standard convex optimization methods, the problem in (Eq. 5.26) must

be scalarized. Let λ̄ ∈ [0, 1]G+2L :
∑G+2L

i=1 λi = 1, then the convex and scalarized objective
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function will be:

U(Πij ,Hij ,∆ij ,Ψij) =
G∑
i=1

λi log(
1

U ′Gi (Πi·,Hi·)
)+

+
L∑
i=1

λi+G log(U ′
L
i (Π·i,∆i·,Ψi·))+

+

L∑
i=1

λi+G+LU
PCC
i (∆i·)

(5.27)

Then, the scalarized convex minimization problem can be defined:

min
Πij ,Hij ,∆ij ,Ψij

U(Πij ,Hij ,∆ij ,Ψij)

s.t.

L∑
j=1

ηij ≤ Ei ∀ i ∈ G, ∀ j ∈ L

G∑
j=1

dij ≤ Di ∀ i ∈ L

πij ≤ Pi ∀ i ∈ G, ∀ j ∈ L

ψji ≤ απij ∀ i ∈ G, ∀ j ∈ L

ηij = dji ∀ i ∈ G, ∀ j ∈ L

π′ji = πji − ψij ∀ i ∈ L, ∀ j ∈ G

(5.28)

The problem detailed in (Eq. 5.28) is a standard convex minimization problem, hence, if the

problem is feasible, an optimal solution is guaranteed to exist ∀ λ̄ ∈ [0, 1]G+2L :
∑G+2L

i=1 = 1.

The Pareto frontier is the set of all the optimal solutions obtained for every possible weight

vector λ̄. It is worth noting that, since all the points in the Pareto frontier are equally optimal,

it is up to the final user to determine the particular weight vector satisfying his own needs.

5.5 Simulation Setup

In this section, the electrical grid topology and the electrical scenarios (in terms of power

demand at the loads and power availability at the DERs) that have been used in order to

assess the performance of the proposed optimization process are discussed.

In order to assess the performance of the model proposed in Section 5.4, the electrical

grid of Fig. 5.1 has been considered as a case study. To determine the optimal power demand

matrix, the Current Based Surround Control algorithm (CBSC, [6]) has been selected as
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the electrical grid efficiency control technique, although we recall that other optimization

techniques could be used in combination with our optimization framework.

CBSC groups the nodes into clusters. Clusters are defined by checking, for any pair of

DERs, whether their connecting path includes any other DER or the PCC. If this is not the

case, a cluster is defined as the set containing the two DERs, the associated nodes, and all

the nodes between them in the electrical network topology. For each cluster, the DER that

is closest to the PCC is elected as the cluster head (CH). In the case where one of the two

DERs in the cluster is the PCC, this is elected as the CH (i.e., we assume that the PCC has

better communication and computational resources with respect to the other nodes). The

current injected for optimization purposes is scaled by a real factor 0 ≤ ξ ≤ 1 such that,

referring to IC as the total current needed in the cluster, the currents injected by the two

DESs in the cluster are ξIC and (1 − ξ)IC . The parameter ξ is determined for each cluster

according to the instantaneous power demand from the loads therein and branch impedances.

Hence, this technique requires that every node is a smart node (i.e., equipped with metering,

communication and control capabilities).

The reason why the CBSC algorithm has been chosen is twofold. On the one hand,

it allows to drive the grid to the theoretical optimal electrical regime, and hence it allows

the assessment of the optimization process ability to drive the power grid toward its maxi-

mum electrical efficiency. On the other hand, the communication infrastructure requirements

needed to implement CBSC are the same needed to implement the proposed optimization

strategy. Both techniques, indeed, require that each node is equipped with a smart metering

device (in order to determine the exact power availability, power demand and line impedance)

and a transceiver (in order for each node to communicate the measured data to the selected

receiver).

According to CBSC, the optimal power allocation matrix, for the considered grid topology,

is:

∆�ij =

 B2
D1

˙B1 + B2
0

0 D2

 (5.29)

The length of the distribution lines has been set according to table Tab. 5.1.

The power demand of the loads has been set to 100 kW for both L1 and L2. Hence,

according to (Eq. 5.29) and Tab. 5.1, the optimal power demand matrix is:
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Table 5.1. Distribution lines length in meters

B1 B2 B3 B4

50 m 50 m 45 m 90 m

Table 5.2. DERs Power Availability

G1 50kW 60kW 100kW

G2 100kW 90kW 100kW

∆�ij =

 50kW 0

0 100kW

 (5.30)

Given the optimal power demand matrix of (Eq. 5.29), three electrical scenarios have

been considered. The first scenario will be referred to as tight power offer and it addresses

the case where the individual available power for each DER equals the total power that it

should inject according to CBSC.

The second scenario that has been considered is referred to as unbalanced tight power

offer and it allows to study the case where the total available power equals that dictated by

CBSC, but the individual power availability does not match the CBSC requirements. In this

case, the optimal electrical grid conditions can not be reached.

The third scenario that has been taken into account is referred to as loose power offer.

This scenario considers the case where the total power availability exceeds the total power

demand.

The DERs power availability for each considered scenario is shown in Tab. 5.2.

5.6 Results

In this section, the experimental results obtained by applying the proposed optimization

process to the case study described in Section 5.5 are shown.

For each scenario introduced in Section 5.5, the performance of the optimization process

has been assessed in terms of:

• the DERs monetary gain with respect to the case where the surplus power is entirely

sold to the PCC;
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Figure 5.3. Aggregated revenue and aggregated expense. Tight money case.

• the loads expenses with respect to the case in which all the required power is bought

from the PCC;

• the achieved electrical efficiency with respect to the theoretical optimal conditions

achieved by CBSC.

5.6.1 Tight Power Offer

In this section, the tight power offer scenario is addressed. In this case, both G1 and G2

sell the exact amount of power dictated by the PCC. Fig. 5.3 shows the DERs aggregate

revenue and the loads aggregate expense obtained through the proposed optimization when

the maximum discount factor α varies from 10% to 90%. As a term of comparison, the

aggregate revenue obtained by DERs and the aggregate expense incurred by the loads when

no optimization is applied (i.e., the surplus power is sold in full to the PCC by the DERs

and all the required power is bought from the PCC by the loads) have been plotted. A first

noticeable result is that, for every value of α, the optimized aggregate revenue is always larger

than that in the non-optimized scenario. Moreover, the aggregate expense is always smaller

then the non-optimized one. This behavior is highly desirable, since it guarantees to all the
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Figure 5.4. Electrical efficiency in terms of distance from optimal electrical condition. Tight

money case.

agents involved in the energy trading process that endorsing the proposed optimization leads

to a substantial economical convenience.

When computing the distance from the electrically efficient condition, the norm of of

the difference ∆i,· − ∆�i,· is computed for each load i ∈ L. The plotted distance is thus

the sum of the L individual distances. Fig. 5.4 shows, for α = 10%, . . . , 90%, the distance

between the power demand matrix obtained through the proposed optimization and the

optimal one obtained through CBSC. It can be noticed that when the maximum discount

factor reaches 21%, the electrical efficiency obtained through the proposed optimization equals

the theoretical optimal electrical efficiency obtained by CBSC.

Fig. 5.3 and Fig. 5.4 show that, for a maximum discount factor of 21% on the prices

proposed by the DERs to the loads, a Pareto optimal solution that guarantees the maximum

achievable electrical efficiency while allowing to double the aggregate revenue of DERs with

respect to the non-optimized case. Moreover, by endorsing the proposed optimization scheme,

the consumers will incur sensibly smaller expenses.
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Figure 5.5. Aggregated revenue and aggregated expense. Unbalanced tight money case.

5.6.2 Unbalanced Tight Power Offer

In this section, the unbalanced tight power offer scenario is addressed. In this case, G1 is

willing to sell more power than the amount dictated by the CBSC algorithm, while G2, on the

contrary, is selling less power than what dictated by CBSC. Fig. 5.5 shows the DERs aggregate

revenue and the loads aggregate expense obtained through the proposed optimization when

the maximum discount factor α varies from 10% to 90%. As a term of comparison, the

aggregate revenue obtained DERs and the aggregate expense in which the loads incur when

no optimization is applied to the system (i.e., all the surplus power is sold to the PCC by the

DERs and all the needed power is bought from the PCC by the loads) have been plotted. As

in the previous case, endorsing the proposed optimization will lead to economical benefits for

both the DERs and the loads. Fig. 5.6 shows, as for the previous case, the distance between

the power demand matrix obtained through the proposed optimization and the optimal one

obtained through CBSC. The considered scenario does not allow to reach the theoretical

optimal electrical efficiency. As a matter of fact, even though the total available power

equals the one needed by CBSC, G1 has more available power than what is needed, while

G2 has less available power than that required. Hence, no configuration exists for which the

power allocation matrix obtained through the proposed optimization approach can match the
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Figure 5.6. Electrical efficiency in terms of distance from optimal electrical condition. Unbalanced

tight money case.

optimal power demand matrix. It can nevertheless be noted that, for a maximum discount

factor of α = 20%, the optimization process reaches the minimum achievable distance from

the theoretical optimal working condition. In contrast with the previous case, in this scenario

there exists, for the selected weight vector λ, a single maximum discount factor that allows

to maximize the electrical grid efficiency. This behavior is due to the fact that configurations

exist for which DERs and loads individual interests drive the grid toward a non-optimal

power allocation condition (i.e., G1, instead of selling 10 kW to the PCC, it starts trading

with L2 inducing a sub-optimal electrical efficiency).

As for the previous case, Fig. 5.5 and Fig. 5.6 show that the proposed optimization always

ensures economical benefits for both DERs and loads while, at the same time, leading to an

increased electrical grid efficiency.

5.6.3 Loose Power Offer

This section addresses the loose power offer scenario. In this case, G1 sells more power than

what dictated by CBSC, while G2 sells the exact amount of power dictated by the CBSC

algorithm.
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Fig. 5.7 shows the performance of the proposed optimization in terms of economical

benefits for the DERs and the loads. As for the previous cases, it can be noted that the

proposed optimization always guarantees higher revenues and smaller expenses with respect

to the case where the PCC is the only agent trading electrical power (i.e., all power has to

be uniquely sold to or bough from the PCC).

Fig. 5.8 shows that for α = 20% the optimal electrical configuration is reached. In this

case, G1 sells 50 kW to L1 and the remaining available power is sold to the PCC. As α

grows, G1 starts selling more power to L1 and hence the distance from the optimal electrical

condition starts increasing. As for the previous case, for the selected weight vector λ, a single

value of α exists for which the electrical efficiency is maximized (i.e., the distribution power

losses are minimized).

The presented results show that, for every considered power configuration, the proposed

optimization approach results in substantial economical benefits and is likely to drive the

power grid toward its maximum electrical efficiency. It is worth noting that, in the considered

examples, the discount factor that is required to reach the electrical grid efficiency is never

higher than 21%. This is appealing as it shows that the maximum discount remains rather

small, irrespective of the network configuration. This may be especially convenient for the



5.7. Conclusions 95

 0

 1

 2

 3

 4

 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
is

ta
n

c
e

α

Optimized Distance

Figure 5.8. Electrical efficiency in terms of distance from optimal electrical condition. Loose

money case.

grid operator in practical scenarios.

5.7 Conclusions

In this chapter, an original market model for smart grids has been presented. The proposed

framework jointly accounts for end users economical benefits and electrical grid efficiency

maximization. This model has been formally described in terms of a non convex multi-

objective optimization problem. The non convex multi-objective problem has then been

transformed into a convex one through a bijective transformation based on geometric pro-

gramming. Optimal trading and discount policies have been devised through the solution

of the convex version of the considered problem. The performance of the proposed market

model has then been tested in terms of achievable economical benefit for the end users (i.e.,

the DERs aggregate profit and the loads aggregate expense). Three power configurations

have been considered and the proposed optimization framework has been evaluated for each

of them for an example network setup. The first configuration relates to the case where

the power availability of DERs matches the optimal power allocation matrix dictated by
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the CBSC algorithm. The second configuration relates to the case in which the total power

availability from DERs exactly matches the total power demand from the loads, but the

optimal configuration can not be reached as DERs are not able to individually inject the

needed amount of power. The third configuration relates to the case where the power avail-

ability exceeds the total power demand. Numerical results show that for each of the three

considered configurations, the proposed market model guarantees considerable economical

benefits for both the DERs and the loads. Moreover, it is shown that the smart grid can be

always driven to a solution where its electrical efficiency is optimal and this entails the use

of discount factors smaller than 21%.



6
Conclusions

In this doctoral thesis, several aspects involving the emerging smart grid technology have

been considered. The main considered aspects are the impact of communication impairments

and of control action scheduling on the performance of distributed power loss minimization

techniques, the design of a new peak shaving procedure and the definition of an original

market model accounting for optimal pricing policies allowing for the enforcement of the grid

electrical efficiency.

In the first chapter, a reference simulation framework for the performance assessment of

distributed power loss minimization techniques has been designed. Using this framework, the

performance of four selected state-of-the-art grid optimization techniques has been assessed in

the presence of communication link failures and real-world photovoltaic power generation and

power demand traces. Numerical results have shown that the performance of these techniques,

in terms of power loss minimization, convergence time and PCC workload reduction vary

greatly as the grid connectivity (in terms of percentage of working communication links)

decreases. However, in most cases the correct configuration of the selected algorithms allows

for a convergence time performance of a few line cycles, leading to substantial improvements

in terms of power losses and corresponding amount of power drained from the mains.

In the second chapter, we assessed the impact that the control action scheduling has on the

convergence rate of two state-of-the-art distributed power loss minimization techniques. The

optimal scheduling that maximizes the convergence rate of the selected techniques has been

devised and a heuristic and lightweight scheduling algorithm has been designed. Numerical

results have shown that the proposed scheduling strategy allows to save up to 2 MJ during

each network cycle.

97
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In the third chapter, we designed a lightweight and distributed peak shaving algorithm.

Numerical results based on real-world photovoltaic power generation and power demand

traces show that the proposed strategy makes it possible to efficiently level out peaks in the

aggregated grid power demand when even a small fraction of the end-users is equipped with

photovoltaic panels and energy storage devices.

In the fifth chapter, we proposed a new energy market model accounting for distributed

energy sources from renewables, and the trading of the locally generated energy with other

users or with the grid operator. Smart metering devices and a suitable communication in-

frastructure are accounted for to drive the market optimization, while jointly looking at the

electrical state of the power grid. Specifically, we have developed a multi-objective optimiza-

tion problem whose solution yields the optimal energy pricing strategies, i.e., yielding the

maximum economical benefits for the agents involved in the energy trading, while enforcing

the grid electrical efficiency. Numerical results show that the proposed optimization greatly

outperforms the non-optimized scenario both in terms of economical benefit and electrical

efficiency.



List of Publications

The work presented in this thesis has appeared in the articles reported below.

Journal papers

[J1] Riccardo Bonetto, Michele Rossi, Stefano Tomasin and Michele Zorzi,“Networking

for Power Loss Minimization in Smart Micro Grids: Design Rules and Performance

Assessment”, [arXiv:1311.6949]. Submitted to IEEE Transactions on Industrial Infor-

matics.

Conference papers

[C1] Riccardo Bonetto, Nicola Bui, Michele Rossi and Michele Zorzi,“McMAC: a power

efficient, short preamble Multi-Channel Medium Access Control protocol for wireless

sensor networks”,Workshop on NS3 (WNS3) 2012, Sirmione, Italy, 23 March 2012.

[C2] Riccardo Bonetto, Nicola Bui, Vishwas Lakkundi, Alexis Olivereau, Alexandru Ser-

banati and Michele Rossi, “Secure Communication for Smart IoT Objects: Protocol

Stacks, Use Cases and Practical Examples”,IEEE IoT-SoS Workshop, San Francisco,

CA, US, 2012.

[C3] Riccardo Bonetto, Stefano Tomasin and Michele Rossi, “When Order Matters: Com-

munication Scheduling for Current Injection in Micro Grids”. Accepted for presentation

at IEEE International Conference on Industrial Technology 2015 (ICIT2015), Seville,

ES, 17-19 March 2015.

[C4] Riccardo Bonetto, Tommaso Caldognetto, Simone Buso, Michele Rossi, Stefano

Tomasin and Paolo Tenti, “Lightweight Energy Management of Islanded Operated Mi-



100 List of Publications

crogrids for Prosumer Communities”. Accepted for presentation at IEEE PES Confer-

ence on Innovative Smart Grid Technologies 2015 (ISGT2015), Washington, DC, U.S.,

17-20 February 2015.



Bibliography

[1] EIA, “Annual energy outlook 2013 with projections to 2040,” Office of Communications,

EI-40 Forrestal Building, Independence Avenue, S.W. Washington, DC 20585, 2013.

[2] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, “Overview of control and

grid synchronization for distributed power generation systems,” IEEE Trans. Industrial

Electronics, vol. 53, no. 5, pp. 1398–1409, Oct. 2006.

[3] R. Majumder, “Reactive power compensation in single-phase operation of microgrid,”

IEEE Trans. Industrial Electronics, vol. 60, no. 4, pp. 1403–1416, Apr. 2013.

[4] A. Tsikalakis and N. Hatziargyriou, “Centralized control for optimizing microgrids op-

eration,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 241–248, Mar. 2008.

[5] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Local control of reactive power by

distributed photovoltaic generators,” in Proc. First IEEE International Conference on

Smart Grid Communications (SmartGridComm), Gaithersburg, MD, U.S., Oct. 2010.

[6] A. Costabeber, P. Tenti, and P. Mattavelli, “Surround control of distributed energy

resources in micro-grids,” in Proc. IEEE International Conference on Sustainable Energy

Technologies (ICSET), Kandy, Sri Lanka, Dec. 2010.

[7] S. Bolognani and S. Zampieri, “Distributed control for optimal reactive power compen-

sation in smart microgrids,” in Proc. 50th IEEE Conference on Decision and Control

and European Control Conference (CDC-ECC), Orlando, FL, U.S., Dec. 2011.

101



102 BIBLIOGRAPHY

[8] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’Small-World’ networks,” Nature

393, pp. 440–442, Apr. 1998.

[9] M. Miozzo, D. Zordan, P. Dini, and M. Rossi, “SolarStat: Modeling photovoltaic sources

through stochastic markov processes,” in IEEE International Energy Conference and

Exhibition (ENERGYCON), Dubrovnik, Croatia, May 2014.

[10] IEA, “Key world energy statistics,” 9 rue de la Fédération, 75739 Paris Cedex 15, France,

2013.

[11] S. Goel, S. F. Bush, and D. Bakken, Eds., IEEE Vision for Smart Grid Communications:

2030 and Beyond. 3 Park Avenue New York, NY, USA: IEEE, 2013.

[12] A. Yokoyama, H. Akagi, Y. Hayashi, K. Ogimoto, and H. Ishii, “A national project on

optimal control and demonstration of the Japanese smart grid for massive integration of

photovoltaic systems,” in Proc. 3rd IEEE PES International Conference and Exhibition

on Innovative Smart Grid Technologies (ISGT Europe), Berlin, Germany, Oct. 2012.

[13] A. A. Bayod-Rjula, “Future development of the electricity systems with distributed

generation,” Elsevier Energy, vol. 34, no. 3, pp. 377 – 383, Dec. 2009.

[14] Y. Hayashi, “Trend and future view of voltage control for distribution systems with

distributed generators,” IEEJ Trans. Power and Energy, vol. 129, pp. 491–494, Feb.

2009.

[15] J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. Guisado, M. Prats, J. Leon,

and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable

energy sources: A survey,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1002–

1016, Aug. 2006.

[16] F. Blaabjerg, Z. Chen, and S. Kjaer, “Power electronics as efficient interface in dispersed

power generation systems,” IEEE Trans. Power Electronics, vol. 19, no. 5, pp. 1184–

1194, Sept. 2004.

[17] P. Tenti, D. Trombetti, E. Tedeschi, and P. Mattavelli, “Compensation of load unbal-

ance, reactive power and harmonic distortion by cooperative operation of distributed



BIBLIOGRAPHY 103

compensators,” in Proc. 13th European Conference on Power Electronics and Applica-

tions (EPE), Barcelona, Spain, Sept. 2009.

[18] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers, and N. R. Jennings, “Agent-

based micro-storage management for the smart grid,” in Proc. 9th International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS), Toronto, Canada, Jul.

2010.

[19] M. Ciobotaru, R. Teodorescu, P. Rodriguez, A. Timbus, and F. Blaabjerg, “Online grid

impedance estimation for single-phase grid-connected systems using PQ variations,” in

Proc. IEEE Power Electronics Specialists Conference (PESC), Orlando, FL, U.S., Jun.

2007.

[20] P. Vovos, A. Kiprakis, A. Wallace, and G. Harrison, “Centralized and distributed voltage

control: Impact on distributed generation penetration,” IEEE Trans. Power Systems,

vol. 22, no. 1, pp. 476–483, Feb. 2007.

[21] S. Galli, A. Scaglione, and W. Zhifang, “For the grid and through the grid: The role of

power line communications in the smart grid,” Proceedings of the IEEE, vol. 99, no. 6,

pp. 998–1027, Mar. 2011.

[22] “IEEE approved draft standard for low frequency (less than 500 khz) narrow band power

line communications for smart grid applications,” IEEE Std. 1901.2-2013, 2013.

[23] N. Bui, M. Rossi, and M. Zorzi, IEEE Vision for Smart Grid Communications: 2030 and

Beyond. 3 Park Avenue New York, NY, USA: IEEE, 2013, ch. Networking Technologies

for Smart Grid.

[24] G. A. Pagani and M. Aiello, “Power grid network evolutions for local energy trading,”

arXiv:1201.0962 [physics.soc-ph], Feb. 2012.

[25] T. Erseghe and S. Tomasin, “Power flow optimization for smart microgrids by SDP

relaxation on linear networks,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 751–762, Jun.

2013.



104 BIBLIOGRAPHY

[26] P. Tenti, A. Costabeber, P. Mattavelli, and D. Trombetti, “Distribution loss minimiza-

tion by token ring control of power electronic interfaces in residential microgrids,” IEEE

Trans. Industrial Electronics, vol. 59, no. 10, pp. 3817–3826, Oct. 2012.

[27] A. Costabeber, T. Erseghe, P. Tenti, S. Tomasin, and P. Mattavelli, “Optimization

of micro-grid operation by dynamic grid mapping and token ring control,” in Power

Electronics and Applications (EPE 2011), Birmingham, United Kingdom, Aug. 2011,

pp. 1–10.

[28] S. Bolognani and S. Zampieri, “Convergence analysis of a distributed voltage support

strategy for optimal reactive power compensation,” in Proc. 3rd IFAC Workshop on

Distributed Estimation and Control in Networked Systems, Santa Barbara, CA, U.S.,

Sept 2012.

[29] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of reactive

power by distributed photovoltaic generators,” Proceedings of the IEEE, vol. 99, no. 6,

pp. 1063–1073, Jun. 2011.

[30] W. H. Kersting, “Radial distribution test feeders,” in Proc. IEEE Power Engineering

Society Winter Meeting, Columbus, OH, U.S., Jan. 2001.

[31] K. Bache and M. Lichman, “UCI Machine Learning Repository,” 2013. [Online].

Available: http://archive.ics.uci.edu/ml

[32] L. Tao, C. Schwaegerl, P. Mancarella, G. Strbac, N. Hatziargyriou, and B. Buchholz,

“European Roadmap for Microgrids,” in Proc. CIGRE, Paris, France, Aug. 2010.

[33] R. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power and Energy Magazine,

vol. 7, no. 2, pp. 55–62, Feb. 2009.

[34] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8,

no. 1, pp. 18–28, Jan.-Feb. 2010.

[35] J. Rocabert, G. Azevedo, A. Luna, J. Guerrero, J. Candela, and P. Rodriguez, “Intelli-

gent connection agent for three-phase grid-connected microgrids,” IEEE Trans. Power

Electronics, vol. 26, no. 10, pp. 2993–3005, Oct. 2011.



BIBLIOGRAPHY 105

[36] R. Anderson, A. Boulanger, W. Powell, and W. Scott, “Adaptive stochastic control for

the smart grid,” IEEE Proceedings, vol. 99, no. 6, pp. 1098–1115, May 2011.

[37] A. Dimeas and N. Hatziargyriou, “Operation of a multiagent system for microgrid con-

trol,” IEEE Trans. Power Systems, vol. 20, no. 3, pp. 1447–1455, Aug. 2005.

[38] J.-Y. Kim, J.-H. Jeon, S.-K. Kim, C. Cho, J. H. Park, H.-M. Kim, and K.-Y. Nam,

“Cooperative control strategy of energy storage system and microsources for stabilizing

the microgrid during islanded operation,” IEEE Trans. Power Electronics, vol. 25, no. 12,

pp. 3037–3048, Dec. 2010.

[39] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, “Au-

tonomous demand-side management based on game-theoretic energy consumption

scheduling for the future smart grid,” IEEE Trans. Smart Grids, vol. 1, no. 3, pp.

320–331, Nov. 2010.

[40] D. Forner, T. Erseghe, S. Tomasin, and P. Tenti, “On efficient use of local sources in

smart grids with power quality constraints,” in Proc. First IEEE Int. Conf. on Smart

Grid Commun. (SmartGridComm), 2010, pp. 555–560.

[41] T. Erseghe and S. Tomasin, “Power flow optimization for smart microgrids by sdp re-

laxation on linear networks,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 751–762, 2013.

[42] E. Serban and H. Serban, “A control strategy for a distributed power generation mi-

crogrid application with voltage- and current-controlled source converter,” IEEE Trans.

Power Electronics, vol. 25, no. 12, pp. 2981–2992, Dec. 2010.

[43] P. Tenti, H. K. Morales, and P. Mattavelli, “Conservative Power Theory, a Framework to

Approach Control and Accountability Issues in Smart Microgrids,” IEEE Trans. Power

Electronics, vol. 26, no. 3, pp. 664–673, May 2011.

[44] P. Tenti, A. Costabeber, T. Caldognetto, and P. Mattavelli, “Improving microgrid per-

formance by cooperative control of distributed energy sources,” in Proc. IEEE Energy

Conversion Congress and Exposition (ECCE), Denver, CO, US, Sep. 2013.



106 BIBLIOGRAPHY

[45] Q. L. Ping, Y. Zhang, H. Jianwei, and W. Yuan, “Demand response management via

real-time electricity price control in smart grids,” IEEE Journal on Selected Areas in

Communications, vol. 31, no. 7, pp. 1268–1280, July 2013.

[46] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. Wong, and J. Jatskevich, “Optimal

real-time pricing algorithm based on utility maximization for smart grid,” in IEEE Inter-

national Conference on Smart Grid Communications (SmartGridComm), Gaithersburg,

MD, U.S., Oct 2010.

[47] C. Joe-Wong, S. Sen, H. Sangtae, and C. Mung, “Optimized day-ahead pricing for

smart grids with device-specific scheduling flexibility,” IEEE Journal on Selected Areas

in Communications, vol. 30, no. 6, pp. 1075–1085, July 2012.

[48] S. Ali, R. Ahmad, and K. K. Hyeun, “A study of pricing policy for demand response

of home appliances in smart grid based on m2m,” in IEEE International Conference on

Frontiers of Information Technology (FIT), Islamabad, PK, Dec 2012.

[49] P. Samadi, A. Mohsenian-Rad, R. Schober, V. Wong, and J. Jatskevich, “Optimal real-

time pricing algorithm based on utility maximization for smart grid,” in IEEE Inter-

national Conference on Smart Grid Communications (SmartGridComm), Gaithersburg,

MD, U.S., Oct 2010.

[50] H. Chong and S. Sarkar, “Dynamic pricing for distributed generation in smart grid,” in

IEEE Green Technologies Conference, Denver, CO, U.S., April 2013.

[51] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, U.S.: Cambridge

University Press, 2004.

[52] S. Boyd, S. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric

programming,” Optimization and Engineering, vol. 8, no. 1, pp. 67–127, 2007. [Online].

Available: http://dx.doi.org/10.1007/s11081-007-9001-7

[53] M. Kaisa, Nonlinear Multiobjective Optimization. Springer Science and Business Media

U.S., 1998.


