Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dominio, Fabio (2015) Real-time hand gesture recognition exploiting multiple 2D and 3D cues. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
33Mb

Abstract (inglese)

The recent introduction of several 3D applications and stereoscopic display technologies has created the necessity of novel human-machine interfaces. The traditional input devices, such as keyboard and mouse, are not able to fully exploit the potential of these interfaces and do not offer a natural interaction. Hand gestures provide, instead, a more natural and sometimes safer way of interacting with computers and other machines without touching them. The use cases for gesture-based interfaces range from gaming to automatic sign language interpretation, health care, robotics, and vehicle automation.
Automatic gesture recognition is a challenging problem that has been attaining a growing interest in the research field for several years due to its applications in natural interfaces. The first approaches, based on the recognition from 2D color pictures or video only, suffered of the typical problems characterizing such type of data. Inter occlusions, different skin colors among users even of the same ethnic group and unstable illumination conditions, in facts, often made this problem intractable. Other approaches, instead, solved the previous problems by making the user wear sensorized gloves or hold proper tools designed to help the hand localization in the scene.
The recent introduction in the mass market of novel low-cost range cameras, like the Microsoft Kinect, Asus XTION, Creative Senz3D, and the Leap Motion, has opened the way to innovative gesture recognition approaches exploiting the geometry of the framed scene. Most methods share a common gesture recognition pipeline based on firstly identifying the hand in the framed scene, then extracting some relevant features on the hand samples and finally exploiting suitable machine learning techniques in order to recognize the performed gesture from a predefined ``gesture dictionary''.
This thesis, based on the previous rationale, proposes a novel gesture recognition framework exploiting both color and geometric cues from low-cost color and range cameras. The dissertation starts by introducing the automatic hand gesture recognition problem, giving an overview of the state-of-art algorithms and the recognition pipeline employed in this work. Then, it briefly describes the major low-cost range cameras and setups used in literature for color and depth data acquisition for hand gesture recognition purposes, highlighting their capabilities and limitations. The methods employed for respectively detecting the hand in the framed scene and segmenting it in its relevant parts are then analyzed with a higher level of detail. The algorithm first exploits skin color information and geometrical considerations for discarding the background samples, then it reliably detects the palm and the finger regions, and removes the forearm. For the palm detection, the method fits the largest circle inscribed in the palm region or, in a more advanced version, an ellipse.
A set of robust color and geometric features which can be extracted from the fingers and palm regions, previously segmented, is then illustrated accurately. Geometric features describe properties of the hand contour from its curvature variations, the distances in the 3D space or in the image plane of its points from the hand center or from the palm, or extract relevant information from the palm morphology and from the empty space in the hand convex hull. Color features exploit, instead, the histogram of oriented gradients (HOG), local phase quantization (LPQ) and local ternary patterns (LTP) algorithms to provide further helpful cues from the hand texture and the depth map treated as a grayscale image. Additional features extracted from the Leap Motion data complete the gesture characterization for a more reliable recognition. Moreover, the thesis also reports a novel approach jointly exploiting the geometric data provided by the Leap Motion and the depth data from a range camera for extracting the same depth features with a significantly lower computational effort.
This work then addresses the delicate problem of constructing a robust gesture recognition model from the features previously described, using multi-class Support Vector Machines, Random Forests or more powerful ensembles of classifiers. Feature selection techniques, designed to detect the smallest subset of features that allow to train a leaner classification model without a significant accuracy loss, are also considered.
The proposed recognition method, tested on subsets of the American Sign Language and experimentally validated, reported very high accuracies. The results showed also how higher accuracies are obtainable by combining proper sets of complementary features and using ensembles of classifiers. Moreover, it is worth noticing that the proposed approach is not sensor dependent, that is, the recognition algorithm is not bound to a specific sensor or technology adopted for the depth data acquisition. Eventually, the gesture recognition algorithm is able to run in real-time even in absence of a thorough optimization, and may be easily extended in a near future with novel descriptors and the support for dynamic gestures.

Abstract (italiano)

La recente introduzione di applicazioni 3D e monitor stereoscopici ha creato la necessità di nuove interfacce uomo-macchina. I classici dispositivi di input, come la tastiera e il mouse, non sono in grado di sfruttare appieno il potenziale di queste interfacce e non offrono un'interazione naturale. I gesti, invece, forniscono un modo più naturale e sicuro di interagire con computer e altre macchine senza doverle toccare. I campi d'applicazione per le interfacce basate sui gesti spaziano dai videogiochi al riconoscimento automatico del linguaggio dei segni, all'assistenza sanitaria, alla robotica e all'automatizzazione dei veicoli.
Il riconoscimento automatico dei segni è un problema impegnativo che sta interessando la comunità scientifica da diversi anni grazie alla sua applicabilità alle interfacce naturali. I primi metodi, basati sul riconoscimento a partire da immagini o video, erano affetti dai tipici problemi che caratterizzano questo tipo di dati. Inter-occlusioni, diverso colore della pelle anche tra utenti della stessa etnia e condizioni di illuminazione instabili, infatti, hanno spesso reso questo problema intrattabile. Altri metodi, invece, hanno risolto i problemi precedenti obbligando l'utente a indossare guanti sensorizzati o ad afferrare strumenti progettati per favorire la localizzazione della mano nella scena.
La recente introduzione nel mercato consumer di nuovi sensori di profondità a basso costo, come il Kinect di Microsoft, lo XTION di Asus, il Senz3D di Creative, e il Leap motion, ha aperto la strada a metodi di riconoscimento dei gesti innovativi che sfruttano l'informazione sulla geometria della scena. La maggior parte dei metodi condivide una pipeline di riconoscimento comune basata prima sull'identificazione della mano nella scena, poi nell'estrazione di opportuni descrittori dai campioni della mano e infine nell'utilizzo di opportune tecniche di apprendimento automatico per riconoscere il gesto eseguito all'interno di un ``dizionario dei gesti'' predefinito.
Questa tesi, basata sul fondamento precedente, propone un nuovo sistema di riconoscimento dei gesti che sfrutti descrittori sia sul colore sia sulla geometria della scena estratti dai dati provenienti da un sensore di profondità a basso costo. La tesi comincia con l'introduzione del problema del riconoscimento automatico dei gesti, mostrando una panoramica sugli algoritmi allo stato dell'arte e sulla filiera di riconoscimento adottata. Poi, la tesi descrive brevemente i sensori di profondità a basso costo principali e i sistemi usati in letteratura per l'acquisizione di informazioni sul colore e sulla profondità per scopi di riconoscimento dei gesti, evidenziando le loro potenzialità e i loro limiti. In seguito la tesi analizza con maggiore dettaglio i metodi impiegati rispettivamente per la localizzazione della mano nella scena ripresa e la sua segmentazione nelle parti rilevanti. L'algoritmo prima sfrutta l'informazione sul colore della pelle e alcune considerazioni sulla geometria della mano per rimuovere i campioni riferiti allo sfondo, poi localizza accuratamente le regioni del palmo e delle dita e rimuove la regione del braccio. Per la localizzazione del palmo, il metodo fitta il più grande cerchio inscrivibile nella regione del palmo o un'ellisse.
Un insieme di feature robuste sul colore e sulla geometria che possono essere estratte dalle regioni del palmo e delle dita, segmentate in precedenza, è poi descritto con accuratezza. Le feature sulla geometria descrivono proprietà del bordo della mano come le sue variazioni di curvatura, le distanze nello spazio 3D o nel piano immagine dei suoi punti dal centro della mano o dal palmo, o estraggono informazioni rilevanti sulla morfologia del palmo e dagli spazi vuoti nel suo guscio convesso. Le feature sul colore sfruttano, invece, gli algoritmi histogram of oriented gradients (HOG), local phase quantization (LPQ) e local ternary patterns (LTP) per ottenere altre informazioni rilevanti sulla tessitura della mano o sulla mappa di profondità trattata come un'immagine in scala di grigi. Feature aggiuntive estratte dai dati provenienti dal Leap Motion completano la caratterizzazione dei gesti per un riconoscimento più affidabile. Inoltre, la tesi descrive anche un nuovo approccio che sfrutta unitamente i dati sulla geometria provenienti dal Leap Motion e quelli sulla profondità provenienti da un sensore di profondità per l'estrazione degli stessi descrittori della profondità con un impegno computazionale inferiore.
Questo lavoro in seguito affronta il delicato problema della costruzione di un modello di riconoscimento dei gesti robusto dalle feature descritte in precedenza, usando Support Vector Machines, Random Forests o più potenti insiemi di classificatori. Sono anche considerate tecniche di selezione delle feature per rilevare il minor sotto insieme di feature che permetta l'allenamento di un modello di classificazione senza una significativa perdita di accuratezza.
Il metodo di riconoscimento dei gesti proposto, testato su sotto insiemi di segni dell'alfabeto American Sign Language e validato su dati reali, ha riportato accuratezze molto elevate. I risultati hanno anche mostrato che le accuratezze maggiori sono ottenibili con la combinazione di opportuni insiemi di feature complementari e usando insiemi di classificatori. Inoltre, è opportuno notare che l'algoritmo di riconoscimento non è legato a uno specifico sensore o tecnologia adottata per l'acquisizione di dati di profondità. Infine, l'algoritmo di riconoscimento dei gesti può essere eseguito in tempo reale anche in assenza di una completa ottimizzazione, e può essere esteso facilmente in un prossimo futuro con nuovi descrittori e con il supporto per i gesti dinamici.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cortelazzo, Guido Maria
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:01 Febbraio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):Kinect, depth, ransac, features, computer vision, curvature, range cameras, classification, ensembles of classifiers, color, Leap Motion
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 Sistemi di elaborazione delle informazioni
Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:7891
Depositato il:09 Nov 2015 10:27
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record