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Sommario  

“Sviluppo di procedure numeriche per l’ottimizzazione di turbomacchine” 

raccoglie la ricerca svolta dall’autore nel periodo di Dottorato che va dal 2010 al 

2013. Il lavoro è nato con una duplice finalità: da una parte sviluppare un 

algoritmo per l’ottimizzazione multi obiettivo; dall’altra, accoppiare il motore di 

ottimizzazione con strumenti di analisi basati sulla fluidodinamica 

computazionale (CFD) per studiare casi di interesse nell’ambito del “high speed 

turbomachinery”. 

Gli algoritmi evolutivi hanno dimostrato alta affidabilità e robustezza nel 

raggiungimento del “Fronte di Pareto” (i.e., è la soluzione di un problema multi 

obiettivo), richiedendo però un numero di valutazioni delle funzioni obiettivo 

molto elevato, talvolta impraticabile dal punto di vista industriale. Infatti, quando 

la CFD è impiegata per valutare le funzioni obiettivo del sistema in esame, il 

costo computazionale può diventare il vero collo di bottiglia dell’intero processo. 

Una possibile soluzione viene fornita dai modelli surrogati, o metamodelli, cioè 

tecniche matematiche il cui scopo è quello di approssimare le funzioni obiettivo 

permettendo, di fatto, di diminuire le chiamate dirette alla CFD e di conseguenza 

anche il tempo totale del processo di ottimizzazione. Il vero dilemma è come 

affiancare gli algoritmi evoluti a uno o a più modelli surrogati, al fine di 

migliorare le prestazioni del motore di ottimizzazione. A oggi il problema non ha 

una soluzione univoca. 

La tesi è costituita da cinque capitoli. Il primo capitolo vuol essere di 

introduzione sia ai modelli surrogati visti nell'ottica dell’ottimizzazione, sia alle 

strategie di ottimizzazione che sono state applicate per migliorare i compressori 

transonici e le schiere supersoniche di compressori, che rappresentano i casi di 

interesse studiati in questa Tesi. Il secondo capitolo è dedicato al motore di 

ottimizzazione sviluppato dall’autore, denominato GeDEA-II-K. Il GeDEA-II-K 

nasce dall’unione del preesistente algoritmo genetico GeDEA-II e di un modello 

surrogato basato sul Kriging. Le prestazioni del nuovo algoritmo sono state testate 

su problemi matematici a due e a tre obiettivi ben noti in letteratura. Nel terzo 

capitolo è stato approfondito in grande dettaglio la fisica alla base delle schiere 

supersoniche, cercando di comprendere il legame profondo tra la geometria della 

schiera e il campo di moto che si viene a creare. Nel quarto e nel quinto capitolo è 
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stato testato il loop automatico di ottimizzazione sviluppato dall’autore che 

comprende il motore di ottimizzazione, il tool di parametrizzazione della 

geometria, i modelli CFD, e tutti quegli elementi indispensabili per garantire 

robustezza ad una procedura automatica. Nello specifico è stata condotta 

l’ottimizzazione di una schiera supersonica e del compressore transonico NASA 

Rotor 67. 

 

 

 

 

 

 



 
 

 
 

Abstract 

This Doctoral Thesis deals with high speed turbomachinery optimization and 

all those tools employed in the optimization process, mainly the optimization 

algorithm, the parameterization framework and the automatic CFD-based 

optimization loop. Optimization itself is not just a mean to improve the 

performance of a generic system, but can be a powerful instigator that helps 

gaining insight on the physic phenomena behind the observed improvements.  

As for the optimization engine, a novel surrogate-assisted (SA) genetic 

algorithm for multi-objective optimization problems, namely GeDEA-II-K, was 

developed. GeDEA-II-K is grounded on the cooperation between a genetic 

algorithm, namely GeDEA-II, and the Kriging methodology, with the aim at 

speeding up the optimization process by taking advantage of the surrogate model. 

The comparison over two- and three-objective test functions revealed the 

effectiveness of GeDEA-II-K approach.  

In order to carry out high speed turbomachinery optimizations, an automatic 

CFD-based optimization loop built around GeDEA-II-K was constructed. The 

loop was realized for a UNIX/Linux cluster environment in order to exploit the 

computational resources of parallel computing. Among the tools, a dedicated 

parameterization framework for 2D airfoils and 3D blades has been designed 

based on the displacement filed approach.  

The effectiveness of both the CFD-based automatic loop and the 

parameterization was verified on two real-life multi-objective optimization 

problems: the 2D shape optimization of a supersonic compressor cascade and the 

3D shape optimization of the NASA Rotor 67. To better understand the outcomes 

of the optimization process, a wide section has been dedicated to supersonic flows 

and their behavior when forced to work throughout compressor cascades.  

The results obtained surely have demonstrated the effectiveness of the 

optimization approach, and even more have given deep insight on the physic of 

supersonic flows in the high speed turbomachinery applications that were studied. 
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FEM Finite Element Method 
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Chapter 1  

Introduction  

1.1 Why Metamodels? 

Multi-Objective Evolutionary Algorithms (MOEAs) seem to be the most 

powerful tools apt to handle challenging real-world engineering optimization 

problems in which conflicting objective must be contextually optimized (e.g. 

Multi-Objective Optimization Problem (MOOP)). Owing to the inherent 

stochastic nature of MOEAs, a large number of individual evaluations are 

required to converge properly toward the true Pareto front Durillo et al. [1]. When 

computational expensive models are used for evaluating individual’s performance 

(i.e. high-fidelity models as Computational Fluid Dynamics CFD and Finite 

Element Method FEM), the computational effort becomes one of the key issues of 

the entire optimization process. Although a way to limit computational resources 

is limiting the problem complexity by reducing the number of design variables, 

such strategy sounds more as a fold back on rather than an optimum solution. To 

try to enhance the search efficiency of MOEAs, in the last decade surrogate 

models, called also metamodels, or approximation models, or response surfaces, 

have been successfully employed.  

Looking at the big picture, irrespective of the appellation given to 

metamodels, surrogates offer an efficient way with which information coming out 

from the expensive model can be collected, manipulated and exploited to improve 

the search efficiency. The ability of doing so, however, is not just an inherent 

peculiarity of metamodel itself, but greatly depends on how metamodels are 

integrated within the optimization framework. Metamodels infer knowledge from 

the true information; however, metamodels themselves do not create new 

information. 
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1.2 Metamodels in Practice 

The final aim of metamodel techniques is to construct a reliable predictor of 

the deterministic function we would like to emulate, bearing in mind that willing 

accurate prediction all over the function landscape would involve much more 

resources than willing it only in the region of the optimum. 

Despite the huge amount of different metamodels offered on the market, it is 

possible to make a few classifications. First, there are global and local 

metamodels techniques (Sacks et al. [2]) depending on the validity of the 

approximation on the design space: local surrogates are valid in a neighborhood of 

a point, whereas global methods provide information throughout all the design 

space, or a large portion of it. There is also a third category so-called midrange 

approximation technique, which provide local approximation exploiting global 

qualities (Toporov [3]). Pay attention to the terminology local and global because 

it is also used to describe how fitted data influence predictor‘s approximation; this 

ambiguity will be clarified in §1.2.2. 

Moreover, we distinguish other two main categories: parametric and 

nonparametric techniques. A parametric technique is the one which obeys the 

rules of the conventional statistical regression analysis Hill and Lewicki [4], and 

is often used within the realm of physical experiments as it typically smoothes out 

the random errors which inevitably affect the tests. It basically consists in 

predefining a form of a response surface, usually of the low-order polynomial 

type because of their intrinsic “physical” meaning, the unknown coefficients of 

which are determined using a generalized least-square regression criterion to fit 

the response surface predicted values to the observed data. 

On the other hand, in a nonparametric approach the response function is not 

assumed to belong to a specified parametric class of functions: on the contrary, it 

is only supposed to obey to a few and rather general smoothness conditions. The 

very attractive feature of this approach is that data to be fitted is not forced into a 

prescribed mathematical structure in order for the unknown model parameters to 

be determined, but it is left free to build the statistical model on its own without 

being trapped into a predefined, constrained formulation. In other words, the 

response function is identified only on the basis of the assigned data, and its 

determination becomes actually the final goal of the model identification. In this 

sense it is called “nonparametric”, i.e. not because it is parameterless but because 

the goal of the regression is now to estimate the regression function f directly 

rather than the parameters. 
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RSM consists in a collection of statistical and mathematical techniques for 

parametric model building, aimed at developing a reliable model that exhibits the 

highest correlation with observations, while keeping the number of explanatory 

variables to a minimum (Box [5]). In general, the underlying assumption is that 

data coming out from the function to be estimated has the following form:   

in which the response y  has got two contributions: the first, ( )f x , accounts for 

the systematic component of the functional relationship between the response �  

and the independent variables x , the second, e , is the measurement random error 

that is assumed to be normally, identically and independently distributed, with 

zero mean and constant variance. In RSM approach ( )f x  is modeled as 

polynomial of order �  and, in the case �  has dimension � � � , it can written as: 

where the predictor�y  is linear in the parameters ia  (unknown vector of regression 

coefficients), which can be estimated through a least squares solution of � a = y , 

where �  is the ��	
��  Vandermonde matrix and �  is the ��	
��  vector of 

observed responses. The maximum likelihood estimate of a  is thus 

The extension of RMS to multivariate space is straightforward. 

Since the polynomial approximation of order m is similar to a Taylor series 

expansion truncated after m+1 terms (Box [5]), it is clear that the higher is m the 

better is the approximation accuracy. However, a high m order also implies a 

more flexible polynomial that can be trapped in noisy data with the danger of over 

fitting. As a result, a second-order polynomial is, de facto, the most popular 

solutions in applications. 

( )y f e= +x  Eq. 1.1

�
0

( )
m

i
i

i

y
=

= �x a x  Eq. 1.2

( )-1T Ta = � � � y  Eq. 1.3
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While polynomial models can be regarded for as “global” models, in which 

both the observations near to (in the Euclidean distance sense) and far from a 

location x  in the input parameters’ domain equally influence the predicted 

response over x , nonparametric approaches have a somewhat “local” character 

Giunta et al. [6]. Specifically, the closer the available observations to x , the 

higher their weight in the determination of the predicted response � ( )y x . This 

seems particularly attractive when the unknown response function is highly 

multimodal. 
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Moving Least-Squares technique (MLS), often referred to as Local 

Polynomial Regression (LRP) (Toporov et al. [7] and Cleveland [8]), was 

developed to overcome well-known drawbacks of traditional multivariate 

polynomials, such as excessive smoothing that makes them not flexible enough to 

achieve an adequate fit, as well as their attitude to exalt individual observations 

influence on remote parts of the fitted hypersurface. 

The MLS derives from and improves the Weighted Least-Squares (WLS) 

approach. In WLS, observations may not be equally important in estimating the 

polynomial coefficients. To this end, each observation is given a weighting 
( ) 0iw ³ . With ( ) 0iw =  the observation is neglected in the fitting. The coefficients 

of WLS model are 

, where the weighting matrix W  is 

The enhancement of MLS lies on the “local” nature of the weighting matrix

W , since now it depends on the location of the point to be predicted and each 

observed data point. The weighting is controlled by a kernel function which 

decays with increasing distance ( )i -x x . An example of kernel function may be 

the Gaussian function: 

( )-1T Ta = � W� � Wy Eq. 1.4

(1)

( )

0

0 np

w

w

� �
� �

= � �
� �
� �

W

�

� � �

�

. Eq. 1.5
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Besides the kernel function, there are two more parameters which greatly 

affect the performance of the estimator. First of all, the order m of the local 

polynomials drives the bias-variance trade-off. In order to decrease the bias one 

can increase the value of m, though this might in turn increase the variability since 

more local parameters are used and vice versa. 

The most critical parameter for the estimation result is the bandwidth,  , 

since it controls the size of the local neighbourhood of the response function. The 

choice of   is a trade-off between variance and bias. By choosing a large 

bandwidth the local estimate is influenced by many observations and thus the 

variance is small. On the other hand, the influence of remote observations might 

increase the squared bias. Many different techniques have been proposed in the 

literature for bandwidth selection, for instance, the conditional Mean Square Error 

(MSE) minimization in Fan and Gijbels [9] and the so-called “plug in method” 

based on Cross-Validation (CV) proposed by Ruppert et al. [10]. 
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As it is known, a generic radial basis function can be expressed in the form: 

, where x  is an n-dimensional input vector, m is called centre, ||.|| denotes the 

Euclidean distance, and y  is a univariate function, that is often referred to as the 

“profile function” or “basis function”. Typically, a fitting model is set up as a 

linear combination of N radial basis functions having N distinct centers: 

, where jw  is the weight associated with the j-th radial basis function centred at 
(j)m . While Eq. 1.8 is linear in terms of the basis function weights jw , the 

predictor � ( )y x  can express highly non-linear responses. This is equivalent to 

( )2( )

1( )
2

exp

k
i

j j
ji

x x

w
s

=

� �
-� �

� �= -
� �
� �
� �

�
 Eq. 1.6

( )y -x m  Eq. 1.7

� ( )( )

1

( )
N

i
i

i

y wy
=

= - =� Tx x w �m  Eq. 1.8
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build a linear neural network having a number of inputs corresponding to the 

number of input vectors, primitive nodes whose transfer function is given by Eq. 

(1.6), and a single output (which corresponds to the values to be fitted) 

(Broomhead and Lowe [11], Hassoun [12]).  

A variety of radial basis functions are used in practice [13] and lead to 

different techniques: 

, here   is a positive constant. The basis function shown for Kriging is only one 

possibility, but is a popular choice that appeared in an influential article by Sacks 

et al. [2]. 

First, RBFs need the centres to be specified. At present, no general rule exists 

for selecting them [14], even though some criteria have been developed [15], such 

as the ROLS procedure (Regularized Orthogonal Least Squares), where the 

centres are chosen one at a time using a forward selection procedure from a 

candidate set consisting of all the data points or a subset thereof. However, a 

simple solution would be to choose N np= , thus leading to a square system of 

equations with a unique solution. The closure of the problem is achieved by 

imposing the centres of the basis directly on the data points. Thus will lead to the 

matrix equation: 

,where w  is the unknown parameters vector, y  the observed response vector, �

denotes the so-called Gram matrix and it is defined as 

( )

3

2

( )                                                         (linear)

( )                                                       (cubic)

( ) log                                          (thin plat

y

y

y

=

=

=

r r

r r

r r r

2 2

21 2
2

e spline)

( )                                             (multiquadratic)

( ) exp             (Kriging)
2

l
k p

l j
j

y s

q
y s

s
=

= +

� �
� �
� �= - - +
� �
� �
� �

�

r r

r

r r

  Eq. 1.9

� w = y  Eq. 1.10
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The importance of the Gram matrix in the computation of w  will soon be 

clear. As w  is the solution of Eq. 1.10 

, the computational issues of -1�  strictly depends on the mathematical properties 

of the Gram matrix � , and this is where the choice of basis function can have an 

important effect. It can be shown that, under certain assumptions, Gaussian and 

inverse multi-quadratic basis functions always lead to a symmetric positive 

definite Gram matrix (Vapnik [16]), ensuring safe computation of w . 

Beyond determining w , some of the radial basis functions have an associated 

width parameter s, which is related to the spread of the function around its centre. 

A heuristic approach is given in [14], where the width is the average over the 

centres of the distance of each centre to its nearest neighbor. However, this holds 

true for Gaussians RBFs, and it is only a rough guide that provides a starting 

value. Some algorithms exist for the width selection [17], including Generalized 

Cross-Validation GCV, but basically all of them proceed from a tentative value 

and test several widths values equally spaced between specified initial upper and 

lower bounds; then the width value minimizing log10(GCV) is selected. 

Clarification must be made on the difference influence of w  and basis 

function parameters on the predictor performance. A correct choice of the former 

will make sure that the approximation can reproduce the training data, while the 

correct estimation of the latter will enable us to minimize the estimated 

generalization error of the model. 
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When data is corrupted by noise, the interpolation scheme proposed in RBF 

( )N np=  leads to deterioration of the predictor performance, because the model 

structure is not able to distinguish between the underlying response and the noise, 

thus observing overfitting behavior.  

Adding more flexibility to the model could be an easy and practical way to 

deal with such problem. The insertion of a regularization parameter lambda within 

the Gram matrix implies that the approximation model will no longer pass through 

the training points and w  will be the least-square solution of 

( )(i) ( )
, ,      , 1,...,j

i j i j npy= - =x xY   Eq. 1.11

-1w =� y   Eq. 1.12
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, where I  is an ( )npxnp  identity matrix. The best choice for �  would be the 

variance of the noise in the response y . Unfortunately, the noise variance is 

usually not known, thus lambda is added to the parameters to be estimated. 

Another way to minimize undesirable overfitting is to construct a regression 

model reducing the number of bases functions N np< . To this end, Support 

Vector Regression (SVR) can give a very elegant and effective bases function 

selection method. An alternative is to use forward selection (Orr 1995 [14]) in 

which the basis function, which most reduces some error metric, are chosen and 

added one at a time in empty subsets of the design space; the process continues 

until there is no significant decrease in the error metric. 

������$  %��	�#
&���	�



Kriging is a particularly famous method of creating metamodels as it can 

effectively represent a wide variety of responses while providing useful error 

estimate of the predictor. Derivation of Kriging equations can be carried out in 

different ways. The reader interested in the standard derivation may consult the 

article of Sacks et al. [2], while a “gentle introduction to Kriging” has been 

proposed by Jones [18]. Hereafter the main equations are reported trying to 

highlight the essential statistical concepts of the method. 

In Kriging, the function to fit is seen as a random function ( )Y x  whose 

realization, or response, is characterized by constant mean m and variance 2s . As 

a result, two contributions flow into the realization of ( )Y x  at a given point x : 

. where ( )e x  is the deviation or error of the response due to the random attribute 

of ( )Y x  and it is related somehow to 2s . If a new point (2)x  is sampled near to 
(1)x , the realization of (2))Y(x  should be close to the previous response, because it 

is likely that the function under exam has some smoothness properties: as (2)x  

approaches (1)x , the response (1)y  tends to (2)y . In other words, between (1)y  and 
(2)y  there is a certain degree of correlation that increases as the distance 
(1) (2)-x x  decreases; such correlation can be modeled statistically assuming that: 

( ) 1l -
= +w � I y   Eq. 1.13

( ) ( )Y m e= +x x   Eq. 1.14
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, where � �  and 	 �  represent the hyperparameters of the l-th variable. The �  

hyperparameter determines the rate at which the correlation decreases, and p 

determines the degree of smoothness in each coordinate direction. The 

hyperparameters are chosen via a maximization of the concentrated likelihood 

function (Jones [18]): 

, where the optimal variance and mean are 

 and 

Since the likelihood function gives a measure of how consistent a model is 

with respect to observed outcomes (i.e. training points), choosing the parameters 

to maximize LH intuitively means that we want our model parameters to be 

optimally tuned in such a way that model’s behavior can well explain the data we 

have seen. This tuning is the main reason Kriging often outperforms other basis-

function methods in terms of prediction accuracy. 

Given a known set of hyperparameters, the Kriging prediction is the result of 

the maximization of the augmented likelihood function. The procedure is very 

similar to the LH maximization with the difference that the unknown is the new 

response (Jones [18]). The Kriging predictor can be written as: 

( ) ( ) ( ) ( )

1

( ), ( ) exp 10 -
l

l

k pi j i j
l l

l

Corr Y Y x xq

=

� �� 	= = -� �
 � � �
�R x x   Eq. 1.15

�( ) ( )
2 1

log log
2 2
np

LH s= - - R   Eq. 1.16

� �( ) �( )2
11 T

n
s m m-= - -y I R y I   Eq. 1.17

�
1

1

T

T
m

-

-
=

I R y
I R I

. Eq. 1.18

� �( )*( ) T Ty m m= + -x r R y I   Eq. 1.19
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, where here r denotes a vector of correlations between the unknown point *x  and 

the previous sample point (i)x . 

One of the key features of Kriging is the provision of an estimated error in its 

prediction. At training points, the mean-squared error is null, while in all the rest 

of the variables space it can be calculated by: 

������'  (	������
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A more general formulation of the model can be found in the Universal 

Kriging formulation (Cressie [19]), in which the mean term becomes some 

function of x : 

, where the in ’s are some known functions and the � � �s are unknown parameters. 

Usually � ( )m x  takes the form of a low-order polynomial regression. The idea is 

that � ( )m x  captures known trends in the data and bases functions added to this will 

fine-tune the model, thus giving better accuracy than ordinary Kriging where a 

constant �m is used. However, if the underlying trend is not known a priori, the 

introduction of a low order polynomial could even deteriorate model prediction. 

������)  ���	�
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Blind Kriging (Joseph et. al [20]) gives an effective answer to the problem of 

polynomial selection emerged in universal Kriging. The approach proposed by 

Joseph et. al [20] aimed to identify the in ’s through a Bayesian forward selection 

technique (Joseph [21]) and uses candidate variables of linear effects, quadratic 

effects, and two-factor interactions. Although the results reported by Joseph 

demonstrated the effective of such procedure, the computation cost of the bling 

Kriging process is much more computationally expensive and this may outweigh 

increased accuracy. 

������*  +��&���	�


In the presence of multi fidelity data, the Co-Kriging technique (Cressie [19]) 

allows to enhance the accuracy of a surrogate of the expensive function by 

� ( )21
2

2 1
1

1
1

T

T
Ts s

-

-
-

� 	-
� = - +
� 

 �

r R r
r R r

I R I
  Eq. 1.20

�
0

( ) ( )
m

i i
i

m mn
=

= �x x   Eq. 1.21
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coupling a greater quantity of cheap data with a small amount of expensive data. 

This can be done with a correction process that models the differences between 

the cheap and expensive function: 

. where the expensive function � �  is approximated by multiplying the cheap code 

� �  by a scaling factor �  plus a Gaussian process � �  that accounts for the 

difference between � �  and � � . Following maximization of likelihood function, 

predictor and error estimate of the predictor are calculated. The reader is referred 

to the work of Forrester et al. [22] for a detailed discussion on the subject. 
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In the same way as for an RBF prediction, a Kriging model may regress the 

data by adding a regularization constant to the diagonal of the correlation matrix 

(Forrester et. al [23]). Although the predictor is calculated similarly to ordinary 

Kriging, the predictor error estimate must be carefully evaluated in order to not 

include in such error both the model and the noise errors. Accounting only for the 

error model reflects the deterministic nature of the computer experiments and, 

consequently, gives to the error estimate a property of utmost importance for the 

optimization process, this is, to have zero error on sampling sites. 
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The theory of Support Vector Machines (SVM) is mainly inspired from 

statistical learning theory of Vapnik [16]. Suitable SVM for interpolation and 

regression have been developed recently which are called Support Vector 

Regression (SVR) (Smola [24]). The main idea is to find a function with at most 

e  deviation from y  and as the same time minimizes the model complexity (see 

Figure 1.1). Thus, the construction of the model reduced to the minimization of 

the following regularized e -insensitive loss function: 

, where e  is the accepted error, C is a regularization constant and �y  is the 

function to be estimated: 

( ) Z ( ) Z (e c dZ r= +x x x)   Eq. 1.22

�{ }2 ( ) ( )

1

1
max ( ) ,

np
i i

i

L C y y
np

e
=

= + -�w x   Eq. 1.23 
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The reader is referred to the work of Forrester and Keane [25] for a detailed 

derivation of SVR equations.  

 

Figure 1.1: A SVR prediction using Gaussian kernel (from Forrester and Keane [25]). 
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When trying to map a high-dimensional input variables’ space into an output 

space, a series of difficulties usually arise: specifically, multivariate data is 

difficult to work with because of the relevant amount of observations that are 

necessary to get good estimates. Furthermore, adding more features to the 

explanatory variables’ space increases their interdependency relationships and can 

also cause an augmented noise, which may adversely affect prediction reliability. 

This is usually referred to as the “curse of dimensionality” (Bellmann [26]). 

More generally, the curse of dimensionality is the expression of all 

phenomena that arise with high-dimensional data, and that have most often 

undesirable consequences on the behavior and performance of data fitting 

algorithms. Specifically, a nonparametric model building approach may show 

dramatically deteriorated prediction performance, unless it is fit with a proper 

number of independent observations [27]. Nevertheless, approximation 

deterioration seems to be inevitable and affects any meta-models as 

dimensionality of the problem on hand increases. 

� ( ) ( )

1

( ) ( , )
n

j j

j

y m y
=

= + �x w x x   Eq. 1.24
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1.3 Metamodels At The Service Of Optimization  
The use of metamodels in optimization framework has widely been adopted 

in the last few decades. There are no doubts that the introduction of approximation 

techniques have taken multiple advantages to the field and the huge amount of 

works out there give testimony of such. Here, the hard question is if there is an 

optimum way to integrate and exploit such techniques within the optimization 

framework. We would like to summarize the main ideas from which all the other 

works branch out, being aware that it could be considered an inexcusable 

reduction but necessary. 

�����  �������� ����� ������� ����������

Generally, the creation of surrogates involves a training dataset over which 

the model is build or trained. We refer to off-line approach when processes of both 

training points sampling and model creation are performed before optimization 

starts. On the other hand, in-line approach denotes the situation where further 

training points are somehow selected and then added to dataset throughout 

optimization. 

Several off-line data sampling methods have been proposed in the fields of 

design of experiment [28]- [29] as the famous Design Of Experiments (DOE), the 

Orthogonal arrays, Central Composite Design, and D-optimality. The final aim of 

these methods is to produce an “even-spread cloud” of sampling locations that 

pursues different optimal distribution concepts, which should encourage 

surrogates prediction capability. An off-line approach may be useful when the 

computational budget allows only few optimization cycles, or when the surrogate 

accuracy is so high that the optimizer can just be run over the metamodel. 

When search space dimensions increase, a more efficient way of dealing with 

the poor approximation of surrogates is the in-line sampling strategy. Among the 

others, bagging [30] and boosting [31] are two statistical learning methods that 

have been developed to globally improve the quality of approximation using 

bootstrap techniques. Global quality is desirable but expensive, and is not strictly 

necessary for global optimization. In fact, we would like to improve surrogates 

only in those regions of interest that lead to the optimum, avoiding a detailed 

exploration of all the rest of the search space but, contextually, analyzing its main 

topology to be sure to evade local minima. Given a fixed computational budget, 

the solution to such problem is a trade-off between exploration and exploitation of 

the design space. 
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There are promising sequential sampling strategies that balance exploration 

and exploitation based on surrogate uncertainty prediction. For instance, Kriging 

techniques make use of statistical information to implement sampling rules, the 

so-called infill criteria  [18]- [32]- [33]. The selection of new samples location 

may be driven by the Predicted Error (PE), the Probability of Improvement (PI), 

and the Expected Improvement (EI), or a variation on the theme. These concepts 

can be extended in a multi-optimization framework. 

�����  ��	
�
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	��

The main hypothesis underneath the multifidelity approach is that high-

fidelity models as CFD are more time consuming, require a larger computing 

effort, and are more accurate than a low-fidelity model, for instance an Euler 

inviscid solver or even a one-dimensional algebraic equation. On the other hand, 

low-fidelity models are cheaper but less accurate. How to mitigate the drawbacks 

related with computational cost of high-fidelity models with the use of low-

fidelity models is the main concern of multifidelity approaches. 

Many strategies have been developed over the years in order to link, or better 

to correct, somehow the low-fidelity model with the high-fidelity one. The main 

idea is that the link between the two can be analyzed and mathematically 

described by taken into account a low number of points evaluated for both high-

fidelity and low-fidelity model according to a suitable design of experiment. Of 

course, this link can be refined in an adaptive way during optimization by 

evaluating new points on both models.  

The ways metamodels could fulfill in such scope were generalized in the 

work of Toporov [3], in which metamodels are considered as tuned low-fidelity 

models based on the interaction of high- and low-fidelity models response: 

, where ( )F x  is the high-fidelity model response, ( )f x  is the low-fidelity model 

response and a  is a vector of tuning parameters used for minimizing the 

discrepancy between the high-fidelity and the low-fidelity responses at sampling 

points. Three different tuning approaches were proposed: 

1. Linear and multiplicative with two tuning parameters 
2. Correction function approach 
3. Use of low-fidelity model inputs as tuning parameters 

� ( ( ), ) ( )y f F»x a x   Eq. 1.25
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An alternative to Toporov’s approach is the so-called space mapping that 

aims to establish a mapping of one model’s parameter space on the other model’s 

space such that the low-fidelity model with the mapped parameter accurately 

reflects the behavior of the high-fidelity model [34]. In other words, a distortion, 

or tuning, is performed on the input variable of the low-fidelity model rather than 

on its response; for instance, distortion could pursue the matching between the 

low- and –high fidelity model optimum [35]. 

�����   ����!�������"����#�	���

Another idea to enhance the prediction capability of a metamodel is to take 

into account various metamodels at the same time. In fact, since we do not now a 

priori  which metamodel performs better, the use of multiple surrogates can reduce 

the risk associated with poorly fitted models [36]. This a priori uncertainty is 

inherent on how metamodels are built, which depends primarily on the 

combination of three components [37]: the statistical model and its assumption; 

the basis functions or kernel functions, depending on the specific surrogate; the 

minimization function or metrics selected to asses model parameters. The mix of 

these three ingredients could in principle lead to infinite recipes. 

Bearing in mind how easy it is to produce different surrogates, being a 

variation of the same statistical model or based on different techniques, the 

number of metamodels to be created is more related to the computational budget 

and software capabilities rather than an “optimum magic number”. The tough 

question is how to exploit information coming out from such multiple metamodels. 

In the literature there have been explored two main alternatives both based on 

criteria apt to evaluate the goodness of every surrogate at hand. Examples of such 

criteria are Cross-Validation, the Akaike Information Criterion and the Bayesian 

information criterion [38]. Regardless peculiarities of these criteria, they make it 

possible to rank surrogates. At this point, the first option is to promote as the best 

predictor the surrogate with the higher rank and rely on its response, discharging 

all the others; this is referred to as the selecting based approach. The other option 

is to create a “master” surrogate through proper weighting selection in the linear 

combination of the models, in which the weights reflect the goodness of 

surrogates. This second approach would like to mitigate the errors in prediction 

that could affect single metamodels. 

Selection or combination? It seems that there is no ultimate answer as 

discussed by Yang [39]. He pointed out that selection can be better when the 
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errors in prediction are small, and combination performs better when the errors 

are large. Moreover, Viana et al. [40] highlighted that potential gains from using 

combination diminish drastically in high dimensional spaces and that in such 

circumstances criterion like cross-validation loses its effectiveness and makes the 

gain very difficult in practice. 

Another aspect to be stressed is that from the optimization point of view it is 

not really important the prediction capability itself, but it is paramount the 

capability of reproducing the landscape of the fitness function. Samad itself in the 

optimization of the NASA Rotor 37 (Samada et al. [41]) had declared that the 

most accurate surrogate did not always lead to the best design, demonstrating that 

using combination of surrogates can improve the robustness of the optimization at 

a minimal computational cost. 
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Comparative studies have led to a no clear conclusion, despite the fact that 

nonparametric models seems superior to parametric ones (among others, Jin et al. 

[42] and Benini and Ponza [43] ). Surrogates performance depends on both the 

nature of the problem and the DOE. Nevertheless, there are two interesting works 

related with turbomachinery, which indeed is the application field of the present 

work, that try to compare EA coupled with surrogates. First, Kean [44] addressed 

the optimization of a gas-turbine compressor blade section subject to damage in 

service and uncertainty in manufacture. Different optimization algorithms were 

compared, starting from the direct search with NSGA-II, then implementing a 

Kriging-based surrogate-assisted NSGA-II, concluding with Kriging EI 

formulation, in which statistical information coming out from Kriging model is 

used to drive the search towards the Pareto-optimal front. Although the second 

approach consumes only 30% of computational budget compared to NSGA-II, it 

was observed that further improvements on the Pareto front become difficult to 

find as the Kriging models are not as good at uncovering novel new behavior as 

the direct NSGA-II search, because they are always based on points from previous 

updates. On the other hand, expected improvement method carries out a more 

careful exploration of the design space, although slightly more slowly than 

surrogate-assisted NSGA-II run. 

Second, Peter and Marcelet [45] compared different types of surrogate 

models (i.e., least square polynomials, radial basis function, multi-layer 

perceptron, simple Kriging) on a turbine cascade optimization problem, it turns 
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out that among all the models that were tested the Kriging models and the radial 

basis function network appear to give the best results. It is worth nothing that the 

cascade was parameterized with only two design variables, thus leading to a very 

low dimension design space. In order to formulate a precise ranking of surrogates, 

multiple evaluation criteria were considered, i.e., the ability to approximate the 

exact function and to find the global and local maxima. Starting from a DOE, 

performance was measured upon the number of exact CFD evaluations required 

for a certain surrogate in order to reach a predetermined threshold of the 

evaluation criteria. 

1.4 Application Study: High-Speed Blade Optimizatio n 

It is well known that effectiveness of optimization algorithms strictly depends 

on the problem at hand; even though their performance may be evaluated and 

compared over synthetic functions, the harsh reality impose a real-world 

application as test bench to consecrate the promising algorithm to superior realm. 

For this reason, attention is here devoted to a specific optimization problem in the 

turbomachinery field, that is blade shape optimization and, in particular, high-

speed or transonic blades optimization, which indeed is attractive for both the 

physic inside transonic blades and the complexity of the optimization landscape. 

Of course, the focus is on metamodels and on their contribution to the 

improvement of the optimization process efficiency. 

To carry out any sort of shape optimization, there are two essential 

ingredients: 

·  geometric parameterization 

·  optimization strategy 

A brief review on high-speed blade optimization works is hereafter presented 

with the aim to highlight these two aspects rather than the physic explanation of 

improvement achieved optimizing the blade. Although most of the woks are 

focused on NASA Rotor 37 and Rotor 67 (see Figure 5.1), attention will be first 

devoted to Rotor 37 (see Table 1.1) and others interesting minor works, while 

there is a specific section about the NASA Rotor 67 in chapter §0. 
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 Authors Parameterization Opt. Strategy 

  Locus Design 
variables 

Method Objectives CFD 
runs  

N
o 

S
ur

ro
ga

te
s Benini [46] Lean+Foils 23 GA+CFD 

�

��

�

�

�
  

��
�   

2000 

Burguburu and 

Pape [47] 

Foils suction 

side 

9 Gradient+CFD 
��

�   41 

O
ff-

lin
e Jang et al [48]. Sweep 2 RSM+CFD 

��
�  7 

Ahn and Kim [49] Lean 3 RSM+CFD 
��

�  15 

Chen et al. [50] Foils 3 RSM+CFD 
��

�  - 

In
-li

ne
 Wang et al. [51] 

 

Sweep+Lean 4 GA+BPNN+CFD 
�

��

�

�

�
 232 

Table 1.1: Major works related with NASA Rotor 37 shape optimization. 
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Generally, a blade can be reconstructed interpolating a few spanwise 2D 

sections located along the 3D stacking line. As a result, blade reshaping may 

involve the 3D stacking line (referred to as sweep and lean deformation, see §5.2 

for a detailed discussion), 2D spanwise profiles, or both of them. The 

parameterization may have different levels of complexity according to (i) how in 

depth it can reshape the geometry and (ii) how many design variables are 

associated to the parameterization framework. Usually, control points (CP) based 

curves as Bézier or B-splines or cubic splines are adopted because CP are 

straightforward related with the optimization design variables, and also for their 

ability to produce smoothed and contextually complex shapes. 

Let’s consider the works on the NASA Rotor 37. In Jang et al. [48] the 

stacking line was parameterized with two design variables allowing only sweep 

deformation. Ahn and Kim [49] considered only lean deformation handled by 

three design variables. For the same rotor, parameterization complexity was 

increased including both lean and sweep but leaving the profiles shape unchanged 

(Wang et al. (2011) [51]), requiring four design variables in the whole.  

On the other hand, Burguburu and Pape [47] adopted a pure 2D profile 

deformation; modified suction sides were derived applying displacements to the 

reference blade by translating each point along the blade local normal taking into 

account only the suction side of the foils. In Chen et. al [50]the profiles 
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deformation was focused on design parameters (or geometric parameters) with 

strong physical meaning, i.e., position and value of maximum thickness, stagger 

angle, leading and trailing edge angles, etc. The modifiable spanwise sections 

were reduced to 3 (i.e., hub mid-span and tip) and only 3 design variables per 

section were activated (i.e., stagger angle, maximum camber location and 

maximum thickness location), being the rest fixed to the baseline value. 

A whole parameterization of Rotor 37 was proposed by Benini [46], in which 

three profiles along span were selected (i.e., hub, midspan, and tip profiles), each 

of which was represented by camber and thickness distributions. These were 

defined by fourth-order Bezier polynomials. 14 parameters for the camber lines 

plus 9 parameters for the thickness, this is, 23 parameters in total were used. 
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First, we make a distinction between direct and inverse methods based on the 

nature of the input variables of the optimization problem. In the direct methods, 

inputs are mainly geometric variables that affect the shape of the blade; the 

algorithm searches for new geometries for which objectives are optimized. 

Contrarily, in the inverse method, conventional design quantities are the 

distribution of pressure, or generally, of any fluid dynamic property on the surface 

of the blade; the aim of the process is to find those distributions that optimize the 

objectives. Of course, the way in which the blade geometry is computed on the 

basis of the specification of quantities distribution is the core of inverse 

methodologies, which however are beyond the scope of this brief survey and will 

not be investigated further; exception is made for Rotor 67. 
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Most of the approaches encountered in the literature belong to the direct 

method category. Some of these did not implement metamodels. For instance, in 

Benini [46] the Rotor 37 multi-objective optimization was performed by means of 

GeDEA genetic algorithm [52]. Isentropic efficiency and total pressure ratio were 

to be maximized at a given mass flow rate. A population of 20 individuals 

evolved for a total of 100 generations, against 23 design variables. An 

improvement of 1.5% in the adiabatic efficiency was achieved without modifying 

the total pressure ratio (particular point on Pareto-optimal front). In Burguburu 

and Pape [47] the Rotor 37 was optimized by means of a gradient method coupled 

with CFD solver. Isentropic efficiency at a given design point was maximized, 
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keeping mass flow and total pressure ratio fixed. Only three iterations with the 

gradient method were performed and 41 CFD calls were required, against 9 

design variables. The increment in isentropic efficiency was around 1.2% 

compared to the reference blade. 
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The simplest strategies are the one based on the off-line approaches (§1.3.1). 

In Jang et al. [48]a polynomial response surfaces was built with seven points 

evaluated via CFD, against two design variables; then, the maximum isentropic 

efficiency was searched on the metamodel. It was found that the optimum shape 

was a backward sweep deformation, which increased the isentropic efficiency by 

1.25%. In Ahn and Kim [49] the isentropic efficiency was maximized adopting a 

response surface optimization approach. The 15 sample points (against 3 design 

variables) prescribed by full factorial design were selected using D-optimal design 

strategy. Then, a polynomial response surface was constructed and a search 

algorithm was run over the surrogate to find the global optimum. The 

optimization of the rotor blade produced an efficiency enhancement of 0.7%. In 

Chen et al. [50] isentropic efficiency was maximized by means of a gradient 

algorithm applied to response surface technique. The isentropic efficiency was 

increased by 1.73% compared to the baseline Rotor 37. 
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More elaborated strategies belong to the in-line approaches. In Wang et al. 

[51] a multi-objective optimization framework using NSGA-II and back 

propagation neural network was applied to redesign the NASA Rotor 37. In this 

framework, a modified crowding distance was proposed to enhance the robustness 

of NSGA-II and a course-to-fine approaching strategy was implemented to refine 

the approximation model, keeping to a minimum the expensive CFD evaluations. 

Efficiency increased about 1.1% and total pressure ratio increased about 1%, 

while the chocking mass flow only decreased 0.04%.  

Other works are not strictly related with high-speed turbomachinery, but they 

make use of surrogates to speed up the optimization process. Karakasis et al. [53] 

have used a hierarchical evolutionary algorithm based on multi-fidelity models, 

whose accuracy and computational cost increase from the lowest to the highest 

level. The role of the lower levels is to explore the design space with the 

minimum computational effort and guide the higher ones to scrutinize particular 

regions by modeling additional flow features, which cannot be described by the 
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lower-level tool. This approach was applied to a controlled diffusion compressor 

cascade optimization aiming to minimize the pressure losses while preserving the 

flow turning. The hierarchical approach comprises two levels, a viscous-inviscid 

flow solver and Navier-Stokes equation solver, both approximated with radial-

basis function networks. Compared to conventional EA approach, it was 

demonstrated that 8-fold time benefit which is mainly obtained from the 

approximation of the expensive flow analysis by using meta-model approach. In 

Okus and Akmandor [54] a novel multilevel genetic algorithm was presented, 

which takes advantage of the successful solutions adopted in dynamic 

environments, this is, “multiploid” GAs, in which the genetic operators are 

rewritten in such a way that the multi-fidelity information can be treated and 

exploited to enhance the search to converge toward the Pareto-optimal front. A 

3D blade turbine, which was parameterize by 37 design variables, was optimized 

in order to maximize isentropic efficiency and torque. Compared to a simple 

MOGA (Multi Objective Genetic Algorithm) approach, this method reduced the 

computational cost by a factor of 4, while producing a superior Pareto-optimal 

frontier with respect to MOGA. In Keskin et al. [55] the multi-objective NSGA-II 

genetic algorithm assisted by adaptive Kriging-based response surfaces was 

applied to the optimization of a 3D compressor blade in order to minimize loss 

production at a required flow turning, considering both design and off-design 

performance. Surrogate’s accuracy was automatic controlled throughout the entire 

optimization process by updating the CFD training points when strictly needed, in 

order for the genetic algorithm to find the Pareto-optimal front on a reliable model 

response. In Giannakoglou et al. [56], a multi-layers network, which can be 

trained on both known responses and response gradients, operates as approximate 

evaluation tool during the evolutionary search. This novel implementation was 

used to design 3D blade of both turbine and compressor, the former being 

parameterized with 33 Bézier control points while the latter with 20 points. 

Furthermore, the 3D Euler and adjoint equations were solved to provide the 

objective function gradient, which indeed speeds up the optimization algorithm. 

Compared to traditional EA, the novel approach drastically reduced the number of 

exact evaluations by a factor of 5. In fact, only 200 evaluations were needed to 

reach the target pressure distribution, which was the optimization goal. Contrarily, 

a traditional EA after 1000 evaluations was not capable of reproduce comparable 

results. 
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1.5 Thesis Objectives 

This thesis deals with turbomachinery optimization and all those tools 

employed in the optimization process, mainly the optimization algorithm, the 

parameterization framework, and the automatic CFD-based optimization loop. 

The first and most speculative objective is the enhancement of the optimization 

algorithm by means of surrogate models. The state-of-the-art genetic algorithm 

GeDEA-II, which was developed at Università di Padova, needs to be equipped 

with “metamodels’ technologies” to improve its convergency efficiency and 

repeatability, while preserving its robustness.  

The second objective is related with the design and development of the 

automatic CFD-based optimization loop built around the improved GeDEA-II 

algorithm. This comprises a robust strategy to handle all the optimization tools in 

a Linux cluster environment in order to exploit the computational resources of 

parallel computing. Among the tools, the most important one is the 

parameterization tool able to reshape both 2D supersonic foils and 3D transonic 

compressor blades. Once the analysis tools are ready, the optimization of high-

speed turbomachinery may start. The third and last objective of this thesis is two-

fold: prove the effectiveness of the optimization approach and gain insight on the 

physics phenomena of transonic and supersonic flows with the aim to explain the 

reason of the observed improvements. 

1.6 Thesis Outline 

The document is organized in five chapters. In Chapter 2 the surrogate-

assisted multi-objective genetic algorithm GeDEA-II-K is presented. Based on the 

cooperation between the GeDEA-II genetic algorithm and the Kriging technique, 

GeDEA-II-K is tested over two- and three-objective synthetic test functions 

proving to be a promising tool in a multi-objective optimization context. 

The effectiveness of a CFD-based automatic loop developed during this PhD 

course is verified on two real-life multi-objective optimization problems: the 2D 

shape optimization of a supersonic compressor cascade and the 3D shape 

optimization of the NASA Rotor 67. Due to the inherent misleading behavior of 

supersonic cascades compared with subsonic ones, Chapter 3 is entirely devoted 

to the physic of supersonic compressor cascades. The reader must be aware of the 

physics constraints of a supersonic flow throughout compressor cascades in order 

to gain a better understanding of the results coming out from the cascade shape 
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optimization. In chapter 4, the study and the optimization of a supersonic 

compressor cascade is presented. In particular, the validation of the CFD model, 

the parameterization technique and the unique incidence control loop are 

illustrated, in addition to the optimization results. In the last chapter, the 

optimization of the NASAS Rotor 67 transonic compressor is reported. 

Although a lot of time was invested to design and perfect the automatic 

optimization framework, the loop is briefly reported in Appendix A, because the 

relevant peculiarities were not judged to be in such amount to require a separate 

chapter. 

 





 
 

 
 

Chapter 2  

GeDEA-II-K: A Kriging -

Assisted Evolutionary 

Algorithm  

In this chapter, a novel surrogate-assisted (SA) evolutionary algorithm for 

MOOPs developed during my PhD course is presented. The GeDEA-II-K is 

grounded on the cooperation between the GeDEA-II, which is a state-of-the-art 

“pure” genetic algorithm, and some Kriging statistical criteria featured in the 

ASEMOO, which is a surrogate-assisted algorithm based on the Kriging 

technique. How far can a SA algorithm go when very few direct evaluations are 

available? Comparison over two- and three-objective test functions have 

demonstrated that the GeDEA-II-K, exploiting synergistically the strengths of 

both parents the GeDEA-II and the ASEMOO, can achieve high performance in 

the approximation of the Pareto-optimal front mitigating the drawbacks of its 

“parents”. 

2.1 Introduction 

Evolutionary Algorithms (EAs) play an important role in the framework of 

metaheuristics in dealing with multi-objective problems in real-world engineering 

optimization. Research in this field is primarily concentrated toward reducing the 

computational effort for obtaining multiple optima. At the same time, quality and 

variety of optimal solutions is of fundamental importance to engineers in order to 

give them a number of choices among which to select the most appropriate ones 

with a high level of confidence regarding their performance. The latter can be 

referred to as “convergence ability”. A complete review and synthesis on 

metaheuristics can be found in [57]. 

Most of the times, computational effort and convergence ability are 

conflicting tasks: the lower the former, the lower the quality of the obtained 
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solutions. Generally speaking, in non-deterministic algorithms found in 

metaheuristics, both the computational effort and convergence ability depend on 

the absolute number of direct function evaluations. While “exact” solutions can be 

obtained using a direct objective function evaluation only, generation of “non-

exact” or approximate solutions can be obtained using a response surface (often 

referred to as a “metamodel” or “surrogate”), which mimics the real objective 

function landscape being computationally cheaper to evaluate [58]. 

In the following, we shall refer to a “pure” method (PM) when dealing with 

an algorithm performing direct function evaluation only, and to a “surrogate-

assisted” method (SA) when considering procedures that make use of 

approximated function landscapes somewhere in the optimization method.  

The purpose of the present work is to show how cooperation between 

particular type of PM and SA methods, namely the GeDEA-II and the ASEMOO 

algorithms, have led to a novel algorithm: GeDEA-II-K. More in detail, two- and 

three-objective test functions are selected among up-to-date multidimensional 

problems in the literature that stress the search algorithms hampering convergence 

towards to the Pareto-optimal front. Performance of the algorithms is compared 

using a universally accepted measure of fitness function evaluation cost, The 

Adimensional Direct Evaluations Number (ADEN). Furthermore, two metrics of 

performance were used to analyze algorithms’ results, i.e. the Hyper-volume (HV) 

and the so-called D-metric. 

2.2 Brief Review Of GeDEA-II And ASEMOO Algorithms 

�����  %�� �())�

The GeDEA-II algorithm is a multi-objective real-coded evolutionary 

algorithm (MOEA) developed at University of Padua. It mainly follows the basic 

steps of an Evolution Strategy implementing a Pareto-like evaluation method 

based on both fitness and distance among individuals [52]. 

A Simplex-Crossover (SPX) operator is implemented for individuals’ 

recombination, while Tournament-Selection (TS) and Shrink-Mutation (SM) are 

employed to complete the genetic manipulation [59]. While keeping firmly in 

mind that the No free lunch theorem [60] applies to optimization algorithms, the 

GeDEA-II is able to outperform some state-of-the-art competitor algorithms on a 

number of state-of-the-art test problems. Following is a brief description of the 
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GeDEA-II operators, while for an extensive explanation on its architecture and 

performance the reader is referred to [59]. 

The main steps of the GeDEA-II algorithm are described as follows: 

Step 1: An initial population of m individuals is generated at random. 

Step 2: A mating pool of 2l  individuals is formed, each individual having 

the same probability of being selected using TS. 

Step 3: l  offspring are generated by SPX crossover. SM mutation is applied 

randomly with a probability pmut. 

Step 4: The whole population of m l+  individuals is checked to discover 

possible clones. These clones are removed and replaced with new randomly 

generated individuals. 

Step 5: The objective function values of the m l+  individuals are evaluated 

and the non-dominated sorting procedure by Goldberg is performed to assign the 

ranks to the solutions according to the objectives of the MOOP. 

Step 6: The whole population of m l+  individuals is processed to determine 

the value of the reciprocal distance-based genetic diversity measure for each 

individual. 

Step 7: GeDEM [52], a special sort of as a genetic diversity preservation 

method, is applied according to the ranks scored in Step 5 and the values of the 

diversity measure assigned in Step 6. The non-dominated sorting procedure is 

used again to assign the ranks. GeDEM computes the actual ranks of the solutions 

maximizing (i) the ranks scored with respect to the objectives of the original 

MOOP, the non-dominated solutions having the highest rank, and (ii) the values 

assigned to each individual as a measure of its genetic diversity, calculated 

according to the chosen distance metric, i.e. the (normalized) Euclidean distance 

in the objective functions space. 

Step 8: The best m solutions among parents and offspring, according to the 

ranks assigned in Step 7 are selected for survival and the remaining l  are 

eliminated. 

Step 9: If the maximum number of generations is reached then stop, else go 

to Step 2. 
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Figure 2.1 depicts the pseudo-code of an SPX in a multi-objective context, 

extended to the most general case involving M objective functions. It is assumed 

that all of the objectives are to be minimized. At each generation ignr, the mean of 
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each objective function mean is calculated. Based on these values, the percentage 

variations PV are subsequently derived. Next, two selected parents are sorted 

according to these values and the child created. This choice guarantees that the 

objective function characterized by the greatest variation is selected every time, 

therefore ensuring the highest convergence rate to the Pareto Front (PF). For test 

problems involving more than two objective functions, the objective function 

considered to form the new child is chosen randomly in order to enhance the 

design space exploration of the crossover operator required in highly dimensional 

objective spaces.  

 

Figure 2.1: Pseudo-code for SPX operator. 
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The mutation operator adds a random number taken from a Gaussian 

distribution with mean equal to the original value of each decision variable 

characterizing the entry parent vector. The shrinking schedule employed is: 
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where iShrink  is a vector representing the current mutation range allowed for that 

particular design variable, ignr represents the current generation and ngnr the total 

number of generations. The shape of the shrinking curve was decided after several 

experimental tests. Once the current variation range has been calculated, one 

decision variable of the mutated child is randomly selected and mutated according 

to the following formula: 

where Childmut is the mutated decision variable, Childcrossis the decision variable 

generated by SPX and random is a random number taken from a normal 

distribution in the open interval ]-1,1[. 
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The ASEMOO (ASynchronous Efficient Multi Objective Optimization) 

algorithm is an optimization algorithm developed at the Warsaw University of 

Technology. Its concept is based on EGO algorithm by Jones et al. [61] and works 

of Jeong et al. [62]. The main optimization loop consists of the following steps: 

1. A database of designs is initialized with a starting set of points 

selected with Latin Hypercube Sampling. 

2. Objective functions are evaluated in all the points in the database. 

3. Kriging model for all the objective functions is created. 

4. Multi-objective optimization of a sampling criterion (EHVI) is 

performed. One point is selected and added to the database. 

5. If more points are needed, go to algorithm goes to 2. 

Kriging is a statistical model used for multi-dimensional approximation. A 

given objective function f  is considered a realization of a random field ( )Y x  

with prescribed mean � (x) and covariance ( ) ( )( , )i jR x x  functions. Function f  is 

then approximated with an unbiased, linear, least squares estimator of Y . In case 

1 1i i

ignr
Shrink Shrink

ngnr-

� �
= × -� �

� �
  Eq. 2.1

( ):mut cross i iChild Child Shrink random Shrink� 	= + × ×
 �
  Eq. 2.2



30 Chapter 2 �  GeDEA-II-K: A Kriging-Assisted Evolutionary Algori thm 
 

of ASEMOO algorithm, linear mean function is used and correlation function is 

given by equation: 

where lp  is 1 or 2, depending on the smoothness of the objective function. Shape 

parameters lq  are chosen with Maximal Likelihood method and verified with 

generalized cross-validation (GVC). This approach for finding shape parameters 

is based on the Kriging implementation by Roustant et al [63]. One of the strong 

features of Kriging model is the ability to not only calculate the approximation, 

but also the variance of the estimator. This variance can be used as a good 

estimate of the error of the approximation. Jones et al. [61] combined these two 

information to create a sampling criterion which balances two, most important 

goals of the optimization loop: 

1. exploration – improvement of the approximation 

2. exploitation – finding the exact optimum 

The sampling criterion is based on the assumption that the error of 

approximation has a normal distribution and we can calculate expected value of 

the improvement of the objective (EI): 

The x� �� are the points where the objective function was already evaluated and 

���
	  is the minimum objective function in the evaluated set. This function is high 

in two types of places: where the approximation of the objective has lower value 

and where the quality of approximation is low. Many approaches were considered 

for extending this criterion to multi-objective optimization problems, some of 

which were investigated by 	aniewski-Wo

k in [64]. The study found that 

Expected Hyper-volume function can achieve very good and consistent 

optimization results. The Expected Hyper-Volume Improvement (EHVI) function 

is constructed as: 

( ) ( )
( ) ( )

1

-
( , ) exp

lpi jk
i j l l

l l

x x
q=

� �
� �= -
� �
� �

�R x x
 

Eq. 2.3

� � � �� �� �x E x x x� � � �� � � � � � �� �
���

�� ��� 	 � � 	� � � . Eq. 2.4
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where �  is a vector-valued objective function and � �y y y��� ��� � �� ����� ����  is 

hyper-volume of the set dominated by the points y y y��� ��� � �� � ���� �� . In any hyper-

volume calculation, there has to be a reference point selected. This point 

represents the maximum accepted values of the objective. The ASEMOO 

algorithm will find the part of the Pareto front that dominates this point. This 

feature of the algorithm can be used to refine a specific part of the Pareto front or 

to prevent deterioration of any objective with respect to the base (starting) design. 

The value of EHVI can be calculated analytically if we assume that the errors of 

the approximation of all the objectives are independent and have normal 

distribution. It is interesting to note that EHVI criterion reduces to Expected 

Improvement when applied to a one objective problem. Also like EI the EHVI 

criterion gives a good balance between exploration and exploitation. As it is based 

on the dominated-hyper-volume function it gives a good even, spread of points on 

the Pareto front. 

Function EHVI is highly multi-modal and would be very hard to optimize 

with common algorithms. The final sampling criterion used in ASEMOO 

algorithm is a set of objectives, from which the first is -EHVI(x) and the rest are 

the approximates of all the objective functions. This makes the optimization 

problem well suited for common multi-objective genetic algorithms. The 

evaluation of the sampling criterion is very cheap compared to the evaluation of 

the objective, so the criterion in ASEMOO is optimized with NSGAII algorithm 

by Deb et al. [65] with a high number of generations and high population size. 

At this stage, one point with the highest EHVI is selected from the Pareto 

front of the multi-objective optimization criterion. Objective functions are 

evaluated in this point, the data is added to the database and the optimization loop 

continues. 

ASEMOO algorithm is also capable of generating new designs before the last 

one was evaluated, opening the possibility of asynchronous evaluation of the 

objective functions for different points in parallel. This feature is essential in 

industrial applications, where several evaluations can be run simultaneously and 

their running time (e.g., convergence of CFD solver) can substantially vary for 
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different designs. The same feature is used for designs for which the evaluation 

failed (e.g., divergent solution or failure of mesh generation). 

2.3 GeDEA-II-K: Cooperation Between GeDEA-II And 
Kriging 

How could we exploit the strengths of both GeDEA-II and ASEMOO 

avoiding destructive interactions between the two? GeDEA-II has proven to have 

outstanding exploration capability and diversity preservation [59] compared to 

EAs competitors, but still low convergence efficiency: it requires a quite high 

number of direct evaluations to cover the Pareto-optimal front. Do not blame it; it 

is inherent in its “genetic nature”. On the other hand, ASEMOO has demonstrated 

to be an effective solution to exploration-exploitation trade-off with an elegant 

and sophisticated mathematical approach [64]. However, as it will be clear from 

the result section, if the Kriging does not get an appropriate insight on the fitness 

functions landscape the performance rapidly deteriorates. This is because the 

EHVI sampling criterion, which is adopted in ASEMOO to select new sampling 

points, relies on the effectiveness of the metamodel approximation. If the 

approximation is poor, it is high probable that new proposed sampling points will 

give little contribution to the advancement towards the Pareto-optimal front, and 

also to the Kriging model improvement. Of course, the balance exploitation-

exploration inherent in EHVI will intervene sooner or later. However, in practice, 

a conspicuous number of direct evaluations, which depends on the complexity of 

the fitness function at hand, are needed to come out from a deceptive function 

landscape. In conclusion, a robust algorithm cannot rely on the metamodel only. 

�����  ����  ����	
�� �

The main idea behind GeDEA-II-K is to improve the GeDEA-II’s 

reproduction operator with the integration of a Kriging filter. In particular, 

GeDEA-II-K doggedly takes advantage of GeDEA-II’s exploration capability, 

which indeed is used to create a more densely populated offspring compared to 

the GeDEA-II one, while contextually adopts a Kriging based criterion to filter 

which individuals among the GeDEA-II’s offspring may proceed to direct 

evaluation. Here the filter drives the search towards those regions promising from 

the Kriging point of view, without however having control on the regions 

themselves, since the offspring is suggested by GeDEA-II. The effect is twofold: 
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1. generation after generation, the Kriging database is augmented with 

offspring individuals that have a genotype inspired by GeDEA-II and 

a phenotype by Kriging: “GeDEA-II in body and Kriging in soul!!”. 

Since the proposed offspring is potentially promising from the 

GeDEA-II point of view, the filtered offspring could lift a poor 

Kriging, even though the filter action is poor. 

2. GeDEA-II reproduction operator (i.e., SPX+SM operators) receives 

auxilium from Kriging (i) by the inferred information on the fitness 

functions landscape and (ii) by retention of all the previous 

populations, which guarantees to do not select an offspring that is 

clone, or very close to an individual, of preceding populations. 

Besides the cooperation GeDEA-II Kriging by means of the filter, it is 

reasonable to introduce in the offspring population individuals promoted by 

Kriging, for instance using the EHVI criterion. As suggested by 	aniewski-Wo

k 

[64], the best performance with the EHVI criterion is obtained with a single-

sampling strategy, in which the selected point is evaluated and the Kriging model 

is updated before a new point is sampled. In the GeDEA-II-K context, only one 

point is selected based on EHVI. 

�����  ����*����+��,�

The GeDEA-II-K shares the same framework of the GeDEA-II (see §2.2.1). 

Starting from the first generation, the individuals evaluated so far are stored in the 

strpop and strfit variables. Step 3 and 4 of GeDEA-II outline are replaced with the 

following: 

Step 3: 4l  offspring are generated by SPX crossover. SM mutation is applied 

randomly with a probability pmut. 

Step 4a: Kriging models, one for each fitness function, are constructed over 

the database [strpop,strfit]. One point is selected according to the EHVI criterion. 

Step 4b: the Kriging filter is applied to the whole population of 4 1l +  

individuals, after which only l  individuals are selected. Inside the Kriging filter 

routine an appropriate clone-extermination is accomplished. 
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The Kriging filter (-K filter) is in charge to select l  individuals among 4 1l +  

and to assure a certain level of minimum distance in the design space among all 

individuals evaluated so far; clones are avoided since are just a particular case 

having null distance. The pseudo-code of the –K filter is reported in Table 2.1. It 

can be divided in three main chunks: the Kriging model creation, the minimum 

distance rejection, and the Pareto front selection. 

First, one Kriging model for each objective is built upon the dataset storing 

all individuals so far evaluated, i.e. strpop and strfit variables; then, the optimum 

point according to the EHVI criterion offEHVI is selected. The Kriging models 

creation is the most expensive part of the filter algorithm.  

Second, a minimum Euclidean distance in the genotype space is required. It is 

worth nothing that the distance among all individuals that flow into the Kriging 

database is of utmost importance due to the inversion of the Gram matrix, which 

becomes singular for distance getting close to zero. The offpop candidates too 

close to both the strpop and the offEHVI are deleted. Then, the offpop candidates 

too close to each other are rejected. This operation requires an iterative procedure, 

because deleting one element may change the minimum distance of other 

elements of the set that were paired with the deleted one. When the minimum 

distance law is broken, there are at least a couple of individuals that shares the 

same minimum distance (i.e., popx); only one individual will be going to the next 

phase. In order to decide which one should be preserved, the genotype diversity is 

rewarded: the individual that has the largest minimum distance with the set 

enclosing both the strpop and the offEHVI is retained; the others, one or more, are 

rejected. 

In the third part, the fitness functions of the offpop set are predicted by means 

of the previous Kriging models and the non-dominated sorting procedure by 

Goldberg (1989) [66] is performed to assign the ranks to the solutions according 

to the predicted fitness functions. Offpop individuals are sorted by ranks and the 

first 
  individuals are selected. If there are more than 
  individuals on the Pareto 

front, the genotype diversity is rewarded.  
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Kriging Filter Algorithm 
1: Define Dmin_1(offpop) := minimum genotype Euclidian distance between each individual in 

offpop and all the remaining individuals in offpop 
2: Define Dmin_2(offpop1,offpop2):= minimum genotype Euclidian distance between each 

individual in offpop1 and individuals in offpop2 
3: Set strpop = population evaluated so far from beginning 

 Set d_toll = 1-e03 
4: Set M = number of bjectives 
5: Set �  = number of offspring required 

6: Set strfit = population fitness evaluated so far from beginning 
7: for i=1 to M 
8: Build Kriging model on database (strpop, strfit(:,i) ) 
9: end for 

10: Set offEHVI = individual selected by EHVI criterion 
11: Set dmin2=Dmin_2(offpop,[strpop; offEHVI]) 
12: Find index vector i for dmin2(i)<d_toll 
13: Delete offpop(i,:) 
14: Set dmin=Dmin_1(offpop) 
15: while dmin<d_toll do 
16: find index vector i for dmin(i)<d_toll 
17: Set popx = offpop(i,:) 
18: Set dmin2 = Dmin_2(popx ,strpop) 
19: Set  dmin2_sort = sort dmin2 in ascending order; index vector j:= 

dmin2_sort=dmin2(j) 
20: Delete offpop(i(j[1:end-1]),:) 
21: Set dmin=Dmin_1(offpop) 
22: end while 
23: for i=1 to M 
24: Set offfit(:,i) = prediction Kriging model of offpop 
25: end for 
26: Set rankPF = Pareto Ranking of offfit 
27: Set rankPF_sort = sort rankPF in ascending order; index vector j:= 

rankPF_sort=rankPF(j) 
28: Set n_PF = number of individuals on the Pareto front 
29: if size offfit > � � �  AND  n_PF > � � �  

30: Set dmin2 = Dmin_2(offpop ,strpop) 
31: Set dmin2_sort = sort dmin2 in descending order; index vector k:= 

dmin2_sort=dmin2(k) 
32: Set vector index isel = j(  k(1�� � � )  ) 

33: else 
34: Set vector index isel = j(1:� � � ) 

35: end if 
36: Set selpop = [offpop(isel,:); offEHVI] 

Table 2.1: Kriging filter aglorithm. 
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2.4 Some Inference On Multidimensional Test Functio ns 

��$��  ���	����!����"�
	��

Two- and three-objective test functions were selected among those proposed 

by Deb (2000) [67] and Zitler et al. [68]. A brief review of the main characteristic 

featured by each test problem and its mathematical formulation are summarized 

hereafter. All these problems require the fitness 	  minimization and introduce 

several difficulties that stress the search algorithms hampering convergence 

towards to the Pareto-optimal front. 

In the formula, k is the number of decision variables, M is the number of 

objective functions, and 
�

�  is the number of variables of the functional � �x
�

� , 

��
�

� � �� � �  The decision variables ���
�

� � 	
 � � �  for �� �� �� � , and the 

subgroup of decision variables x �� � � �� � � �
� �

� 	� � � � �� � �
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·  ZDT1 has a convex Pareto-optimal front: 

·  ZDT2 has a non-convex Pareto-optimal front: 
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·  ZDT3 features a disconnected Pareto-optimal front: 

·  ZDT4 contains 219 local Pareto-optimal fronts: 

·  ZDT6 has a non-uniformity of the search space: 
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·  DTLZ2 has a spherical Pareto-optimal front: 
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·  DTLZ3 introduces many local Pareto-optimal fronts with respect to 

DTLZ2 by changing � �x
�

�  functional: 

·  DTLZ4 implements a different meta-variable mapping �
� �

� � �� , which 

dense the set of solutions in specific region of the domain: 

with ����� �  

·  DTLZ5 features the mapping 
�

�  which transforms the Pareto-optimal 

front form a surface to a degenerated curve: 

�
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·  DTLZ5 – mod has a more complex � �x
�

�  functional: 

·  DTLZ6 has �� �� �  disconnected local Pareto-optimal regions in the 

search space: 

��$��  �	������#��

The comparison methodology adopted here follows the one proposed in [68]. 

The performance of ASEMOO, GeDEA-II and GeDEA-II-K was judged for three 

different dimensions of the test function design space, i.e. 6, 25 and 40 design 

variables. Each algorithm was run 30 times over each test instance with a limited 

number of direct evaluations. For this purpose, The Adimensional Direct 

Evaluations Number (ADEN) was taken into account as reference cost indicator. 

The ADEN is defined as ratio of the direct evaluations number to the design space 

dimension, and it is more suited than the number of generations when competitors 

are not all based on evolutionary process. ADEN was limited to ten for all the 

simulations. 
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Two metrics of performance were used: 

·  Hyper-volume (HV) [69] is a high-quality unary metric based on the 

computation of the hyper-volume enclosed between a Pareto 

Approximation Set and an arbitrary reference point (anti-ideal 

solution). In these experiments, the reference point is problem 

dependent, namely, it is equal to the maximum fitness considering all 

the direct evaluations used by all competitors for a specific test 

problem, regardless design space dimensionality. The higher the HV, 

the better the coverage and diversity of solutions. The HV metric was 

normalized (HVnorm) with the maximum value of HV considering all 

simulations for a specific suite case.. HV metric is well suited to make 

comparison among different algorithms since its metric takes into 

account Pareto approximations, but the Pareto-optimal front. On the 

other hand, we do not know how close the bets algorithm is to the 

Pareto-optimal front. D-metric would like to answer to such issue. 

·  D-metric: Let ��  be a set of uniformly distributed points along the 

Pareto-optimal front. Let A be an approximation to the Pareto-optimal 

front. 

where � ���  !  is the minimum Euclidean distance between   and 

the points in ! . A very low value of D-metric is representative of a 

close and well-spread of the Pareto approximation front. The ��  

was approximated with 100 points for all the bi-objective problems 

and 1000 points for the three-objective. 

The results are reported by means of box plots, which statistically infers the 

outcomes of the 30 runs. On each box, the central line represents the median, the 

edge of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme data points not considered outliers. In order to analyze the convergence 

history, two snapshots for ADEN equal to 6 and 10 were taken. 
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As for GeDEA-II and GeDEA-II-K, the population size nindi depends on 

problem dimensionality k: 

while for the other genetic parameters the reader is referred to [59]. Equation Eq. 

2.18 is the result of different experiments on GeDEA-II aimed to squeeze out the 

best performance from the algorithm reducing the overall direct evaluations. As a 

result, the number of generations depends on the problem dimensionality; 

however, in the best case, which is for ADEN equal to 10 and 40 design variables, 

only 20 generations are performed. On the other hand, ASEMOO was used in 

synchronous mode, one sampling point at a time, with an initial sampling database 

of 2k points. The synchronous mode is the one that guarantees the best 

performance. 

��$�/  0����	�����������
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The fundamental aspect of this investigation is the very low number of the 

direct evaluations offered to the three algorithms in order to converge towards the 

Pareto-optimal front. Compared to the test campaign followed in [59], in which 

GeDEA-II has demonstrated to be superior with respect to competitors, the 

number of direct evaluations are here reduced by 75 % on average. As a result, the 

Pareto approximation is intrinsically weak compared to other investigations in 

which thousands of evaluations are used. However, a low ADEN is representative 

of all those industrial applications when costly fidelity models are employed and 

computational efforts and time are in short supply. 

All the figures report a specific suite problem with four main information: 

two plots of the Pareto approximation for dimensionality equal to 25 and two box-

plots of the of D-metric and HV. The first plot illustrates the Pareto approximation 

at ADEN equal to 10 of a single run featuring a mean value of the HV, while the 

second one summarizes all the runs. Comparison between the two is intended to 

show how the low ADEN affects the coverage of the Pareto-optimal front. 

Sometimes, the lack in the full coverage of the front is not a matter of exploration 

capability, whereas reflects the stochastic nature of the EAs added with the low 

ADEN. 

� �� ����� � ������� ��� �����  Eq. 2.18
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As far as the ZDT1, ZDT2 and ZDT3 bi-objective problems are concerned, 

ASEMOO seems to converge towards the Pareto-optimal front much better than 

GeDEA-II; furthermore, ASEMOO offers a high quality approximation after only 

ADEN=6, as suggested by both the HV and D-metric (Figure 2.2 to Figure 2.4). It 

is worth nothing that ASEMOO is almost insensitive to the problem scalability. 

Increasing the number of design variables slightly deteriorates ASEMOO 

performance at least for low ADEN values, while for ADEN=10 it seems that the 

effect is negligible. On the other hand, the difficulties experienced by GeDEA-II 

are related with the spread of solutions rather than the distance of solutions from 

the Pareto-optimal front. In fact, GeDEA-II converges toward the front only in 

some regions and clusters few solutions around these spots. Such behavior is well 

explained due to the adverse juncture of limited population size with the very low 

number of direct evaluations that are the worst-case scenario for a genetic 

algorithm. As the dimension gets higher, this situation is mitigate by a larger 

amount of direct evaluations, but still more of them will be needed to reach the 

competitor’s Pareto front. As for repeatability, which is proportional to the width 

of the boxplots body, ASEMOO is superior to GeDEA-II due to the deterministic 

nature of EHVI function sampling criterion. At least for these three problems 

characterized by convex, non-convex and discrete fronts, Kriging approximation 

adopted in ASEMOO algorithm works properly. Bear in mind that ASEMOO was 

tuned on such problems [64]. The cooperation strategy adopted by GeDEA-II-K 

has the effect to accelerate the Pareto front coverage process in all the three-suite 

cases. GeDEA-II-K’s performance gets really close to the one of ASEMOO, and 

this is even truer when the problem dimensionality gets higher. From the single 

run plot of Figure 2.4 it can be inferred that GeDEA-II-K has a poor uniformity in 

the front approximation compared to ASEMOO, but still it has found all the four 

chunks of the Pareto-optimal front. Moreover, GeDEA-II-K has improved 

repeatability. 



2.4 Some Inference On Multidimensional Test Functions 43 
 

 

 

Figure 2.2: Test function ZDT1: Pareto front for single run (top left) and all runs(top right) 
for design space dimension = 25; at the bottom, box convergence history reported at ADEN equal 
to 6 and 10 of D-metric and normalized Hyper-volume for different design space dimensions, 6 

(green), 25 (orange) and 40 (pink). 

 

Figure 2.3: Test function ZDT2: Pareto front for single run (top left) and all runs(top right) 
for design space dimension = 25; at the bottom, box convergence history reported at ADEN equal 
to 6 and 10 of D-metric and normalized Hyper-volume for different design space dimensions, 6 

(green), 25 (orange) and 40 (pink). 
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Figure 2.4: Test function ZDT3: Pareto front for single run (top left) and all runs(top right) 
for design space dimension = 25; at the bottom, box convergence history reported at ADEN equal 
to 6 and 10 of D-metric and normalized Hyper-volume for different design space dimensions, 6 

(green), 25 (orange) and 40 (pink). 

The outcomes change when ASEMOO is applied to multi-modal and non-

uniform fronts as those featured by ZDT4 and ZDT6 problems, respectively. For 

instance, the ZDT4 tests demonstrated an overturning of performance (Figure 2.5): 

GeDEA-II outperforms ASEMOO, and reveals a behavior specular to the one 

recorded by its competitor in the previous problems. On such multimodal 

landscape, ASEMOO is affected by dimensionality issues, which cause the 

boxplot width and median to get higher as the design variables increase. As for 

GeDEA-II, the enhancement of performance with higher dimensions observed 

before recurs for both ZDT4 and ZDT6, and it is even more pronounced. In such 

battlefield, GeDEA-II-K clearly improves the uniformity of the front converge as 

depicted in Figure 2.5 and Figure 2.6.  
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Figure 2.5: Test function ZDT4: Pareto front for single run (top left) and all runs(top right) 
for design space dimension = 25; at the bottom, box convergence history reported at ADEN equal 
to 6 and 10 of D-metric and normalized Hyper-volume for different design space dimensions, 6 

(green), 25 (orange) and 40 (pink). 

 

Figure 2.6: Test function ZDT6: Pareto front for single run (top left) and all runs(top right) 
for design space dimension = 25; at the bottom, box convergence history reported at ADEN equal 
to 6 and 10 of D-metric and normalized Hyper-volume for different design space dimensions, 6 

(green), 25 (orange) and 40 (pink). 
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As for the three-objective problems, DTLZs’ class was adopted. Some 

common considerations can be extrapolated from the six DTLZs’ test cases 

reported from Figure 2.7 to Figure 2.12. As the number of objective rises, the 

number of fitness evaluations needed to converge properly toward the Pareto-

optimal front increases. The level of front coverage does deteriorate moving from 

bi- to three-objective problems, since the 3D topology of the Pareto-optimal front 

requires a higher number of points in order to have a comparable resolution. 

Exception made by the DTLZ5 that has a 3D line as Pareto-optimal front, and for 

which GeDEA-II and GeDEA-II-K reach a remarkable Pareto front 

approximation. In the other cases, limiting ADEN to ten leads to poor results. 

However, in such adverse conditions GeDEA-II seems to be slightly superior at 

high dimensions, while at low dimensions the performance is comparable with 

ASEMOO. Moreover, ASEMOO is very sensitive to the search space dimensions 

for all those test problems featuring a spherical Pareto-optimal front. Finally, 

repeatability is problem dependent and no generalization can be formulated.  

GeDEA-II-K enhances GeDEA-II performance over all the three-objectives 

tests. Both repeatability and the front coverage are improved. It is symptomatic 

DTLZ6 in Figure 2.12 where points of GeDEA-II and ASEMOO are clustered 

along edges of Pareto-optimal front patches; this is not the case for GeDEA-II-K 

that pushes the search inside all the patches. Such behavior it is even more evident 

in the plot comprising all the runs. 

Some minor notes on DTLZ3 that seems to be impenetrable for all three the 

algorithms, at least for ADEN equal to 10. Despite GeDEA-II-K gets nearer to the 

spherical front, it is still too far. Moreover, although on DTLZ5 all competitors 

reach the Pareto-optimal front, on the modified version DTLZ-mod (Figure 2.11) 

ASEMOO gets trapped in some local front, whereas the other two algorithms 

collapse on the front, having GeDEA-II-K a superior spread of solutions. 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

Figure 2.7: Test function DTLZ2. 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

Figure 2.8: Test function DTLZ3 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

 
Figure 2.9: Test function DTLZ4. 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

 
Figure 2.10: Test function DTLZ5. 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

 
Figure 2.11: Test function DTLZ5-mod. 
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(a) Pareto front approximation of a single 
run with dimensionality = 25. 

(b) Pareto front approximation of all runs 
with dimensionality = 25. 

 

(c) Box-plot convergence history reported at ADEN equal to 6 and 10 of D-metric and 
normalized Hyper-volume for different design space dimensions, 6 (green), 25 (orange) 

and 40 (pink). 

 
Figure 2.12: Test function DTLZ6. 

2.5 Conclusions 

The cooperation between GeDEA-II genetic algorithm and ASEMOO 

Kriging-based algorithm is realized by means of the Kriging filter featured in the 

GeDEA-II-K algorithm. GeDEA-II-K shares the same framework of its 

predecessor (i.e., GeDEA-II) and adds the Kriging filter operator at the end of 

GeDEA-II’s reproduction phase; the filter acts as a selection operator of the 

GeDEA-II’s offspring; according to the inferred information coming out from the 

Kriging model, the filter decides which individual is more promising and so can 
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be evaluated. Furthermore, the information of the EHVI criterion is introduced in 

filter to exploit the Kriging exploration-exploitation balance capability. 

The comparison over two- and three-objective test functions revealed the 

effectiveness of GeDEA-II-K, which is able to unite GeDEA-II and ASEMOO in 

such a way to avoid destructive interactions between the two and to 

synergistically intensify the strengths of both. The comparison made use of very 

few direct evaluations, which resembles the real life application where high-

fidelity models are employed.  

As two-objective test problems are concerned, surrogate-assisted based 

algorithms as ASEMOO could make the difference on convergence toward the 

Pareto-optimal front reaching an outstanding resolution with high repeatability 

when a very low number of direct evaluations are used. This is true if the 

surrogate model gets an appropriate insight on the fitness functions landscape, 

otherwise the performance rapidly deteriorates. Since GeDEA-II-K does not rely 

only on Kriging model, its performance is high-level even when ASEMOO 

discloses its weakness. Of course, when ASEMOO works properly, GeDEA-II-K 

cannot assure a so high Pareto front resolution but, still, its front approximation 

always reaches a “minimum level” that could be considered sufficient for real-life 

MOOPs. Moreover, GeDEA-II-K always assures a better performance than 

GeDEA-II regardless of the problem at hand. 

Dealing with three-objective problems has a major impact on performance 

principally because of to the limited number of direct evaluations compared to the 

3D topology of the Pareto-optimal front. All competitors get pour performance 

compared to bi-objective problems. However, GeDEA-II-K maintains that 

“minimum level” among test problems and greatly improves the capability of 

covering the Pareto-optimal front proven by GeDEA-II, compatibly with the 

number of direct evaluations. 

The dimensionality of the design space affects in opposite directions the three 

algorithms: for ASEMOO the increase of dimensionality is detrimental on 

performance, while GeDEA-II and GeDEA-II-K experience benefits due to total 

amount of direct evaluations. 





 
 

 
 

Chapter 3  

Supersonic Compressor 

Cascades 

3.1 Why Supersonic Flows 

Since 1938 the need for compressor stages to obtain higher pressure ratios 

with large flow capacity has pushed the development of high-speed fans and 

compressors operating with supersonic relative inlet Mach numbers, the so called 

transonic compressor. The advantage to operate at high relative inlet velocity 

directly stems from Euler’s momentum equation  

It is clear that the two factors controlling specific energy transfer h  within the 

compressor rotor are the blade speed U  and the absolute flow turning, which 

cannot be increased above certain limits. For sure, increasing wheel speed, 

thereby the relative inlet velocity, is an effective way to augment the energy 

transfer, while keeping the aerodynamic loading unchanged. This is the main 

reason of high pressure ratios achieved in transonic compressors. 

Unfortunately, near–tip rotor sections experience supersonic relative flows, 

shock waves phenomena arise in the inlet and passage regions drastically 

affecting efficiency of the machine due to both the entropy rise across shocks and 

the interaction of the shock waves with the boundary layer.  

Research on supersonic cascades meant to be one piece of the puzzle to allow 

considerable insight on the complex flow inside transonic compressors. Despite 

flow phenomena are highly three dimensional in nature, systematic analysis of 2D 

supersonic cascades is a well posed starting point to understand how to mitigate 

losses related to shock waves while preserving advantages of their compression 

mechanism. 

2 2 1 1( )h U c U cq q= -  Eq. 3.1
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3.2 Historical Survey 

In the late ‘40s, there were still many doubts on the possibility to design an 

efficient supersonic axial flow compressor due to shock waves losses. This 

diehard certainty was corroborated by the experience on isolated bodies, for which 

the large energy losses usually occur due to wave systems that extend far from the 

bodies themselves. In the milestone work by Kantrowitz (1950) [70] it was 

theoretically demonstrated that a cascade could entirely eliminate this extended 

wave system, or at least weakening its strength far from the cascade, thus 

allowing to efficiently exploit the shock waves compression mechanism inside the 

blade passage. Since then, much effort has been made to design an airfoil able to 

efficiently handle supersonic inlet flow and the inherent wave shock system. 

Nowadays, the S-shape profile seems to be the solution to this problem. 
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Over the years, various cascade geometries have been designed for both 

rotors and stators. The way the rotor mechanical energy is transferred to the fluid 

marks the division between different kind of supersonic cascades classes [71] 

(Starken and Lichtuff 1970): the pure impulse cascade (Figure 3.1), the high 

turning supersonic reaction cascade, and the low-turning supersonic reaction 

cascade (Figure 3.2). Recalling Euler’s momentum equation, the specific energy 

transfer is proportional to the absolute flow turning, which can be realized in 

different ways such as decelerating the relative velocity, turning the relative 

velocity, or a mix of the two.  

 

Figure 3.1: Supersonic impulse cascade (from Starken and Lichtuff 1970 [71]). 
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Figure 3.2: Low-turning supersonic reaction cascade (from Starken and Lichtuff 1970 [71]). 

In the impulse cascade the mechanical energy of the rotor is mainly 

transferred into kinetic energy of the fluid without any static pressure increase. 

The entire change in the static pressure has to take place completely in the 

following stator at high supersonic velocity; the module of the relative inlet Mach 

number remains nearly unchanged across the row, while the flow undergoes to a 

high turning symmetrical to the inlet axial flow direction. Although various design 

procedures have been developed by Shapiro (1953) [72], Stratford (1962), 

Oswatitsch (1956) [73], all methods require a local acceleration and deceleration 

of the flow that may lead to separation of the boundary layer. 

In order to accommodate the incoming flow out from impulse rotors, the high 

turning supersonic reaction cascade was designed to ensure high static pressure 

rise and flow turning. Details on such kind of design are found in Wilcox (1955) 

[74], Hartman (1953) [75], Klapproth (1952) [76], Shapiro (1953) [72], Johnson 

(1959) [77]. 

The velocity triangles of Figure 3.1 and Figure 3.2 show how the exit flow 

condition changes from supersonic to subsonic, going from an impulse to a low-

turning supersonic cascade. 

As for the low-turning supersonic cascade, the absolute flow turning (see 

Figure 3.2) is mainly due to deceleration of relative velocity through sound speed 

rather than turning of the relative flow, so that some part of the transferred energy 

is already converted into pressure energy within the rotor producing a high static 

pressure. The deceleration of the inlet supersonic flow can be realized in two 

different ways across the rotor cascade:  

1. compression due to the flow area contraction with deceleration of 

supersonic flow through sound speed and further diffusion to subsonic 
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exit condition. Similar to a convergent-divergent nozzle, the 

supersonic deceleration is realized with a reduction in the flow area in 

the forward part of the blade passage until sonic throat, while in the aft 

part subsonic deceleration is continued by means of an increase in area. 

The main difference between a nozzle and a cascade is that in the latter 

such area variations can be realized only by flow deflection, due to the 

geometric periodicity constraint of the cascade passage itself. However, 

deflection has opposite sign regarding the supersonic and subsonic 

branch, thus could compensate the different deflections, and leave the 

flow direction unchanged between cascade inlet and outlet; 

2. compression due to a normal shock wave in the blade passage. 

In principle, such methods could actually provide flow deceleration without 

flow turning, or at least with a moderate turning. In practical application, however, 

both methods have severe limitations. Due to stability problems similar to those of 

a convergent-divergent engine inlet [78], the first method requires a normal shock 

wave behind the throat area in the diverging part of the passage. The exact shock 

location, from which the shock strength depends, is a function of on the exit back 

pressure, and so of the cascade operation. In the practice, there can be operating 

regimes where the shock strength becomes too severe. On the other hand, the 

second method is impracticable due to entropy rise across the shock, which 

becomes unacceptable for Mach numbers ahead of the shock above 1.6 [79] 

(Lichtfuss and Starken 1974). Nevertheless, the S-shape profile belongs to the 

low-turning cascade class and, from now on, particular attention will be paid on 

such class. 
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Supersonic cascades that adopt the shock wave compression mechanism are 

subject to two peculiar sources of loss: the entropy rise across the shock and the 

interaction mechanism of the shock waves with the boundary layer. Over the 

years, there has been the tendency to minimize the former loss acting on both the 

reduction of the Mach number ahead of the shock and on the shock wave pattern, 

moving from a normal to an oblique shock within the cascade passage. A weaken 

shock could, in principle, moderate the shock boundary-later interaction too. 

In the Double Circular Arc profiles (DCA) the suction and pressure sides are 

defined by two circular arcs. The convex curvature of the suction side induces 
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acceleration to the incoming supersonic flow, which is deflected by supersonic 

expansion waves (Prandtl-Meyer turning) in order to follow the suction surface 

curvature. As a result, the inlet Mach number increases from the leading edge till 

the normal shock wave located at the entrance of the passage. The shock strength 

becomes overblown for Mach number ahead of the shock around 1.6, restricting 

the operating range to a maximum inlet Mach number around 1.3. 

This limitation led to the concept of Multiple Circular Arc profiles (MCA), 

which incorporates and extends the DCA definition scheme to include the 

potential for defining the suction surface with two or more circular arcs of 

different curvature. A low curvature is usually adopted for the suction forward 

surface, which ensures reduced acceleration and shock losses of the flow in the 

entrance region. This concept was first proposed by Seyler and Smith (1967) [80]. 

Comparison of results obtained from both rotors (Gostelow et al. (1968) [81]) and 

linear cascade (Mikolajczak et al. (1971) [82]) tests with MCA and DCA profiles 

indicates that definite advantage by way of efficiency and maximum pressure 

ratio exists when MCA are used, confirming that excessive supersonic expansion 

in the cascade entrance region deteriorates performance. Further reduction in 

curvature of the entrance region suction surface characterize a new type of profile 

called Circular-Wedge profile (CW) investigated by Emery et al. (1960) [83]. 

Since CW profiles features an infinite curvature (i.e., flat surface) in the forward 

region, the upstream Mach number is kept almost constant up to the normal shock. 

Another similar profile is the J-shape profile developed by Hearsey and 

Wennerström (1970) [84]. 

Despite wide improvements on the reduction of Mach number ahead of the 

shock, the main issue regarding all the previous profile shapes is the normal shock 

wave at the passage entrance. Such shock topology inherently restricts the cascade 

operating range to an inlet Mach number around 1.6. To work at higher inlet 

Mach numbers while preserving efficiency, the normal shock wave must be 

avoided and replaced with several oblique shock waves. The ensemble of oblique 

shocks can produce the same amount of pressure rise in a more efficient way. In 

principle, the shock losses could be altogether avoided by using homentropic 

compression (isentropic compression), which was firstly proposed by Oswatitsch 

(1947) [85] for supersonic aircraft intakes. Isentropic compression can be applied 

on supersonic cascades in two different ways: inner compression and outer 

compression, depending on whether the isentropic compression takes place within 

the passage or in the entrance region; of course, a mixed solution is also possible. 
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Kantrowitz (1950) [70] was the precursor of the internal compression 

concept applied to transonic compressors, concept previously employed in 

supersonic diffusers for supersonic cascades. Actually, in the Kantrowitz’s rotor 

the relative supersonic flow is decelerated through the speed of sound by a normal 

shock inside the passage, and then, in the passage subsonic region further 

diffusion is accomplished by area divergence. The profile proposed by Kantrowitz 

is depicted in Figure 3.3. The reduction of the Mach number ahead of the normal 

shock was the only way to improve rotor efficiency and, albeit with simplicity, it 

was pursued adding thickness on the suction side, as depicted in Figure 3.3. The 

experiments highlighted that the subsonic diffusion region diverged too rapidly 

leading to serious separation losses, which could also be exaggerated by shock-

boundary-layer interaction. It was mandatory to reduce the rate of this divergence 

and also the annulus was made to converge downstream. As a result, the pressure 

ratio materially decreased compared to the design value and the Mach number 

leaving the blading was therefore about 0.97 instead of 0.68. It is worth nothing 

that the inclusion of a concave region on the suction side of the blades 

immediately behind the entrance region considerably improved the efficiency of 

the compressor. 

 

Figure 3.3: Supersonic profile proposed by Kantrowitz (1950) [70]. 
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On the other hand, the external compression principle, or spike-type diffuser 

concept, was applied to rotors by Creagh and Klapproth (1953) [86] and by 

Lawrence and Melvin (1954) [87] (Figure 3.4). The compression takes place in 

the entrance region, before the flow gets into the passage. The effect of external 

compression is to decrease the streamline area in the blade inlet region, thus 

effecting a reduction in the in flow Mach number at the passage-inlet closure line 

(line c-d in Figure 3.4), where the Mach number should reach unity. According to 

the experiments, the sonic throat at the passage entrance is very sensible to inlet 

conditions and dastrically deteriorates at off-design operation. 

 

Figure 3.4: External compression principle applied to compressor cascades (Creagh and 
Klapproth (1953) [86]) 
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Figure 3.5: Pre-compression airfoil (Morris et al. 1972 [88]). 

A more effective geometry, even in off-design operations, is the one proposed 

by Morris et al. (1972) [88] and depicted in Figure 3.5. The precompression 

design model assumes that the shock across the channel entrance must be oblique 

and attached to the leading edge of the airfoil. 

The pre-compression is the result of the concave surface of the suction side 

(BC in Figure 3.5) that generates a series of compression waves that diffuse the 

supersonic flow. Channel flow downstream of the oblique shock is subsonic, 

turning and stream tube area are made compatible with the exit aerodynamic 

conditions. 
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The S-shape profile belongs to the low-turning supersonic profile class and 

features the pre-compression mechanism. The PAV-1.5 cascade investigated by 
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Schreiber (1986) [89] at DFVLR has been taken as reference. The design inlet 

wave pattern, the real shock-wave pattern at design pressure ratio, and a Schlieren 

visualization are shown in Figure 3.6 and Figure 3.7. 

 

Figure 3.6: PAV 1.5 cascade: design inlet wave pattern (a) and experimental shock wave 
pattern at design pressure ratio (from Schreiber [90]). 

 

Figure 3.7: Schlieren photograph of the PAV1.5 cascade at inlet Mach of 1.5. 

The curvature of both suction and pressure side and the wedge angle of the 

leading edge drive the main phenomena in the inlet region. First, the finite 

thickness of the leading edge develops a detached bow shock, which is normal at 

least in the very near region of the leading edge. Two oblique shock branches 

depart from the bow, a weaker one that extends into the upstream region and a 

stronger one that runs into the covered passage. The front portion of the suction 

surface features a concave curvature, similarly to the Miller’s design, from which 

left-running characteristics depart towards the detached bow shock of the 

adjacent blade, and their coalescence forms the pre-compression shock wave 

responsible for the pre-compression mechanism. Although this shock is relatively 

weak, it significantly decelerates the incoming flow entering the covered passage, 
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from a peak value of about 1.67 to a level around 1.4. From the CFD analysis 

reported in Figure 3.8, it can be noted that there is a region of expansion waves 

between the bow shock and the pre-compression waves. In Figure 3.9 the contours 

of the Mach number for the same cascade are reported. The reason of such 

expansion fan is briefly explained. After the shock bow, the subsonic flow 

approaches the leading edge “upper side” (i.e., the one that leads to the suction 

side) with a certain incidence. In front of the leading edge curved surface, the flow 

accelerates until sonic velocity (point A in Figure 3.9). In order to follow the 

remaining part of the leading edge, which is characterized by a continuous 

lowering of the surface slope, the flow needs to turn more. However, since the 

flow is just above sonic Mach, such deflection can be realized only by means of 

the Prandtl-Meyer expansion waves. The turning, which is associated with 

supersonic flow acceleration, proceeds until the surface slope reaches its 

minimum. Such condition is realized in point B of Figure 3.9; point B identifies 

the end of the expansion fan and here the flow has its maximum Mach number of 

1.8. Beyond point B, the variation of the suction surface slope changes from 

negative (i.e., such negative variation causes the strong expansion fan) to positive.  

 

Figure 3.8: Simulated Schlieren picture of the leading edge of the PAV 1.5 cascade at inlet 
Mach number = 1.457 (Sonoda et al. [91]). 



3.2 Historical Survey 65 
 

 

 

Figure 3.9: Contours of Mach of the leading edge region of the PAV 1.5 cascade at inlet 
Mach number = 1.457. 

A change in the suction surface curvature appears at mid-portion, from 

concave to convex, inducing reacceleration of the flow to a Mach number of 1.52, 

before it encounters a shock system at around 60% chord. As it will be clear from 

the discussion of the cascade optimization in section §4.6, the suction surface 

curvature of the forepart is critical for the value of the Mach number. In fact, a 

concave curvature has the advantage to diffuse the supersonic flow, while a 

convex surface operates in the opposite direction. From this point of view, it is 

harmful to change curvature (i.e., from concave to convex) before the supersonic 

flow encounters the passage shock. In the case of PAV 1.5 cascade this was done 

on propose in order to have a higher pre-shock Mach number and thus a strong 

shock wave/boundary layer interaction.  

In Schreiber’s investigation [89], a proper value of static backpressure was 

imposed to achieve a strong boundary layer shock interaction, giving rise to the 

so-called lambda shock system (see Figure 3.10), which is composed by a leading 

oblique shock and a rear strong curved oblique shock. Such particular pattern can 
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be interpreted as a Mach reflection phenomenon, in which the intensity of the 

oblique passage shock increases to such a level that a regular reflection of the 

oblique passage shock is not possible (Schreiber and Starken 1992 [92]). In lieu of 

a simple Mach reflection, near the suction surface the oblique passage shock is 

replaced with a quasi-normal shock, whose interaction with the boundary layer 

gives rise to the lambda shock system, in addition to a severe boundary layer 

separation. It has been observed that the lambda shock develops when the oblique 

shock passages impinges on a relatively strong convex curved part of the profile 

surface. 

As for the pressure surface, the convex curvature in the front region 

accelerates the flow until the 20% chord where a quasi-normal shock reduces the 

pre-shock Mach number of 1.15 to subsonic values. From this point to the trailing 

edge, the flow is subsonic and it is not clear how the pressure shape affects the 

flow diffusion. 

 

Figure 3.10: Flow structure of strong interaction in a cascade blade passage (from Schreiber 
[89]). 

3.3 Supersonic Cascade Inlet Flow 

The inlet Mach number 1M is a fundamental parameter to discriminate 

different flow configurations of linear supersonic cascades. Beside the inlet Mach 

number itself, it is of paramount importance the axial component of the inlet 

Mach number 1xM , as illustrated in Figure 3.11. Two different flow 

configurations exist: 
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1. As long as the inlet axial Mach number is supersonic 1 1xM > , the 

upstream flow field is not influenced by disturbances emanated from 

the cascade. The shock and expansion waves caused by the leading 

edges and the suction surfaces are enveloped by the blade passages 

(left sketch in Figure 3.11). 

2. On the other hand, with a subsonic axial Mach number (but 

supersonic upstream Mach number 1 1M > ) the perturbations coming 

from the cascade propagates to infinity in the upstream direction and 

influence the incoming flow. This second type of flow is of practical 

interest for transonic compressor. 

All issues related with the starting of supersonic cascades, unstarted flows, 

unstarted and choked flows and supersonic axial Mach number flows in 

supersonic cascades are discussed in several references, as Lichtfuss and Starken 

1974 [79] and Schreiber et al. [93]. For brevity, the focus of this dissertation is 

only devoted to started supersonic cascades with subsonic axial Mach numbers 

and subsonic exit Mach number, due to their appealing for transonic compressor 

rotor applications. In this mode, if the inlet Mach number is sufficiently high, the 

cascade operates along the so called unique incidence curve. 

 

Figure 3.11:  Supersonic flow in blade row (B� lch and Suter 1986) [94]. 

3.4 Unique Incidence flow 

As far as the supersonic cascade with inlet subsonic axial Mach number is 

started, the inlet Mach number and flow direction are dependent one another, at 

least within a range of static back pressures and inlet Mach numbers. It is not 

possible to change 1M  without not affecting 1b . The cascade operation is possible 

only along the so called unique incidence curve. 

The unique incidence behavior is the result of three conditions: 
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1. subsonic axial Mach number 1 1xM < ,for which the information 

can travel upstream along the axial direction; the existence of 

the cascade affects the incoming flow by means of weak 

compression and expansion shock waves, which mainly 

depends on stagger angle, solidity and suction surface profile. 

2. Honor the cascade periodic condition at inlet, namely, the 

approaching Mach number and flow direction must repeat 

among all profiles. 

3. The idealized passage shock wave is attached to the leading 

edge of the airfoil and meets the suction surface of the adjacent 

one, serving as a “stopper” for information coming from 

downstream of the cascade. 

How these three conditions imply the unique incidence flow can be 

rigorously demonstrated applying the characteristic method to cambered profile 

with sharped or blunt leading edge profiles (Lichtfuss and Starken 1974 [79]). 

Nevertheless, a simple reasoning on flat-plate cascade could intuitive convince the 

reader on the veracity of the existence of the unique incidence flow. 
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When infinite flow (M¥ , b¥ ) approaches a semi-infinite flat-plate cascade 

with an inlet angle b¥  diverse than the stagger angle g , two different wave 

patterns exist depending on the incidence, positive or negative, of the incoming 

flow over the first (lowest) blade, as illustrated in Figure 3.12. In the case of 

positive incidence, Prandtl-Meyer expansion waves centered on the leading edge 

of the first blade develop in the upper region, and accelerate the flow up to 1M  

and turn it into the flat plate direction 1b g=  (Figure 3.12 - a). Due to subsonic 

axial Mach number, this expansion fan perturbs the flow ahead of all the other 

blades, which experience a uniform inlet flow (1M , 1b ). From a mathematical 

point of view, the left-running Mach lines emanate from the suction surface of the 

first blade extend in front of all the other blades. Therefore, downstream of the 

first blade, the incoming flow is characterized by ( 1M , 1b ) and approaches all the 

other blades with null incidence. 

As for negative incidence, at the leading edge of the first blade the Prandtl-

Meyer fan is replaced by a compression shock wave, which is in charge to turn the 

flow up to 1b g=  and decelerate the Mach number to 1M (Figure 3.12 – b). 
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Figure 3.12:  Semi-infinite flat-plate cascade with subsonic axial inlet-flow Mach number. 

As a result, for a semi-infinite cascade the blades can be distinguished into 

two groups according to inlet flow conditions: 

1.  the first blade, which experiences an inlet flow of ( M¥ , b¥ ) and sets 

the incoming flow condition ( 1M , 1b ) for the remaining blades; it 

assures the periodic condition for the entire cascade. 

2. All the blades except the first one, for which an inlet flow of ( 1M , 1b ) 

is applied. 

What happens if the infinite flow angle b¥  varies? The first blade adapts the 

shock system centered on its leading edge in such a way to turn the flow into the 

direction of the flat plate, i.e. 1b g= . Even though the angle of the infinite flow 

changes, the incoming flow applied to the second and all the other blades has 

always the same direction, owning to the straight plates. 

An infinite cascade has no first blade, so that in this case only ( 1M , 1b ) is 

possible as periodic solution of the inlet flow. The unique incidence relationship 

between 1M  and 1b  is of the form 1 1, Mb g= " , which is valid as long as straight 

plates are used as blade profiles.  

It is worth nothing that there is a substantial difference in the incoming flow 

between the semi- and infinite cascade. In the first case, the flow could assume 

values of (M¥ , b¥ ) different than ( 1M , 1b ), at least in the upstream region before 

the flow meets the shock wave system emanated from the first blade. On the other 

hand, the infinite cascade influences the entire flow area upstream of the cascade 
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as shown in Figure 3.13: the left-running Mach lines, which emanate from the 

front part of the blade suction surface and go in front of the cascade, influence the 

inlet flow and, consequently, are the reason for the existence of the unique 

incidence. 

Although simplicity of flat-plate profile cascade, moving to S-Shape 

supersonic cascades makes the analysis more complicated and changes the shape 

of the unique incidence curve. The inlet-flow behavior can be summarized in a 

diagram, in which the inlet flow angle 1b  is plotted against the inlet-flow Mach 

number 1M . In Figure 3.14 and Figure 3.15 a comparison of flat-plate and S-

shape cascade is reported. A very detailed explanation of the unique incidence 

phenomenon is reported in several references, e.g. Levine(1957) [95], 

Novak(1967) [96], Lichtfuss and Starken (1974) [79], York and Woodard(1976) 

[97], and Bölsc and Suter (1986) [94]. 

 

 

 

Figure 3.13:  Infinite flat-plate cascade at subsonic axial inlet-flow Mach number. 
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Figure 3.14:  Inlet-flow angle boundaries of a flat-plate cascade (Lichtuff and Starken (1974) 
[79]). 

 

Figure 3.15:  Inlet-flow angle boundaries of a S-Shape cascade (Schreiber (1996) [90]). 
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The unique incidence relation holds within a confined operating range of 

Mach numbers and static back pressures, for which the existence of an attached 

shock wave at the leading edge is possible. As depicted in Figure 3.14 the curve 

starts from an inlet Mach number around 1.1 and ends at point S, where the axial 

Mach number reaches unity. Beyond S point the cascade has no influence on the 

upstream flow, thereby the Mach number and flow direction are independent, 

within certain limits. 
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In Figure 3.16, the schematic flow field well reproduces what happens at any 

point of the unique incidence curve when the static backpressure is increased and 

the inlet flow conditions are fixed. 

 

Figure 3.16:  Supersonic flow in a compressor cascade for different operating points (B� lch 
and Suter 1986 [94]). 

For as far as the shock wave stays inside the cascade passage, this is 

condition (I) and (II) of Figure 3.16, the change in static backpressure affects only 

the shock pattern within the blade passage and exit plane, whereas the upstream 

flow field is not influenced. Precisely, the increase in static backpressure forces 

the shock wave to move towards the passage entrance. There is a limit in static 

backpressure for which the shock is exactly at the passage entrance (condition 

(II) ); a further increase would give rise to a detached shock in front of the passage 

entrance (condition (III)) leading to the so called unstarded or spill condition, in 

which the static backpressure has an influence on the inlet flow. The unique 

incidence does not hold any more and a new relation between the inlet Mach 

number and flow direction is established and, unlike unique incidence, it becomes 

parametric with the static backpressure. The operating condition (II) is the 

inception of the unique incidence and represent the highest static pressure ratio 

obtainable for a cascade working in the unique incidence regime at given inlet 

Mach number. For lower inlet Mach numbers, the unique incidence relation holds 

until a specific inlet Mach number below which an attached shock wave at the 

entrance passage is no more possible, irrespective of the static backpressure. 

Although a sharp leading edge is concerned, the leading edge wedge angle 

requires a minimum Mach number for the shock to be attached. Under this value, 

the supersonic cascade works in the unstarted mode.  

In the unique incidence operations, the cascade is chocked. Each point of the 

unique incidence curve is characterized by a specific mass flow. In fact, the 
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variation in static back pressure does not affect the inlet flow, thereby the mass 

flow remains unchanged.  
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Generally, a supersonic cascade adopted in a wind tunnel experiments can be 

assimilated with a semi-infinite cascade. The cascade first blade establishes the 

appropriate periodic inlet flow condition (1M , 1b ) for the remaining blades 

according to the unique incidence relation. Figure 3.17 shows a sketch of a wind 

tunnel test section. 

 

Figure 3.17:  Nozzle exit flow and cascade inlet floe with periodic wave pattern behind 
neutral characteristic of first blade (Schreiber et al. (1993) [93]). 

The incoming flow could be considered with good approximation two-

dimensional, irrotational, and isentropic up to the strong shock wave inside the 

blade passage. In fact, supersonic blades are usually characterized by thin leading 

edges and low front chamber, which minimize total pressure losses related with 

the inlet wave pattern. This assumption is corroborated by experimental results as 

those reported in Figure 3.18, which justify the outstanding performance of 

simplified numerical methods, for instance those based on simple-wave theory, in 

the prediction of the inlet flow region ahead of the passage shock wave.  
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Under the assumption of irrotational and isentropic flow, the inlet region 

obeys to the simple-wave theory and, thereby, to the Prandtl-Meyer relation, also 

known as Riemann invariant, 

, which establishes the existence of an invariant quantity between two points of 

the flow domain, for instance at the nozzle exit and ahead of the cascade entrance 

plane.  

Another consequence of these hypotheses is the existence of characteristics, 

curves along which the Mach number and flow angle are constant. As for 

supersonic cascades, characteristics usually have a linear pattern as that reported 

in Figure 3.17. Among all characteristics, the neutral characteristic, emanating 

from the front portion of each blade, is a special curve because it represents the 

cascade inlet flow periodic condition (1M , 1b ). All Mach lines being upstream of 

the neutral inlet characteristic attenuate the shock wave arising at the sane profile, 

whereas all downstream Mach lines interfere with the shock wave of the 

following blade. 

( )
1 1

0.5 0.5
0.52 2

( ) ( )

1 1
( ) arctan 1 arctan 1

1 1

M M

k k
M M M

k k

b n b n

n

¥ ¥+ = +

+ -� � � 	 � 	= - - -� � �  
 �- +� � 
 �

 Eq. 3.2



3.4 Unique Incidence flow 75 
 

 

 

Figure 3.18:  Flow angle and Mach number distribution in the entrance region at supersonic 
inlet flow conditions (Tweedt DL et al. (1998) [98]). 

When the nozzle flow (M¥ , b¥ ) differs from the unique incidence condition, 

the first blade adjust the flow with a compression or expansion waves system 

centered at the leading edge, depending on whether b¥  is higher or lower than a 

1b , respectively. Both turning mechanism adjust the flow, but with different 

repercussions on the assumptions of irrotational and isentropic flow. The 

expansion fan accelerates the flow in a quasi-isentropic way, whereby the 

compression shock waves deteriorates the flow entropy. It is to prefer the first 

mechanism because it guarantees the validity of the Riemann invariant 

assumption, which makes it possible to estimate the cascade inlet condition given 

the nozzle flow (M¥ , b¥ ) and the unique incidence relation 1 1( )f Mb = . Although 

the unique incidence condition is not known a priori, the relationship can be 

obtained from theoretical calculations for the interesting Mach number range. 

Such unique incidence calculation also should include the leading edge blockage 
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effect and the shock losses of the entrance wave pattern (Starken et al. (1984) 

[99]). 

3.5 Cascade Influence Parameters 
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The relative inlet Mach number of a cascade is strictly connected with the 

wheel speed U of a compressor rotor, which indeed is the key parameter behind 

high specific energy transfer: the higher the relative inlet Mach number, the 

higher the static pressure ratio achievable in supersonic compressor cascades. The 

upper plot in Figure 3.19 shows the maximum static pressure ratio achieved with 

ARL-SL19 cascade over the inlet Mach number range 1.23 to 1.72; corresponding 

total pressure losses are reported in the lower plot. On the other hand, increasing 

static pressure ratio is made to the detriment of total pressure losses.  

 

Figure 3.19: Influence of the inlet Mach number on the maximum achievable static pressure 
ratio and the corresponding total pressure losses. 
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On the unique incidence operating line, the variation of static backpressure 

(cascade throttling) affects only the flow inside the passage, modifying the shocks 

pattern and their interaction with the boundary layer, while the inlet region 

remains unaltered. According to Tweedt et al. (1988) [98], increasing static 

backpressure, from moderate to high static pressure ratios, causes an increment of 

losses. In particular, there is a reduction in the shock loss, but with corresponding 

increases in the viscous loss, which can be attributed mostly to a change from 

weak to strong suction surface boundary layer separation. The losses coefficient 

can be expected to be approximately 0.10-0.15. Moreover, in throttling the 

cascade the exit flow angle can vary at most by 2 or 3 [deg] and the exit Mach 

number shifts to supersonic values for low values of static back pressure . 
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The Axial Velocity Density Ratio (AVDR) has a strong influence on the total 

pressure losses, the flow exit angle and the shocks pattern. Increasing AVDR 

means to increase the spanwise stream tube convergence that, for a supersonic 

flow, tends to lower the Mach number in the passage, thereby reducing the shock 

loss and the losses from the shock boundary layer interaction region. The 

sensitivity of AVDR on total pressure losses strictly depends on the level of static 

backpressure, with the loss reduction being more pronounced at higher static 

pressure ratios. As for the exit flow angle (or flow turning since the inlet 

conditions are unchanged), an increase in AVDR always reduces the exit flow 

angle and thereby increase the flow turning. The variation of the shocks pattern 

with AVDR is depicted in Figure 3.20. 

 

Figure 3.20: Influence of AVDR on shock wave position at constant back pressure (Schreiber 
and Starken (1992) [92]). 
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3.6 Relation Between Linear Cascade And Rotor Blade  
Element 

The experiments performed in wind tunnel are usually carried out at unique 

incidence condition because it is the condition which can be established most 

easily in linear cascades with supersonic inlet flow. What happens to the behavior 

of a liner cascade foil when its profile is adopted inside a transonic compressor 

rotor? Could the experimental test on linear cascades be somehow useful during 

the design phase of 3D rotors? 

Such problem was handled for the first time by Mikolajczak et al. [82]. 

Performance of three airfoil shapes tested in linear cascade were compared to the 

performance of similar airfoils tested in rotor. In particular, a “J” profile, a 

circular arc CA profile and a multi-circular arc (MCA) profile were selected, 

keeping the same chord (3.75 in.), same camber (10 deg), and comparable 

maximum thickness. Results for the three blades are shown in Figure 3.21. The 

cascade results denoted by a solid line are taken at unique incidence condition for 

different static back pressures till the spill point. In symbols there is the rotor 

incidence which is essentially constant and in good agreement with cascade 

results for the MCA and CA cascade, at least for static pressure ratios near spill 

point. As for the “J” section, in the rotor this section chocked at a different 

incidence condition at all pressure ratio perhaps for the different values of AVDR 

between cascade and rotor test, highlighting the paramount importance of such 

parameter on blade performance. In fact, for similar values of AVDR both turning 

angle and total pressure losses are comparable. 

Beyond the spill point, the compressor rotor seems to be able to operate at 

higher static pressure ratios than the cascade, representing a subcritical operation 

beyond spill point since the periodicity requirement is automatically satisfied in 

the annular geometry of the rotor. 
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Figure 3.21:  Incidence versus static pressure ratio for supersonic blades. The solid lines show 
results for cascades and are all at unique incidence condition, the points for results obtained in the 

rotor (Mikolajczak et al. [82]). 

Also in the work of Schreiber and Starken [100] a comparison between rotor 

blade section and its homologous linear cascade was conducted for a Mach 

number in the range 0.82-1.1. Figure 3.22 shows the total pressure loss coefficient 

as a function of the inlet flow angle for different inlet Mach numbers. Both the 

cascade and the rotor section performance are plotted in the diagram. The overall 

loss behavior in terms of both the shape and the values of the loss curves are in 

good agreement. However, the various Mach numbers covered by the rotor due to 

its operating condition, in addition with the higher AVDR of the rotor tests, could 

explain the discordance of the choking angle. In conclusion, the experimental tests 

on 2D linear cascade are a convenient tool to gain insight on the complex 

transonic axial compressor blade element within the whole operating range. 
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Figure 3.22: comparison of total pressure loss coefficient of rotor blade element and cascade 
(AVDR of the cascade tests 1.1 -1.17). 

 



 
 

 
 

Chapter 4  

Shape Optimization of a 

Supersonic Compressor 

Cascade 

The DLR-PAV-1.5 supersonic compressor cascade tested at DLR by 

Schreiber [89] is a very well documented example of blading featuring the pre-

compression mechanism and it has been taken as baseline geometry for the scope 

of this work. The cascade was especially designed for investigations on strong 

shock-wave boundary layer interaction. The geometry is typical for a tip section 

of a highly loaded transonic fan operating with an axial Mach number of 0.6 and a 

relative inlet Mach number of 1.5. The cascade had to provide a static pressure 

ratio of more than 2.0 with little flow turning. 

4.1 Baseline Cascade 
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The shape of the airfoil employed in the DLR-PAV-1.5 cascade is given by 

points in Schreiber and Starken [92] and reported in Table 4.1. Unfortunately, in 

the open literature pressure and suction sides are reported with only 32 points for 

each side; moreover, both leading and trailing edges are missing. It must be 

stressed that the lack of information, at least for the leading edge zone, is of major 

concern due to the importance of such region in establishing the first shock wave, 

thereby influencing the overall cascade performance. This matter and its 

repercussion will be discussed more in depth in the grid validation section §4.2.4.  

In order to heal the gaps at the front and rear part of the foil, leading and 

trailing edges were reconstructed with cubic splines safeguarding the continuity of 

first and second order derivatives at the junction points, i.e. the extreme points of 

the suction and pressure side. As a result, the reconstruction of the baseline foil 
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looks smooth, as it is clear from Figure 4.2, in which a close-up of leading and 

trailing edge is illustrated. 

 

Figure 4.1: Geometry of DLR-PAV-1.5 supersonic cascade (Schreiber and Starken [92]). 

 

Figure 4.2: Reconstruction of the DLR-PAV-1.5 cascade: close-up of leading and trailing 
edge.  
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Suction Pressure 

x/c y/c x/c y/c 

0.00334 0.00702 0.00294 0.00267 

0.00631 0.00681 0.00633 0.00233 

0.01286 0.00643 0.01034 0.00201 

0.03720 0.00518 0.03681 -0.00024 

0.07257 0.00372 0.07205 -0.00315 

0.10796 0.00277 0.10725 -0.00566 

0.14337 0.00242 0.14246 -0.00751 

0.17883 0.00325 0.17768 -0.00874 

0.21422 0.00510 0.21290 -0.00941 

0.24959 0.00750 0.24815 -0.00968 

0.28495 0.01017 0.28337 -0.00951 

0.32030 0.01296 0.31862 -0.00911 

0.35564 0.01578 0.35388 -0.00856 

0.39097 0.01862 0.38913 -0.00790 

0.42631 0.02138 0.42440 -0.00715 

0.46166 0.02413 0.45966 -0.00632 

0.49698 0.02685 0.49494 -0.00549 

0.53227 0.02912 0.53022 -0.00467 

0.56754 0.03078 0.56549 -0.00410 

0.60277 0.03166 0.60960 -0.00354 

0.63365 0.03171 0.64487 -0.00319 

0.66884 0.03064 0.68015 -0.00289 

0.70411 0.02834 0.71542 -0.00269 

0.73940 0.02560 0.75069 -0.00260 

0.77471 0.02250 0.78596 -0.00261 

0.81005 0.01942 0.82122 -0.00258 

0.84537 0.01644 0.85650 -0.00263 

0.88070 0.01343 0.89177 -0.00270 

0.91602 0.01054 0.92705 -0.00281 

0.95135 0.00763 0.96231 -0.00294 

0.97340 0.00576 0.98825 -0.00308 

0.99660 0.00380 0.99459 -0.00307 

Table 4.1: Airfoil geometry of DLR-PAV-1.5 supersonic cascade (Schreiber and Starken 
[92])  



84 Chapter 4 �  Shape Optimization of a Supersonic Compressor Cascade 
 

$����  ��������%����	���

After airfoil reconstruction, it follows scaling and rotation operations in order 

to meet the required cascade geometric parameters adopted by Schreiber [89]. In 

particular, chord c , pitch spacing s and stagger angle g  are prescribed according 

to Figure 4.3 and Table 4.2. 

 

Figure 4.3:Definition of cascade geometric parameters. 
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Cascade Geometric Parameters 

Chord c  170 [mm] 

Picth-chord spacing /s c  0.65 

Stagger angle g   148.1 [deg] 

Maximum thickness max /t c  0.035 

LE radius spacing  /LEr c  0.0025 

Table 4.2: DLR-PAV-1.5 geometric parameters. 

4.2 Flow Solver And Computational Domain 

In this section, the numerical model setup is described, which comprise the 

computational grid and the CFD solver setup. 
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The computational grid was carried out by means of ANSYS® ICEM, which 

is a powerful tool in the construction of structured grids; moreover, all procedures 

can be journalized, making its employment suitable within automatic optimization 

loops.  

A multiblock grid with one O-grid around the blade was used to simulate the 

cascade passage. As depicted in Figure 4.4, the computational domain extends 

from 1.88 2.77ax axc x c- × < < × , where 0x =  corresponds to the blade leading edge. 

The length of the computational domain is slightly bigger than the one reported by 

Küster and Schreiber [101] and Sonoda et al. [91]. Moreover, the periodic edges 

were kept unchanged among all simulations, since deformations applied during 

optimization was very small compared with the spacing s dimension.  

The grid quality was assessed with the quality metrics routines embedded in 

ANSYS® ICEM CFD [102]. All grids developed in this work respect the metrics 

limits summarized in Table 4.3. 

The final grid dimensions are outcomes of the grid sensitivity analysis, which 

is reported in §4.2.4. As a result, a coarse grid of 23k elements were identified for 

the optimization, whereas a more refined grid of 77k were adopted for high 

resolution calculations at the end of the optimization procedure.  
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Figure 4.4: Computational grid topology. 

ANSYS ® ICEM Grid quality metrics 

 min max 

Quality 0.5 1 

Orthogonal Quality 0.5 1 

Equiangle Skewness 0.3 1 

Aspect Ratio 4e-04 1 

Skew 0.3 1 

Determinant 0.5 1 

Min Angle [deg] 30 90 

Table 4.3: Quality metric limits for grid quality assessment. 

$����  *��+�"��3���"�	���

All calculations were carried out by means of ANSYS® Fluent v14 [103], in 

which the Reynolds Average Navier Stokes (RANS) equations coupled with a 
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turbulence model are solved adopting the finite volume method approach. Two-

dimensional steady state simulations were performed for a fully turbulent 

compressible ideal gas in double precision. The main setups of the density-based 

solver are summarized in Table 4.4.  

As for the boundary conditions (BCs), a pressure-far-field at the inlet with 

specification of turbulence intensity and length scale was prescribed, while at the 

outlet a pressure outlet BC was imposed. Blade walls were treated as no slip walls. 

The turbulence model is the two equation shear-stress transport k-�  model (k� -

SST) proposed by Menter [104]. 

Convergence was established when all residuals went under 1e-06 and 

oscillation of the inlet and exit Mach number, flow angle and total pressure were 

below a certain threshold.  

ANSYS© Fluent solver setup 

Formulation Implicit  

Flux Type Roe-FDS  

Spatial discretization 

Gradient Least squares cell based 

Flow 

Turbulent Kinetic Energy 

Specific Dissipation Rate 

Second Order Upwind 

Table 4.4: ANSYS® Fluent solver setup. 
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In order to avoid any kind of misunderstanding, the procedure employed to 

calculate the variables of interest (e.g., inlet and exit Mach number, flow angle, 

loss coefficient) and the survey stations are hereafter illustrated.  

First, all global quantities, except for total pressure, were calculated with a 

mass-weighted average surface integral evaluated at the specific survey stations. 

On the contrary, total pressure calculation employed the area-weighted average 

surface integral. 

Second, there are two survey stations referred as inlet and outlet stations. The 

former corresponds to the computational domain inlet (see Figure 4.4); whereas 

the outlet station is reported in Figure 4.3 as station 3 and it is located at 28% 

axial chord behind the trailing edge. 

The loss coefficient was defined as follow: 
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In this section, the main outcomes of the grid sensitivity and validation study 

carried out on the baseline cascade will be illustrated. Basically, the sensitivity 

study is aimed at obtaining a reliable CFD model while saving computational time 

and resources. Three grid sizes and two turbulence models were investigated.  

As for the grid size, the number of elements was increased from 23k of the 

coarse grid up to 77k of the refined one; a medium grid size of 33k has also been 

tested (see Figure 4.5). A detailed list of the topology nodes distribution is 

reported in Table 4.5, whereas the topology variables are defined in Figure 4.4. 

Elements were added in those region considered critical for the physic 

phenomena, such as the zone right ahead of the cascade entrance, the leading 

edge, the fore passage zone where the oblique shock establishes, and the wake. 

As for the turbulence models, the one equation approach developed by 

Spalart and Allmaras (SA) [105] and the two equation shear-stress transport k-�  

model (k� -SST) proposed by Menter [104] were applied to each of the three 

grids. For both models, the first grid spacing normal to the blade surface was fixed 

to 0.0008 [mm] in order to yield values of 1y+ <  and 15 nodes inside the physical 

boundary layer were guaranteed. 
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Variable description Topology Var. 
Coarse 

C1 

Medium 

C2 

Refine 

C3 

Inlet 1 n1 5 5 10 

Inlet 2 n2 27 36 65 

PS fore zone n3 30 35 60 

PS middle1 n4 16 20 35 

PS middle 2 n5 15 19 35 

PS aft zone n6 40 53 60 

Outlet n7 15 20 25 

Trailing edge n8 18 20 35 

Spanwise lower n9 15 15 27 

Leading edge n10 20 25 35 

SS fore zone n11 33 40 50 

SS middle n12 25 30 65 

Spanwise upper n13 16 16 27 

O-grid layers - 46 53 74 

O-grid GrowthRate - 1.2 1.16 1.1 

O-grid height first layer [mm] - 0.0008 0.0008 0.0008 

     

  Total nodes 23k 33k 77k 

Table 4.5: Topology parameters adopted in the grid sensitivity study. The variables 
“Topology Var.” are defined in Figure 4.4 

 



90 Chapter 4 �  Shape Optimization of a Supersonic Compressor Cascade 
 

 

Figure 4.5: Computational grid of the baseline cascade passage. Comparison of three 
different grid sizes: an overall view of the passage (top), a close-up of the leading edge (middle) 

and a close-up of the trailing edge (bottom). 
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The CFD results were compared against Schreiber’s experiment [90], in 

which the baseline cascade was operated at unique incidence condition with an 

inlet Mach number of 1.45 and a static pressure ratio of 2.2. Similar numeric 

calculations were also carried out by Schreiber [101] and Sonoda et al. [91]. It is 

worth nothing that Schreiber itself suggested that the best way to reproduce the 

flow field of a supersonic cascade is to set the exit pressure and the linear stream 

tube thickness variation (AVDR) in such a way that the boundary layer loading 

within the interaction region should be nearly identical for the experiment and the 

numerical simulation [101]. In other words, the numeric boundary conditions 

could slightly be adjusted with respect to the experimental ones, in order to obtain 

the best agreement of shock waves layout between numerical simulation and the 

experiment. Since the AVDR is not a parameter in our numerical model (i.e. 

AVDR = 1.00), only the Mach number and the static back pressure could be 

modified. The best results were obtained for an inlet Mach number of 1.456 and a 

static pressure ratio within the range 2.20-2.22. These values are also in good 

agreement with the analysis operated by Sonoda et al. [91]. 

In Figure 4.6 a sketch of the shock wave pattern by means of the magnitude 

of density gradient is reported for all six configurations (3 grids times 2 numerical 

models), whereas in Figure 4.7 the experimental pattern obtained from Schreiber 

[90] is illustrated. The pre-compression shock wave originated by the coalescence 

of the left-running characteristic, which are emanating from the concave forward 

portion of the blade suction surface, is well calculated by both turbulence models. 

However, it seems that k� -SST gives a better resolution of the intersection region 

of the pre-compression shock with the bow shock. As the gray scale indicates, the 

pre-compression shock is weaker than the oblique passage shock, but it makes the 

difference by reducing the Mach number ahead of the oblique shock wave from 

1.75 to 1.35 (see Figure 4.8). The oblique shock wave departs from leading edge 

and meets the adjacent blade at about 60% of the suction surface; the shock is 

strong enough that the interaction with the boundary layer causes its separation 

and a peculiar lambda shock establishes above the separation region. The lambda 

shape is much well captured by the k� -SST model with the refined grid rather 

than SA computation. On the other hand, it seems that the Mach reflection branch 

is peculiar only of the SA calculation, being the Mach reflection just a blend gray 

band in the k� -SST visualization, even with refined grid. Moreover, the slope of 

the oblique shock is more prominent for the SA than the k� -SST.  
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Regardless the turbulence model, the isentropic Mach number distribution 

reported in Figure 4.8 is not affected at all by the grid size (Figure 4.8), except for 

the resolution around the shock wave peaks. Furthermore, the experimental 

behavior on the suction side from 22% to 50% of chord could be caused by 

experimental disturbances, which were reported by Schreiber and Starken [92], 

originated in the sidewall region of the test section and faintly influencing the 

blade mid-span test section. Except for this portion, the k� -SST seems to be in 

very good agreement with the experiments, whereas SA overestimates the 

isentropic Mach ahead of both the shock waves (i.e. oblique and quasi normal, see 

Figure 4.7) and it is even in pore accuracy in estimating the shock position.  

In Figure 4.9 and Figure 4.10 the pitchwise distribution of exit flow angle and 

loss coefficient are reported. The experimental data were taken from Küsters and 

Schreiber [101]; unfortunately, the data is referred to the baseline cascade tested 

at different boundary conditions, i.e. inlet Mach number of 1.43, pressure ratio of 

2.19 and AVDR 1.06. As a result, such data could be exploited only for a 

qualitative comparison. Effectively, the loss coefficient curves were aligned on 

the peak, and also the exit flow angle were ordered similarly. As for the exit flow 

angle, the variation inside the wake is not captured at all. Such behavior seems to 

be related with the mixing phenomenon that is inherently unsteady and not 

predictable by a steady state simulation [101]. As for the loss coefficient, the k� -

SST captures the “bulge” patter on the right side of the bell that is originated by 

the shock wave boundary layer interaction (detachment + lambda shock). On the 

other hand, from the wide bell base it can be inferred that the SA diffuses the 

wake much more than the k� -SST; furthermore, there is no track of the “bulge” 

pattern.  

The variations of cascade global performance as a function of grid size, 

turbulence model, and static pressure ratio, are summarized in Figure 4.11. The 

lack of knowledge of the leading edge geometry could be responsible for the 

important difference of the inlet flow angle, the prediction of which is 

overestimated of about 0.5 [deg] regardless grid size and turbulence model. As a 

result, also the outflow angle is shifted to higher values than experimental one, 

however the mean flow deflection is well captured by the SA model and slightly 

less by the k� -SST. As for the loss coefficient, the k� -SST estimation is in good 

agreement with the experiment, being the variation of 0.5% against the 5% of the 

SA model. It is worth nothing that the loss trend as a function of static back 

pressure is opposite for the two models. The reason of this depends on the 
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operating condition of the two cases. From a numerical point of view, it seems 

that the k� -SST case is beyond the spill point, in contrast with what is happening 

at the SA case, which indeed is working within the unique incidence range but 

with low static back pressure. This hypothesis is corroborated by tests operated 

applying the Unique Incidence Control Loop (UICL) to CFD calculations, in 

which the cascade is forced to work at the unique incidence point. The increase of 

static back pressure affects the k� -SST performance, which already was working 

beyond the unique incidence condition and now is forced to work at an even more 

unfavorable condition, whereas pushes the SA case nearer to the unique incidence 

condition, this explaining the increase in cascade efficiency. 

Overall, the CFD model based on the k� -SST seems to well capture and 

predict in good accuracy both the local and global performance. The sensitivity on 

the grid dimension suggested that for optimization purpose the medium or even 

the coarse grid could be adopted, and that the refined one should be used for 

detailed analysis after the optimization is over. 
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Figure 4.6: Density gradient magnitude for the baseline cascade evaluated via CFD. 
Comparison between different turbulence models and grid sizes. Same gray scale among images. 

 

Figure 4.7: Experimental shock wave pattern for the baseline cascade at near design 

condition, M1=1.44, AVDR 1.01 and cp  2.21, obtained from Schreiber [90]. 
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Figure 4.8: Isentropic Mach number distribution over the baseline cascade: the k� -SST 
against SA turbulence model for different grid sizes. 

 

Figure 4.9: Pitchwise distribution of the outlet flow angle for the baseline cascade: the k� -
SST against SA turbulence model for different grid sizes. The survey section is at 28% axial chord 

downstream the trailing edge 



96 Chapter 4 �  Shape Optimization of a Supersonic Compressor Cascade 
 

 

Figure 4.10: Pitchwise distribution of the loss coefficient for the baseline cascade: the k� -
SST against SA turbulence model for different grid sizes. The survey section is at 28% axial chord 

downstream the trailing edge. 
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Figure 4.11: Global performance of the baseline cascade as a function of grid size, turbulence 

model and static pressure ratio. The inlet Mach number is 1.456 and the static pressure ratio 2.21 
for all calculations. 

4.3 Unique Incidence Control Loop (UICL) 

The unique incidence (UI) point is a well-defined operating condition at 

which supersonic cascades could gain the best performance in terms of cascade 

loss coefficient, for a fixed inlet Mach number. The UI point is within a flow 

regime where there exist a strong relationship between the inlet Mach number 

1M  and the inlet Mach angle 1b . The reader is referred to §3.4 for a detailed 

explanation of UI condition.  

The Unique Incidence Control Loop (UICL) is in charge to control the 

boundary conditions of CFD computation bringing the cascade to work at its UI 

condition, for a prescribed inlet Mach number. The UICL were developed in C 

code and linked with ANSYS® Fluent [103] by means of the User Defined 

Function (UDF) library.  

$����  7���1)�68�

The need for the UICL originates directly from the impossibility to prescribe 

a specific value of ( 1M , 1b ) at the inlet boundary due to the physical behavior of 

a supersonic cascade (1 1M > ) with a subsonic axial Mach number (1 1xM < ), for 

which the information can travel upstream along axial direction, thereby allowing 

the cascade to affect the incoming flow. Approaching the cascade, the flow at 

infinite (M¥ , b¥ ) is deflected till ( 1M , 1b ) by a shock wave system released from 

the cascade fore region; deflection is essential in order for the incoming flow to 

honor the cascade periodicity (§3.4). This is the reason why ( 1M , 1b ) cannot be 

treated as a boundary constraint for the simulation, but must be considered as a 

result of the calculation.  

From a numerical point of view, the pressure far field adopted as inlet 

boundary condition allows one to specify the incoming nonlinear supersonic 

Riemann invariant ( ) cosM tb n+ =  through the prescription of the flow at infinite 

( M¥ , b¥ ). The Riemann invariant is the joining link between the infinite and the 

inlet boundary. Owning to the constancy of the Riemann invariant in the entire 

inlet region, the UICL can affect ( 1M , 1b ) by tuning (M¥ , b¥ ). Be aware that a 

variation of the only M¥  would affect the Riemann invariant, which, in turn, 

would have repercussions on both 1M  and 1b . A novel recursive procedure was 
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developed to find the correct values for (M¥ , b¥ ) in order to achieve the required 

1M , avoiding trial and error approaches. 

$����  1)�6�"	��	�#��

For a given cascade geometry and total quantities at the inlet boundary (i.e., 

0P  and 0T ), there are only two variables which influences the UI point: 1M (or 

1b ) and the outlet static pressure 2p . This holds under the hypothesis (1) of 

supersonic inlet flow with subsonic axial Mach number and (2) the cascade is 

started and does not work in spill conditions. 

The UICL is based on a two-step strategy: 

1. First, a very low value for 2p  is prescribed at the outlet; in such 

condition, the inlet flow domain is completely independent from the 

static back pressure 2p and the UICL can search, regardless 2p , for an 

appropriate value of (M¥ , b¥ ) in order to achieve the prescribed1M . At 

this stage the solution (M¥ , b¥ ) is unique and sets the starting point 

( 1M , 1b ) for the following step. 

2. In the second step, the main goal is the identification of a suitable 

value for 2p  in order to push the cascade to operate at the UI condition. 

Starting from the condition ( 1M , 1b ), 2p  is increased until a variation 

of the inlet quantities ( 1M , 1b ) is detected. The operating condition 

just before the inlet flow variation is observed, it is regarded as the 

cascade UI condition. 

$����  1)�6�)�������	�	
���

The UICL code implementation retraces the status machine paradigm. At the 

end of each CFD iteration, a UICL iteration begins: the CFD code transmits the 

flow domain to the UICL (Figure 4.12), which applies specific actions based on 

the analysis of the flow domain and, when necessary, modifies the domain 

boundary conditions; the UICL iteration ends returning the flow of control to the 

CFD code, ready to start a new CFD iteration. 

The code is divided into two parts, the Mach Loop Status Machine (MLSM) 

in Figure 4.13 and the Unique Incidence Status Machine (UISM) reported in 

Figure 4.13 and Figure 4.14, respectively. 

The status ’S-#‘, which is specified at the right-top corner of each block, is 

stored and retained among UICL iterations, and drives UICL to the appropriate 
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block at the beginning of the next iteration. Beside the status variable, there is the 

Restart From Status (RFS) variable, which is an additional memory for the status 

machine. RFS is used in those circumstances in which a certain block needs to 

differentiate its own output status, depending on the calling block. For instance, 

the CFD CONVERGENCE TEST block in Figure 4.13 implements such strategy: 

when the conditions inside the block are satisfied, the output status changes 

according to the value of RFS. 

 

Figure 4.12:  Framework flowchart of the Unique Incidence Control Loop (UICL). 
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Figure 4.13: Flowchart of the Mach Loop Status Machine (MLSM). 
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Figure 4.14: Flowchart of the Unique Incidence Status Machine (UISM). 

  



4.3 Unique Incidence Control Loop (UICL) 103 
 

 

$�!�!��  ���.
����
������
"��.�	�


In the Mach loop status machine, there are six main blocks (Figure 4.13). The 

most important are hereafter described: 

a. Tuning ( , )M b¥ ¥  block: ( , )M b¥ ¥  are tuned in order to meet the 

required 1targetM . As shown in Figure 4.15, M¥  is kept constant and 

equal to the target value during all the iterative process, whereas 

b¥  is adjusted in such a way that, iteration after iteration, 1M  

approaches 1targetM . How b¥ is updated is essential for this 

procedure. According to the analysis of supersonic cascades 

presented in §3.4, it seems a fairly strong hypothesis to 

approximate the Unique Incidence Curve to a linear model, at 

least within a neighborhood of 1targetM . 

The curve linear model is defined by the last two points 1 1( , )M b  

evaluated via CFD, circle symbols in Figure 4.15. At iteration one, 

the initial point 1( , )iterM b¥ ¥  is arbitrarily selected, bearing in mind 

that 1b , thereby b¥ , is related with both the geometry of the 

leading edge profile and the inlet Mach number. When iteration 

one is completed, the issue of a second CFD point is avoided 

providing a fair value of the curve slope. As a result, the dashed 

line in Figure 4.15 represents the a priori unique incidence curve, 

being the slope value based on a priori knowledge on supersonic 

cascades rather than related to the specific cascade under 

examination. The intersection of unique incidence curve with the 

vertical line passing through the target Mach number identifies the 

new infinite condition for the next iteration. From the second 

iteration on, only CFD results are used to build the linear model. 

The iterative process is carried on until a tolerance 
11 target MM M toll- <  

on the inlet Mach number is met. In the experiments, the iterative 

process usually converges after only four or five iterations with a 

tolerance of 5.0E-05. 

b. CFD convergence test block: when the boundary conditions are 

modified, there are a certain number of iterations needed in order 

to detect the perturbation on the flow domain. This is even more 

true when the attention is paid on the inlet quantities and the 

variation of boundary condition happens at the outlet section. 
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Depending on grid dimension, flow filed Mach number, CFD 

relaxation coefficients, and all those intrinsic simulation 

parameters, the number of iteration could vary from some dozens 

to some hundreds. Low residuals and flat pattern of the variable of 

interest are necessary conditions, but not sufficient to guarantee 

numeric convergence. By adopting smart locations for “numerical 

probes”, it is possible to understand when the solution is 

completely propagated within the domain, thus to drastically 

reduce the total amount of iterations.  

c. Spill Point Test: at this point, MLSM has identified a suitable 

value for ( , )M b¥ ¥  in order to meet the required Mach target. The 

main hypothesis is that the initial static back pressure is low 

enough guarantee a chocked flow condition inside the cascade. In 

such situation, the inlet field is completely independent from the 

static back pressure.  

The spill point test block is activated after the static back pressure 

is diminished, and it controls the variation of the inlet flow angle. 

If the test is positive, the back pressure is diminished and the 

Mach Loop is started again. 

The simplest solution would have been to adopt a very low value 

of static back pressure; however, experiments suggests that a such 

low value could induce numeric instabilities, at least for certain 

cascade geometries, besides the large amount of CFD iterations 

required to reach high pressure ratios typical of the unique 

incidence operations. The spill point test block introduces low 

complexity in the algorithm, while adding robustness the 

searching procedure and keeping to a minimum the CFD iterations. 
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Figure 4.15:  Procedure for tuning ( , ) in order to achieve a prescribed .  
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The Unique Incidence Status Machine (Figure 4.14) is composed by two 

main blocks: 

a. BC Spill Point Control: this block is in charge to increase the 

static back pressure in order to force the cascade to work just 

before the spill point; this is the condition in which the shock 

wave detaches from the leading edge and the influence of the back 

pressure over the inlet region becomes remarkable: unique 

incidence relation does not hold any more.  

The low back pressure coming out from MLCL is increased by 

steps. At a certain point, the cascade overcomes the spill point for 

a specific value of the back pressure; such value is not acceptable 

because pushes the cascade beyond the spill point and so it is 

regarded as a superior limit for the following back pressure 

attempts. This superior limit and the last acceptable back pressure 

represent the starting points for a bisection method, which ends 

when a tolerance on the pressure ratio is achieved. 

M¥ b¥ 1M
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In the experiments, the tolerance was set to 0.05%, which 

represents the resolution on the UI pressure ratio. For such 

tolerance, the number of back pressure attempts are around ten. 

b. CFD Spill Point Control: when a high value of static back 

pressure is imposed, the cascade could overcome the spill point 

and even reach its maximum pressure ratio, beyond which the 

only feasible solution is for a lower Mach number and a different 

inlet flow angle. In this situation, after convergence is obtained, 

even though the static back pressure is decreased to the previous 

value, an hysteresis phenomena appears: the cascade will not 

return to the previous operating point. In fact, the cascade is now 

operating in its subsonic regime or, in other words, the cascade is 

unstarted. 

The CFD control on the spill point monitors the variation of the 

inlet flow angle and roughly stops the CFD simulation when such 

variation overcomes a prescribed tolerance. In this way, the time 

spent on a worthless numeric solution is avoided, but still the 

information of the back pressure upper limit is retained and 

exploited in the bisection method.  

It is worth noting that experiments reveal a great variation in the 

margin of back pressure beyond the spill point among different 

geometries. 

$���$  2��
��	
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The UICL were employed in the CFD calculation of the baseline cascade for 

both turbulence models, i.e., SA and the k� -SST. In the previous validation phase, 

the numeric boundary conditions were tuned in order to achieve good agreement 

with the experimental shock wave pattern and the isentropic Mach distribution 

over the blade surface. In principle, there is any guarantee that such boundary 

conditions are specifically those for which the cascade operates in its unique 

incidence condition. Here, the inlet Mach number is kept constant equal to the one 

adopted in the validation phase (i.e. 1.456), while the static back pressure is free 

to vary in order to be tuned by the UICL. 

The main results in terms of shock wave pattern and isentropic Mach number 

are reported in Figure 4.16 and Figure 4.17, respectively. The oblique shock wave 

slope is now similar between the two configurations (this is not the case in the 
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validation phase), this is confirmed also by the position of the isentropic Mach 

peak around 60% of the blade suction side. The main difference in the shock 

pattern can be appreciated in the strength and position of the “quasi normal” 

shock, which is stronger for the k� -SST than the SA model and it is located at 28% 

of chord against 18% of the SA case. As for the static pressure ratio needed to 

reach the unique incidence condition, the k� -SST works with a 2.186 pressure 

ratio compared to a 2.269 of the SA. The former under-predicts the experimental 

pressure ratio of -1%, while the latter overestimates the experimental by 2.7%. On 

the other hand, the loss coefficient is captured with very good accuracy by the k� -

SST with a discrepancy of 0.5%, while SA differs by a 2.7%. 

 

Figure 4.16: Magnitude of the density gradient. CFD calculation of the unique incidence 
condition by means of the Unique Incidence Control Loop (UICL). The k� -SST (left view) and 

the SA (right view) were adopted as turbulence models. 



108 Chapter 4 �  Shape Optimization of a Supersonic Compressor Cascade 
 

 

Figure 4.17: Isentropic Mach number distribution over the baseline cascade at unique 
incidence point: the k� -SST against SA turbulence model. 

4.4 Parameterization 

Shape deformations were accomplished by superimposing a displacement 

field to the baseline geometry points. The main advantage lies in the simplicity of 

such approach because it does not require the approximation of the baseline 

geometry with the curve related with parameterization, for instance a spline with 

control points. This does not mean that the baseline geometry is not approximated 

at all, but that the approximation could be made with any kind of curve, complex 

splines with hundreds of control points or higher order curves, regardless the 

purpose of the parameterization itself. The baseline reconstruction could be so 

accurate that it is like to include the exact shape of the baseline cascade within the 

design space. Thereby, the parameterization is focused on the displacement field, 

which defines the dx and dy displacement for each point of the baseline profile. In 

this work, B-spline curves were selected to parameterize the displacement field.  
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A B-spline curve is a piecewise polynomial curve defined by a set of control 

points which the curve ordinarily does not interpolate. The reader is referred to the 

work of Mortenson [106] for a detailed explanation of B-spline curves and their 

numeric implementation. Hereafter, the main formulas are reported. The B-spline 

curve is defined as follows: 

parametric in the natural parameter u, the curve ( )up  is defined by the control 

points iP  and the basis functions polynomials , ( )i pB u , which depends on the 

specific i-th control point, but its degree p is independent on the number of control 

points. The basis functions are defined iteratively: 

where it  are the knot values that relate the parametric variable 0, 1 1u n pÎ + - +  

to the control points iP . In the case of a uniform B-spline the knot values are 

equal distributed with an appropriate multiplicity at the extremes: 

Compared with Bézier curves, B-spline curves have two main advantages: 

first, control points do not influence the curve globally, but affect only a neighbor 

region (local control); second, the curve degree does not depend on the number of 

control points, so adding control points to augment the control on deformation is 

always possible. 
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A specific MATLAB® [107] application with graphic interface were 

developed with the goal to easily import, handle and parameterize a generic 2D 

airfoil. The rough data is manipulated in such a way to build a very detailed 

closed spline ( )base up , which loops from the trailing edge (u=0) forth to the 

leading edge (u=1) and back again to the trialing edge (u=2). A linear relation 

between the parameter u and the curvilinear length of the pressure and suction 

sides were imposed, and a uniform distribution of knots were used. 

$�$��  �
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The displacement field were modeled by a cubic B-spline curve ( )displ up , 

which defines the dx and dy displacement for each point of the baseline. Similar to 

the baseline B-spline, ( )displ up  loops around the foil and the parameter u behaves 

in the same way, yielding a perfect match between the two B-spline 

representations. As a result, the following can mathematically represent a generic 

deformed geometry: 

The main difference between ( )base up  and ( )displ up  is the number of control 

points used. The former has hundreds of control point to well approximate the 

baseline geometry, while the latter has as many control point as the 

parameterization requires. 

It was arbitrarily decided to prevent deformation of the leading and trailing 

edge profiles during optimization. In order to obey to such constraint, inactive (or 

fixed) control points were added in the leading and trailing edge regions, as 

illustrated Figure 4.18. In this way, the local influence of the active control points 

on the not deformable region were avoided.  

mod( ) ( ) ( )base displu u u= +p p p   Eq. 4.6
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Figure 4.18: B-spline control points: active control points  in green, while fixed ones in red. 
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Feasible geometries are not guaranteed by the employment of the 

displacement field. For instance, pressure and suction sides could even intersect 

depending on the control points range, at least in the fore portion of the blade. 

Curbing the control points range in order to avoid intersection extremely tapers 

the search space; these geometries were just rejected.  

On the other hand, tapered fore portion geometries are exceptional to 

accommodate the incoming flow, but less appreciated by the manufacturing. The 

minimum thickness and the covered area in the first 35% of chord were monitored 

during optimization. 

4.5 Formulation Of The Optimization Problem 

The aim of the multi-objective optimization problem was to minimize the 

two-objective function: 

1 2( ) ( , ) ( , )cf f w p= = -F P   Eq. 4.7
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where P is the vector of the optimization parameters or decision variables of the 

design (i.e., the B-spline control points of the displacement field), �  is the cascade 

loss defined in Eq. 4.1 and cp  the static pressure ratio. 

The constraints complete the problem formulation. A penalty function 

approach is adopted to handle geometric constraints. The penalty term Q depends 

linearly on the level of violation of the constraints:  

where %limitt  is the lower bound of the minim thickness percentage variation, 

35%limitA  is the lower bound of the percentage variation of the covered area from 

leading edge till 35% of chord, ia  is a linear weight and 1 2( , )r r  are the 

transformation coefficients in order to properly scale the violation to the objective 

functions. 

The reader is referred to Appendix A for a brief review of the optimization 

framework adopted. 

4.6 Discussion Of Results 

Two multi-objective optimizations were carried out by means of the Kriging-

assisted genetic algorithm GeDEA-II-K (see §Chapter 2). In the first analysis, 

namely OPT1, the 14 design variables having control of the forepart of the foil 

were activated, while in the second one, namely OPT2, the entire geometry was 

allowed to be modified by the 21 degrees of freedom embedded in the 

parameterization. Although the CFD model was composed by only 33k elements, 

for each computation 1.5h was required in order to attain the UI condition. For 

both the optimizations, a population composed by 20 individuals was evolved for 

12 generations. 

Figure 4.19 shows the Pareto-optimal front of both optimizations. The OPT1 

accounts for more than 95% of the losses reduction achieved in OPT2, 

corroborating the fact that the forepart of the airfoil geometry is of utmost 

importance when supersonic flows need to be accommodated.  

As far as the OPT1 is concerned, two curves are reported in Figure 4.19: the 

green front takes into account designs that strongly respect the geometric 
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constraints, while the red front is constructed including designs that did not 

completely fulfill the constraints, but with a weak level of violation. Since the 

constraints violation is representative of airfoils featuring a tapered shape in the 

first 35% of chord, it is clear why the red front could extend its left branch 

towards regions of lower losses compared to the green front. Even with the second 

analysis such levels of losses (i.e., point B1) could not be reached. 

On the other hand, the blue front in Figure 4.19 refers to OPT2 and, 

compared to OPT1, it enlarges the covered area toward high static pressure ratios, 

whereas little improvement in loss reduction is detected. 

The results are presented by means of total pressure losses contours, Mach 

number contours, density gradient magnitude contours (which resembles the 

Schlieren pictures) and isentropic Mach number distribution. The few optimal 

points reported in Figure 4.19 are taken into account for comparison.  

 

 

Figure 4.19: Pareto-optimal front. 
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The disappearance of the strong shock wave boundary layer interaction 

explains the greatest improvement of the loss coefficient among all the Pareto 

designs. The isentropic Mach number distribution (Figure 4.20) reveals that 

somehow the optimal designs are able to lower the incoming shock wave Mach 

number, which is reduced from 1.5 for the baseline to 1.32-1.38, and slightly shift 

toward aft (i.e., from 58% of chord of the baseline to 62%) the impinging point of 

the passage oblique shock over the suction side. A lower pre-shock Mach number 
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reduces the passage shock strength and the shock wave boundary layer interaction. 

This phenomenon will be analyzed ahead. Although with different degrees of 

reduction, the flow reacceleration on the pressure side of the baseline is damped, 

thus the second shock wave is weakened; in addition, the position of the shock 

moves towards the leading edge at about 20% of chord. 

The optimal designs featuring a higher pressure ratios belong to the OPT2 

analysis, in which the entire airfoil was modified including the rear part. The flow 

is first decelerated to subsonic velocity in the forepart of the passage and then it is 

deflected furthermore in the rear part, thanks to the increased exit solid angle (see 

Figure 4.23). As a result, between the 60% and 95% (see Figure 4.20) the 

isentropic Mach number makes evidence of the higher loading in agreement with 

the flow pitchwise distribution of the outlet flow angle (see Figure 4.21). 

Moreover, OPT2 optimal designs have the maximum thickness location shifted aft 

around 68% of chord, while the maximum value is slightly higher than the 

baseline (see Figure 4.24). 

As the pitchwise distribution of the loss coefficient is concerned ( Figure 

4.22), it can be observed very well the absence of the “bulge-pattern” caused by 

the boundary layer detachment, which is the result of the strong interaction 

between the passage oblique shock and the boundary layer on the suction side 

(lambda shock). Generally, the main differences between optimal designs lay on 

the region outside the “bell”. However, it is singular how the B1, B2 and A1 can 

achieve slightly lower losses under the “bell”. The explanation of such behavior is 

not simply related with the tapered shape of the airfoil forepart (i.e., this could be 

true only for B1 and B2 which do not respect the geometric constraint), but must 

be searched on the interaction between the bow shock wave in front of the leading 

edge and the inlet flow domain. It will soon be clear. 
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Figure 4.20: Isentropic Mach distribution over Pareto-optimal front designs. 

 

Figure 4.21: Pitchwise distribution of the outlet flow angle for the Pareto-optimal front 
designs. 

 

Figure 4.22: Pitchwise distribution of the loss coefficient for the Pareto-optimal front designs. 
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Figure 4.23: Suction and pressure side of the Pareto-optimal front designs. 

 

Figure 4.24: Geometric features of the Pareto-optimal front designs. 
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Two main mechanisms are responsible for the pre-shock Mach number 

reduction: the reduced flow acceleration on the suction surface near the leading 

edge and the pre-compression mechanism. 
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All the optimal designs have a lower negative inlet camber (see Figure 4.24) 

that results in a decreased incidence flow angle. Moreover, compared to the 

baseline, although the camber line continues to have the “bowl shape” (i.e., the 

camber has negative tangent from 0% to 15% of chord and then increases toward 

positive values), its depth is less pronounced and thus the acceleration of the 

incoming flow is restrained. Because of both the reduced incidence and the softer 

“bowl shape”, the flow experiences a limited acceleration, which can be 

appreciated in both the isentropic Mach number distribution (see Figure 4.20) and 

in the Mach number contours (Figure 4.26 and Figure 4.29). 

Following the flow development on the suction surface, after the expansion, the 

flow enters the region were the pre-compression mechanism is established. The 

variation of the suction surface slope imposes to the flow a continuous deflection, 

which is realized by compression Mach lines of weak strength departing the 

suction surface. The baseline geometry ( 

Figure 4.25) is designed in such a way that these Mach lines coalescence 

towards a narrow region (i.e., vertex of the compression fan) that is the result of 

the intersection of the Mach lines with the leading edge bow shock of the previous 

blade. Approaching the vertex, the contribution of the whole Mach lines becomes 

significant and gives rise to a finite, but still not too strong, compression wave. 

However, the intersection of compression Mach lines with shock waves is not 

isentropic and, as a consequence, the compression fan induces a strong deficit in 

total pressure that remains confined in a narrow strip called linguina. The linguina 

departs from the intersection point and goes downstream (see close-up of the 

baseline geometry leading edge Figure 4.27). In the baseline, the linguina total 

pressure loss is around 8%, which is remarkable compared to a 4% of mean total 

pressure loss occurred through the passage oblique shock. 
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The modifications of the camber “bowl shape” change the direction of the Mach 

lines departing the suction surface, lines that no more coalescence towards a 

narrow region. The “vertex” of the compression fan becomes a wide spread region 

that covers a wide part of the bow shock or points towards directions beyond the 

leading edge of the previous blade, depending on the optimal design considered. 

The simulated Schileren pictures reported in  

Figure 4.25 and Figure 4.28 show in dark grey strong variations of density 

that correspond to compression or expansion regions; the information of the Mach 

contour resolve the ambiguity. 

In the baseline configuration, it is not clear to what extent the linguina 

induces the formation of the lambda shock system, but is clear from the close-up 

of Figure 4.27 that the existence of a low total pressure strip exactly at the top of 

the lambda shock system has some drawbacks. To answer the question further 

investigations are required. 

As far as the pressure side is concerned, the negative slope does not vary near 

the leading edge (see Figure 4.24), contrary to the suction side where the slope 

had a jump of +2 [deg], thus leading to a wedge angle larger than the baseline. 

However, this effect is mitigated by a faster slope increase that produces a lower 

acceleration of the flow and a very weak second shock wave. The slope has small 

variation among optimal design, at least until the 50% of chord, exception made 

for B1 and B2 designs that do not respect the geometric constraints and feature a 

tapered shape. 
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Proceeding along the suction surface, the baseline has a flat suction surface 

slope (see Figure 4.24) between 28% and 48% of chord (position of the passage 

oblique shock wave), thereby no more Mach Lines are generated and the 

supersonic Mach number remains more or less constant around 1.38, before a 

remarked acceleration up to 1.48 just before the shock. On the other hand, all the 

optimal designs features a peculiar profile of the suction surface slope, which 

continues to increase and, therefore, additional Mach lines are generated and thus 

the flow is furthermore decelerated. The Mach lines are quasi-parallel one another 

and shatter on the passage oblique shock wave, avoiding any influence outside of 

the cascade passage. The flow reaches the shock wave front at the 57-62% of 
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chord with a Mach number of 1.32-1.38, depending on the optimal design 

contemplated. 

$�:��  �������������)�������'��1�
����)��
������

The Unique Incidence (UI) condition introduces a further degree of freedom 

in the optimization process related with the passage shock wave obliquity. When 

the static back pressure is increased, the passage oblique shock wave modifies its 

obliqueness, tending to be more “normal”. The shock movement can be 

assimilated with a rigid rotation around a pivot point (i.e., the hinge of the shock) 

located nearby the leading edge. The rotation can proceed until the UI is achieved, 

i.e., until the position of the shock wave does not disturb the incoming inlet flow. 

Precisely, the passage shock influences the shape and position of the bow shock 

lower branch, which, beyond a certain rotation, transmits this variation at the 

upper branch of the bow and, from there, the disturbance propagates in front of 

the entire cascade. It can be observed that optimal designs with high pressure ratio 

(HPR) have passage shocks much more “normal” than those performing a low 

loss coefficient (LLC). In fact, as described by the losses of Figure 4.27 and 

Figure 4.30, the wakes released by the passage shocks of HPR designs have a 

higher total pressure deficit, even though the pre-shock Mach distribution is 

comparable with that of the LLC. It seems that there is a limit in the pre-

compression mechanism, probably due to the fixed cascade solidity, beyond 

which the pre-shock Mach number cannot be decreased furthermore. In this 

condition, the designs that can support a greater rotation of the shock wave are the 

HPR, whereas those that are more susceptible to the shock rotation flow into the 

LLC designs set. From this point of view, we can say that the UI condition 

introduces a tradeoff between HPR and LLC. 

The mechanism behind the maximum rotation of the passage shock wave is a 

complex phenomenon related with both the bow shock in front of the leading edge 

and the location of pre-compression fan vertex. From the Mach number contours 

(Figure 4.29) and the numerical Schlieren visualizations (Figure 4.28) of HPR 

designs as A3 and C5, it can be inferred that there is a noticeable shape 

discontinuity in the wake front where the bow shock meets the passage shock: this 

point turns out to be the hinge of the passage shock. In addition, a very short 

expansion/compression branch departing the pressure surface at 0.5% of chord 

attaches to the hinge point. This interaction gives rise to a linguina characterized 

by a very low total pressure loss. It seems that the linguina establishes a 
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decoupling effect between the passage and the bow shock, letting the former to 

rotate around its hinge for greater degree without affecting the shock bow. 

The tough questions is in which manner the airfoil geometry can control the 

existence of the expansion/compression branch, and thereby the UI condition. 

There is no strong evidence that suggests that this occurrence is somehow related 

with the pressure surface profile only. We think that the explanation should be 

searched in the pre-compression mechanism. It seems that the HPR designs 

features a higher Mach number ahead of the bow shock lower branch and a 

weaker pre-compression fan near its vertex.  
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Figure 4.25: Density gradient magnitude of the OPT1 optimal designs. Passage global view 
(top) and a close-up on the leading edge (bottom). 
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Figure 4.26: Mach number contours of the OPT1 optimal designs. Passage global view (top) 
and a close-up on the leading edge (bottom). 
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Figure 4.27: Total pressure loss contours of the OPT1 optimal designs. Passage global view 
(top) and a close-up on the leading edge (bottom). 
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Figure 4.28: Density gradient magnitude of the OPT2 optimal designs. Passage global view 
(top) and a close-up on the leading edge (bottom). 
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Figure 4.29: Mach number contours of the OPT2 optimal designs. Passage global view (top) 
and a close-up on the leading edge (bottom). 
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Figure 4.30: Total pressure loss contours of the OPT2 optimal designs. Passage global view 
(top) and a close-up on the leading edge (bottom). 
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4.7 Conclusions 

The DLR-PAV-1.5 supersonic compressor cascade was optimized following 

a multi-objective approach where loss coefficient and static pressure ratio were 

the two objectives to be optimized. The optimization was carried out by means of 

the novel Kriging-assisted genetic algorithm GeDEA-II-K (§Chapter 2) coupled 

with CFD solver. The interesting peculiarity is that the cascade was optimized at 

its unique incidence condition. In particular, two optimizations were performed: 

the first one took into account only the reshaping of the forepart of the cascade 

airfoil geometry, while the second one comprises the entire geometry. Among the 

Pareto designs, the loss coefficient was reduced by 25% and the static pressure 

ratio by 6.5%. It was demonstrated that the forepart geometry all alone was 

responsible for the 95% of the loss reduction, thanks to the remarkable decrease of 

the pre-shock Mach number by means of an extended pre-compression 

mechanism that involves the entire suction surface until the passage shock. 

The unique incidence condition introduced a tradeoff between the two 

objectives. Higher compressions were achieved diminishing the obliquity of the 

passage shock wave, which tended to a more “normal” layout, however with an 

increase on the shock wave losses. Furthermore, it was identified a peculiar 

mechanism that established on what extend the passage shock can rotate before 

the unique incidence is met. 





 
 

 
 

Chapter 5  

Shape Optimization of a 

Transonic Compressor 

In this chapter, the shape optimization of a transonic rotor is carried out. The 

NASA Rotor 67 (Figure 5.1) is taken as reference and a 3D parameterization 

involving lean, sweep and airfoil reshaping is applied. The novel Kriging-based 

genetic algorithm GeDEA-II-K is employed for a two-objective optimization, in 

which total pressure ratio and polytropic efficiency have to be optimized at a 

given operating condition.  

 

Figure 5.1: Nasa Rotor 67 transonic fan. 

 

5.1 NASA Rotor 67 

Designed by NASA Lewis Research Center, the Rotor 67 (Figure 5.1) is a 

low-aspect-ratio transonic rotor and is the first rotor of a two-stage fan. According 

to NASA report [108], the rotor has 22 blades and an aspect ratio of 1.56 (based 

on average span/root axial chord); the solidity varies from 3.11 at the hub to 1.29 
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at the tip, and the inlet and exit hub/tip radius ratios are 0.375 and 0.478, 

respectively. The running tip clearance is 1.016 mm. The design pressure ratio is 

1.63 at a mass flow of 33.25 kg/sec and the design wheel speed is 16043 rpm, 

which yields a tip speed of 429 m/sec. 
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In literature there are several works focused on the shape optimization of 

Rotor 67. The following review has the purpose to highlight which part of the 

blade was parameterized and how the optimization strategies, in terms of 

objectives and constraints, affect the outcomes of the optimization process; a 

snapshot of blade parameterization and optimization strategies are reported in 

Table 5.1 and Table 5.2. 

Authors Parameterization 

 Type Design 
variables 

Oyama et al. [109] Airfoils shape: 4 spanwise sections; camber line + thickness 

distribution 

53 

Pierret [110] Airfoils shape: 4 spanwise sections 35 

Lian and Liou [111] Airfoils shape: 4 spanwise sections (perturbation approach) 32 

Lian and Kim [112] Airfoils shape: 4 spanwise sections (perturbation approach) 32 

Okui et al. [113] Airfoils shape: 5 spanwise sect.; camber + spanwise chord 

distribution 

Sweep 

14 

Luo et al. [114] Airfoils shape: 32 Hicks-Henne shape functions (perturbation 

approach) 

238 

Hu et al. [115] Blade loading (inverse design strategy) 

Only airfoil shape can change 

- 

Table 5.1: Previous studies on NASA Rotor 67: parameterization. 
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 Authors Optimization Strategy 

  Method Objectives CFD 
runs  

N
o 

S
ur

ro
ga

te
s 

Oyama et al. 

[109] 

GA+CFD -Min. Entropy generation @peak efficiency 

-Constr.: mass flow + total pressure ratio  

12800 

O
ff-

lin
e Lian and Liou 

[111] 

RSM+CFD 

offline 

-Min. Entropy generation + Max. total 

pressure ratio @peak eff. 

- Constr.: mass flow 

1023 

In
-li

ne
 

Lian and Kim 

[112] 

RSM+CFD 

inline 

- Max. total pressure ratio + Min. Blade 

Weight @peak eff. 

- Constr.: mass flow + probability of failure 

1678 

Okui et al. 

[113] 

DE+ANN +CFD -Max. Isentropic eff.+ throttle margin @peak 

eff. 

-Const. mass flow @choke + mass flow 

@stall 

- 

Pierret [110] RBF+GA+CFD -Max. Isentropic Eff.+Structural obj 

@Multipoint (near-stall, near-peak 

efficiency and choke) � Weights to 

perform single obj. 

- 

Luo et al. [114] Adjoint method -Min. Entropy generation @ Multipoint 

(near-stall, near-peak efficiency and 

choke) 

-Constr.: mass flow + total pressure ratio 

- 

 

Hu et al. [115] Inverse method -Max. Isentropic Eff. @Design point 

- Constr.: mass flow @Choke 

- 

Table 5.2: Previous studies on NASA Rotor 67: optimization strategies. 

Starting from direct optimization methods, Oyama et al. [109] minimized 

flow loss manifested of Rotor 67 via entropy generation with an adaptive range 

genetic algorithm. According to the authors’ experience, maximizing isentropic 

efficiency would endorse maximization of total pressure ratio rather than 

minimization of flow loss. Mass flow and total pressure ratio were constrained, 

being the variation compared to the baseline design of 0.5% and 1%, respectively. 

After 200 generations with 64 individuals for population (i.e., 12800 CFD 
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evaluations on the whole!), isentropic efficiency was improved by 1.78% at 

design point. The entropy production was reduced in regions between hub and 

mid-span, and near tip. The former effect was due to a diminishing of incidence 

angle (Figure 5.2), while the latter was determined by the maximum camber 

position that moves toward aft, resulting in a weaker and shifted aft shock on the 

blade suction side. Although the optimization was performed at design point, the 

optimized design still maintained higher isentropic efficiency over the entire range 

of operating conditions, from the choke to stall, and the stall margin remained 

unchanged. 

 

Figure 5.2: NASA Rotor 67 optimized foils (Oyama et al. [109])  

When only aerodynamic objectives are taken into account, it is possible that 

poor structural shapes, at least in the other part of the blade, are achieved. In fact, 

small thicknesses in the leading edge region positively affect shock losses, and 

thus it reflects on global efficiency, but lead to a blade shape which could not 

satisfy mechanical constraints. Accounting for structural objectives has been 

demonstrated to be a feasible way to address this problem (Pierret [110]). A single 

objective formulation was defined by weighting aero-structural objectives and 

constraints at three operating points (e.g., near-stall, near-peak efficiency and 

choke), and the optimization involved a genetic algorithm assisted by RBF 

interpolation technique. As expected, higher values of isentropic efficiency were 

achieved for the aerodynamic optimization compared to the aero-structural one, 

for all the speed-line. 

Lian and Liou [111] adopted a different parameterization approach, in which 

modified rotor blades were defined superimposing perturbation on the original 

baseline Rotor 67’s geometry. One of the advantages of perturbation approach 

relies on the fact that the baseline geometry is always enclosed in the search space; 

this is done by setting design variables to null perturbation. The multi-objective 

optimization was carried out at peak efficiency. The total pressure ratio was 
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maximized and the entropy generation minimized, while mass flow was 

constrained within a 0.5% variation with respect to the baseline. Among all the 

Pareto points, the total pressure ratio increased as much as 1.8% and the entropy 

production decreased by 6.2%, which implied an isentropic efficiency 

enhancement of 0.7%. 

It is worth nothing that the two aforementioned works did not take into 

account neither lean nor sweep deformations. 

Although this survey is strictly focused on aerodynamic optimization, we 

could not overlook the work of Lian and Kim [112] in which both structural and 

aerodynamic performance of Rotor 67 were contextually optimized. Total 

pressure ratio and rotor mass were taken as objectives, while mass flow rate and 

probability of failure were treated as constrains. It turns out that most of the 

optimal designs broke the safety constraint, at least with a safety factor a little bit 

lower than one (above one safety constrain is respected). 

Okui et al. [113] proposed a more flexible 3D parameterization. Three main 

geometric deformations were permitted: variation of the mean camber line, the 

spanwise distribution of chord, and sweep. The thickness distribution was 

maintained the same as the baseline to avoid mechanical issues. A multi-objective 

evolutionary algorithm coupled with neural networks was adopted as optimizer. 

The objectives to be maximized were peak isentropic efficiency and throttle 

margin. In order to accelerate the optimization process and respect the baseline 

choked mass flow two constraints related with the choked and stall mass flow 

were imposed, for which the off-design performance curve was needed and 

evaluated via CFD. Two optimizations were performed. First, only chord and 

sweep variation were activated in the optimization process; then, mean camber 

design variables were introduced, and a new optimized rotor was identified. At the 

end, a complete stage optimization was performed keeping fixed the stator and 

increasing degrees of freedom of camber line parameterization. As the chord and 

sweep deformations were activated, the optimal blade had a forward sweep shape 

and a +0.3% gain in isentropic efficiency. Such shape involved the outward span 

region and cut the bow shock into a very weak compression shock on the suction 

side and a weaker passage shock. On the contrary, when the camber line 

deformation was added, the optimal blade had a backward sweep shape and a 

higher isentropic efficiency gain equal to +0.6%. The explanation of this result is 

due to the S-shape camber line and a barreling chord length, which are both able 

to compensate the negative effects of backward sweep on stability and efficiency. 
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The last work related to the direct optimization approach is the one of Luo et 

al. [114], in which an adjoint method was used. The main advantage of such 

approach is that computational effort is insensitive to the number of design 

variables. In this case, the rotor was described with 288 design variables. A 

single-point and a multipoint optimization were performed in order to minimize 

the entropy production, while keeping to a minimum the variation of mass flow 

rate and total pressure ratio compared to the baseline. The single objective 

multipoint optimization took into account three operating conditions (i.e., near 

choke, near peak efficiency and near stall), which were aggregated by means of 

weights. In the single-point optimization, the isentropic efficiency had an 

increment of about 1.10%, but a noticeable decrease in total pressure ratio for all 

the operating conditions between stall and peak efficiency. On the other hand, in 

the multipoint optimization gains of isentropic efficiency were achieved at all 

three operating conditions, with increments of about 1.24% near choke, 0.84 near 

peak efficiency, 0.54% near stall; the total pressure ratio was almost unchanged 

compared to the baseline all over the range.  

As far as the inverse optimization method is concerned, we can enumerate 

three studies related with Rotor 67. The first two works, i.e., the one of Tiow and 

Zangeneh (2002) [116] and Watanabe and Zangeneh (2003) [117], are focused on 

the inverse method itself and its ability to reconstruct the geometry given a target 

loading, rather than realize a complete optimization. Two different pressure-

loading distributions, which were derived from the real loading distribution of 

Rotor 67 but arbitrary shaped, were tested in order to analyze the repercussions on 

the isentropic efficiency. The first distribution had a completely aft-loaded 

characteristic, while the second one was chosen to give a fore-loaded 

characteristic at the hub of the blade and a middle-loaded characteristic form the 

mid-span to the tip location. As for the adiabatic efficiency, the second 

distribution performed better with an improvement of about 0.6% over most of the 

working range. Moreover, the stall margin was increased by 3%. 

In the third work, Hu et al. [115] optimized the blade loading pressure 

distribution. For this purpose, the target loading pressure was parameterized at 

various span wise sections by B-spline control points. The blade geometry 

deformations affected only the 2D spanwise sections, while lean and sweep 

modifications were not included. Since the optimization of the isentropic 

efficiency was performed at a given operating point, the optimized blade behavior 

throughout the entire operating range was a mere consequence of the outcomes of 
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the optimization process. The main concern was to control choke flow rate, 

keeping its value as near as possible to the baseline. Two methods were proposed. 

First, it was observed that changing the operating point while keeping the same 

target pressure loading, could lead to a horizontal shift of the characteristic curve, 

which indeed modify the choke flow rate. Second, the choke flow was affected by 

the peak position of the optimal pressure loading. An aft-loading resulted in 

smaller throat areas and hence smaller choke flow, while fore-loading increased 

the choke flow. The isentropic efficiency of NASA Rotor 67 was increased by 

1.26% at design point compared to the baseline, while the choke flow rate was 

reduced by -0.8%. Most of the improvement comes from 25-100% of span. The 

normal passage shock in the original rotor at section 0.8 was changed to an 

oblique shock in the optimized blade. 

5.2 Lean And Sweep Deformations 

The 3D shock wave established in the blade passage is responsible not only 

for losses related with both the shock itself and for the shock-boundary layer 

interaction but also for the stability of the compressor in terms of stall margin. A 

learned reshaping of the stacking line could positively affect the shape of the 3D 

shock and, in turn, the compressor performance. The investigations conducted so 

far have demonstrated that there are three compelling reshaping groups: blade 

airfoils deformation ( [118], [109]), sweep and lean. 

Sweep and lean involve 3D deformations of the blade stacking line and they 

are defined as the translation of the foil, seen in the conformal plane, along the 

rotation axis direction (sweep) or tangential direction (lean) (see Figure 5.12). 

Both lean and sweep can be detailed with forward and backward adjectives. 

Different definitions are used in the literature. As for the lean, forward and 

backward refer to the agreement or not of the stacking line displacement with the 

sense of rotation of the blade. On the other hand, we refer to forward or backward 

sweep depending on the displacement direction, which could point in the 

upstream (forward sweep) or downstream (backward sweep) direction.  

As far as sweep is concerned, backward sweep was first investigated by Hah 

and Wennerstrom [119] on Rotor 6, an aft-swept rotor developed to strengthen the 

sweep effect, which demonstrated a remarkable improvement in peak efficiency 

but a detrimental reduction in stall margin. Such penalization was caused (Wadia 

et al. [120]) by the local increase of loading at the tip section resulting in a 

stronger bow shock, in addition with a more intense migration of fluid particles on 
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the suction side boundary layer (a secondary flow that follows the imbalance 

between the centrifugal force and the pressure gradient). On the other hand, Hah 

et al. [121] showed the advantages of a forward-swept rotor in terms of higher 

margin stall and higher peak efficiency compared to the baseline unswept rotor. 

Denton and Xu confirmed similar results via CFD [122]. 

Despite blade sweep is known to be an effective technique to redistribute the 

radial loading [123], sweep also affects the meridional position of the shock, 

which tends to resemble the shape of the sweep. Moreover, it has been observed 

the so-called “endwall effect”, this is the shock approaches the casing at right 

angles (Hah et al. [121]). Because of the superimposing of the sweep and the 

“endwall effect”, near the casing the position of the shock is moved downstream 

in the case of forward sweep whereas upstream in the backward sweep, as 

depicted in Figure 5.3. Usually, a more backwards position of the shock reflects a 

better stability, and this partially justifies the improvement in stall margin 

observed with forward-swept rotors. 

 

Figure 5.3: “Enwall effect” on shock structure near casing [124]. 

Investigations on the lean have highlighted that its use can produce favorable 

effects thanks to the change on the 3D shock structure (Bergner et al. [6]). In 

particular, forward lean (i.e., towards the direction of rotation) resulted to have 

positive influence on the overall rotor efficiency (Ahn and Kim [7] and Benini 

[8]). Moreover, an important investigation on the aerodynamics of swept and 

leaned transonic compressor rotors conducted by Biollo and Benini [125]. 

5.3 Blade Geometry 

The geometry provided in NASA report [108] comprise 14 blade spanwise 

sections, which were formatted in a proper way to be given to ANSYS® 
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TurboGrid in order to reconstruct the baseline geometry. The result of such 

operation is illustrated in Figure 5.4. 

 

Figure 5.4: R67 geometry. 

5.4 Flow Solver And Computational Domain 

In this section, the numerical model setup is described, which comprise the 

computational grid and the CFD solver setup. 

/�$��  %�
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As far as the numerical grid is concerned, the Automatic Topology and 

Meshing tool (ATM optimized) within ANSYS® TurboGrid v14 was used to 

generate a multi-block structured grid. As depicted in Figure 5.5, there are three 

blocks: inlet, passage and outlet. The passage block is critical because grid quality 

is strongly dependent on how the grid topology is anchored to the blade geometry, 

being this match enforced by moving the topology control points. In an 

optimization context, where blade geometry could have important deformations, 

the meshing tool should be enough robust to guarantee high mesh quality also for 

geometries far from the baseline one. Such tool should be able to adapt the control 
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points’ position to the new geometry. As deformations increase, the passage block 

mesh could quickly deteriorate, at least keeping unchanged the topology control 

points. It turns out that ATM could handle this problem by optimizing control 

points position and by smoothing the mesh, achieving a high grid quality even for 

distorted geometries. 

 

Figure 5.5: Computational domain. 

The main grid parameters were deduced from those adopted in the validation 

analysis carried out in [126]. In particular, the structured grid of the passage block 

were created interpolating 10 spanwise layers, as those depicted in Figure 5.6, 

which are in such high number to reduce the mesh distortion when the baseline 

geometry is modified. The topology is ATM based, which indeed does not match 

with any of the standard topologies. The target passage mesh size method with a 

target value of 1.7 M elements were prescribed. The first layer height were 

selected in order to achieve a y+ lower than unity all over the wall surfaces 

imposing 2e+06 as reference Reynolds number .In the spanwise direction 110 

elements were adopted, in addition 42 more nodes in the shroud tip region. As for 

the inlet and outlet blocks, H-grid topology with 28 and 34 streamwise elements 

respectively was selected. At the end, the whole mesh was composed by 2.2M 

elements. 
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Figure 5.6: ANSYS® TurboGrid topology: layers of hub, midspan and tip section. 

 

Figure 5.7: Computational grid. 

/�$��  *��+����3���"�	���

The steady state 3D flow field around the blade were computed by means of 

the commercial CFD code ANSYS® CFX v14, in which the Reynolds-averaged 

form of the Navier–Stokes equations are solved using a finite-element based 

finite-volume method.  

The computational analysis comprised one blade passage and a periodic 

condition was applied on lateral passage surfaces. The flow was fully turbulent 
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and the k-�  SST [104] turbulence model was adopted. All the computational 

domain rotated at -16043 [rpm] along the z axis. The setup of the CFX-Pre is 

summarized in Table 5.3. 

It is worth nothing that convergence was critical throughout all the 

calculation, so a user function was implemented with the purpose of adapting the 

maximum timescale, which indeed is of utmost importance for calculation 

stability. In particular, at the beginning a value of 1e-007 [s] was set, then it was 

increased up to 1e-004 [s], for then return to lower values around 1e-005 [s] 

before calculation was stopped.  

The convergence was established when the RMS maximum residue were 

lower than 1e-005 and the variables of interest described in the next paragraph 

had an asymptotic behavior. 
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ANSYS© CFX solver setup 

Formulation Steady State  

Domain Material Air Ideal Gas 

Domain Motion -16043 @z-axis 

Reference Pressure 0 [atm] 

Heat Transfer Total Energy 

Turbulence Model k-�  SST + high speed 

BC 

Inlet 

-Inlet + frame stationary 

-Subsonic 

-Stationary Tot. Pressure 101325 [Pa] 

-Direction normal to boundary 

-Stationary Tot. Temp. 288.2 [K] 

-Turbulence intensity 5% 

Outlet 

-Outlet + frame stationary 

-Subsonic 

-a)Average Static Pressure 50000[Pa] 

-b)Mass Flow Rate 

Blade 
-Wall + no slip 

-Adiabatic 

Periodic  
-Periodic 

-Conservative Interface Flux 

Hub 

-Wall + no slip 

-Rotating frame 

-Adiabatic 

Shroud 

-Wall + no slip 

-Rotating frame 

-Counter Rotating wall 

-Adiabatic 

Solver Control Advection Scheme High resolution 

Turbulence Numerics High resolution 

Timescale Control Auto timescale 

Table 5.3: ANSYS® CFX solver setup. 
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Performance was calculated at specific upstream and downstream survey 

stations, which are shown in Figure 5.8. These stations were the same of those 

adopted in the NASA Report [108], for which experimental data are available. 

Total pressure ratio and polytropic efficiency were evaluated taken into 

account quantities calculated with a mass-weighted average surface integral at the 

appropriate survey stations. Specifically, the total pressure ratio was defines as 

where 02p  and 01p  are the total pressure in the stationary frame at station 2 and 1, 

respectively, extracted with the aforementioned mass-weighted integral. On the 

other hand, the polytropic efficiency was defined as 

in which 02T  and 01T  are the total temperatures in stationary frame at station 2 and 

1, respectively. For completeness, the isentropic efficiency was defined as: 

In addition to global variables, spanwise distributed performance is of utmost 

importance because it can give a better understanding on which part of the blade 

affects in greater amount global performance. Given a spanwise location, the 

value of a generic spanwise variable was representative of the pitchwise circular 

arc. Similarly to the global variables, first total pressure and total temperature 

were evaluated with the mass-weighted integral on the surface associated with the 

pitchwise circular arc, and then total pressure ratio and polytropic efficiency were 

calculated for that specific spanwise location. In such process, the quantities 

belonging to section 1 were considered constant along the entire span. 
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Figure 5.8: Survey stations for performance calculation. 
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The sensitivity analysis and the validation of the CFD model were previously 

carried out in [126]. Hereafter the main outcomes of the reconstructed CFD model 

employed in the optimization loop are reported. Figure 5.9 shows the isentropic 

efficiency and the total pressure ratio against the normalized mass flow. It is 

common practice to normalize the mass flow rate with the choking mass flow. At 

station 2 the spanwise distribution of the exit flow angle is reported in Figure 5.10, 

while in Figure 5.11 the blade-to-blade Mach contour at 90% of span is depicted. 

 

 

Figure 5.9: Main performance of the NASA Rotor 67. 
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Figure 5.10: Exit flow angle of the NASAS Rotor 67 at peak efficiency.  

 

Figure 5.11: Mach number contour at 90% span of NASA Rotor 67. 

5.5 Parameterization 

Shape deformation was accomplished by superimposing a displacement field 

to the baseline geometry points. The reader is referred to § 4.4 for a detailed 

explanation of the method. Briefly, the displacement field is described by a B-

spline surface that provides the displacements in the three directions, i.e., dx, dy, 

dz, for each point of the baseline geometry. 
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A B-spline surface is the extension of the B-spline concept to 3D space. The 

reader is referred to the work of Mortenson [106] for a detailed explanation of B-

spline surfaces and their numeric implementation. The surface equation is defined 

as the tensor product: 

, which is parametric in the natural parameters u and w; the curve ( , )u wp  is 

defined by the polyhedron control points ,i jP  and the basis functions polynomials 

, ( )i KB u and , ( )j LN w  , which depends on the specific i-th or j-th control point, but 

their degrees K and L are independent on the number of control points. The basis 

function are defined in the same way as for the two dimensional case (see § 4.4.1). 
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In this work, blade parameterization is the result of superimposing two main 

deformations: 2D profile deformation and 3D stacking line deformation, each of 

which is treated independently with B-spline curves; afterwards, they are joined 

together forming the final B-spline surface displacement field. 

For this purpose, six spanwise sections located at 0%, 30%, 61%, 92%, 97%, 

100% of span were selected as control sections. Each section is obtained by 

intersecting the baseline blade with the streamline surface at the given span, being 

such surface generated as revolution of the geometric streamline curve.  

/�/��  "+��������6�����������	
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2D translations of control sections affect the entire 3D shape of the staking 

line (Figure 5.12). A pure sweep would produce modification only on the 

meridional plane, whereas a pure lean would reshape the stacking line only on the 

tangential plane. Generally, modified blades involve a mix of the two. 

Two B-spline curves were built interpolating the displacement values at the 

six control sections. These two curves are sufficient to describe the displacement 

field spanwise. In fact, at a given span, they act on the control section foil, which 

is forced to lie in the conformal plane while translation imposed by the 

displacement filed is applied.  

, , ,
0 0

( , ) ( ) ( )
m n

i j i K j L
i j

u w P B u N w
= =

= � �p   Eq. 5.4
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Such a displacement field involves 12 control points, 6 for lean and 6 for 

sweep. However, in order to achieve an effective staking line deformation, it was 

decided to use the control points to define shapes, each of which imposes 

relationships between control points that became no more independent one 

another. As shown in Figure 5.13, lean and sweep shapes are still independent, 

and they can affect the blade in a local (near tip) or global manner. In the whole, 9 

shapes were defined and adopted as design variable in the optimization process. 

 

Figure 5.12: Lean and sweep definition. 

 

Figure 5.13: Blade parameterization: global and local deformations of sweep and lean.  
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Each of the control sections foil was parameterized with a displacement field 

approach having several control points. Similarly, 2D foils were deformed using 

the shape approach, which allows reducing the number of design variables while 

keeping promising deformations within the search space. Of course, this was 

intended to be a trade-off between computational resources and width of the 

search space.  

The shapes were defined with the aim to decouple the maximum thickness 

from the camber line shape as best as possible. In order to keep to a minimum the 

number of design variables, only two shapes were adopted. Figure 5.14 shows 

how the hub section could be reshaped applying high and low values of its two 

shape control points. Such high displacements are just to highlight the capability 

of the parameterization approach, and are not representative of deformations 

adopted in the optimization process. Moreover, the chord value was kept 

unchanged.  

In the whole, 2 shapes x 6 control sections add to 12 design variables, plus 

the 9 of the stacking line parameterization leads to 21 design variables in total.  

 

Figure 5.14: 2D foils deformations. 
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A brief description on how the B-spline surface comprising the two 

deformation categories, i.e. staking line and 2D foil, is presented. The modified 

geometry is the result of the baseline geometry perturbed by the displacement 

field: 

where the u  and w  are the natural parameters of the B-spline surface, the former 

goes around the foil, being 0 at trailing edge, 0.5 at leading edge and 1 at trailing 

edge; while the latter spans from hub to shroud, being 0 at hub and 1 at shroud. In 

particular, ( , )base u wp  represents the high fidelity approximation (i.e., the number 

of control points are of the same order of magnitude of the points) of the baseline 

blade, which is defined by 14 spanwise sections. 

On the other hand, ( , )displ u wp  is defined as: 

in which both the lean and sweep displacement fields are function of the only 

spanwise location, whereas the foil displacement obviously depends on the foil we 

are looking at. 

5.6  Formulation Of The Optimization Problem 

The aim of the multi-objective optimization problem was to minimize the 

two-objective function at a specific design mass flow rate: 

where P is the vector of the optimization parameters or decision variables of the 

design (i.e., the control parameter of shapes describing the displacement field), 

polh  is the polytropic efficiency calculated at the outlet station in Eq 5.2 and cp  

the total pressure ratio. The optimization was run at the 98% of the choking mass 

flow. A generic new design was first simulated at choking condition imposing a 

very low static pressure outlet and then, starting from this solution domain, an 

outlet mass flow BC was adopted to reach the 98% of its choking mass flow.  

mod( , ) ( , ) ( , )base displu w u w u w= +p p p  Eq. 5.5

( , ) ( ) ( ) ( , )displ lean sweep foilu w w w u w= + +p p p p  Eq. 5.6

1 2( ) ( , ) ( , )F P pol cf f h p= = - -   Eq. 5.7
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The constraints complete the problem formulation. A penalty function 

approach was adopted to handle the violation on the choking mass flow, for which 

a variation of 0.5% with respect to the baseline was acceptable. The penalty term 

Q depends linearly on the level of violation of the constraints:  

No geometric constraints were imposed, since the range of the decision 

variables was set in such a way that unfeasible geometries were avoided. It is 

worth noting, however, that the range was intentionally set very wide with the aim 

at reaching the most disparate configurations. 

5.7 Discussion Of Results 

The optimization was carried out by means of ASEMOO (see §2.2.2). In the 

whole, 210 CFD direct evaluations were performed. The wall-clock time for each 

CFD computation was of 36 hours on an 8 core INTEL E5-2650 2.0GHz. 

The total pressure ratio (TPR) and the polytropic efficiency (E) were the two 

objectives to be maximized at the operating point � ���
����

� � �� � . In the Pareto-

optimal front, the optimal designs were much clustered in a narrow region 

characterized by high TPR and moderate E. Benini [46] also recorded this 

clustered behavior due to the constraint imposed on the choked mass flow; in 

other words, it seems that for this optimization problem the Pareto front is 

inherently narrow. Moreover, Oyama et al. [109] stated that taking into account 

the efficiency as objective inherently pushes the search towards high total 

pressure ratios designs. Thereby, considering the total pressure ratio as second 

objective could be in some extent repetitive, but not wrong from a theoretical 

point of view, and could introduce a further difficulty for the optimizer to spread 

designs over the just narrow Pareto-optimal front. In addition, we believe that the 

causes behind the clustering are to be also searched in the extensively width of the 

search space against a low number of CFD direct evaluations. In fact, the 

parameterization was deliberately tailored in such a way to guarantee a huge 

search capability, aware of the complexity introduced for the optimization 

algorithm. From this point of view, it is not surprising that the Pareto-optimal 
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front encloses designs that have similar shapes and thus similar performance. Still, 

the improvements in TPR are remarkable and it is very likely that a further 

exploration could arrive at substantial results. If we include designs that slightly 

violate the constraint on the chocking mass flow, the Pareto-optimal front is 

enlarged by higher E designs.  

The results presented hereafter involve two optimal designs. The first one is 

TPR optimized (TPR-O), which belongs to the original Pareto-optimal front; it 

increases TPR by 3%. The second design is E optimized (E-O) with a choking 

mass flow 1% higher than the baseline rotor. Its E is 0.9% higher than Rotor 67 

(see Table 5.4). In Figure 5.15, the speed lines of the baseline and the optimized 

geometries are reported. Both blades keep their performance enhancement over 

the entire operating range. However, the stall margin of both designs had a severe 

drop compared to the baseline one. In Figure 5.15 the points further to the left of 

each speed line are representative of those CFD computation beyond which 

convergence was not achieved due to numerical instabilities. Such instabilities of 

the flow domain may be associated with the near-stall condition.  

The 3D blade and the blade-to-blade sections at hub, midspan, and tip of the 

baseline, TPR-O and E-O configurations are shown in Figure 5.17. The TPR-O 

blade had a strong modification in both camber and maximum thickness along the 

entire span, while the stacking line did not differ so much from the baseline. In 

particular, the blade was characterized by higher cambered profiles toward rear in 

the span region from hub to midspan; the opposite behavior was recorded in the 

outer span region. This reshaping was responsible for the increased loading at hub 

and midspan locations and a reduction in the other region, as can be observed in 

Figure 5.16. 

As for the E-O design, the reshaping involved mainly the stacking line and 

only lightly the airfoils. The lean conferred an s-shape profile to the blade leading 

edge. Starting from the hub, the lean was first forward until midspan and then 

backwards; in the proximity of the tip, a strong lean was observed in the direction 

of rotation, creating a sort of “horn”. As for the sweep, the blade had a forward 

sweep from hub to midspan and then went backward. As it is well known, the 

sweep is the major responsible for the increase in choking mass flow and this was 

the main reason why the E-O design had 1% increase in choking mass flow 

compared to the baseline. Finally, at the hub section a higher camber and slightly 

lower thickness compared to the original design was observed.  
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Designs T.P.R. Polytropic Eff. 
	

�
���� ���� ��

� �� �   

Baseline 1.615 0.9181 1 

TPR-O 1.664 0.9244 1.0032 

E-O 1.645 0.9266 1.0104 

Table 5.4: Performance at optimization condition. 

 

Figure 5.15: Performance maps of the baseline and optimized configurations. 

 

Figure 5.16: Spanwise distribution of polytropic efficiency and total pressure ratio of the 
baseline and optimized configurations. 
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Figure 5.17: Blade geometries of the baseline and optimized configurations. 

In order to gain insight on the improvements of the two optimal designs, 

Mach contours on blade-to-blade sections and on the blade surface are reported in 
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Figure 5.18 and Figure 5.19, respectively. For all three configurations, the passage 

shock wave approached the case with normal angle, as expected. 

Compared to the baseline, the TPR-O design had a stronger passage shock 

wave near the tip, shock that was characterized by a “quasi-normal” inclination 

with respect to the incoming flow. The interaction between the severe shock and 

the suction side boundary layer gave rise to a remarkable boundary layer 

detachment resulting in impressive wave losses. Furthermore, TPR-O did not 

accomplish further diffusion of the subsonic flow after the “quasi normal” shock. 

Both the compression mechanisms as the second passage shock, which was 

visible in the baseline configuration, and the subsonic flow turning due to airfoil 

camber, were not implemented. Therefore, the flow was reaccelerated in the 

passage (look at the Mach contour on the pressure side Figure 5.19) and the 

compression effect of the first passage shock vanished. As a result, detrimental 

performance was monitored in terms of both the spanwise distributions of total 

pressure ratio and polytropic efficient. Moving toward hub, the deficit of 

polytropic efficiency between 80% and 45% span was mainly due to the passage 

shock that remained very strong compared to the baseline till 50% span. From 65% 

span to hub, TPR-O design performed a higher total pressure ratio mainly thanks 

to the highly curved rear camber that imposed a higher turning on the subsonic 

flow. Furthermore, the hub corner stall featured by the baseline was here partially 

absorbed by the change in the airfoil shape, both maximum thickness and camber, 

but still a conspicuous wake was release. 

As far as the E-O design is concerned, the passage oblique shock near tip was 

similar to the baseline, except for the slightly lower obliqueness featured by E-O 

that induced higher shock losses. Nevertheless, a weaker second passage shock 

(look at the Mach contours on pressure side in Figure 5.19) mitigated the effect of 

first shock in such a way that the efficiency of the outer span was slightly higher 

compared to the baseline. In this case, the shock/boundary layer interaction was 

not as severe as the one of TPR-O and was comparable with the one of the 

baseline. The sweep introduced by E-O design affected the location of the first 

passage shock, which resembled the sweep deformation on the blade suction side 

and, consequently, increased its obliquity with respect to the incoming flow, thus 

reducing the shock losses. As confirmed by the Mach contours on the suction side 

and the spanwise distribution of the polytropic efficiency, the passage shock was 

forked around 80% span in to branches of lower intensity that advantaged the 

efficiency, while contextually supporting a significant compression effect. As 
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reported in many studies, the substitution of a strong shock wave with a pair of 

double weaker shocks is an optimum compromise between efficiency and 

compression effect. Finally, at the inner region near the hub, the airfoil reshaping 

makes the difference: for E-O design the corner stall was almost entirely absorbed 

and, compared to the TPR-O design, the rear camber was more soft, thus reducing 

the losses in the wake (see span 10% in Figure 5.18) and achieving a higher 

efficiency. 

As far as the stall margin is concerned, the high freedom permitted to the 

parameterization may lead the optimization process to find very impressive 

configurations at design conditions, but less appealing in off-designs operations. 

Unfortunately, the computational efforts needed to reach the near-stall condition 

(keep it simple with steady state simulation) was not affordable in this work. 

However, as suggested by Okui et al. [113], a multipoint optimization for sure 

gives something extra and should be adopted when a deep redesign of the blade is 

accomplished. 

It must be very clear that the results presented corroborate the fact that the 

optimization process needs more CFD computations to reach high-level results. 

Nevertheless, the optimal designs that were found so far gave a snapshot over 

some of the compelling mechanisms involved in transonic compressors.  
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Figure 5.18: Mach number contours at 90, 50 and 10% span of baseline and optimized 
geometries. 
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Figure 5.19: Mach number contours on the surface of the baseline and optimized blades. 

5.8 Conclusions 

The multi-objective shape optimization of the NASA Rotor 67 transonic 

compressor was carried out by means of a Kriging-based optimizer, ASEMOO, 

coupled with a CFD solver. The polytropic efficiency and the total pressure ratio 

were maximized at a specific mass flow rate condition, while the choking mass 

flow was constrained. A complete and deep reshaping of the rotor geometry was 

accomplished by means of a generalized parameterization framework that 

involved sweep and lean deformations, in addition to the modification of six 

spanwise sections. In order to reduce the complexity of the problem, but still 

allowing a huge exploration capability, 21 shapes were cleverly defined and were 

accounted as optimization variables. 
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Due to the limited number of direct CFD evaluations joined with a wide 

range for the decision variables, the Pareto-optimal front was clustered in a 

narrow region characterized by high values of total pressure ratios and little 

efficiency improvement. Two Pareto-optimal designs were analyzed, being 

representative for the maximization of each objective. The first optimal design 

increased the overall polytropic efficiency by 0.9% with a contextual increment of 

total pressure ratio of 1.8 by giving the blade a proper back sweep and by slightly 

changing the airfoil camber at the hub. The second optimal design featured a 

strong recambering of the entire blade, giving more deflection at the inner regions 

and unloading the outer span. Both the optimal design had a severe reduction of 

the stall margin compared to the baseline.  

The results corroborate the fact that the optimization process needs more 

CFD computations to reach high-level results. Unfortunately, computational 

power was in small amount for this work. Nevertheless, the optimal designs found 

so far give a snapshot over some of the compelling mechanism involved in 

transonic compressors, demonstrating the effectiveness of the entire optimization 

strategy. 

 

 





 
 

 
 

Conclusions And Future 

Work 

In this Thesis, the shape optimizations of a supersonic compressor cascade 

and the transonic compressor NASA Rotor 67 were conducted by means of an 

automatic CFD-based optimization loop.  

In order to carry out high speed turbomachinery optimizations, a novel 

Kriging-assisted genetic algorithm for multi-objective optimization problems, 

namely the GeDEA-II-K, was specifically developed, with the aim at speeding up 

the optimization process by taking advantage of the surrogate model. The 

cooperation between the GeDEA-II genetic algorithm and the ASEMOO Kriging-

based algorithm is realized by means of the Kriging filter featured in the GeDEA-

II-K algorithm. The comparison over two- and three-objective test functions 

revealed the effectiveness of the GeDEA-II-K, which is able to unite GeDEA-II 

and ASEMOO in such a way to avoid destructive interactions between the two 

and to synergistically intensify the strengths of both. The comparison made use of 

very few direct evaluations, which resembles the real-life application where high 

costly models as CFD are used. 

When optimization is employed in research, the optimal designs are the 

primary outcomes of the optimization process, for sure. However, besides the 

designs themselves, it is certainly more important what such optimal 

configurations can tell us about the physics behind their improvements. An 

impressive example came from the multi-objective optimization of a supersonic 

compressor cascade. In this investigation, the pressure ratio and the cascade loss 

coefficient were taken as objectives. A substantial improvement of both objectives 

was achieved: among the Pareto designs, the loss coefficient was reduced by 25% 

and the static pressure ratio was raised by 6.5%. It was demonstrated that the 

forepart geometry all alone was responsible for the 95% of the overall loss 

reduction, thanks to the remarkable decrease of the pre-shock Mach number by 

means of an extended pre-compression mechanism, which involves the entire 

suction surface until the passage shock. Moreover, it was discovered that the 

unique incidence operating condition, at which the optimization was run thanks to 
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the unique incidence control loop (UICL), introduces a strong tradeoff between 

the two objectives. An explanation of the flow mechanism accountable for such 

behavior was given. 

On the other hand, the multi-objective shape optimization of the transonic 

compressor NASA Rotor 67 was carried out by means of a Kriging-based 

optimizer, ASEMOO, coupled with a CFD solver. The polytropic efficiency and 

the total pressure ratio were maximized at a specific mass flow rate condition, 

while the choking mass flow was constrained. A complete and deep reshaping of 

the rotor geometry was accomplished by means of a generalized parameterization 

framework that involved sweep and lean deformations, in addition to the 

modification of six spanwise sections. Although the outcomes were not as incisive 

as those of the previous optimization due to the limited number of direct CFD 

evaluations joined with a wide range of decision variables, the optimal designs 

found gave a snapshot over some of the compelling mechanisms involved in 

transonic compressors, demonstrating the effectiveness of the entire optimization 

strategy. The analysis of the Pareto optimal designs corroborates the fact that the 

optimization process needs more CFD computations to reach high-level results. 

Unfortunately, computational power was not available in much amount. 

As far as future work is concerned, various aspects of the optimization loop 

may be investigated further. In particular, the optimization engine can be 

improved by introducing a tuning parameter that allows the optimization engine to 

switch between GeDEA-II-K and ASEMOO. In fact, when the Kriging gets 

insight on the function landscape (i.e., this happens after a certain number of 

direct evaluations depending on the problem complexity), its capabilities are 

simply superior. Another strong limitation that was encountered during this Ph.D. 

regards the employment of CFD commercial packages inside the optimization 

loop. The limitation lays mainly on the required licenses and the software 

customizability. Comparable open-source software is available but needs a steep 

learning curve with no guaranteed results. However, efforts in this direction 

would be useful. 

As for the cascades, it would be very appealing to perform a multi-point 

optimization, not just at the unique incidence. This requires a new control loop on 

the CFD boundary conditions in order to force the cascade to work at a specific 

operating point. Finding new families of airfoils with specific behaviors at given 

design Mach numbers could be the first step for a completely redesign of a 3D 

transonic compressor rotor based on these new families. Moreover, such 
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investigation could give further understanding on supersonic flow throughout 

compressor cascades, simplifying this subject once for all to its lowest terms.  
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Appendix A   

A.1 Optimization Framework 

The automatic optimization framework is in charge to conduce the 

optimization process in an automatic and reliable way, preventing any kind of 

disturbance, internal (i.e., errors from programs inside the loop) and external (i.e., 

issues coming from the external environment, as shutdowns and so on), by means 

of error expectation handling. The entire framework was developed in 

MATLAB®, Bash scripting and C code. 

In the scope of this research, the general conceptual strategy con be 

summarized in the flowchart reported in Figure A.1. 

 

Figure A.1: Optimization conceptual strategy. 
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It comprise a starting procedure as the D.O.E., an optimization engine (i.e., 

the optimization algorithm, for instance the GeDEA-II-K), and the evaluation of 

the design fitness in a parallel environment. 

The realization of such conceptual strategy in a Linux cluster is reported in 

the flow chart of Figure A.2. Each of the three levels is independent from each 

other, that is the crush of a level does not have any implication on the operation of 

the others. In particular, the features of the levels are as follow: 

1. Level 0: refers to the optimization algorithm, which outputs new 

designs to be evaluated (“Population”) and waits for their response 

(“Fitness”). 

2. Level 1: the “Exchange pool” is the link between the optimizer and 

the hard computing environment. It represents the locus where 

requests of the optimization algorithm are converted to design 

evaluation procedures, in order to calculate design fitness and, in turn, 

satisfy the algorithm’s request.  

3. Level 2: calculations are performed in parallel on a cluster machine, 

or in several clusters; there is no limitation from this point of view and 

we can take advantage of all the available computational power. 

 

Figure A.2: Optimization framework layout. 

In Figure A.3 is shown how design fitness evaluation is accomplished. The 

black-box named “watchdog” is a looping process that is linked (yellow arrow) to 
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a particular “critical process” that needs to be looked after; the watchdog endures 

until the critical process terminates. The aim of a watchdog is to control the 

evolution of the critical process and handle any kind of error by performing an 

appropriate action. Once each critical process has its own tailored watchdog, the 

optimization process can be started. Such approach is inherently general and can 

be adapted to any kind of program, commercial or free, involved in the 

optimization loop. 

 

Figure A.3: Flowchart Detail of a single design. 
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