Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Vendramini, Chiara (2015) Colonization ability of autochthonous Saccharomyces cerevisiae strains in mixed culture fermentation and in vineyard environment. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
32Mb

Abstract (inglese)

Yeast is the main protagonist of the alcoholic fermentation and, together with the grape juice quality, determines the final wine characteristics. Responding to the consumer requests of more "natural" wine products without additives that keep sensory characteristics of the production area, the most challenging enology is focused to perform spontaneous fermentation in which the interactions among autochthonous microorganisms present in must determine better sensory characteristics, traditionally related to the production area.
In this context the first part of this thesis project was developed. This involved the inoculum of autochthonous Saccharomyces cerevisiae strains, isolated in the winemaking area of Prosecco Superiore di Conegliano Valdobbiadene DOCG, in two vineyards belonging to this production area, one cultivated using conventional practices and the other grown under organic farming methods. Their ability to colonize the vineyard was assessed and spontaneous fermentations with grapes coming from the inoculated vine rows were performed. The results of barks sampling performed for two consecutive years showed that the presence of inoculated strains in the vineyard was very poor and limited to the first six months after treatment, regardless of the cells concentration of the inoculated suspension. Similar results were obtained when the strains present in the fermenting grape musts, during spontaneous vinifications performed in the two vintages, were genetically characterized. A very small percentage was identified as to be some of the inoculated strains. Surprisingly, the fermenting grape musts were colonized mainly by commercial strains, used from the local wineries, present on grape bunches at harvest.
With the aim to understand the interaction mechanisms that occur among different S. cerevisiae strains during alcoholic fermentation, eight autochthonous strains (among them the five yeast released in vineyard were present) were pairwise inoculated in synthetic must. The kinetics produced by the co-fermentations not always reproduced those of the dominant strains when evaluated in single-strain fermentations, but on the contrary, the presence of a second strain deeply influences the fermentation kinetics, improving or sometime worsening the fermentation trend. The best competitor was a strain with neutral killer phenotype. These results highlight the existence of other factors than the killer character involved in must colonization.
In the last part of this thesis work the hypothesis if the must colonization ability could depends on yeast nutrient request that influence the nutrient availability to the rest of microbiota, was tested. Therefore the nitrogen request of the wine industrial strain QA23 was investigated in comparison with those of three autochthonous S. cerevisiae strains chosen among the yeasts previously tested in co-fermentations in synthetic must. In order to investigate if different nitrogen needs could influence colonization ability during must fermentation, pairwise strain fermentations were performed in synthetic must with high and low nitrogen level. Results suggested a strong implication of nitrogen assimilation ability on must colonization. The strain with highest nitrogen demand is the one that strongest opposed to QA23 colonization. During the fermentation its colonization ability increased, indicating better performance when nitrogen was depleted.
The knowledge of the specific phenotypic characteristics of the strains, besides the genetic characterization, proved to be crucial to understand and control the composition of the microbial flora presents in the must and in the vineyard environment. The management of the colonization dynamics is proposed as powerful tool in the hands of winemakers and valid alternative to the use of additives in winemaking.
The yeast Saccharomyces cerevisiae after about 7000 years remains the main protagonist of winemaking and the maintenance of its biodiversity proved to be the key to guarantee the production of wines with new sensory characteristics.

Abstract (italiano)

Il lievito è il protagonista principale della fermentazione alcolica ed assieme alla qualità del mosto di partenza determina le caratteristiche finali del vino. In risposta alla richiesta da parte dei consumatori di vini “naturali”, prodotti senza aggiunta di additivi, e con profili sensoriali caratteristici della zona di produzione, la sfida enologica è orientata all’ottenimento di fermentazioni spontanee in cui le interazioni che avvengono tra i microrganismi autoctoni presenti nei mosti determinano caratteristiche sensoriali migliori e tradizionalmente legate al territorio di produzione.
In questo contesto si inserisce la prima parte del progetto di questa tesi che ha previsto l’inoculo di ceppi autoctoni (ecotipici) di Saccharomyces cerevisiae isolati nell’area del Prosecco Superiore di Conegliano Valdobbiadene DOCG, in due vigneti appartenenti a questa zona di produzione, uno coltivato con tecniche agronomiche biologiche e l’altro gestito in modo convenzionale. È stata valutata la loro capacità di colonizzare l’ambiente vigneto e di avviare una fermentazione spontanea nei mosti ottenuti con l’uva proveniente dai filari inoculati. I risultati dei campionamenti di porzioni di ritidoma eseguiti per due anni consecutivi dimostrano che la presenza dei ceppi inoculati in vigneto è molto bassa e limitata ai primi sei mesi dal trattamento, indipendentemente dalla concentrazione cellulare della sospensione inoculata. Anche durante il processo di fermentazione del mosto, durante le microvinificazioni condotte con l’uva raccolta dai due vigneti nei due anni di sperimentazione, si osservano percentuali di presenza molto basse di alcuni ceppi inoculati. Nelle fermentazioni si sono imposti lieviti commerciali usati dalle cantine dell’areale di produzione considerato in questo studio, e che sono presenti sui grappoli d’uva in epoca di raccolta.
Con lo scopo di comprendere i meccanismi d’interazione tra ceppi appartenenti alla specie Saccharomyces cerevisiae durante la fermentazione alcolica, otto ceppi autoctoni (tra cui quelli usati nell’esperienza di rilascio in vigneto) sono stati inoculati a coppie in mosto sintetico. Dall’analisi delle performances fermentative e della loro abilità di colonizzare il mosto si osserva che non sempre la cinetica di fermentazione prodotta dal co-inoculo riproduce quella del ceppo dominante, ma al contrario, la presenza di un secondo ceppo influenza la cinetica di fermentazione, migliorandola o peggiorandola. Il ceppo di lievito che maggiormente è riuscito ad imporsi nelle prove di fermentazione non presenta fenotipo killer dimostrando che altri fattori, oltre al carattere killer, condizionano la colonizzazione del mosto.
Per testare l’ipotesi che la capacità di “dominare” le fermentazioni derivi dalla capacità di sottrarre nutrienti agli altri ceppi, l’ultima parte di questo lavoro di tesi ha riguardato lo studio delle richieste di azoto di un ceppo commerciale QA23 e di tre ceppi di vigneto (scelti tra quelli già studiati nelle precedenti prove di co-fermentazione). Inoltre è stato studiato il ruolo della disponibilità di azoto nelle dinamiche di colonizzazione alle stendo prove di co-inoculo in mosto sintetico con alta e bassa concentrazione di azoto. Dai risultati si osserva che il ceppo che presenta maggiori richieste di azoto si oppone maggiormente alla colonizzazione del ceppo commerciale, e la sua capacità di colonizzare il mosto aumenta in condizioni di basse concentrazioni di azoto.
La conoscenza delle caratteristiche fenotipiche specifiche dei ceppi, oltre che la caratterizzazione genetica, si dimostrano fondamentali per comprendere e controllare la composizione della flora microbica presente nei mosti e nell’ambiente vigneto. La gestione delle dinamiche di colonizzazione si propongono come valido strumento a disposizione dell'enologo e valida alternativa all’uso di additivi in vinificazione.
Il lievito Saccharomyces cerevisiae dopo circa 7000 anni si conferma il principale protagonista dell'arte enologica e il mantenimento della sua biodiversità si rivela la chiave per garantire la produzione di vini con sempre nuove caratteristiche sensoriali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Corich, Viviana
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE ANIMALI E AGROALIMENTARI > PRODUZIONI AGROALIMENTARI
Data di deposito della tesi:01 Febbraio 2015
Anno di Pubblicazione:01 Febbraio 2015
Parole chiave (italiano / inglese):Yeast interactions, Co-inoculation, Vineyard biodiversity, Dissemination, Nitrogen consumption
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/16 Microbiologia agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:7900
Depositato il:10 Nov 2015 12:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

References Cerca con Google

Albers E., Larsson C., Lidén G., Niklasson C. and Gustafsson L. (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation, Applied and Environmental Microbiology, vol. 62, no. 9, pp. 3187–3195 Cerca con Google

Avery SV, Howlett NG, Radice S. (1996). Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62: 3960-3966. Cerca con Google

Arneborg N, Siegumfeldt H, Andersen GH, Nissen P, Daria VR, Rodrigo PG, Gluckstad J. (2005) Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiol Lett, 245:155-159. 21. Cerca con Google

Barata A., González S., Malfeito-Ferreira M., Querol A., Loureiro V. (2008) Sour rotdamaged grapes are sources of wine spoilage yeasts. Fems Yeast Research 8, 1008–1017. Cerca con Google

Barata A., Malfeito-Ferreira M, Loureiro V. (2012) The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153 243–259 Cerca con Google

Barrajón N., Capece A., Arévalo-Villena M., Briones A., & Romano P. (2011). Coinoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines. Food Microbiology 28: 1080-1086. Cerca con Google

Bauer, F.F., Pretorius, I.S., 2000. Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S. Afr. J. Enol. Vitic. 21, 27–51. Cerca con Google

Bell S.J. and Henschke P.A. (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape and Wine Research 11, 242–295, Cerca con Google

Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozes N, Mas A (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol 25:287–293 Cerca con Google

Beltran G., Novo M., Rozes N., Mas A., Guillamon J.M. (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations FEMS Yeast Research 4 625–632 Cerca con Google

Benitez T, Martinez P, Codon AC. 1996. Genetic constitution of industrial yeast. Microbiologia 12, 371–384. Cerca con Google

Bisson, L.F., 1999. Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50, 107– 119. Cerca con Google

Bisson, L.F., Block, D.E., 2002. Ethanol tolerance in Saccharomyces. In: Ciani, M. (Ed.), Biodiversity and Biotechnology of Wine Yeasts. Research Signpost, Kerala, India, pp. 85– 98. Cerca con Google

Boulton B, Singleton VL, Bisson LF, Kunkee RE. (1996). Yeast and biochemistry of ethanol fermentation. In Principles and Practices of Winemaking, Boulton B, Singleton VL, Bisson LF, Kunkee RE (eds). Chapman and Hall: New York; 139-172. Cerca con Google

Brandolini V, Romano P, Maietti A, Caruso M, Tedeschi P., Mazzotta D. 2002. Automated multiple development method for determination of glycerol produced by wine yeasts. World J Microb Biot 18, 481–485. Cerca con Google

Cabras P., Angioni A., Garau V.L., Pirisi F.M., Farris G.A., Madau G., Emonti G. (1999) Pesticides in fermentative processes of wine. Journal of Agricultural and Food Chemistry 47, 3854–3857. Cerca con Google

Cai J., Roberts I.N. and Collins M.D. (1996) Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomices, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int. J. Syst. Bacteriol. 46: 542-549. Cerca con Google

Camarasa C., Grivet J. P. and Dequin S. (2003) Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways of succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology, vol. 149, no.9,pp. 2669–2678 Cerca con Google

Capece A, Romaniello R, Poeta C, Siesto G, Massari C, Pietrafesa R, Romano P, (2011) Control of inoculated fermentations in wine cellars by mitochondrial DNA analysis of starter yeast. Ann Microbiol, 61: 49-56. Cerca con Google

Capece A., Romaniello R., Siesto G., Romano P. (2012) Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian “heroic vine-growing area” Food Microbiology 31 159-166 Cerca con Google

Capece A, Siesto G, Romaniello R, Lagreca VM, Pietrafesa R, Calabretti A, Romano P (2013). Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region .LWT - Food Science and Technology 54: 485-492 Cerca con Google

Cavazza A., Grando M., and Zini.C., (1992). Rilevazione della flora microbica di mosti e vini. Vignevini 9:17-20. Cerca con Google

Charoenchai, C., Fleet, G.H., Henschke, P.A., Todd, B.E.N., 1997. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust. J. Grape Wine Res. 3, 2–8. Cerca con Google

Cheraiti N., Guezenec S., & Salmon J. M. (2005). Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Applied and Environmental Microbiology 71 255-260. Cerca con Google

Ciani M., Maccarelli F., Martini A., Vettorello G., (1997). Selezione di starter di vinificazione autoctoni della DOC Prosecco di Conegliano-Valdobbiadene. Cerca con Google

Ciani M., Comitini F., Mannazzu I. & Domizio P. (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking FEMS Yeast Res 10 123–133 Cerca con Google

Ciani M. and Comitini F. (2015) Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science, 1:1–6 Cerca con Google

Cole V.C., Noble A.C. (1997) Flavour chemistry and assessment. In: Law, A.G.H., Piggott, J.R. (Eds.), Fermented Beverage Production. Blackie Academic & Professional, London, pp. 361–385. Cerca con Google

Combina M., Mercado L., Borgo P., Elia A., Jofré V., Ganga A., Martinez C., Catania C. (2005) Yeasts associated to Malbec grape berries from Mendoza, Argentina. Journal of Applied Microbiology 98, 1055–1061. Cerca con Google

Comitini F., Ciani M. (2006) Survival of inoculated Saccharomyces cerevisiae strain on wine grapes during two vintages. Letters in Applied Microbiology 42, 248–253. Cerca con Google

Cordero-Bueso G, Arroyo T, Serrano A, Valero E, (2011). Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol Ecol 77: 429–437 Cerca con Google

Delfini C. 1995. Scienza e tecnica di microbiologia enologica. Edizioni Il Lievito, Asti Cerca con Google

Dept. of Health & Social Security (1937) MEMO.139 Foods. Cerca con Google

Dizzy, M., Bisson, L.F., 2000. Proteolytic activity of yeast strains during grape juice fermentation. Am. J. Enol. Vitic. 51, 155– 167. Cerca con Google

Esteve-Zarzoso B, Belloch C, Uruburu F, and A Querol. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 49, 329–337. Cerca con Google

Fleet, G.H., 1992. Spoilage yeasts. Crit. Rev. Biotechnol. 12, 1 – 44. Cerca con Google

Fleet GH & Heard GM (1993) Yeasts: growth during fermentation. Wine Microbiol Biotechnol (Fleet GH, ed.), pp. 27–75. Harwood Academic Publishers, Chur, Switzerland. Cerca con Google

Fleet GH. 1998. The microbiology of alcoholic beverages. In Microbiology of Fermented Foods, vol 1, Wood BJB (ed). Blackie Academic and Professional: Glasgow; 217-262 Cerca con Google

Fleet G.H. (2001) Wine. In: Doyle, M.P., Beuchat, L.R., Montville, T.J. (Eds.), Food Microbiology Fundamentals and Frontiers, 2nd ed. ASM Press, Washington, DC, pp. 747–772. Cerca con Google

Fleet GH. 2003. Yeast interactions and wine flavour. Int J Food Microbiol, 86, 11-22. Cerca con Google

Forsberg, H. and Ljungdahl, O. (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40, 91– 109. Cerca con Google

Francesca N., Chiurazzi M., Romano R., Aponte M., Settanni L., Moschetti G. (2010) Indigenous yeast communities in the environment of “Rovello bianco” grape variety and their use in commercial white wine fermentation. World Journal of Microbiology and Biotechnology 26, 337–351. Cerca con Google

Frezier V & Dubourdieu D (1992) Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. Am J Enol Vitic 43: 375–380. Cerca con Google

Gao, C., Fleet, G.H., 1988. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. J. Appl. Bacteriol. 65, 405– 410. Cerca con Google

Golubev W.I. (2006) Antagonistic interactions among yeasts. In: Rosa, C.A., Péter, G. (Eds.), The Yeast Handbook. Biodiversity and Ecophysiology of Yeasts, Springer, Berlin, Germany, pp. 197–219. Cerca con Google

Gómez-Alonso, S., Hermosín-Gutiérrez, I., & García-Romero, E. (2007). Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples. Journal of Agricultural and Food Chemistry, 55(3), 608–613. Cerca con Google

Green S.R. e Gray P.P., 1950. Paper read at American Society of Brewing Chemists Meeting. Wallerstein Lab. Communications Cerca con Google

Grossman, M., Linsemeyer, H., Muno, H., Rapp, A., 1996. Use of oligo-strain yeast cultures to increase complexity of wine aroma. Vitic. Enol. Sci. 51, 175– 179 Cerca con Google

Gutiérrez A., Beltran G., Warringer J. and Guillamon J.M., (2013) Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains, PLoS ONE, vol. 8, no. 6,Article ID E67166 Cerca con Google

Hansen EH, Nissen P, Sommer P, Nielsen JC, Arneborg N (2001) The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J Appl Microbiol, 91:541-547. Cerca con Google

Heard, G.M., Fleet, G.H., 1988. The effects of temperature and pH on the growth of yeasts during the fermentation of grape juice. J. Appl. Bacteriol. 65, 23– 28 Cerca con Google

Heard G. 1999. Novel yeasts in wine looking to the future. Food Australia 51: 347-352. Cerca con Google

Henick-Kling T., Edinger W., Daniel P., Monk P. (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 84, 865– 876. Cerca con Google

Henschke PA, Jiranek V. 1993. Yeasts metabolism of nitrogen compounds. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 77-164. Cerca con Google

Henschke PA. 1997. Wine yeast. In Yeast Sugar Metabolism, Zimmermann FK, Entian K-D (eds). Technomic Publishing: Lancaster, PA; 527-560. Cerca con Google

Hernawan, T., Fleet, G.H., 1995. Chemical and cytological changes during the autolysis of yeasts. J. Ind. Microbiol. 14, 440–450. Cerca con Google

Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., Nickerson, K.W., 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982– 2992. Cerca con Google

Howell K. S., Cozzolino D., Bartowsky E. J., Fleet G. H., & Henschke P. A. (2006). Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Research 6: 91-101. Cerca con Google

James S.A., Collins M.D. and Roberts I.N. (1996) Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspor. Int. J. Syst. Bacteriol. 46: 189-194. Cerca con Google

Johnson L. J., Koufopanou V. M., Goddard R., Hetherington R., Schäfer S. M. and Burt A. (2004) Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166:43–52. Cerca con Google

Johnston M., Hillier L., Riles L., Albermann K., Andre B., (1997). The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387(6632 Suppl):87-90 Cerca con Google

Khan W., Augustyn O.P.H., van der Westhuizen T.J., Lambrechts M.G., Pretorius I.S. (2000) Geographic distribution and evaluation of Saccharomyces cerevisiae strains isolated from vineyards in the warmer, inland regions of the Western Cape in South Africa. South African Journal of Enology and Viticulture 21, 17–31. Cerca con Google

Lambrechts, M.G. and Pretorius, I.S. 2000 Yeast and its importance to wine aroma. S. Afr. J. Enol. Vitic. 21, 97-129 Cerca con Google

Legras J.L. and Karst F. (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiology Letters 221 : 249-255 Cerca con Google

Lema C, Garcia-Jares C, Orriols I, Angulo L. 1996. Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarino wine aroma. Am J Enol Vitic 47, 206– 216. Cerca con Google

Lopes C.A., Rodríguez M.E., Sangorrín M., Querol A., Caballero A.C. (2007) Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J. Ind. Microbiol. Biotechnol. 34, 139-149. Cerca con Google

López, V., Querol, A., Ramón, D. & Fernández-Espinar, M.T. 2001, "A simplified procedure to analyse mitochondrial DNA from industrial yeasts", International journal of food microbiology, vol. 68, no. 1-2, pp. 75-81. Cerca con Google

Magasanik, B. (1992) Regulation of nitrogen utilization. In: The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (Jones, E.W., Pringle, J.R. and Broach, J.R., Eds.), pp. 283–317. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Cerca con Google

Marini, A.M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 4282–4293. Cerca con Google

Martini A. 2003. Biotechnology of natural and winery-associated strains of Saccharomyces cerevisiae. Int Microbiol, 6: 207-209. Cerca con Google

Mas A., Guillamon JM, Torija MJ, Beltran G, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. BioMed Research International. Volume 2014, Article ID 898045:1-7 Cerca con Google

Michnick S, Roustan J-L, Remize F, Barre P, Dequin S. 1997. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3- phosphate dehydrogenase. Yeast 13: 783-793. Cerca con Google

Mortimer R & Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150: 199–204. Cerca con Google

Mortimer, R.K., 2000. Kloeckera apiculata controls the rates of natural fermentation. Riv. Vitic. Enol. 53, 61–68. Cerca con Google

Nardi, T., Carlot, M., De Bortoli, E., Corich, V. & Giacomini, A. 2006, "A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment", FEMS microbiology letters, vol. 264, no. 2, pp. 168-173. Cerca con Google

Nykanen L. 1986. Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. Am J Enol Vitic 37: 84-96. Cerca con Google

Ohkuni, K., Hayashi, M., Yamashita, I., 1998. Bicarbonate-mediated social communication stimulates meiosis and sporulation of Saccharomyces cerevisiae. Yeast 14, 623– 631. Cerca con Google

Owens P and A Noble. 1997. Effect of Storage at Elevated Temperatures on Aroma of Chardonnay Wines. Am J Enol Vitic 48, 310-316. Cerca con Google

Palkova, Z., Janderova, B., Gabriel, J., Zikanova, B., Pospisek, M., Forstova, J., 1997. Ammonia mediates communication between yeast colonies. Nature 390, 532– 536. Cerca con Google

Pretorius IS, van der Westhuizen TJ & Augustyn OHP (1999) Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry. S Afr J Enol Vitic 20: 61–74. Cerca con Google

Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16: 675–729. Cerca con Google

Pretorius I. S., Curtin C. D. and Chambers P. J. (2012) The winemaker’s bug. From ancient wisdom to opening new vistas with frontier yeast science Bioengineered Bugs 3:3, 147–156 Cerca con Google

Querol A., Barrio E., Huerta T. and Ramon D. (1992) Molecular monitoring of wine fermentations conducted by dry yeast strains. Appl. Environ. Microbiol. 58, 2948–2952. Cerca con Google

Querol, A. & Ramon, D. (1996). "The application of molecular techniques in wine microbiology", Trends in Food Science & Technology, vol. 7, no. 3, pp. 73-78. Cerca con Google

Radler F. (1993) Yeasts—metabolism of organic acids, in Wine Microbiology and Biotechnology, G. H. Fleet, Ed., pp. 165–182, Harwood Academic Publishers, Singapore. Cerca con Google

Rainieri S., Pretorius I.S. (2000) Selection and improvement of wine yeasts. Ann. Microbiol. 50, 15-31. Cerca con Google

Reed G and Chan SL. 1979. Evaluating commercial active dry wine yeasts by fermentation activity. Am J Enol Vitic 29:165–168 Cerca con Google

Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65: 143-149. Cerca con Google

Ribereau-Gayon P, Dubourdieu D, Doneche B & Lonvaud A. 2000. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. Handbook of Enology, Vol. 1, The Microbiology of Wine and Vinifications. John Wiley and Sons, New York, NY, pp. 51–74. Cerca con Google

Ribereau-Gayon P, Dubourdieu D, Doneche B & Lonvaud A. (2006). Cytology,taxonomy and ecology of grape and wine yeasts. Handbook of Enology, Vol.1, The Microbiology of Wine and Vinifications. John Wiley and Sons, New York, NY, pp. 1–52. Cerca con Google

Richard, P., Bakker, B.M., Teusink, B., Van Dam, K., Westerhoff, H.V., 1996. Acetaldehyde mediates the synchronisation of sustained glycolytic oscillations in populations of yeast cells. Eur. J. Biochem. 235, 238–241. Cerca con Google

Romano P, 1997. Metabolic characteristics of wine strains during spontaneous and inoculated fermentation. Food Technol Biotech 35, 255– 260. Cerca con Google

Romano, P. 2005. Proprietà tecnologiche e di qualità delle specie di lieviti vinari. In Microbiologia del vino.Vincenzini et al (ed) Edizioni Ambrosiana. Cerca con Google

Romano P., Capece A., Serafino V., Romaniello R., Poeta C. (2008) Biodiversity of wild strains of Saccharomyces cerevisiae as tool to complement and optimize wine quality. World J. Microbiol. Biotechnol. 24, 1797-1802. Cerca con Google

Sabate J, Cano J, Querol A & Guillamon JM (1998) Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol 26: 452–455. Cerca con Google

Sampaio J.P., Gonçalves P. (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with Oak bark and are sympatric with S. cerevisiae and S. paradoxus. Applied and Environmental Microbiology 74, 2144–2152. Cerca con Google

Sangorrín M.P., Zajonskovsky I.E., Lopes C.A., Rodríguez M.E., Giraudo de van Broock M.R., Caballero A.C. (2001) Killer behaviour in wild wine yeasts associated with Merlot and Malbec type musts spontaneously fermented from Northwestern Patagonia (Argentina). Journal of Basic Microbiology 41, 105–113. Cerca con Google

Santamarìa P, Garijo P, Lo´pez R, Tenorio C, Gutie´rrez AR (2005). Int. J. Food Microbiol, 103: 49–50. Cerca con Google

Scanes KT, Hohmann S, Prior BA. 1998. Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. S Afr J Enol Vitic 19: 17-22. Cerca con Google

Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26. Cerca con Google

Schuller D, Alves H, Dequin S & CasalM (2005) Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde region of Portugal. FEMS Microbiol Ecol 51: 167–177. Cerca con Google

Schuller D., Casal M. (2007) The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie van Leeuwenhoek 91, 137–150. Cerca con Google

Shimizu K. 1993. Killer yeasts. In Wine Microbiology and Biotechnology, Fleet GH (ed). Harwood Academic: Reading; 243-264. Cerca con Google

Sierkstra, L.N., Verbakel, J.M.A. and Verrips, C.T. (1992) Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. J. Gen. Microbiol. 138, 2559–2566. Cerca con Google

Sniegowski P. D., Dombrowski P. G. and Fingerman E. (2002) Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1:299–306. Cerca con Google

Snow R. 1983. Genetic improvement of wine yeast. In Yeast Genetics - Fundamental and Applied Aspects, Spencer JFT, Spencer DM, Smith ARW (eds). Springer-Verlag: New York; 439-459. Cerca con Google

Stefanini I., Dapporto L., Legras J., Calabrettan A., Di Paola M., De Filippo C., Viola R., Capretti P., Polsinelli M., Turillazzi S. and Cavalieri D. (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. PNAS Early Edition Cerca con Google

Taillandier P., Ramon Portugal F., Fuster A. and Strehaiano P. (2007) Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content, Food Microbiology, vol. 24, no. 1, pp. 95–100. Cerca con Google

Ter Schure, E.G., van Riel, N.A.W. and Verrips, C.T. (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 24, 67– 83. Cerca con Google

Torija, M.J., Rozes, N., Poblet, M., Guillamon, J.M. and Mas, A. (2001) Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79, 345–352 Cerca con Google

Torija, M.J., Roze´s, N., Poblet, M., Guillamo´n, J.M., Mas, A., 2002. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 80,47– 53. Cerca con Google

Tromp A, De Klerk CA. 1988. Effect of copperoxychloride on the fermentation of must and on wine quality. S Afr J Enol Vitic 9: 31-36. Cerca con Google

Valero E., Shuller D., Cambon B., Casal M., & Dequin S. (2005). Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-year study. FEMS Yeast Res. 5: 959–969. Cerca con Google

Valero E., Schuller D., Cambon B., Casal M., Dequin S. (2007). Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res 7: 317–329 Cerca con Google

van der Westhuizen T.J., Augustyn O.P.H., Pretorius I.S. (2000) Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the coastal regions of the Western Cape in South Africa. South African Journal for Enology and Viticulture 21, 3–9. Cerca con Google

Varela C., Pizarro F. and Agosin E. (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts, Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3392–3400. Cerca con Google

Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. and Hallet, J.-N. (1995) Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61, 3521–3529. Cerca con Google

Vezinhet, F., Hallet, J.-N., Valade, M. and Poulard, A. (1992) Ecological survey of wine yeast strains by molecular methods of identification. Am. J. Enol. Vitic. 43, 83–86. Cerca con Google

Viel A., (2012) Exploitation of microbial capability to enhance the characteristics of typical regional wines Prosecco and Tocai, Doctoral thesis. Cerca con Google

Vilanova M., Ugliano M., Varela C., Siebert T., I. S. Pretorius, P. A. Henschke (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts Appl Microbiol Biotechnol 77:145–157 Cerca con Google

Vincenzini M., Romano P., Farris G. A. 2005. Microbiologia del vino, Casa Editrice Ambrosiana, Milano. Cerca con Google

Viviani-Nauer A., Hoffmann-Boller P., Basler P., Gafner J. (1995) Wild yeast flora on grapes of fungi disease resistant cultivars and their dynamics during fermentation. Schweizerische Zeitschrift fuer Obst-und Weinbau, Waedenswil 131, 390–393. Cerca con Google

White, T. J., T. Bruns, S. Lee, and J. W. Taylor, (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York. pp 315-322. Cerca con Google

Whitehead, N.A., Barnard, A.M.L., Slater, H., Simpson, N.J.L., Salmond, G.P.C., (2001). Quorum-sensing in Gram negative bacteria. FEMS Microbiol. Rev. 25, 365– 404. Cerca con Google

Wiame, J.M., Grenson, M. and Arst, H.N.J.R. (1985) Nitrogen catabolite repression in yeast and filamentous fungi. Adv. Microb. Physiol. 26, 1–88. Cerca con Google

Zambonelli C. (1971). Factors affecting the production of sulfur dioxide and hydrogen sulfide in Saccharomyces cerevisiae, var. ellipsoideus. Ann. di Micr. 21: 113. Cerca con Google

Zambonelli C. 2003. Microbiologia e Biotecnologia dei Vini, Edagricole, Bologna Cerca con Google

Zott K., Miot-Sertier C., Claisse O., Lonvaud-Funel A. & Masneuf- Pomarede I. (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125, 197-203. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record