Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rempe, Marieke (2015) Frictional behavior and microstructures of calcite-bearing fault gouges. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
231Mb

Abstract (inglese)

The frictional behavior of a fault and the physical and mechanical properties of the fault rocks have important implications for earthquake nucleation, propagation and arrest. To further understand the mechanical behavior of carbonate-bearing faults, low- to high-velocity experiments on calcite gouge have been conducted using three rotary-shear apparatus: ROSA, located at the Department of Geosciences of the University of Padua, Italy; SHIVA, at the Istituto Nazionale die Geofisica e Vulcanologia (INGV) in Rome, Italy, and the Phv-apparatus of the Physical Property Research Group of the Kochi Institute for Core Sample Research, Kochi, Japan. Three main topics were addressed with the experimental approach: 1) The formation of clast-cortex aggregates in natural and experimental calcite-bearing fault zones (Chapter I); 2) Localization of strain in gouge layers (Chapter II); and 3) The effect of fluids on the frictional behavior of calcite gouge (Chapter III).

Clast-cortex aggregates (CCAs) are composite grains found in the slipping zones of faults hosted in calcite- and clay-rich rocks that were previously suggested to be textural evidence of seismic slip on a fault. Experimental investigation of the dependence of CCA formation in calcite gouge layers on the applied slip rate, normal stress, total displacement and ambient humidity showed that CCAs formed at all investigated slip rates (100 µm/s to 1 m/s) but only at relatively low normal stresses (≤5 MPa). The aggregates were better developed with increasing displacement (up to 5 m) and did not form in experiments with water-dampened gouges. In the experiments, aggregates formed in low-strain regions within the gouge layers, adjacent to the highest-strain slip zones. We propose that CCAs in calcite-bearing slip zones form in the shallow portions of faults during shearing in relatively dry conditions, but our experiments suggest that they cannot be used as indicators of seismic slip. Formation involves clast rotation due to granular flow accompanied by accretion of fine matrix material possibly facilitated by electrostatic forces.

To further understand strain localization during seismic slip, which is a fundamental mechanical process that has implications for frictional heating and the earthquake energy budget, we performed intermediate- to high-velocity rotary-shear experiments on calcite gouge containing strain markers made of dolomite gouge. Sheared markers should provide microstructural information of the strain distribution in the gouge layer and its dependence on the applied total strain, normal stress, slip rate, and ambient conditions. Microstructural analysis revealed that in both dry and water-dampened gouges strain localization at 1 m/s occurs progressively and rapidly. The strain accommodated in the bulk of the gouge layer does not change significantly with increasing total displacement, suggesting that, once formed, the high-strain slipping zone and principal slip surface accommodate most of the ongoing displacement. This is supported by the presence of sintered and recrystallized grains and zones of calcite decarbonation adjacent to the principal slip surface, indicating localized frictional heating. Faster localization in water-dampened conditions, although suggested by the faster dynamic weakening, was not reflected in the investigated microstructures. Instead, weakening in water-dampened gouges may be enhanced by faster subcritical crack growth in the presence of fluids. When extrapolated to natural conditions, our results suggest that calcite-bearing gouge slip zones are more prone to slip in the presence of water than in relatively dry conditions.

The effect of fluids on the frictional behavior of calcite gouge was further investigated by conducting intermediate- to high-velocity experiments with controlled fluid pressure. Consistent with our results from experiments with strain-markers, slip appears to be localized on one or more slip surfaces adjacent to which zones of recrystallization are found. Grey or black material covering the slip surface of several samples was identified as disordered carbon by Raman spectroscopy indicating decarbonation of the calcite. In low-velocity (1 mm/s) experiments, a lower shear stress of water-saturated gouges as compared to room-dry conditions is attributed to intergranular lubrication and to the lower calcite fracture surface energy accelerating subcritical crack growth, consistent with a high degree of compaction. At the initiation of sliding at high velocity, weakening in saturated gouges occurs abruptly, while the room-dry gouges show a pronounced strengthening phase before the onset of weakening. For a given effective normal stress, the peak stress is lower, and the strengthening phase is longer, for higher pore-fluid factors. The weakening in room-dry and water-saturated gouges sheared at high velocity likely occurs by flash heating, which is accelerated in the presence of fluids by subcritical crack growth. Consistent with flash heating, the presence of carbon on the slipping surface of our calcite samples indicated that decarbonation has occurred even though the bulk temperature of the gouge layer was lower than the decarbonation temperature. At high velocity, intense frictional heating leads to thermal pressurization and subsequent decrease of the shear stress in the experiments performed in undrained conditions. Zones of recrystallized grains adjacent to the principal slip surfaces are possibly featuring microstructures characteristic for grain boundary sliding aided by diffusion creep which suggests that strain was not only accommodated by frictional processes, but possibly by superplasticity. The experimental results suggest that the presence of water in carbonate-bearing faults facilitates earthquake nucleation and even more so if the fluids present are pressurized. This might explain the long-lasting earthquake sequences e.g. of Umbria-Marche and L’Aquila hosted on carbonate-bearing faults. Additionally, some of the slip distribution complexity during earthquakes occurring in carbonate sequences might be due to a difference in the degree of fluid saturation in different fault patches.

Abstract (italiano)

Le proprietà frizionali delle faglie e le proprietà fisiche e meccaniche delle rocce di faglia influenzano in modo importante la nucleazione, la propagazione e l’arresto dei terremoti. Per capire più approfonditamente il comportamento meccanico delle faglie in rocce carbonatiche, sono stati fatti esperimenti a diverse velocità usando gouge (rocce granulari) di calcite, con tre diverse macchine rotary shear: ROSA, installata presso il Dipartimento di Geoscienze dell’Università di Padova, Italia; SHIVA, presso l’Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italia, e il Phv-apparatus del Physical Property Research Group del Kochi Institute of Core Sample Research, Kochi, Giappone. Tre sono gli obiettivi principali indagati con il metodo sperimentale: 1) La formazione di clast-cortex aggregates (aggregati aventi al nucleo un clasto e una corteccia composta da detrito granulare ultrafine) nelle zone di faglia ricche in calcite sia naturali che sperimentali (Capitolo I); 2) Localizzazione della deformazione nei livelli di gouge (Capitolo II); e 3) L’effetto dei fluidi (acqua) nel comportamento frizionale del gouge di calcite (Capitolo III).

I Clast-cortex aggregates (CCAs) sono clasti compositi che si trovano nelle zone di slip delle faglie ricche in calcite e minerali argillosi, precedentemente candidati sulla base di evidenze tessiturali ad essere indicatori di scivolamento cosismico. Esperimenti mirati sono stati fatti per trovare la correlazione tra la formazione di CCA in gouge di calcite e velocità, sforzo normale, rigetto totale e condizioni ambientali (umidità atmosferica e saturazione in acqua). I risultati sperimentali mostrano che i CCA si formano a tutte le velocità di scivolamento (da 100 µm/s a 1 m/s) ma solo a sforzi normali relativamente bassi (<5 MPa). Gli aggregati sono più abbondanti e meglio sviluppati per grandi rigetti (massimo rigetto imposti pari a 5 m) e non si formano negli esperimenti con gouge saturo d’acqua. Negli esperimenti, gli aggregati si sono formati in regioni poco deformate del livello di gouge, ma adiacenti alle zone con elevata localizzazione della deformazione. Da queste osservazioni sperimentali concludiamo che i CCA si formino nelle parti più superficiali delle faglie durante lo la deformazione per taglio in condizioni relativamente asciutte, ma non necessariamente durante lo scivolamento cosismico. Di conseguenza i CCA non possono essere usati come indicatori di slip cosismico. Il meccanismo di formazione dei CCA è per rotazione dei clasti dovuta al flusso granulare accompagnato ad accrescimento per cattura di particelle più piccole della matrice, probabilmente a causa di forze di natura elettrostatica.

Per meglio comprendere i meccanismi di localizzazione della deformazione durante lo scivolamento cosismico, che controlla, p.e., lo sviluppo di calore per attrito su faglia e il bilancio energetico di un terremoto, abbiamo condotto esperimenti imponendo velocità di scivolamento da intermedie ad elevate con macchine tipo rotary shear su gouge di calcite. All'interno dello spessore del gouge abbiamo posizionato dei marker (indicatori) di deformazione per taglio composti da gouge di dolomite. I marker, deformandosi unitamente alla matrice di calcite, consentono di misurare la distribuzione della deformazione per taglio nel livello di gouge negli esperimenti. Le analisi microstrutturali hanno dimostrato che sia in condizioni asciutte che in presenza d’acqua la deformazione a velocità di scivolamento di 1 m/s, è molto rapida e si localizza in una zona principale di scivolamento (ZPS) dallo spessore di poche decine di micrometri e sulla adiacente superficie principale di scivolamento (SPS). La deformazione per taglio accomodata nella parte rimanente del livello di gouge non cambia significativamente all’aumentare del rigetto, suggerendo che, una volta localizzata, la ZPS e la SPS accomodano la maggior parte del rigetto. Questa conclusione è supportata dalla presenza di granuli sinterizzati e ricristallizzati e zone di decarbonatazione della calcite adiacenti alla SPS, che indicano lo sviluppo, estremamente localizzato, di calore per attrito. I dati meccanici indicano che i gouge saturi in acqua si indeboliscono (l'attrito diminuisce più rapidamente con il rigetto) di quelli asciutti, ma le microstrutture sono sostanzialmente simili per quanto riguarda la velocità di localizzazione della deformazione. L'indebolimento frizionale nei gouge saturi d'acqua può essere innescato dal meccanismo di crescita sub-critica delle microfratture, più efficiente in presenza d'acqua. L'estrapolazione di questi risultati alle condizioni naturali, suggerisce che i gouge ricchi in calcite sono più favorevoli allo scivolamento se saturi in acqua, piuttosto che in condizioni relativamente più asciutte.

L’effetto dei fluidi sul comportamento frizionale di gouge di calcite è stato ulteriormente studiato attraverso esperimenti in controllo di pressione di fluidi a velocità da intermedie ad elevate. Coerentemente con i nostri esperimenti con gli indicatori di deformazione, il rigetto appare localizzato su una o più superfici di scivolamento che sono spesso contornate da zone di ricristallizzazione. La microspettroscopia Raman ha evidenziato la presenza di carbonio amorfo sulla superficie di scivolamento, indicatore di processi di decarbonatazione nella calcite. In esperimenti condotti a basse velocità di scivolamento (1 mm/s), la minore resistenza al taglio dei gouge saturi d’acqua rispetto ai gouge deformati in presenza di sola umidità atmosferica, è attribuita a lubrificazione intergranulare operata dalla acqua e alla bassa energia di superficie della calcite. Quest'ultima consente l'accelerazione dei processi di crescita sub-critica delle microfratture cui corrisponde un alto grado di compattazione. Nelle prime fasi di scivolamento ad alte velocità, l’indebolimento nei gouge saturi avviene improvvisamente, mentre i gouge in presenza di umidità atmosferica mostrano una fase di aumento di resistenza al taglio prima della fase di indebolimento. Per un dato sforzo normale efficace, per rapporti più elevati di pressione di poro su sforzo normale, lo sforzo di taglio di picco è minore e la fase di aumento di resistenza che precede l'indebolimento più lunga. La riduzione della resistenza per attrito ad alte velocità di scivolamento (cosismiche, ca. 1 m/s), sia in condizioni di umidità atmosferica che sature d’acqua, occorre verosimilmente per meccanismo di "riscaldamento istantaneo" (flash heating) alla scala delle asperità (decine di micrometri). L'indebolimento per "flash heating" è accelerato in presenza di fluidi per il meccanismo di crescita subcritica delle microfratture. Coerentemente con il verificarsi di flash heating, la presenza di carbonio sulla superficie di scivolamento dei nostri campioni di calcite indica che la decarbonatazione è avvenuta nonostante le temperature medie nell'intera zona di scivolamento, misurate con termocoppia, fossero più basse di quella di decarbonatazione. Ad alte velocità di scivolamento, in esperimenti in condizioni sature non drenate, la presenza di un intenso riscaldamento frizionale comporta la pressurizzazione termica del livello di gouge, con conseguente diminuzione dello sforzo di taglio. Nella zona di scivolamento, la formazione di nanoparticelle, grani ricristallizati di calcite e microcavità adiacenti alla superficie di scivolamento principale può essere associata a processi di grain boundary sliding sostenuti da processi diffusivi dipendenti dalla granulometria. Di conseguenza, la deformazione cosismica non è accomodata da soli processi prettamente frizionali, ma anche di tipo superplastico. I risultati degli esperimenti indicano che la presenza d’acqua in faglie all’interno di litologie carbonatiche facilita l’enucleazione di terremoti, ancor più se i fluidi presenti sono in pressione. Questa potrebbe essere una possibile spiegazione delle lunghe sequenze sismiche all’interno di successioni carbonatiche, ad esempio Umbria-Marche e L’Aquila. In aggiunta, la complessa distribuzione dei rigetti durante un singolo terremoto potrebbe essere causata da differenze nel grado di saturazione in fluidi in diverse zone della faglia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Di Toro, Giulio
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 Gennaio 2015
Anno di Pubblicazione:02 Febbraio 2015
Parole chiave (italiano / inglese):Fault gouge Rotary-shear experiments Slip Zones Strain localization Effect of fluids Calcite Limestone Clast-cortex aggregates CCAs
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/10 Geofisica della terra solida
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:7843
Depositato il:23 Nov 2015 14:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Anders, M. H., Aharonov, E., and Walsh, J. J., 2000. Stratified granular media beneath large slide blocks: Implications for mode of emplacement. Geology, 28(11), 971-974. Cerca con Google

Anders, M.H., Fouke, B.W., et al., 2010. The role of Calcining and basal fluidization in the Long Runout of carbonate slides: an example from the heart mountain slide block, Wyoming and Montana, U.S.A. J. Geol. 118, 577e599. Cerca con Google

Atkinson, B. K., 1984. Subcritical crack growth in geological materials. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B6), 4077-4114. Cerca con Google

Atkinson, B.K., and Meredith, P.G., 1987, The theory of subcritical crack growth with applications to minerals and rocks, in Atkinson, B.K., ed., Fracture mechanics of rock: London, Academic Press, p. 111–166. Cerca con Google

Arai, T., Tanaka, H., Ikeda, R., Omura, K., and Matsuda, T., 2002, Concentration of carbon at the central plane in the Nojima fault zone: In Japan Geoscience Union Meeting 2002, abstract: G061-P011. Cerca con Google

Bastesen, E., Braathen, A., Nøttveit, H., Gabrielsen, R. H., and Skar, T., 2009. Extensional fault cores in micritic carbonate–Case studies from the Gulf of Corinth, Greece. Journal of Structural Geology, 31(4), 403-420. Cerca con Google

Beeler, N. M., Tullis, T. E., Blanpied, M. L., and Weeks, J. D., 1996. Frictional behavior of large displacement experimental faults. Journal of Geophysical Research: Solid Earth (1978–2012), 101(B4), 8697-8715. Cerca con Google

Ben-Zion, Y., and Sammis, C. G., 2003. Characterization of fault zones. Pure and Applied Geophysics, 160(3-4), 677-715. Cerca con Google

Bernabe, Y., 1987. A wide range permeameter for use in rock physics. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 24, No. 5, pp. 309-315). Pergamon. Cerca con Google

Bestmann, M., Pennacchioni, G., et al., 2012. Deformation and ultrafine dynamic recrystallization of quartz in pseudotachylyte-bearing brittle faults: a matter of a few seconds. J. Struct. Geol. 38, 21e38. Cerca con Google

Beutner, E. C., and Craven, A. E., 1996. Volcanic fluidization and the Heart Mountain detachment, Wyoming. Geology, 24(7), 595-598. Cerca con Google

Beutner, E.C., Gerbi, G.P., 2005. Catastrophic emplacement of the heart mountain block slide, Wyoming and Montana, USA. Geol. Soc. Am. Bull. 117 (5e6), 724e735. Cerca con Google

Beyler, C. L., and Hirschler, M. M., 2002. Thermal decomposition of polymers. SFPE handbook of fire protection engineering, 2. Cerca con Google

Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N., 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of metamorphic Geology, 20(9), 859-871. Cerca con Google

Billi, A., 2005. Grain size distribution and thickness of breccia and gouge zones from thin (< 1m) strike-slip fault cores in limestone. Journal of Structural Geology, 27(10), 1823-1837. Cerca con Google

Blumm, J., Lindemann, A., Meyer, M., and Strasser, C., 2010. Characterization of PTFE using advanced thermal analysis techniques. International Journal of Thermophysics, 31(10), 1919-1927. Cerca con Google

Boneh, Y., Sagy, A., et al., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth Planet. Sci. Lett. 381 (0), 127e137. Cerca con Google

Boullier, A. M., and Gueguen, Y., 1975. SP-mylonites: origin of some mylonites by superplastic flow. Contributions to Mineralogy and Petrology, 50(2), 93-104. Cerca con Google

Boullier, A.M., Yeh, E.C., et al., 2009. Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochem. Geophys. Geosyst. 10. Cerca con Google

Boutareaud, S., Calugaru, D. G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., and Shimamoto, T., 2008. Clay‐clast aggregates: A new textural evidence for seismic fault sliding?. Geophysical Research Letters, 35(5). Cerca con Google

Boutareaud, S., Boullier, A. M., Andreani, M., Calugaru, D. G., Beck, P., Song, S. R., and Shimamoto, T., 2010. Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B2). Cerca con Google

Boyer, S. E., and Hossack, J. R., 1992. Structural features and emplacement of surficial gravity-slide sheets, northern Idaho-Wyoming thrust belt. Geological Society of America Memoirs, 179, 197-214. Cerca con Google

Brace, W. F., and Byerlee, J. D., 1966. Stick-slip as a mechanism for earthquakes. Science, 153(3739), 990-992. Cerca con Google

Brantut, N., Schubnel, A., Rouzaud, J. N., Brunet, F., and Shimamoto, T., 2008. High‐velocity frictional properties of a clay‐bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B10). Cerca con Google

Brantut, N., Schubnel, A., Corvisier, J., and Sarout, J., 2010. Thermochemical pressurization of faults during coseismic slip. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B5). Cerca con Google

Brantut, N., Han, R., et al., 2011. Fast slip with inhibited temperature rise due to mineral dehydration: evidence from experiments on gypsum. Geology 39 (1), 59e62. Cerca con Google

Brune, J. N., Henyey, T. L., and Roy, R. F., 1969. Heat flow, stress, and rate of slip along the San Andreas fault, California. Journal of Geophysical Research, 74(15), 3821-3827. Cerca con Google

Brune, J., 2001. Fault normal dynamic loading and unloading: an explanation for ‘‘non-gouge’’ rock powder and lack of fault-parallel shear bands along the San Andreas fault. EOS Trans. Am. Geophys. Union 82, 47. Cerca con Google

Byerlee, J., 1990. Friction, overpressure and fault normal compression. Geophysical Research Letters, 17(12), 2109-2112. Cerca con Google

Carslaw, H. S., and Jaeger, J. C., 1959. Heat in solids (Vol. 19591). Clarendon Press, Oxford. Cerca con Google

Chen, X., Madden, A.S., et al., 2013. Dynamic weakening by nanoscale smoothing during high-velocity fault slip. Geology 41 (7), 739e742. Cerca con Google

Chester, F. M., Evans, J. P., and Biegel, R. L., 1993. Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B1), 771-786. Cerca con Google

Chester, F. M., and Logan, J. M., 1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics, 124(1-2), 79-106. Cerca con Google

Chester, F. M., and Logan, J. M., 1987. Composite planar fabric of gouge from the Punchbowl fault, California. Journal of Structural Geology, 9(5), 621-IN6. Cerca con Google

Chester, F. M., J. S. Chester, D. L. Kirschner, S. E. Schulz, and J. P. Evans, 2004, Structure of large-displacement, strike-slip fault zones in the brittle continental crust, in Rheology and Deformation in the Lithosphere at Continental Margins, edited by G. D. Karner, B. Taylor, N. W. Driscoll and D. L. Kohlstedt, chap. 8, pp. 223–260, Columbia Univ. Press, New York. Cerca con Google

Chiaraluce, L., Amato, A., Cocco, M., Chiarabba, C., Selvaggi, G., Di Bona, M., Piccinini, D., Deschamps, A., Margheriti, L., Courboulex, F., Ripepe, M., 2004. Complex normal faulting in the Apennines thrust-and-fold belt: the 1997–98 seismic sequence in central Italy. BSSA 94 (1), 99–116. Cerca con Google

Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., De Gori, P., 2011. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res. 116, B12311. Cerca con Google

Chiaraluce, L., 2012. Unraveling the complexity of Apenninic extensional fault systems: a review of the 2009 L’Aquila earthquake (Central Apennines, Italy). J. Struct. Geol. 42, 2–18, http://dx.doi.org/10.1016/j.jsg.2012.06.007. Vai! Cerca con Google

Chiodini, R. and Cioni, G. Gas, 1989. Geobarometry for hydrothermal systems and its application to various Italian geothermal areas. Appl. Geochem. 4, 564–572. Cerca con Google

Chistyakov, A.D., 2007. The permittivity of water and water vapor in saturation states. Russ. J. Phys. Chem. A 81 (1), 5e8. Cerca con Google

Cirella, A., Piatanesi, A., Cocco, M., Tinti, E., Scognamiglio, L., Michelini, A., ... and Boschi, E., 2009. Rupture history of the 2009 L'Aquila (Italy) earthquake from non‐linear joint inversion of strong motion and GPS data. Geophysical Research Letters, 36(19). Cerca con Google

Cocco, M., Nostro, C., Ekstrom, G., 2000. Static stress changes and fault interaction during the 1997 Umbria–Marche earthquake sequence. J. Seismol. 4, 501–516. Cerca con Google

Cocco, M., Tinti, E., Marone, C., and Piatanesi, A., 2009. Scaling of slip weakening distance with final slip during dynamic earthquake rupture. International Geophysics, 94, 163-186. Cerca con Google

Collettini, C., and Barchi, M. R., 2002. A low-angle normal fault in the Umbria region (Central Italy): a mechanical model for the related microseismicity. Tectonophysics, 359(1), 97-115. Cerca con Google

Collettini, C., and Holdsworth, R. E., 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society, 161(6), 1039-1051. Cerca con Google

Collettini, C., De Paola, N., and Faulkner, D. R., 2009. Insights on the geometry and mechanics of the Umbria–Marche earthquakes (Central Italy) from the integration of field and laboratory data. Tectonophysics, 476, 99-109. Cerca con Google

Colthup, N. B., Daly, L. H., and Wiberley, S. E., 1990. Introduction to infrared and Raman spectroscopy. Elsevier. Cerca con Google

Connolly, J. A. D., 1990. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. American Journal of Science, 290(6), 666-718. Cerca con Google

Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist's opinion. J. Struct. Geol. 21 (8), 995e1001. Cerca con Google

De Paola, N., Collettini, C., Faulkner, D. R., and Trippetta, F., 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics, 27(4). Cerca con Google

De Paola N., Holdsworth R., Viti C., Collettini C., Bullock R., Faoro I., 2014. Can grain size sensitive creep lubricate faults during earthquake propagation? AGU Fall Meeting, abstract MR42-03. Cerca con Google

Dieterich, J. H., 1981. Constitutive properties of faults with simulated gouge. Mechanical behavior of crustal rocks: the Handin volume, 103-120. Cerca con Google

Di Luccio, D., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 2010. Normal faults and thrusts reactivated by deep fluids: the 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy. J. Geophys. Res. 115, B06315 Cerca con Google

Di Toro, G., Goldsby, D. L., and Tullis, T. E., 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427(6973), 436-439. Cerca con Google

Di Toro, G., and Pennacchioni, G., 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402(1), 55-80. Cerca con Google

Di Toro, G., Pennacchioni, G., and Teza, G., 2005. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402(1), 3-20. Cerca con Google

Di Toro, G., Pennacchioni, G., et al., 2009. Pseudotachylytes and earthquake source mechanics. Int. Geophys. 94, 87e133. Cerca con Google

Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., ... and Mariano, S., 2010. From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rendiconti Lincei, 21(1), 95-114. Cerca con Google

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., ... and Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature, 471(7339), 494-498. Cerca con Google

Di Toro, G., Rempe, M., et al., 2013. Strain localization in experimentally sheared gouge layers. In: Abstract MR13A-2258 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9e13 Dec. Cerca con Google

Di Stefano, R., Chiarabba, C., Chiaraluce, L., Cocco, M., De Gori, P., Piccinini, D., and Valoroso, L., 2011. Fault zone properties affecting the rupture evolution of the 2009 (Mw 6.1) L'Aquila earthquake (central Italy): Insights from seismic tomography. Geophysical Research Letters, 38(10). Cerca con Google

Dor, O., Ben-Zion, Y., et al., 2006. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth Planet. Sci. Lett. 245 (3e4), 642e654. Cerca con Google

Dor, O., Rockwell, T. K., and Ben-Zion, Y., 2006. Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in Southern California: a possible indicator for preferred rupture propagation direction. Pure and Applied Geophysics, 163(2-3), 301-349. Cerca con Google

Evans, J. P., 1990. Thickness-displacement relationships for fault zones. Journal of Structural Geology, 12(8), 1061-1065. Cerca con Google

Famin, V., Nakashima, S., Boullier, A. M., Fujimoto, K., and Hirono, T., 2008. Earthquakes produce carbon dioxide in crustal faults. Earth and Planetary Science Letters, 265(3), 487-497. Cerca con Google

Farver, J. R., 1994. Oxygen self-diffusion in calcite: dependence on temperature and water fugacity. Earth and Planetary Science Letters, 121(3), 575-587. Cerca con Google

Farver, J. R., and Yund, R. A., 1996. Volume and grain boundary diffusion of calcium in natural and hot-pressed calcite aggregates. Contributions to Mineralogy and Petrology, 123(1), 77-91. Cerca con Google

Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557-1575. Cerca con Google

Faulkner, D.R., Lewis, A.C., Rutter, E.H., 2003. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics 367 (3e4), 235e251. Cerca con Google

Faulkner, D. R., Mitchell, T. M., Jensen, E., and Cembrano, J., 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B5). Cerca con Google

Faulkner, D. R., and E. H. Rutter, 2001, Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29(6), 503–506 Cerca con Google

Feda, J., 1982. Mechanics of Particulate Materials (Elsevier, New York). Cerca con Google

Flinn, D., 1977. Transcurrent faults and associated cataclasis in Shetland. Journal of the Geological Society, 133(3), 231-247. Cerca con Google

Fondriest, M., Smith, S.A.F., et al., 2013. Mirror-like faults and power dissipation during earthquakes. Geology 41 (11), 1175e1178. Cerca con Google

Fondriest, M., Smith, S. A., Di Toro, G., Zampieri, D., and Mittempergher, S., 2012. Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52-67. Cerca con Google

Frezzotti, M. L., Tecce, F., and Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20. Cerca con Google

Goldsby, D. L., and Tullis, T. E., 2011. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science, 334(6053), 216-218. Cerca con Google

Gratier, J. P., & Gueydan, F., 2007. Effect of Fracturing and Fluid–Rock Interaction on Seismic Cycles. Tectonic Faults: Agents of Change on a Dynamic Earth, 95, 319e356. Cerca con Google

Greason, W.D., 2000. Investigation of a test methodology for triboelectrification. J. Electrostat. 49 (3e4), 245e256. Cerca con Google

Green, H., D. Lockner, K. Bozhilov, A. Maddon, N. Beeler, and Z. Reches, 2010, Nanometric gouge in high-speed shearing experiments: Superplasticity?, AGU, Fall Meet. Suppl., Abstract T31D-08. Cerca con Google

Han, R., Hirose, T., and Shimamoto, T., 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B3). Cerca con Google

Han, R., Hirose, T., Shimamoto, T., Lee, Y., and Ando, J. I., 2011. Granular nanoparticles lubricate faults during seismic slip. Geology, 39(6), 599-602. Cerca con Google

Han, R., and Hirose, T., 2012. Clay–clast aggregates in fault gouge: An unequivocal indicator of seismic faulting at shallow depths?. Journal of Structural Geology, 43, 92-99. Cerca con Google

Han, R., Shimamoto, T., Hirose, T., Ree, J. H., and Ando, J. I., 2007a. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826), 878-881. Cerca con Google

Han, R., Shimamoto, T., Ando, J. I., and Ree, J. H., 2007b. Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12), 1131-1134. Cerca con Google

Handy, M. R., Hirth, G., and Hovius, N. (Eds.)., 2007. Tectonic faults: agents of change on a dynamic Earth (Vol. 95). MIT Press. Cerca con Google

Hatano, T., 2009. Scaling of the critical slip distance in granular layers. Geophysical Research Letters, 36(18). Cerca con Google

Hector, L.G., Schultz, H.L., 1936. The dielectric constant of air at radiofrequencies. J. Appl. Phys. 7 (4), 133e136. Cerca con Google

Heermance, R., Shipton, Z. K., and Evans, J. P., 2003. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan. Bulletin of the seismological society of America, 93(3), 1034-1050. Cerca con Google

Heilbronner, R., Barrett, S., 2013. Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials. Springer. Cerca con Google

Hickman, S. H., 1991. Stress in the lithosphere and the strength of active faults. Reviews of Geophysics, 29, 759-775. Cerca con Google

Hickman, S., Sibson, R., and Bruhn, R., 1995. Introduction to special section: Mechanical involvement of fluids in faulting. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B7), 12831-12840. Cerca con Google

Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. J. Geophys. Res. Solid Earth 110 (B5). Cerca con Google

Holdsworth, R., N. De Paola, I. Faoro, R. Bullock, C. Viti, and C. Collettini, 2013. Nano-scale diffusion-accommodated weakening triggered by frictional sliding during earthquakes in carbonate rocks, Geol. Soc. Am. Abstr. Programs, 45, 679. Cerca con Google

Holland, T. J. B., and Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16:309-343. Cerca con Google

Hondred, P. R., Yoon, S., Bowler, N., and Kessler, M. R., 2013. Degradation kinetics of polytetrafluoroethylene and poly(ethylene-alt-tetrafluoroethylene) High Performance Polymers August 2013 25: 535-542, doi:10.1177/0954008312473491 Cerca con Google

Hubbert, M. K., and Rubey, W. W., 1959. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin, 70(2), 115-166. Cerca con Google

Italiano, F., Martinelli, G., Bonfanti, P., and Caracausi, A., 2009. Long-term (1997-2007) geochemical monitoring of gases from the Umbria-Marche region. Tectonophysics, 476(1), 282-296. Cerca con Google

Jentgen, R., 1971. Solid lubricants: how they work and where to use them. Parts, Hybrids, and Packaging, IEEE Transactions on, 7(2), 86-93. Cerca con Google

Kim, J.W., Ree, J.-H., Han, R., and Shimamoto, T., 2010, Experimental evidence for the simultaneous formation of pseudotachylyte and mylonite in the brittle regime: Geology, v. 38, p. 1143–1146, doi:10.1130/G31593.1. Cerca con Google

Kirkpatrick, J. D., Rowe, C. D., White, J. C., and Brodsky, E. E., 2013. Silica gel formation during fault slip: Evidence from the rock record. Geology, 41(9), 1015-1018. Cerca con Google

Kitajima, H., Chester, J. S., Chester, F. M., and Shimamoto, T., 2010. High‐speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B8). Cerca con Google

Kitajima, H., F. M. Chester, and J. S. Chester, 2011, Dynamic weakening of gouge layers in high‐speed shear experiments: Assessment of temperature‐dependent friction, thermal pressurization, and flash heating, J. Geophys. Res., 116, B08309, doi:10.1029/2010JB007879. Cerca con Google

Kohli, A. H., Goldsby, D. L., Hirth, G., and Tullis, T., 2011. Flash weakening of serpentinite at near‐seismic slip rates. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B3). Cerca con Google

Kuo, L. W., Li, H., Smith, S. A., Di Toro, G., Suppe, J., Song, S. R., ... and Si, J., 2014. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42(1), 47-50. Cerca con Google

Lachenbruch, A.H., 1980. Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. Solid Earth 85 (B11), 6097e6112. Cerca con Google

Lachenbruch, A. H., and Sass, J. H., 1980. Heat flow and energetics of the San Andreas fault zone. Journal of Geophysical Research: Solid Earth (1978–2012), 85(B11), 6185-6222. Cerca con Google

Lee, J. C., Chen, Y. G., Sieh, K., Mueller, K., Chen, W. S., Chu, H. T., ... and Yeats, R., 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: structural and paleoseismic implications for an active thrust fault. Bulletin of the Seismological Society of America, 91(5), 914-929. Cerca con Google

Li, Y. G., Aki, K., Vidale, J. E., and Alvarez, M. G., 1998. A delineation of the Nojima fault ruptured in the M7. 2 Kobe, Japan, earthquake of 1995 using fault zone trapped waves. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B4), 7247-7263. Cerca con Google

Lin, A.M., 1996. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Eng. Geol. 43 (2e3), 213e224. Cerca con Google

Logan, J., Friedman, M., et al., 1979. Experimental studies of simulated gouge and their application to studies of natural fault zones. U.S. Geol. Surv. Open File Rep. 1978, 305e343. Cerca con Google

Long, D. A., and Long, D. A., 1977. Raman spectroscopy (Vol. 206). New York: McGraw-Hill. Cerca con Google

Ma, S., Shimamoto, T., Yao, L., Togo, T., and Kitajima, H., 2014. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 27(5), 469-497. Cerca con Google

Mair, K., and Abe, S., 2008. 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. Earth and Planetary Science Letters, 274(1), 72-81. Cerca con Google

Mandl, G., De Jong, L. N. J., and Maltha, A., 1977. Shear zones in granular material. Rock Mechanics, 9(2-3), 95-144. Cerca con Google

Marone, C., Scholz, C.H., 1988. The Depth of Seismic Faulting and the Upper Transition from Stable to Unstable Slip Regimes. Geophysical Research Letters 15, 621-624. Cerca con Google

Marone, C., Raleigh, C. B., and Scholz, C. H., 1990. Frictional behavior and constitutive modeling of simulated fault gouge. Journal of Geophysical Research: Solid Earth (1978–2012), 95(B5), 7007-7025. Cerca con Google

Marone, C., Hobbs, B. E., and Ord, A., 1992. Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear. Pure and Applied Geophysics, 139(2), 195-214. Cerca con Google

Marone, C., and Kilgore, B., 1993. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Cerca con Google

Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26(1), 643-696. Cerca con Google

Marone, C., Cocco, M., Richardson, E., and Tinti, E., 2009. The critical slip distance for seismic and aseismic fault zones of finite width. International Geophysics, 94, 135-162. Cerca con Google

Matsusaka, S., Maruyama, H., et al., 2010. Triboelectric charging of powders: a review. Chem. Eng. Sci. 65 (22), 5781e5807. Cerca con Google

McLaren, K. G., and Tabor, D., 1963. Visco-elastic properties and the friction of solids: friction of polymers: influence of speed and temperature. Nature, 197, 856-858. Cerca con Google

Miller, S. A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., and Kaus, B. J., 2004. Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427(6976), 724-727. Cerca con Google

Miller, S. A., 2013. The role of fluids in tectonic and earthquake processes. Advances in Geophysics, 54, 1-46. Cerca con Google

Mitchell, T. M., and Faulkner, D. R., 2008. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B11). Cerca con Google

Mitchell, T. M., and Faulkner, D. R., 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31(8), 802-816. Cerca con Google

Mitchell, T. M., Ben-Zion, Y., and Shimamoto, T., 2011. Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan. Earth and Planetary Science Letters, 308(3), 284-297. Cerca con Google

Mitchell, T. M., Smith, S. A., Anders, M. H., Di Toro, G., Nielsen, S., Cavallo, A., and Beard, A. D., 2015. Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411, 199-207. Cerca con Google

Moretti, I., Sakellariou, D., Lykousis, V., and Micarelli, L., 2003. The Gulf of Corinth: an active half graben?. Journal of Geodynamics, 36(1), 323-340. Cerca con Google

Morrow, C. A., Moore, D. E., and Lockner, D. A., 2000. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27(6), 815-818. Cerca con Google

Morrow, C., Shi, L. Q., and Byerlee, J., 1981. Permeability and strength of San Andreas fault gouge under high pressure. Geophysical Research Letters, 8(4), 325-328. Cerca con Google

Nielsen, S., Di Toro, G., Hirose, T., and Shimamoto, T., 2008. Frictional melt and seismic slip. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B1). Cerca con Google

Nomura, T., Satoh, T., et al., 2003. The environment humidity effect on the tribocharge of powder. Powder Technol. 135, 43e49. Cerca con Google

Nur, A., and Byerlee, J., 1971. An exact effective stress law for elastic deformation of rock with fluids. Journal of Geophysical Research, 76(26), 6414-6419. Cerca con Google

Oohashi, K., Hirose, T., Kobayashi, K., and Shimamoto, T., 2012. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications for fault creep. Journal of Structural Geology, 38, 39-50. Cerca con Google

Oohashi, K., Hirose, T., et al., 2013. Graphite as a lubricating agent in fault zones: an insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge. J. Geophys. Res. Solid Earth 118 (5), 2067e2084. Cerca con Google

Oohashi, K., Han, R., Hirose, T., Shimamoto, T., Omura, K., and Matsuda, T., 2014. Carbon-forming reactions under a reducing atmosphere during seismic fault slip. Geology, 42(9), 787-790. Cerca con Google

Passchier, C. W., and Trouw, R. A., 1996. Microtectonics (Vol. 256). Berlin: Springer. Cerca con Google

Pavlis, T. L., Serpa, L. F., and Keener, C., 1993. Role of seismogenic processes in fault-rock development: An example from Death Valley, California. Geology, 21(3), 267-270. Cerca con Google

Pino, N. A., and Di Luccio, F., 2009. Source complexity of the 6 April 2009 L'Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis. Geophysical Research Letters, 36(23). Cerca con Google

Platt, J.D., Rudnicki, J.W., et al., 2014. Stability and localization of rapid shear in fluid e saturated fault gouge: 2. Localized zone width and strength evolution. J. Geophys. Res. Solid Earth 119 (5), 4334e4359. Cerca con Google

Poirier, J. P., 1985. Creep of Crystals, 260 pp. Cambridge Univer-sity Press, New York. Cerca con Google

Polissar, P.J., Savage, H.M., et al., 2011. Extractable organic material in fault zones as a tool to investigate frictional stress. Earth Planet. Sci. Lett. 311 (3), 439e447. Cerca con Google

Power, W. L., Tullis, T. E., and Weeks, J. D., 1988. Roughness and wear during brittle faulting. Journal of Geophysical Research: Solid Earth (1978–2012), 93(B12), 15268-15278. Cerca con Google

Proctor, B. P., Mitchell, T. M., Hirth, G., Goldsby, D., Zorzi, F., Platt, J. D., and Di Toro, G., 2014. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 119(11), 8107-8131. Cerca con Google

Rabinowitz, H.S., Savage, H.M., et al., 2013. Detecting the frictional temperature rise during the 2011 Tohoku earthquake using the thermal maturity of biomarkers. In: Abstract T41F-07 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9e13 Dec. Cerca con Google

Rathbun, A. P., and Marone, C., 2010. Effect of strain localization on frictional behavior of sheared granular materials. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B1). Cerca con Google

Reches, Z. E., & Dewers, T. A., 2005. Gouge formation by dynamic pulverization during earthquake rupture. Earth and Planetary Science Letters, 235(1), 361-374. Cerca con Google

Reches, Z. E., and Lockner, D. A., 2010. Fault weakening and earthquake instability by powder lubrication. Nature, 467(7314), 452-455. Cerca con Google

Rempe, M., Mitchell, T., et al., 2013. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. J. Geophys. Res. Solid Earth 118 (6), 2813e2831. Cerca con Google

Rempe, M., Smith, S. A., Ferri, F., Mitchell, T. M., and Di Toro, G., 2014. Clast-cortex aggregates in experimental and natural calcite-bearing fault zones. Journal of Structural Geology, 68, 142-157. Cerca con Google

Rempel, A.W., Rice, J.R., 2006. Thermal pressurization and onset of melting in fault zones. J. Geophys. Res. Solid Earth 111 (B9) (1978e2012). Cerca con Google

Rice, J. R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. International Geophysics, 51, 475-503. Cerca con Google

Rice, J. R., 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B5). Cerca con Google

Rice, J. R., 1978. Thermodynamics of the quasi-static growth of Griffith cracks. Journal of the Mechanics and Physics of Solids, 26(2), 61-78. Cerca con Google

Rice J. R., J. W. Rudnicki, and J. D. Platt, 2014, Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2013JB010710. Cerca con Google

Rice, J. R., and Cocco, M., 2007. Seismic fault rheology and earthquake dynamics. Tectonic Faults: Agents of Change on a Dynamic Earth, 99-137. Cerca con Google

Rietveld, H.M., 1967. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22 (1), 151e152. Cerca con Google

Roberts, G.P., Michetti, A.M., 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio Abruzzo Apennines, central Italy. J. Struct. Geol. 26 (2), 339e376. Cerca con Google

Robertson, E. C., 1983. Relationship of fault displacement to gouge and breccia thickness. Min. Eng., 35, 1426-1432 Cerca con Google

Robin P.Y., 1978 Pressure solution at grain-to-grain contacts. Geochim Cosmochim Acta, 42:1383–1389 Cerca con Google

Rockwell, T. K., and Ben‐Zion, Y., 2007. High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B10). Cerca con Google

Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., and Ortega-Huertas, M., 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94(4), 578-593. Cerca con Google

Rowe, C.D., Kirkpatrick, J.D., et al., 2012. Fault rock injections record paleo-earthquakes. Earth Planet. Sci. Lett. 335, 154e166. Cerca con Google

Rowe C. and Griffith A.W., 2014. Earthquake signatures from fast slip and dynamic fracture propagation: state of the art. Abstract T14A-01, AGU Fall Meeting Cerca con Google

Røyne, A., Bisschop, J., and Dysthe, D. K., 2011. Experimental investigation of surface energy and subcritical crack growth in calcite. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B4). Cerca con Google

Rudnicki, J. W., and Rice, J. R., 2006. Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B10). Cerca con Google

Ruina, A., 1983. Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth (1978–2012), 88(B12), 10359-10370. Cerca con Google

Rutter E.H., 1976. The kinetics of rock deformation by pressure solution. Phil Trans R Soc Lond A283:203–219 Cerca con Google

Rutter, E. H., Maddock, R. H., Hall, S. H., and White, S. H., 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics, 124(1-2), 3-30. Cerca con Google

Sagy, A., and Brodsky, E. E., 2009. Geometric and rheological asperities in an exposed fault zone. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B2). Cerca con Google

Sammis, C. G., and Biegel, R. L., 1989. Fractals, fault-gouge, and friction. In Fractals in geophysics (pp. 255-271). Birkhäuser Basel. Cerca con Google

Savage, H. M., and Brodsky, E. E., 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B3). Cerca con Google

Savage, H.M., Polissar, P.J., et al., 2014. Biomarkers heat up during earthquakes: new evidence of seismic slip in the rock record. Geology 42 (2), 99e102. Cerca con Google

Sawai, M., Shimamoto, T., et al., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. J. Struct. Geol. 38, 117e138. Cerca con Google

Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L. Ellsworth, 2002. High-resolution image of Calaveras Fault seismicity, J. Geophys. Res., 107(B9), 2186, doi:10.1029/2001JB000633. Cerca con Google

Schmid, S. M., Boland, J. N., and Paterson, M. S., 1977. Superplastic flow in finegrained limestone. Tectonophysics, 43(3), 257-291. Cerca con Google

Scholz, C.H., 1987. Wear and Gouge formation in brittle faulting. Geology 15 (6), 493e495. Cerca con Google

Scholz, C. H., Wyss, M., and Smith, S. W., 1969. Seismic and aseismic slip on the San Andreas fault. Journal of geophysical research, 74(8), 2049-2069. Cerca con Google

Scholz, C. H., 2002. The mechanics of earthquakes and faulting. Cambridge university press. Cerca con Google

Schindelin, J., Arganda-Carreras, I., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9 (7), 676e682. Cerca con Google

Schubnel, A., Brunet, F., Hilairet, N., Gasc, J., Wang, Y., and Green, H. W., 2013. Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science, 341(6152), 1377-1380. Cerca con Google

Scruggs, V.J., Tullis, T.E., 1998. Correlation between velocity dependence of friction and strain localization in large displacement experiments on feldspar, muscovite and biotite gouge. Tectonophysics 295 (1), 15e40. Cerca con Google

Segall, P., and J. R. Rice, 2006, Does shear heating of pore fluid contribute to earthquake nucleation?, J. Geophys. Res., 111, B09316, doi:10.1029/2005JB004129. Cerca con Google

Shelly, D. R., 2010. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 463(7281), 648-652. Cerca con Google

Shimamoto, T., and Logan, J. M., 1981. Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges. Journal of Geophysical Research: Solid Earth (1978–2012), 86(B4), 2902-2914. Cerca con Google

Shimamoto, T., Togo, T., 2012. Earthquakes in the lab. Science 338 (6103), 54e55. Sibson, R.H., 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. Int. 43 (3), 775e794. Cerca con Google

Shimamoto, T., and Tsutsumi, A., 1994. A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. J. Tecton. Res. Group Jpn, 39, 65-78. Cerca con Google

Shimamoto, T., Togo, T., 2012. Earthquakes in the lab. Science 338 (6103), 54e55. Cerca con Google

Sibson, R. H., 1986. Brecciation processes in fault zones: inferences from earthquake rupturing. Pure and Applied Geophysics, 124(1-2), 159-175. Cerca con Google

Sibson, R. H., 1973. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature, 243(126), 66-68. Cerca con Google

Sibson, R. H., 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3), 775-794. Cerca con Google

Sibson, R. H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213. Cerca con Google

Sibson, R. H., 1981. Fluid flow accompanying faulting: field evidence and models. Earthquake prediction, 593-603. Cerca con Google

Sibson, R. H., 1990. Conditions for fault-valve behaviour. Geological Society, London, Special Publications, 54(1), 15-28. Cerca con Google

Sibson, R. H., 1990. Rupture nucleation on unfavorably oriented faults. Bulletin of the Seismological Society of America, 80(6A), 1580-1604. Cerca con Google

Sibson, R. H., 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1), 283-293. Cerca con Google

Sibson, R.H., 2003. Thickness of the seismic slip zone. Bull. Seismol. Soc. Am. 93 (3), 1169e1178. Cerca con Google

Siman-Tov, S., Aharonov, E., et al., 2013. Nanograins form carbonate fault mirrors. Geology 41 (6), 703e706. Cerca con Google

Skempton, A. W., 1960. Terzaghi’s discovery of effective stress. From Theory to Practice in Soil Mechanics: Selections from the Writings of Karl Terzaghi, 42-53. Cerca con Google

Smith, S.A.F., Collettini, C., et al., 2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. J. Struct. Geol. 30 (8), 1034e1046. Cerca con Google

Smith, S. A., Billi, A., Di Toro, G., and Spiess, R., 2011. Principal slip zones in limestone: microstructural characterization and implications for the seismic cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 168(12), 2365-2393. Cerca con Google

Smith, S.A.F., Di Toro, G., et al., 2013. Coseismic recrystallization during shallow earthquake slip. Geology 41 (1), 63e66. Cerca con Google

Smith, S.A.F., Di Toro, G., et al., 2012. Field and experimental constraints on seismic localization in granular fault gouge. In: Abstract S11A-06 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3e7 Dec. Cerca con Google

Smith, S.A.F., Nielsen, S., Di Toro, G., 2015. Strain localization and the onset of dynamic weakening in fault gouge. Earth and Planetary Science Letters, in press. Cerca con Google

Snoke, A.W., Tullis, J., et al., 1998. Fault-related Rocks: a Photographic Atlas. Princeton University Press. Cerca con Google

Spagnuolo E., Plumper O., Violay M., Cavallo A., Di Toro G., 2014. Shock Waves Trigger Fault Weakening in Calcite-bearing Rocks During Earthquakes, American Geophysical Union Annual Meeting Abstracts S11C-4359, December 2014. Cerca con Google

Speranza, F., and Minelli, L., 2014. Ultra‐thick Triassic dolomites control the rupture behavior of the central Apennine seismicity: Evidence from magnetic modeling of the L'Aquila fault zone. Journal of Geophysical Research: Solid Earth, 119(9), 6756-6770. Cerca con Google

Sulem, J., and Famin, V., 2009. Thermal decomposition of carbonates in fault zones: Slip‐weakening and temperature‐limiting effects. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B3). Cerca con Google

Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., and Eberhart-Phillips, D., 2006. Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region. Bulletin of the Seismological Society of America, 96(4B), S38-S49. Cerca con Google

Tadai, O., W. Tanikawa, T. Hirose, M. Sakaguchi, and W. Lin 2009, Design of new frictional testing machine for shallow fault materials, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T41A‐2003. Cerca con Google

Tanikawa, W., Mukoyoshi, H., and Tadai, O., 2012. Experimental investigation of the influence of slip velocity and temperature on permeability during and after high-velocity fault slip. Journal of StructuralGeology, 38, 90-101. Cerca con Google

Tenthorey, E., & Cox, S. F., 2006. Cohesive strengthening of fault zones during the interseismic period: An experimental study. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B9). Cerca con Google

Terakawa, T., Zoporowski, A., Galvan, B., Miller, S.A., 2010. High-pressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology 38, 995–998 Cerca con Google

Terzaghi, K., 1923. Die Berechnung des Durchlassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitz. Akad. Wiss. Wien, abt IIa, 132, 125–138. Cerca con Google

Tjong, S. C., and Chen, H., 2004. Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports, 45(1), 1-88. Cerca con Google

Twiss, R. J., and Moores, E. M., 1992. Structural Geology. Cerca con Google

Ujiie, K., and A. Tsutsumi, 2010, High‐velocity frictional properties of clay‐rich fault gouge in a megasplay fault zone, Nankai subduction zone, Geophys. Res. Lett., 37, L24310, doi:10.1029/2010GL046002. Cerca con Google

Valoroso, L., Chiaraluce, L., and Collettini, C., 2014. Earthquakes and fault zone structure. Geology, 42(4), 343-346. Cerca con Google

Verberne, B. A., Spiers, C. J., Niemeijer, A. R., De Bresser, J. H. P., De Winter, D. A. M., and Plümper, O., 2013. Frictional Properties and Microstructure of Calcite-Rich Fault Gouges Sheared at Sub-Seismic Sliding Velocities. Pure and Applied Geophysics, 1-24. Cerca con Google

Verberne, B. A., Plümper, O., de Winter, D. M., and Spiers, C. J., 2014. Superplastic nanofibrous slip zones control seismogenic fault friction. Science, 346(6215), 1342-1344. Cerca con Google

Vermilye, J. M., and Scholz, C. H., 1998. The process zone: A microstructural view of fault growth. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B6), 12223-12237. Cerca con Google

Veveakis, E., Vardoulakis, I., & Di Toro, G., 2007. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. Journal of Geophysical Research: Earth Surface (2003–2012), 112(F3). Cerca con Google

Violay, M., Nielsen, S., Spagnuolo, E., Cinti, D., Di Toro, G., and Di Stefano, G., 2013. Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes. Earth and Planetary Science Letters, 361, 74-84. Cerca con Google

Violay, M., Nielsen, S., Gibert, B., Spagnuolo, E., Cavallo, A., Azais, P., ... and Di Toro, G., 2014. Effect of water on the frictional behavior of cohesive rocks during earthquakes. Geology, 42(1), 27-30. Cerca con Google

Violay, M., Di Toro, G., Nielsen, S., Spagnuolo, E., and Burg, J.P., in preparation. Experimental evidence of thermo-mechanical pressurization of faults during earthquakes. Cerca con Google

Voight, B., and Faust, C., 1982. Frictional heat and strength loss in some rapid landslides. Geotechnique, 32(1), 43-54. Cerca con Google

Warr, L.N., Cox, S., 2001. Clay mineral Transformations and Weakening Mechanisms along the Alpine Fault, New Zealand. In: Geological Society, London, Special Publications, vol. 186, pp. 85e101 (1). Cerca con Google

Wheeler J, 1992. Importance of pressure solution and Coble creep in the deformation of polymineralic rocks. J Geophys Res 97: 4579–4586 Cerca con Google

Wibberley, C. A., 2005. J. Initiation of basement thrust detachments by fault-zone reaction weakening. SPECIAL PUBLICATION-GEOLOGICAL SOCIETY OF LONDON, 245, 347. Cerca con Google

Wibberley, C. A., and Shimamoto, T., 2003. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1), 59-78. Cerca con Google

Wintsch, R. P., Christoffersen, R., and Kronenberg, A. K., 1995. Fluid‐rock reaction weakening of fault zones. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B7), 13021-13032. Cerca con Google

Würschum, R., Herth, S., and Brossmann, U., 2003. Diffusion in nanocrystalline metals and alloys—a status report. Advanced Engineering Materials, 5(5), 365-372. Cerca con Google

Yao, L., Shimamoto, T., et al., 2013. Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: experiments and implications for the mechanisms of high-velocity weakening of faults. J. Geophys. Res. Solid Earth 118 (8), 4547e4563. Cerca con Google

Zhang, L., and He, C., 2013. Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7. 9 earthquake. Tectonophysics, 594, 149-164. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record