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Sommario

“Sviluppo di procedure numeriche per l'ottimizzazéodi turbomacchine”
raccoglie la ricerca svolta dall’autore nel periaidottorato che va dal 2010 al
2013. Il lavoro & nato con una duplice finalita: daa parte sviluppare un
algoritmo per I'ottimizzazione multi obiettivo; dalltra, accoppiare il motore di
ottimizzazione con strumenti di analisi basati aullfluidodinamica
computazionale (CFD) per studiare casi di interesdbBambito del “high speed
turbomachinery”.

Gli algoritmi evolutivi hanno dimostrato alta aféibilita e robustezza nel
raggiungimento del “Fronte di Pareto” (i.e., & tdugione di un problema multi
obiettivo), richiedendo perd un numero di valutazidelle funzioni obiettivo
molto elevato, talvolta impraticabile dal puntovilita industriale. Infatti, quando
la CFD é impiegata per valutare le funzioni obuettdel sistema in esame, |l
costo computazionale puo diventare il vero colldalitiglia dell’intero processo.
Una possibile soluzione viene fornita dai modeliirsgati, 0 metamodelli, cioe
tecniche matematiche il cui scopo é quello di aggirnare le funzioni obiettivo
permettendo, di fatto, di diminuire le chiamateette alla CFD e di conseguenza
anche il tempo totale del processo di ottimizzagiolh vero dilemma & come
affiancare gli algoritmi evoluti a uno o a pit mddeurrogati, al fine di
migliorare le prestazioni del motore di ottimizzaze. A oggi il problema non ha
una soluzione univoca.

La tesi e costituita da cinque capitoli. Il primapi&olo vuol essere di
introduzione sia ai modelli surrogati visti nellioa dell’ottimizzazione, sia alle
strategie di ottimizzazione che sono state ap@ig&tr migliorare i compressori
transonici e le schiere supersoniche di compressbé rappresentano i casi di
interesse studiati in questa Tesi. |l secondo chpié dedicato al motore di
ottimizzazione sviluppato dall'autore, denominateDEA-II-K. || GeDEA-II-K
nasce dall'unione del preesistente algoritmo geagBeDEA-II e di un modello
surrogato basato sul Kriging. Le prestazioni delvaualgoritmo sono state testate
su problemi matematici a due e a tre obiettivi beti in letteratura. Nel terzo
capitolo e stato approfondito in grande dettaghidisica alla base delle schiere
supersoniche, cercando di comprendere il legamiemuto tra la geometria della
schiera e il campo di moto che si viene a creaed gNarto e nel quinto capitolo



Vi

stato testato il loop automatico di ottimizzaziose@luppato dall’autore che
comprende il motore di ottimizzazione, il tool darpmetrizzazione della
geometria, i modelli CFD, e tutti quegli elememdispensabili per garantire
robustezza ad una procedura automatica. Nello fsgece stata condotta

I'ottimizzazione di una schiera supersonica e dehgressore transonico NASA
Rotor 67.



Abstract

This Doctoral Thesis deals with high speed turbdnmery optimization and
all those tools employed in the optimization precesainly the optimization
algorithm, the parameterization framework and the&tomatic CFD-based
optimization loop. Optimization itself is not just mean to improve the
performance of a generic system, but can be a powestigator that helps
gaining insight on the physic phenomena behindtiserved improvements.

As for the optimization engine, a novel surrogaststed (SA) genetic
algorithm for multi-objective optimization problemsamely GeDEA-II-K, was
developed. GeDEA-II-K is grounded on the cooperatizetween a genetic
algorithm, namely GeDEA-Il, and the Kriging methéaly, with the aim at
speeding up the optimization process by taking atdge of the surrogate model.
The comparison over two- and three-objective tasictions revealed the
effectiveness of GeDEA-II-K approach.

In order to carry out high speed turbomachinerynoigitions, an automatic
CFD-based optimization loop built around GeDEA-IIs#as constructed. The
loop was realized for a UNIX/Linux cluster enviroant in order to exploit the
computational resources of parallel computing. Aghdhe tools, a dedicated
parameterization framework for 2D airfoils and 3Ixades has been designed
based on the displacement filed approach.

The effectiveness of both the CFD-based automatiop | and the
parameterization was verified on two real-life muolbjective optimization
problems: the 2D shape optimization of a supersoompressor cascade and the
3D shape optimization of the NASA Rotor 67. To eéetinderstand the outcomes
of the optimization process, a wide section has luselicated to supersonic flows
and their behavior when forced to work througharhpressor cascades.

The results obtained surely have demonstrated ffectigeness of the
optimization approach, and even more have givep degght on the physic of
supersonic flows in the high speed turbomachinpplieations that were studied.
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Chapter 1

Introduction

1.1 Why Metamodels?

Multi-Objective Evolutionary Algorithms (MOEAs) seeto be the most
powerful tools apt to handle challenging real-woddgineering optimization
problems in which conflicting objective must be taxiually optimized (e.qg.
Multi-Objective Optimization Problem (MOOP)). Owingo the inherent
stochastic nature of MOEAs, a large number of idial evaluations are
required to converge properly toward thee Pareto front Durilleet al.[1]. When
computational expensive models are used for evafyatdividual’'s performance
(i.e. high-fidelity models as Computational Fluidyiamics CFD and Finite
Element Method FEM), the computational effort beesrone of the key issues of
the entire optimization process. Although a wayinat computational resources
is limiting the problem complexity by reducing thember of design variables,
such strategy sounds more as a fold back on r#tharan optimum solution. To
try to enhance the search efficiency of MOEAs, e fast decade surrogate
models, called also metamodels, or approximatiodetsy or response surfaces,
have been successfully employed.

Looking at the big picture, irrespective of the elgtion given to
metamodels, surrogates offer an efficient way withich information coming out
from the expensive model can be collected, maniedland exploited to improve
the search efficiency. The ability of doing so, le»er, is not just an inherent
peculiarity of metamodel itself, but greatly depgenoh how metamodels are
integrated within the optimization framework. Metaghels infer knowledge from
the true information however, metamodels themselves do not create new

information.
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1.2 Metamodels in Practice

The final aim of metamodel techniques is to corsteureliable predictor of
the deterministic function we would like to emuldbearing in mind that willing
accurate prediction all over the function landscamild involve much more
resources than willing it only in the region of thgtimum.

Despite the huge amount of different metamodelsretf on the market, it is
possible to make a few classifications. First, ¢hare global and local
metamodels techniques (Sacks al. [2]) depending on the validity of the
approximation on the design space: local surrogatesalid in a neighborhood of
a point, whereas global methods provide informatimmoughout all the design
space, or a large portion of it. There is alsoialtbategory so-callechidrange
approximation technique, which provide local appmmation exploiting global
qualities (Toporov 3]). Pay attention to the terminolodgcal andglobal because
it is also used to describe how fitted data infeepredictor's approximation; this
ambiguity will be clarified in §1.2.2.

Moreover, we distinguish other two main categorigsirametric and
nonparametrictechniques. A parametric technique is the one hiobeys the
rules of the conventional statistical regressioalysis Hill and Lewicki fi], and
is often used within the realm of physical expenitseas it typically smoothes out
the random errors which inevitably affect the tedtsbasically consists in
predefining a form of a response surface, usudilyhe low-order polynomial
type because of their intrinsic “physical” meanitige unknown coefficients of
which are determined using a generalized leastrequeggression criterion to fit
the response surface predicted values to the cibelata.

On the other hand, in a nonparametric approachesgonse function is not
assumed to belong to a specified parametric claisotions: on the contrary, it
is only supposed to obey to a few and rather gésaraothness conditions. The
very attractive feature of this approach is thaada be fitted is not forced into a
prescribed mathematical structure in order foriuhknown model parameters to
be determined, but it is left free to build thetistaecal model on its own without
being trapped into a predefined, constrained foatmmh. In other words, the
response function is identified only on the badigshe assigned data, and its
determination becomes actually the final goal @ mhodel identification. In this
sense it is called “nonparametric”, i.e. not beeaitiss parameterless but because
the goal of the regression is now to estimate #gression functiori directly
rather than the parameters.
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RSM consists in a collection of statistical and meatatical techniques for
parametric model building, aimed at developinglmiée model that exhibits the
highest correlation with observations, while kegpthe number of explanatory
variables to a minimum (Bo)g]). In general, the underlying assumption is that
data coming out from the function to be estimatasl the following form:

y= f(x)+e Eq. 1.1

in which the responsg has got two contributions: the first(x), accounts for
the systematic component of the functional relatiom between the response
and the independent variabl&s the seconde, is the measurement random error
that is assumed to be normally, identically andepehdently distributed, with
zero mean and constant variance. In RSM approftk) is modeled as
polynomial of order and, in the case has dimension , it can written as:

y(x)= ax Eq. 1.2
=0

where the predictoy is linear in the parametees (unknown vector of regression
coefficients), which can be estimated through atleguares solution ofa =y,
where is the Vandermonde matrixand is the vector of
observed responses. The maximum likelihood estifateis thus

a:( T )'1 Ty Eq. 1.3

The extension of RMS to multivariate space is gtrdorward.

Since the polynomial approximation of ordaris similar to a Taylor series
expansion truncated after1 terms (Box §]), it is clear that the higher i the
better is the approximation accuracy. However, ghim order also implies a
more flexible polynomial that can be trapped insyadata with the danger of over
fitting. As a result, a second-order polynomial d& factg the most popular
solutions in applications.
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While polynomial models can be regarded for as iglb models, in which
both the observations near to (in the Euclideatadc® sense) and far from a
location x in the input parameters’ domain equally influenibe predicted
response ovek, nonparametric approaches have a somewhat “lateiacter
Giunta et al. [6]. Specifically, the closer the available obsemasi to X, the
higher their weight in the determination of the dicted response/(x) . This
seems particularly attractive when the unknown aasp function is highly
multimodal.

Moving Least-Squares technique (MLS), often reférreo as Local
Polynomial Regression (LRP) (Toporat al. [7] and Cleveland §]), was
developed to overcome well-known drawbacks of tradal multivariate
polynomials, such as excessive smoothing that middess not flexible enough to
achieve an adequate fit, as well as their attitwdexalt individual observations
influence on remote parts of the fitted hypersiwefac

The MLS derives from and improves the Weighted t-&apiares (WLS)
approach. In WLS, observations may not be equallyortant in estimating the
polynomial coefficients. To this end, each obseowatis given a weighting
w® 3 0. With w" =0 the observation is neglected in the fitting. Thefticients
of WLS model are

a=( "W )'1 Wy Eq. 1.4

, Where the weighting matriw is

w® 0
W = . Eq.15
0 wP

The enhancement of MLS lies on the “local’ natuféhe weighting matrix
W , since now it depends on the location of the ptonbe predicted and each
observed data point. The weighting is controlled ebykernel function which
decays with increasing distanpé” - x‘. An example of kernel function may be
the Gaussian function:
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k (x?)- X‘)z

i) — j=1
w® =exp - JT Eq. 1.6

Besides the kernel function, there are two morerpaters which greatly
affect the performance of the estimator. First Ibf the orderm of the local
polynomials drives th&ias-variance trade-offin order to decrease the bias one
can increase the value wf though this might in turn increase the variapiince
more local parameters are used and vice versa.

The most critical parameter for the estimation ttesithe bandwidth, ,
since it controls the size of the local neighbowdhof the response function. The
choice of is a trade-off between variance and bias. By dngos large
bandwidth the local estimate is influenced by malngervations and thus the
variance is small. On the other hand, the influesfceemote observations might
increase the squared bias. Many different techsiduave been proposed in the
literature for bandwidth selection, for instandee tonditional Mean Square Error
(MSE) minimization in Fan and Gijbel®][and the so-called “plug in method”
based on Cross-Validation (CV) proposed by Rupgteat. [10].

As it is known, a generic radial basis function barexpressed in the form:
(|- £, 17

, Wherex is an n-dimensional input vecton; is called centre, ||.|| denotes the
Euclidean distance, and is a univariate function, that is often referredatothe
“profile function” or “basis function”. Typicallya fitting model is set up as a
linear combination oN radial basis functions havirgjdistinct centers:

y) = wy (|x- m[)= w Eq. 1.8

, Wherew, is the weight associated with th¢h radial basis function centred at
m . While Eq. 1.8 is linear in terms of the basis diilon weightsw, , the
predictor y(x) can express highly non-linear responses. Thisgisvalent to
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build a linear neural network having a number giuits corresponding to the
number of input vectors, primitive nodes whose gfanfunction is given by Eq.
(1.6), and a single output (which corresponds te ttalues to be fitted)
(Broomhead and Lowel L], Hassoun 12)).

A variety of radial basis functions are used inctce [13] and lead to
different techniques:

y(r)=|r| (linear)
y©) = (cubic)
y () =|r’ log(Jr [) (thptete spline) Eq. 1.9
y(r)=yr[ +s? (multiquadratic)
k B
4 | -
y(r)=exp - ”T - [+ s? (Kriging)

, here is a positive constant. The basis function shoamKiriging is only one
possibility, but is a popular choice that appearedn influential article by Sacks
et al.[2].

First, RBFs need the centres to be specified. a¢qat, no general rule exists
for selecting them14], even though some criteria have been develop8d$uch
as the ROLS procedure (Regularized Orthogonal L&agtares), where the
centres are chosen one at a time using a forwdett®s procedure from a
candidate set consisting of all the data pointsa @ubset thereof. However, a
simple solution would be to choo$¢= np, thus leading to a square system of
equations with a unique solution. The closure & fhroblem is achieved by
imposing the centres of the basis directly on tha ghoints. Thus will lead to the
matrix equation:

W=y Eqg. 1.10

,wherew is the unknown parameters vectgrthe observed response vector,
denotes the so-called Gram matrix and it is defaeed
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Y, =y (Hx“) - x‘””), ij= 1..0p Eq. 1.11

The importance of the Gram matrix in the computatid w will soon be
clear. Asw is the solution of Eq. 1.10

W= -1y Eqg. 1.12

, the computational issues of* strictly depends on the mathematical properties
of the Gram matrix , and this is where the choice of basis functiam ftave an
important effect. It can be shown that, under ceréssumptions, Gaussian and
inverse multi-quadratic basis functions always ldada symmetric positive
definite Gram matrix (Vapniklg]), ensuring safe computation of .

Beyond determiningv, some of the radial basis functions have an astsati
width parametes, which is related to the spread of the functicsuad its centre.
A heuristic approach is given ir14], where the width is the average over the
centres of the distance of each centre to its seamghbor. However, this holds
true for Gaussians RBFs, and it is only a rougldguhat provides a starting
value. Some algorithms exist for the width selattib7], including Generalized
Cross-Validation GCV, but basically all of them peed from a tentative value
and test several widths values equally spaced leetwpecified initial upper and
lower bounds; then the width value minimizing log&CV) is selected.

Clarification must be made on the difference inflce of w and basis
function parameters on the predictor performanceo#ect choice of the former
will make sure that the approximation can reprodineetraining data, while the
correct estimation of the latter will enable us nmwnimize the estimated
generalization error of the model.

! " #

When data is corrupted by noise, the interpolascimeme proposed in RBF
(N =np) leads to deterioration of the predictor perfornertwecause the model
structure is not able to distinguish between théeudlying response and the noise,
thus observing overfitting behavior.

Adding more flexibility to the model could be ansgaand practical way to
deal with such problem. The insertion of a regaktion parameter lambda within
the Gram matrix implies that the approximation madé# no longer pass through
the training points anav will be the least-square solution of
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w=( +/1)"y Eq. 1.13

, Where | is an (npxnp identity matrix. The best choice forwould be the
variance of the noise in the responge Unfortunately, the noise variance is
usually not known, thus lambda is added to therpaters to be estimated.

Another way to minimize undesirable overfittingtisconstruct a regression
model reducing the number of bases functibhs np. To this end, Support
Vector Regression (SVR) can give a very elegant efifiective bases function
selection method. An alternative is to use forwagetection (Orr 19951H]) in
which the basis function, which most reduces somar enetric, are chosen and
added one at a time in empty subsets of the desgigoe; the process continues
until there is no significant decrease in the emetric.

$ % #&

Kriging is a particularly famous method of creatingetamodels as it can
effectively represent a wide variety of responséslevproviding useful error
estimate of the predictor. Derivation of Kriginguagions can be carried out in
different ways. The reader interested in the stahdarivation may consult the
article of Sackset al. [2], while a “gentle introduction to Kriging” has hee
proposed by Jonesl§. Hereafter the main equations are reported tryimg
highlight the essential statistical concepts ofrttethod.

In Kriging, the function to fit is seen as a randdumction Y(x) whose
realization, or response, is characterized by emmishean/m and variances *. As
a result, two contributions flow into the realizatiof Y(x) at a given pointx :

Y(x) = mt éX) Eqg. 1.14

. Wwhereeg(x) is the deviation or error of the response duééorandom attribute
of Y(x) and it is related somehow &°. If a new pointx® is sampled near to
x®, the realization ot (x'?) should be close to the previous response, bedause
is likely that the function under exam has some aimeess properties: ag?
approachex®, the responsg® tends toy®. In other words, betweey® and
y® there is a certain degree of correlation that éases as the distance
‘x‘” - x‘z)‘ decreases; such correlation can be modeled &talligassuming that:



1.2 Metamodels in Practice 9

k
R=Corr Y(x"),Y(x") =exp - 10 H)ﬁ) -32””” Eq. 1.15
1=1

, where and represent the hyperparameters of tkhé variable. The
hyperparameter determines the rate at which theeledion decreases, amq
determines the degree of smoothness in each catedidirection. The
hyperparameters are chosen via a maximization @fctincentrated likelihood
function (JonesJ8)):

_ np 2\ 1
LH —-7log(s ) EIog(|R|) Eq. 1.16

, Where the optimal variance and mean are

2 1 T

S :—(y- Im) R (y— |ﬂ> Eq. 1.17
n

and
Tp-1

m=l RY Eg. 1.18
TR

Since the likelihood function gives a measure ofvlomnsistent a model is
with respect to observed outcomes (i.e. traininigpts® choosing the parameters
to maximize LH intuitively means that we want ouodel parameters to be
optimally tuned in such a way that model’s behacam well explain the data we
have seen. This tuning is the main reason Krigiftgnooutperforms other basis-
function methods in terms of prediction accuracy.

Given a known set of hyperparameters, the Krigiregligtion is the result of
the maximization of theaugmented likelihoodunction. The procedure is very
similar to the LH maximization with the differentleat the unknown is the new
response (Jonedd]). The Kriging predictor can be written as:

y(x*):m+rTRT(y- I n)7 Eq. 1.19
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, Where here denotes a vector of correlations between the unkrmint x” and
the previous sample point” .

One of the key features of Kriging is the provisafran estimated error in its
prediction. At training points, the mean-squareareis null, while in all the rest
of the variables space it can be calculated by:

(1- rTR'lr)2

2
=5 1-r"Rr+>+——
| 'R™

Eq. 1.20

1 ( &

A more general formulation of the model can be tbun the Universal
Kriging formulation (Cressie 19]), in which the mean term becomes some
function of x:

mx) = lm m(x) Eq.1.21

i=0

, Where then,’s are some known functions and thes are unknown parameters.
Usually rfx) takes the form of a low-order polynomial regressi®he idea is
that 7{x) captures known trends in the data and bases funscéidded to this will
fine-tune the model, thus giving better accura@ntlordinary Kriging where a
constantmis used. However, if the underlying trend is nobkn a priori, the
introduction of a low order polynomial could evegieriorate model prediction.

) &

Blind Kriging (Joseplet. al[20]) gives an effective answer to the problem of
polynomial selection emerged in universal Krigifidne approach proposed by
Josephet. al[20] aimed to identify the?, 's through a Bayesian forward selection
technique (JosepiR]]) and uses candidate variables of linear effegtsdratic
effects, and two-factor interactions. Although tresults reported by Joseph
demonstrated the effective of such procedure, tmpatation cost of the bling
Kriging process is much more computationally expenand this may outweigh
increased accuracy.

* + &
In the presence of multi fidelity data, the Co-Kmnigjtechnique (Cressid 9])
allows to enhance the accuracy of a surrogate efetkpensive function by
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coupling a greater quantity of cheap data with alsamount of expensive data.
This can be done with a correction process thatetsothe differences between
the cheap and expensive function:

Z(X)=rZ (X)+Z4(x) Eqg. 1.22

. Where the expensive function is approximated by multiplying the cheap code

by a scaling factor plus a Gaussian process that accounts for the
difference between and . Following maximization of likelihood function,
predictor and error estimate of the predictor alewated. The reader is referred
to the work of Forrestest al.[22] for a detailed discussion on the subject.

, & -, #

In the same way as for an RBF prediction, a Krigimgdel may regress the
data by adding a regularization constant to thgatial of the correlation matrix
(Forresteret. al [23]). Although the predictor is calculated similatly ordinary
Kriging, the predictor error estimate must be aalfgfevaluated in order to not
include in such error both the model and the nersers. Accounting only for the
error model reflects the deterministic nature o tomputer experiments and,
consequently, gives to the error estimate a prgpdrutmost importance for the
optimization process, this is, to have zero errosampling sites.

/ :

The theory of Support Vector Machines (SVM) is nhaimspired from
statistical learning theory of Vapnikl§]. Suitable SVM for interpolation and
regression have been developed recently which atkedc Support Vector
Regression (SVR) (Smol24]). The main idea is to find a function with at rhos
e deviation fromy and as the same time minimizes the model complésée
Figure 1.1). Thus, the construction of the modduped to the minimization of
the following regularizede-insensitive loss function:

np

L=l +e—= " max)y0 - yix) o cq 123
NP iz

, Where e is the accepted error, C is a regularization @nsandy is the
function to be estimated:
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n . .
y(x)=m+ WD p(x, x1) Eq. 1.24
j=1

The reader is referred to the work of Forrester ldadne 5| for a detailed
derivation of SVR equations.

|| == prediction
e
i 4

0 + sample data
101 o support vectors

0 0.2 04 0.6 0.8 1
X

Figure 1.1: A SVR prediction using Gaussian ke(freim Forrester and Keangq]).

When trying to map a high-dimensional input varsblspace into an output
space, a series of difficulties usually arise: #madly, multivariate data is
difficult to work with because of the relevant amowf observations that are
necessary to get good estimates. Furthermore, @dadiare features to the
explanatory variables’ space increases their iefg@ddency relationships and can
also cause an augmented noise, which may adveafebt prediction reliability.
This is usually referred to as the “curse of dimemslity” (Bellmann R@]).

More generally, the curse of dimensionality is tbgpression of all
phenomena that arise with high-dimensional datal #at have most often
undesirable consequences on the behavior and perfice of data fitting
algorithms. Specifically, a nonparametric modellding approach may show
dramatically deteriorated prediction performanceless it is fit with a proper
number of independent observation®27][ Nevertheless, approximation
deterioration seems to be inevitable and affectyy aneta-models as
dimensionality of the problem on hand increases.
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1.3 Metamodels At The Service Of Optimization

The use of metamodels in optimization framework Wwately been adopted
in the last few decades. There are no doubtshleahtroduction of approximation
techniques have taken multiple advantages to #id &nd the huge amount of
works out there give testimony of such. Here, thedlquestion is if there is an
optimum way to integrate and exploit such technsquathin the optimization
framework. We would like to summarize the main glé@m which all the other
works branch out, being aware that it could be icmmed an inexcusable
reduction but necessary.

Generally, the creation of surrogates involvesaming dataset over which
the model is build or trained. We referdff-line approach when processes of both
training points sampling and model creation ardqoered before optimization
starts. On the other hanah-line approach denotes the situation where further
training points are somehow selected and then addedataset throughout
optimization.

Severaloff-line data sampling methods have been proposed in e¢lds fof
design of experimen®B]- [29] as the famous Design Of Experiments (DOE), the
Orthogonal arrays, Central Composite Design, ara@pfimality. The final aim of
these methods is to produce an “even-spread clotidampling locations that
pursues different optimal distribution concepts, iclh should encourage
surrogates prediction capability. Aoff-line approach may be useful when the
computational budget allows only few optimizatigrcles, or when the surrogate
accuracy is so high that the optimizer can justumeover the metamodel.

When search space dimensions increase, a morgeffigay of dealing with
the poor approximation of surrogates is itdine sampling strategy. Among the
others, bagging30] and boosting 31] are two statistical learning methods that
have been developed to globally improve the quadityapproximation using
bootstrap techniques. Global quality is desirahiedxpensive, and is not strictly
necessary for global optimization. In fact, we wblike to improve surrogates
only in those regions of interest that lead to dptimum, avoiding a detailed
exploration of all the rest of the search space dartextually, analyzing its main
topology to be sure to evade local minima. Giveixed computational budget,
the solution to such problem is a trade-off betwegplorationandexploitationof
the design space.
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There are promising sequential sampling stratetijiat balance exploration
and exploitation based on surrogate uncertaintgigtion. For instance, Kriging
techniques make use of statistical informationnplement sampling rules, the
so-calledinfill criteria [18]- [32]- [33]. The selection of new samples location
may be driven by the Predicted Error (PE), the Biodlly of Improvement (PI),
and the Expected Improvement (El), or a variatiarttee theme. These concepts
can be extended in a multi-optimization framework.

The main hypothesis underneath the multifidelityrapch is that high-
fidelity models as CFD are more time consuming,unega larger computing
effort, and are more accurate than a low-fidelitpdel, for instance an Euler
inviscid solver or even a one-dimensional algebegjaation. On the other hand,
low-fidelity models are cheaper but less accurdtay to mitigate the drawbacks
related with computational cost of high-fidelity deds with the use of low-
fidelity models is the main concern of multifidgléapproaches.

Many strategies have been developed over the yearsler to link, or better
to correct, somehow the low-fidelity model with thgh-fidelity one. The main
idea is that the link between the two can be amalyand mathematically
described by taken into account a low number ohfgoévaluated for both high-
fidelity and low-fidelity model according to a salite design of experiment. Of
course, this link can be refined in an adaptive vdaying optimization by
evaluating new points on both models.

The ways metamodels could fulfill in such scope evgeneralized in the
work of Toporov B], in which metamodels are considered as tunedfidelity
models based on the interaction of high- and lalelity models response:

y(f(x),a)» F(x) Eq. 1.25

, whereF(x) is the high-fidelity model responsé(x) is the low-fidelity model
response anch is a vector of tuning parameters used for miningzithe
discrepancy between the high-fidelity and the lodelity responses at sampling
points. Three different tuning approaches were @seq:

1. Linear and multiplicative with two tuning parameter
2. Correction function approach
3. Use of low-fidelity model inputs as tuning paramste
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An alternative to Toporov’'s approach is the soemhBpace mappindhat
aims to establish a mapping of one model’'s paransgi@ce on the other model’s
space such that the low-fidelity model with the g parameter accurately
reflects the behavior of the high-fidelity mod&H]. In other words, a distortion,
or tuning, is performed on the input variable of thw-fidelity model rather than
on its response; for instance, distortion couldsparthe matching between the
low- and —high fidelity model optimung§].

! O#

Another idea to enhance the prediction capabilitia osnetamodel is to take
into account various metamodels at the same tim&adt, since we do not noav
priori which metamodel performs better, the use of mleloirrogates can reduce
the risk associated with poorly fitted modeB6|[ This a priori uncertainty is
inherent on how metamodels are built, which depepdsnarily on the
combination of three component37[: the statistical model and its assumption;
the basis functions or kernel functions, dependinghe specific surrogate; the
minimization function or metrics selected to assexiel parameters. The mix of
these three ingredients could in principle leathtimite recipes.

Bearing in mind how easy it is to produce differenfrrogates, being a
variation of the same statistical model or basedddferent techniques, the
number of metamodels to be created is more relatélde computational budget
and software capabilities rather than an “optimumgim number”. The tough
guestion is how to exploit information coming ordgrh such multiple metamodels.
In the literature there have been explored two nadtiernatives both based on
criteria apt to evaluate tlhgpodnes®f every surrogate at hand. Examples of such
criteria are Cross-Validation, the Akaike InfornwatiCriterion and the Bayesian
information criterion B8]. Regardless peculiarities of these criteria, thegke it
possible to rank surrogates. At this point, thstfoption is to promote as the best
predictor the surrogate with the higher rank anyg oa its response, discharging
all the others; this is referred to as the selgdiased approach. The other option
is to create a “master” surrogate through propaghimg selection in the linear
combination of the models, in which the weightsledf the goodnes®f
surrogates. This second approach would like togaté the errors in prediction
that could affect single metamodels.

Selection or combination seems that there is no ultimate answer as
discussed by Yang3f]. He pointed out that selection can be better wthen
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errors in prediction are small, and combinationfgrens better when the errors
are large. Moreover, Vianat al. [40] highlighted that potential gains from using
combination diminish drastically in high dimensibrgpaces and that in such
circumstances criterion like cross-validation logssffectiveness and makes the
gain very difficult in practice.

Another aspect to be stressed is that from thenigdikion point of view it is
not really important the prediction capability ifsebut it is paramount the
capability of reproducing the landscape of theefés function. Samad itself in the
optimization of the NASA Rotor 37 (Samaeéda al. [41]) had declared that the
most accurate surrogate did not always lead tddésé design, demonstrating that
using combination of surrogates can improve theistiess of the optimization at
a minimal computational cost.

$ "#

Comparative studies have led to a no clear cormiysiespite the fact that
nonparametric models seems superior to parametes (among others, Jat al.
[42] and Benini and Ponzalf| ). Surrogates performance depends on both the
nature of the problem and the DOE. Neverthelessethre two interesting works
related with turbomachinery, which indeed is thel@ation field of the present
work, that try to compare EA coupled with surrogateirst, Kean44] addressed
the optimization of a gas-turbine compressor blsglion subject to damage in
service and uncertainty in manufacture. Differeptirnization algorithms were
compared, starting from the direct search with NSGAhen implementing a
Kriging-based surrogate-assisted NSGA-Il, conclgdinwith Kriging EI
formulation, in which statistical information congirout from Kriging model is
used to drive the search towards the Pareto-optiroat. Although the second
approach consumes only 30% of computational budgetpared to NSGA-II, it
was observed that further improvements on the &dreht become difficult to
find as the Kriging models are not as good at uadag novel new behavior as
the direct NSGA-II search, because they are alleaged on points from previous
updates. On the other hand, expected improvemetitochecarries out a more
careful exploration of the design space, althoutiphtty more slowly than
surrogate-assisted NSGA-II run.

Second, Peter and Marceled5] compared different types of surrogate
models (i.e., least square polynomials, radial gakinction, multi-layer
perceptron, simple Kriging) on a turbine cascadgnapation problem, it turns
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out that among all the models that were testedKtiging models and the radial

basis function network appear to give the bestliesk is worth nothing that the

cascade was parameterized with only two desigrablas, thus leading to a very
low dimension design space. In order to formulapeexise ranking of surrogates,
multiple evaluation criteria were considered, itbg ability to approximate the
exact function and to find the global and local mex Starting from a DOE,

performance was measured upon the number of exadt &valuations required

for a certain surrogate in order to reach a preoeted threshold of the

evaluation criteria.

1.4 Application Study: High-Speed Blade Optimizatio n

It is well known that effectiveness of optimizatialgorithms strictly depends
on the problem at hand; even though their perfoomamay be evaluated and
compared over synthetic functions, the harsh gealhpose a real-world
application as test bench to consecrate the progadgorithm tosuperior realm
For this reason, attention is here devoted to aifsp@ptimization problem in the
turbomachinery field, that iblade shape optimizatioand, in particular, high-
speed or transonic blades optimization, which iddeseattractive for both the
physic inside transonic blades and the complexitthe optimization landscape.
Of course, the focus is on metamodels and on themtribution to the
improvement of the optimization process efficiency.

To carry out any sort of shape optimization, them® two essential
ingredients:

geometric parameterization
optimization strategy

A brief review on high-speed blade optimization ksrs hereafter presented
with the aim to highlight these two aspects rathan the physic explanation of
improvement achieved optimizing the blade. Althouglst of the woks are
focused on NASA Rotor 37 and Rotor 67 (see Figulg, attention will be first
devoted to Rotor 37 (see Table 1.1) and othersestiag minor works, while
there is a specific section about the NASA Rotoim6ghapter 80.
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Authors Parameterization Opt. Strategy
Locus Design Method Objectiveg  CFD
variables runs
@ | Benini [46] Lean+Foils 23 GA+CFD 2000
o
(@]
o
(/5) Burguburu and Foils suction 9 Gradient+CFD 41
§ Pape 47 side
o Janget al[4§]. Sweep 2 RSM+CFD 7
c
f: Ahn and Kim 9] | Lean 3 RSM+CFD 15
© Chenet al.[50] Foils 3 RSM+CFD
o | Wangetal.[5]] Sweep+Lean 4 GA+BPNN+CFD 232
c
£
Table 1.1: Major works related with NASA Rotor 3¥ape optimization.
$ % & '

Generally, a blade can be reconstructed interpgjaéi few spanwise 2D
sections located along the 3D stacking line. Assult, blade reshaping may
involve the 3D stacking line (referred to @seepandlean deformation, see 85.2
for a detailed discussion), 2D spanwise profiles, bmth of them. The
parameterization may have different levels of camipy according to (i) how in
depth it can reshape the geometry and (ii) how mdesgign variables are
associated to the parameterization framework. Wguabdntrol points (CP) based
curves as Bézier or B-splines or cubic splines adepted because CP are
straightforward related with the optimization deswpriables, and also for their
ability to produce smoothed and contextually comgleapes.

Let's consider the works on the NASA Rotor 37. Bndget al. [48] the
stacking line was parameterized with two designades allowing only sweep
deformation. Ahn and Kim4{9 considered only lean deformation handled by
three design variables. For the same rotor, pasimation complexity was
increased including both lean and sweep but leawiagrofiles shape unchanged
(Wanget al.(2011) B1]), requiring four design variables in the whole.

On the other hand, Burguburu and Pagé] [adopted a pure 2D profile
deformation; modified suction sides were deriveg@lypg displacements to the
reference blade by translating each point alongothde local normal taking into
account only the suction side of the foils. In Chetn al [5Q0]the profiles
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deformation was focused on design parameters (omggic parameters) with
strong physical meaning, i.e., position and valbienaximum thickness, stagger
angle, leading and trailing edge angles, etc. Theliflmble spanwise sections
were reduced to 3 (i.e., hub mid-span and tip) anl¢ 3 design variables per
section were activated (i.e., stagger angle, maximtamber location and
maximum thickness location), being the rest fix@thie baseline value.

A whole parameterization of Rotor 37 was proposg&énini [46], in which
three profiles along span were selected (i.e., midlspan, and tip profiles), each
of which was represented by camber and thicknessilditions. These were
defined by fourth-order Bezier polynomials. 14 paeters for the camber lines
plus 9 parameters for the thickness, this is, 2@rpaters in total were used.

$ & " #

First, we make a distinction between direct ancisg methods based on the
nature of the input variables of the optimizationlgem. In the direct methods,
inputs are mainly geometric variables that affdet shape of the blade; the
algorithm searches for new geometries for whichectibjes are optimized.
Contrarily, in the inverse method, conventional igiesquantities are the
distribution of pressure, or generally, of anydlgiynamic property on the surface
of the blade; the aim of the process is to findséhdistributions that optimize the
objectives. Of course, the way in which the bladergetry is computed on the
basis of the specification of quantities distribatiis the core of inverse
methodologies, which however are beyond the scopleiobrief survey and will
not be investigated further; exception is made~otor 67.

$ 0

Most of the approaches encountered in the liteeahglong to the direct
method category. Some of these did not implemenamedels. For instance, in
Benini [46] the Rotor 37 multi-objective optimization was fsemed by means of
GeDEA genetic algorithmbp). Isentropic efficiency and total pressure ratiergv
to be maximized at a given mass flow rate. A pdputaof 20 individuals
evolved for a total of 100 generations, against @&ign variables. An
improvement of 1.5% in the adiabatic efficiency vaatieved without modifying
the total pressure ratio (particular point on Raagitimal front). In Burguburu
and Pape47] the Rotor 37 was optimized by means of a gracheethod coupled
with CFD solver. Isentropic efficiency at a giveastyn point was maximized,
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keeping mass flow and total pressure ratio fixedlyQhree iterations with the
gradient method were performed and 41 CFD callsewenuired, against 9
design variables. The increment in isentropic afficy was around 1.2%
compared to the reference blade.

$ %

The simplest strategies are the one based ooftHime approaches (81.3.1).
In Janget al. [48la polynomial response surfaces was built with segeints
evaluated via CFD, against two design variablesntlthe maximum isentropic
efficiency was searched on the metamodel. It wasdahat the optimum shape
was a backward sweep deformation, which increasedsentropic efficiency by
1.25%. In Ahn and Kim49] the isentropic efficiency was maximized adoptang
response surface optimization approach. The 15 Isapgints (against 3 design
variables) prescribed by full factorial design weedected using D-optimal design
strategy. Then, a polynomial response surface vemstucted and a search
algorithm was run over the surrogate to find thebgl optimum. The
optimization of the rotor blade produced an efficig enhancement of 0.7%. In
Chenet al. [50] isentropic efficiency was maximized by means ofradient
algorithm applied to response surface technique iSkntropic efficiency was
increased by 1.73% compared to the baseline R@tor 3

$! 1

More elaborated strategies belong to ithidine approaches. In Wangt al.
[51] a multi-objective optimization framework using 8-l and back
propagation neural network was applied to redegignNASA Rotor 37. In this
framework, a modified crowding distance was propdseenhance the robustness
of NSGA-II and a course-to-fine approaching strategs implemented to refine
the approximation model, keeping to a minimum tkeeasive CFD evaluations.
Efficiency increased about 1.1% and total pressat® increased about 1%,
while the chocking mass flow only decreased 0.04%.

Other works are not strictly related with high-spéerbomachinery, but they
make use of surrogates to speed up the optimizptioress. Karakaset al. [53]
have used a hierarchical evolutionary algorithmebagn multi-fidelity models,
whose accuracy and computational cost increase fharowest to the highest
level. The role of the lower levels is to exploiee tdesign space with the
minimum computational effort and guide the highee® to scrutinize particular
regions by modeling additional flow features, whidmnot be described by the
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lower-level tool. This approach was applied to ataaled diffusion compressor
cascade optimization aiming to minimize the pressosses while preserving the
flow turning. The hierarchical approach comprises tevels, a viscous-inviscid
flow solver and Navier-Stokes equation solver, bafiproximated with radial-
basis function networks. Compared to convention&l &pproach, it was
demonstrated that 8-fold time benefit which is raiobtained from the
approximation of the expensive flow analysis byngsmeta-model approach. In
Okus and Akmandor5f] a novel multilevel genetic algorithm was presente
which takes advantage of the successful solutiodsptad in dynamic
environments, this is, “multiploid” GAs, in whichhé genetic operators are
rewritten in such a way that the multi-fidelity ammation can be treated and
exploited to enhance the search to converge towerdPareto-optimal front. A
3D blade turbine, which was parameterize by 37gtesariables, was optimized
in order to maximize isentropic efficiency and toeq Compared to a simple
MOGA (Multi Objective Genetic Algorithm) approacthis method reduced the
computational cost by a factor of 4, while prodgcim superior Pareto-optimal
frontier with respect to MOGA. In Keskigt al. [55] the multi-objective NSGA-II
genetic algorithm assisted by adaptive Kriging-basesponse surfaces was
applied to the optimization of a 3D compressor élad order to minimize loss
production at a required flow turning, consideripgth design and off-design
performance. Surrogate’s accuracy was automatitrated throughout the entire
optimization process by updating the CFD trainiogfs when strictly needed, in
order for the genetic algorithm to find the Parepdimal front on a reliable model
response. In Giannakogloet al. [56], a multi-layers network, which can be
trained on both known responses and response gtadaperates as approximate
evaluation tool during the evolutionary search.sThovel implementation was
used to design 3D blade of both turbine and comspresthe former being
parameterized with 33 Bézier control points whike tlatter with 20 points.
Furthermore, the 3D Euler and adjoint equationsewswlved to provide the
objective function gradient, which indeed speedshg optimization algorithm.
Compared to traditional EA, the novel approachtirally reduced the number of
exact evaluations by a factor of 5. In fact, on@02valuations were needed to
reach the target pressure distribution, which Wwasoptimization goal. Contrarily,
a traditional EA after 1000 evaluations was notatd of reproduce comparable
results.
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1.5 Thesis Objectives

This thesis deals with turbomachinery optimizatiand all those tools
employed in the optimization process, mainly theirgzation algorithm, the
parameterization framework, and the automatic CBBeld optimization loop.
The first and most speculative objective is theagiement of the optimization
algorithm by means of surrogate models. The stathesart genetic algorithm
GeDEA-II, which was developed at Universita di Paloneeds to be equipped
with “metamodels’ technologies” to improve its cengency efficiency and
repeatability, while preserving its robustness.

The second objective is related with the design dadelopment of the
automatic CFD-based optimization loop built arouhd improved GeDEA-II
algorithm. This comprises a robust strategy to featl the optimization tools in
a Linux cluster environment in order to exploit tbemputational resources of
parallel computing. Among the tools, the most in@or one is the
parameterization tool able to reshape both 2D sgpér foils and 3D transonic
compressor blades. Once the analysis tools arey,réael optimization of high-
speed turbomachinery may start. The third anddbggctive of this thesis is two-
fold: prove the effectiveness of the optimizatigpeach and gain insight on the
physics phenomena of transonic and supersonic flaivsthe aim to explain the
reason of the observed improvements.

1.6 Thesis Outline

The document is organized in five chapters. In @Gdra@ the surrogate-
assisted multi-objective genetic algorithm GeDEAIIs presented. Based on the
cooperation between the GeDEA-II genetic algoritima the Kriging technique,
GeDEA-II-K is tested over two- and three-objectiggnthetic test functions
proving to be a promising tool in a multi-objectioptimization context.

The effectiveness of a CFD-based automatic loogldeed during this PhD
course is verified on two real-life multi-objectioptimization problems: the 2D
shape optimization of a supersonic compressor das@nd the 3D shape
optimization of the NASA Rotor 67. Due to the intier misleading behavior of
supersonic cascades compared with subsonic oneptetB is entirely devoted
to the physic of supersonic compressor cascadesréduer must be aware of the
physics constraintsf a supersonic flow throughout compressor cascaderder
to gain a better understanding of the results cgrout from the cascade shape
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optimization. In chapter 4, the study and the om#ation of a supersonic
compressor cascade is presented. In particulanal@ation of the CFD model,
the parameterization technique and theique incidencecontrol loop are
illustrated, in addition to the optimization resultin the last chapter, the
optimization of the NASAS Rotor 67 transonic congs@ is reported.

Although a lot of time was invested to design amifgrt the automatic
optimization framework, the loop is briefly repadten Appendix A, because the
relevant peculiarities were not judged to be inhsamount to require a separate
chapter.






Chapter 2
GeDEA-II-K: A Kriging -
Assisted Evolutionary

Algorithm

In this chapter, a novel surrogate-assisted (SAjutionary algorithm for
MOOPs developed during my PhD course is presenfbd. GeDEA-II-K is
grounded on the cooperation between the GeDEAichvis a state-of-the-art
“pure” genetic algorithm, and some Kriging statati criteria featured in the
ASEMOO, which is a surrogate-assisted algorithmefla®n the Kriging
technique. How far can a SA algorithm go when Vewy direct evaluations are
available? Comparison over two- and three-objecttest functions have
demonstrated that the GeDEA-II-K, exploiting synstigally the strengths of
both parents the GeDEA-II and the ASEMOO, can aehi@gh performance in
the approximation of the Pareto-optimal front matigg the drawbacks of its
“‘parents”.

2.1 Introduction

Evolutionary Algorithms (EAs) play an important €oin the framework of
metaheuristics in dealing with multi-objective plers in real-world engineering
optimization. Research in this field is primarilgrcentrated toward reducing the
computational effort for obtaining multiple optimat the same time, quality and
variety of optimal solutions is of fundamental innfamce to engineers in order to
give them a number of choices among which to seheximost appropriate ones
with a high level of confidence regarding their fpemance. The latter can be
referred to as “convergence ability”. A completevieev and synthesis on
metaheuristics can be found Bi7].

Most of the times, computational effort and conesice ability are
conflicting tasks: the lower the former, the lowtbe quality of the obtained
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solutions. Generally speaking, in non-determinisgorithms found in
metaheuristics, both the computational effort aodvergence ability depend on
the absolute number of direct function evaluatidubile “exact” solutions can be
obtained using a direct objective function evalatonly, generation of “non-
exact” or approximate solutions can be obtainedgusi response surface (often
referred to as a “metamodel” or “surrogate”), whitlimics the real objective
function landscape being computationally cheapewvaiuate $8].

In the following, we shall refer to a “pure” meth@M) when dealing with
an algorithm performing direct function evaluationly, and to a “surrogate-
assisted” method (SA) when considering procedureat tmake use of
approximated function landscapes somewhere inghimization method.

The purpose of the present work is to show how ewmpn between
particular type of PM and SA methods, namely th®B#&-11 and the ASEMOO
algorithms, have led to a novel algorithm: GeDEA<IIMore in detail, two- and
three-objective test functions are selected amomgotdate multidimensional
problems in the literature that stress the sedgdrithms hampering convergence
towards to the Pareto-optimal front. Performancéhef algorithms is compared
using a universally accepted measure of fitnesstimm evaluation cost, The
Adimensional Direct Evaluations Number (ADEN). Fiatmore, two metrics of
performance were used to analyze algorithms’ resuét. the Hyper-volume (HV)
and the so-called D-metric.

2.2 Brief Review Of GeDEA-II And ASEMOO Algorithms

% ()

The GeDEA-II algorithm is a multi-objective realdsx evolutionary
algorithm (MOEA) developed at University of Paditanainly follows the basic
steps of an Evolution Strategy implementing a Palike evaluation method
based on both fitness and distance among indivadg3].

A Simplex-Crossover (SPX) operator is implemented fndividuals’
recombination, while Tournament-Selection (TS) &fdink-Mutation (SM) are
employed to complete the genetic manipulatif].[ While keeping firmly in
mind that the No free lunch theore®0] applies to optimization algorithms, the
GeDEA-II is able to outperform some state-of-theeammpetitor algorithms on a
number of state-of-the-art test problems. Followisiga brief description of the
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GeDEA-II operators, while for an extensive explamaton its architecture and
performance the reader is referred36]]

The main steps of the GeDEA-II algorithm are ddssxtias follows:

Step I An initial population of m individuals is generated at random.

Step 2 A mating pool of2/ individuals is formed, each individual having
the same probability of being selected using TS.

Step 3 / offspring are generated by SPX crossover. SM nautas applied
randomly with a probabilitpmut

Step 4 The whole population of» / individuals is checked to discover
possible clones. These clones are removed andcespleith new randomly
generated individuals.

Step 5 The objective function values of the+ / individuals are evaluated
and the non-dominated sorting procedure by Goldiseperformed to assign the
ranks to the solutions according to the objectofethe MOOP.

Step 68 The whole population ofi+ / individuals is processed to determine
the value of the reciprocal distance-based geraitiersity measure for each
individual.

Step 7 GeDEM pB2], a special sort of as a genetic diversity presiton
method, is applied according to the ranks score8itap 5 and the values of the
diversity measure assigned in Step 6. The non-daeuhsorting procedure is
used again to assign the ranks. GeDEM computeactin@l ranks of the solutions
maximizing (i) the ranks scored with respect to tigectives of the original
MOOP, the non-dominated solutions having the highesk, and (ii) the values
assigned to each individual as a measure of itetgemiversity, calculated
according to the chosen distance metric, i.e. tleenfalized) Euclidean distance
in the objective functions space.

Step 8 The bestmn solutions among parents and offspring, accordinthé
ranks assigned in Step 7 are selected for sunava the remaining are
eliminated.

Step 9 If the maximum number of generations is reachneh tstop, else go
to Step 2.

234 56 %
Figure 2.1 depicts the pseudo-code of an SPX iruli-objective context,
extended to the most general case involWhgbjective functions. It is assumed
that all of the objectives are to be minimizedeath generatiomgnr, the mean of



28 Chapter 2 GeDEA-II-K: A Kriging-Assisted Evolutionary Algori thm

each objective functiomeanis calculated. Based on these values, the pegenta
variations PV are subsequently derived. Next, two selected psmrare sorted
according to these values and the child createds dlwice guarantees that the
objective function characterized by the greatesiatian is selected every time,
therefore ensuring the highest convergence rateet@’areto Front (PF). For test
problems involving more than two objective funcBorthe objective function
considered to form the new child is chosen randomlprder to enhance the
design space exploration of the crossover operatprired in highly dimensional
objective spaces.

28: Child = (14 Refl)- M — Refl - p1
29: end if

30: Set of fpsring(count,:) = Child

31: count = count + 1

32: end while

Figure 2.1: Pseudo-code for SPX operator.

2. %
The mutation operator adds a random number takem fa Gaussian
distribution with mean equal to the original valoé each decision variable
characterizing the entry parent vector. The shniglschedule employed is:
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Shrink = Shrink, x1 -9 Eq. 2.1
ngnr

where Shrink is a vector representing the current mutation esaltpwed for that
particular design variablégnr represents the current generation agdr the total
number of generations. The shape of the shrinkimgecwas decided after several
experimental tests. Once the current variation eahgs been calculated, one
decision variable of the mutated child is randos#lected and mutated according
to the following formula:

Child,,,, := Child .+ (,/ Shrink, xrandor)1 xShrink Eq. 2.2

where Childm,: is the mutated decision variabl@hild..sds the decision variable
generated by SPX andandom is a random number taken from a normal
distribution in the open interval ]-1,1].

The ASEMOO (ASynchronous Efficient Multi Objectiv®ptimization)
algorithm is an optimization algorithm developedtla Warsaw University of
Technology. Its concept is based on EGO algoritgrddmeset al.[61] and works
of Jeonget al.[62]. The main optimization loop consists of the fallog steps:

1. A database of designs is initialized with a stagrtget of points
selected with Latin Hypercube Sampling.

2. Objective functions are evaluated in all the pointthe database.

3. Kriging model for all the objective functions isated.

4. Multi-objective optimization of a sampling criteno(EHVI) is
performed. One point is selected and added todtehdse.

5. If more points are needed, go to algorithm goea to

Kriging is a statistical model used for multi-dinsgznal approximation. A
given objective functionf is considered a realization of a random fi¥lgk)
with prescribed mean(x) and covariancdr(x", x!) functions. Functionf is
then approximated with an unbiased, linear, leqstues estimator of . In case
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of ASEMOO algorithm, linear mean function is useul &orrelation function is
given by equation:

K b

X0 - %)
q

1=1

Eqg. 2.3

where p, is 1 or 2, depending on the smoothness of thecobgefunction. Shape
parametersy are chosen with Maximal Likelihood method and fiedi with
generalized cross-validation (GVC). This approamhfinding shape parameters
is based on the Kriging implementation by Roustdrdl [63]. One of the strong
features of Kriging model is the ability to not grdalculate the approximation,
but also the variance of the estimator. This vasacan be used as a good
estimate of the error of the approximation. Joeteal. [61] combined these two
information to create a sampling criterion whicHalpaes two, most important
goals of the optimization loop:

1. exploration — improvement of the approximation
2. exploitation — finding the exact optimum

The sampling criterion is based on the assumptioat the error of
approximation has a normal distribution and we calculate expected value of
the improvement of the objective (El):

X E X X X . Eq. 2.4

The x are the points where the objective function wasaaly evaluated and

is the minimum objective function in the evaluated. This function is high
in two types of places: where the approximatiothef objective has lower value
and where the quality of approximation is low. Mapproaches were considered
for extending this criterion to multi-objective apization problems, some of
which were investigated by aniewski-Wo k in64l]. The study found that
Expected Hyper-volume function can achieve very dyoand consistent
optimization results. Th&xpected Hyper-Volume ImprovemgBHVI) function
is constructed as:
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Eq. 2.5

where is a vector-valued objective function and vy vy y IS
hyper-volume of the set dominated by the points y y . In any hyper-
volume calculation, there has to be a referencentpselected. This point
represents the maximum accepted values of the tolgecThe ASEMOO
algorithm will find the part of the Pareto frontathdominates this point. This
feature of the algorithm can be used to refineexi§ip part of the Pareto front or
to prevent deterioration of any objective with respto the base (starting) design.
The value of EHVI can be calculated analyticallyig assume that the errors of
the approximation of all the objectives are indefmm and have normal
distribution. It is interesting to note that EHVtiterion reduces to Expected
Improvement when applied to a one objective probléiso like El the EHVI
criterion gives a good balance between exploradimhexploitation. As it is based
on the dominated-hyper-volume function it givesoadjeven, spread of points on
the Pareto front.

Function EHVI is highly multi-modal and would beryehard to optimize
with common algorithms. The final sampling criteriacused in ASEMOO
algorithm is a set of objectives, from which thestfiis -EHVIi) and the rest are
the approximates of all the objective functions.isTimakes the optimization
problem well suited for common multi-objective ggoealgorithms. The
evaluation of the sampling criterion is very cheampared to the evaluation of
the objective, so the criterion in ASEMOO is optzed with NSGAII algorithm
by Debet al.[65] with a high number of generations and high popoesize.

At this stage, one point with the highest EHVI eested from the Pareto
front of the multi-objective optimization criterionObjective functions are
evaluated in this point, the data is added to #talthse and the optimization loop
continues.

ASEMOO algorithm is also capable of generating designs before the last
one was evaluated, opening the possibility of assgmous evaluation of the
objective functions for different points in parall@his feature is essential in
industrial applications, where several evaluatioas be run simultaneously and
their running time (e.g., convergence of CFD sglean substantially vary for
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different designs. The same feature is used foigdegor which the evaluation
failed (e.qg., divergent solution or failure of megdmneration).

2.3 GeDEA-II-K: Cooperation Between GeDEA-II And
Kriging

How could we exploit the strengths of both GeDEAahd ASEMOO
avoiding destructive interactions between the t@&PDEA-II has proven to have
outstanding exploration capability and diversityegervation $9] compared to
EAs competitors, but still low convergence effiaggnit requires a quite high
number of direct evaluations to cover the Paretiggl front. Do not blame it; it
is inherent in its “genetic nature”. On the othantl, ASEMOO has demonstrated
to be an effective solution texploration-exploitation trade-ofivith an elegant
and sophisticated mathematical approa4. [However, as it will be clear from
the result section, if the Kriging does not getagpropriate insight on the fitness
functions landscape the performance rapidly detes. This is because the
EHVI sampling criterion, which is adopted in ASEMQO select new sampling
points, relies on the effectiveness of the metamagproximation. If the
approximation is poor, it is high probable that nemeposed sampling points will
give little contribution to the advancement towatlde Pareto-optimal front, and
also to the Kriging model improvement. Of courdee tbalance exploitation-
exploration inherent in EHVI will intervene soorarlater. However, in practice,
a conspicuous number of direct evaluations, whighedds on the complexity of
the fitness function at hand, are needed to contdrom a deceptive function
landscape. In conclusion, a robust algorithm canglgton the metamodel only.

The main idea behind GeDEA-II-K is to improve thee@EA-II's
reproduction operator with the integration of a dfmg filter. In particular,
GeDEA-II-K doggedly takes advantage of GeDEA-II'spkoration capability,
which indeed is used to create a more densely ptgnlloffspring compared to
the GeDEA-II one, while contextually adopts a Kmigibased criterion télter
which individuals among the GeDEA-II's offspring yngroceed to direct
evaluation. Here the filter drives the search talsahose regions promising from
the Kriging point of view, without however havingrdrol on the regions
themselves, since the offspring is suggested byE2eD. The effect is twofold:
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1. generation after generation, the Kriging databasaugmented with
offspring individuals that have a genotype inspibgdGeDEA-II and
a phenotype by Kriging:GeDEA-II in body and Kriging in soufl!
Since the proposed offspring is potentially promgsifrom the
GeDEA-II point of view, the filtered offspring calillift a poor
Kriging, even though the filter action is poor.

2. GeDEA-II reproduction operator (i.e., SPX+SM opers} receives
auxilium from Kriging (i) by the inferred information on éhfitness
functions landscape and (ii)) by retention of alle tiprevious
populations, which guarantees to do not select fé&spring that is
clone, or very close to an individual, of precedpaogpulations.

Besides the cooperation GeDEA-II Kriging by mearistlee filter, it is
reasonable to introduce in the offspring populatiodividuals promoted by
Kriging, for instance using the EHVI criterion. Asggested by aniewski-Wo k
[64], the best performance with the EHVI criterionabtained with asingle-
sampling strategyin which the selected point is evaluated andkhging model
is updated before a new point is sampled. In thBE*ell-K context, only one
point is selected based on EHVI.

* o+

The GeDEA-II-K shares the same framework of the B&DI (see §2.2.1).
Starting from the first generation, the individualsluated so far are stored in the
strpopandstrfit variables. Step 3 and 4 of GeDEA-II outline anglaeed with the
following:

Step 3 4/ offspring are generated by SPX crossover. SM nautas applied
randomly with a probabilitpmut

Step 4a Kriging models, one for each fitness functiore aonstructed over
the databasesfrpop,strfif. One point is selected according to the EHVlezrdn.

Step 4b the Kriging filter is applied to the whole poptitan of 4/ +1
individuals, after which only individuals are selected. Inside the Kriging filte
routine an appropriatedone-exterminatioms accomplished.
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-HH

The Kriging filter (-K filter) is in charge to sade/ individuals among/ +1
and to assure a certain level of minimum distancthé design space among all
individuals evaluated so far; clones are avoideatesiare just a particular case
having null distance. The pseudo-code of the —¢rfiis reported in Table 2.1. It
can be divided in three main chunks: the Krigingdelocreation, the minimum
distance rejection, and the Pareto front selection.

First, one Kriging model for each objective is buipon the dataset storing
all individuals so far evaluated, i.strpop andstrfit variables; then, the optimum
point according to the EHVI criteriooffEHVI is selected. The Kriging models
creation is the most expensive part of the filtgoathm.

Second, a minimum Euclidean distance in the gemosypace is required. It is
worth nothing that the distance among all individuhat flow into the Kriging
database is of utmost importance due to the inmersf the Gram matrix, which
becomes singular for distance getting close to.z&he offpop candidates too
close to both thetrpopand theoffEHVI are deleted. Then, tledfpop candidates
too close to each other are rejected. This operasiquires an iterative procedure,
because deleting one element may change the minidistance of other
elements of the set that were paired with the ddleine. When the minimum
distance law is broken, there are at least a coofpladividuals that shares the
same minimum distance (i.@9pX; only one individual will be going to the next
phase. In order to decide which one should be predethe genotype diversity is
rewarded: the individual that has the largest mimmdistance with the set
enclosing both thetrpopand theoffEHVIis retained; the others, one or more, are
rejected.

In the third part, the fitness functions of Wifpopset are predicted by means
of the previous Kriging models and the non-domidaserting procedure by
Goldberg (1989)46] is performed to assign the ranks to the solut@acosording
to the predicted fitness function®ffpop individuals are sorted by ranks and the
first individuals are selected. If there are more thandividuals on the Pareto
front, the genotype diversity is rewarded.
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Kriging Filter Algorithm

Define Dmin_1(offpop) = minimum genotype Euclidian distance between éadividual in

offpopand all the remaining individuals @ffpop

Define Dmin_2(offpopl,offpop2y minimum genotype Euclidian distance between each

individual inoffpopland individuals iroffpop2
Setstrpop = population evaluated so far from beginning
Setd_toll = 1-e03
SetM = number of bjectives
Set = number of offspring required
Setstrfit = population fithess evaluated so far fromginning
fori=1to M
Build Kriging model on database (strpop, strfit(:,i) )
end for
SetoffEHVI = individual selected by EHVI criterion
Setdmin2=Dmin_2(offpop,[strpop; offEHVI])
Find index vector i for dmin2(i)<d_toll
Deleteoffpop(i,:)
Setdmin=Dmin_1(offpop)
while dmin<d_tolldo
find index vector i for dmin(i)<d_toll
Setpopx = offpop(i,:)
Setdmin2 = Dmin_2(popx ,strpop)
Set dmin2_sort = sort dmin2 in ascending order; indector j:=
dmin2_sort=dmin2(j)
Deleteoffpop(i(j[1:end-1]),:)
Setdmin=Dmin_1(offpop)
end while
fori=1toM
Setofffit(:,i) = prediction Kriging model of offpop
end for
SetrankPF = Pareto Ranking of offfit
SetrankPF_sort = sort rankPF in ascending order; indexctor j:=
rankPF_sort=rankPF(j)
Setn_PF = number of individuals on the Pareto front
if size offfit > AND n_PF >
Set dmin2 = Dmin_2(offpop ,strpop)
Set dmin2_sort = sort dmin2 in descending ordedgxvector k:=
dmin2_sort=dmin2(k)
Set vector index isel =j( k(1 ) )
else
Setvector index isel = j(1: )

end if
Set selpop = [offpop(isel,:); offEHVI]

Table 2.1: Kriging filter aglorithm.
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2.4 Some Inference On Multidimensional Test Functio ns

$ o

Two- and three-objective test functions were selt@mong those proposed
by Deb (2000)67] and Zitleret al.[68]. A brief review of the main characteristic
featured by each test problem and its mathemdicaiulation are summarized
hereafter. All these problems require the fithessinimization and introduce
several difficulties that stress the search alpore hampering convergence
towards to the Pareto-optimal front.

In the formula,k is the number of decision variabléd, is the number of
objective functions, and is the number of variables of the functionak ,

The decision variables for , and the
subgroup of decision variables

$ 2- 7

ZDT1 has a convex Pareto-optimal front:

Eq. 2.6

ZDT2 has a non-convex Pareto-optimal front:

Eq. 2.7
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ZDT3 features a disconnected Pareto-optimal front:

Eqg. 2.8
X X
ZDT4 contains 24local Pareto-optimal fronts:
X
Eq. 2.9
X X
ZDT6 has a non-uniformity of the search space:
X
Eq. 2.10

DTLZ2 has a spherical Pareto-optimal front:

x Eq. 2.11
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DTLZ3 introduces many local Pareto-optimal frontéhwespect to
DTLZ2 by changing x functional:

Eq. 2.12

DTLZ4 implements a different meta-variable mapping , which
dense the set of solutions in specific region efdbmain:

Eq. 2.13

with

DTLZ5 features the mapping which transforms the Pareto-optimal
front form a surface to a degenerated curve:

X Eq. 2.14
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DTLZ5 — mod has a more complexx  functional:

X Eq. 2.15

DTLZ6 has disconnected local Pareto-optimal regions in the
search space:

X X Eq. 2.16

$ #

The comparison methodology adopted here followsotieeproposed ir6g].
The performance of ASEMOO, GeDEA-II and GeDEA-ImM&s judged for three
different dimensions of the test function desigacs i.e. 6, 25 and 40 design
variables. Each algorithm was run 30 times oveheast instance with a limited
number of direct evaluations. For this purpose, TAdimensional Direct
Evaluations NumbefADEN) was taken into account as reference ca$itator.
The ADEN is defined as ratio of the direct evaloasi number to the design space
dimension, and it is more suited than the numbeyeoierations when competitors
are not all based on evolutionary process. ADEN lvaged to ten for all the
simulations.
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Two metrics of performance were used:

Hyper-volume (HV) [69] is a high-quality unary metric based on the
computation of the hyper-volume enclosed betweenPareto
Approximation Set and an arbitrary reference pofanti-ideal
solution). In these experiments, the reference tpasn problem
dependent, namely, it is equal to the maximum $gneonsidering all
the direct evaluations used by all competitors doispecific test
problem, regardless design space dimensionalitg. higher the HV,
the better the coverage and diversity of solutidie HV metric was
normalized (HVnorm) with the maximum value of HVnsidering all
simulations for a specific suite case.. HV metsievell suited to make
comparison among different algorithms since its rineiakes into
account Pareto approximations, but the Pareto-@btfront. On the
other hand, we do not know how close the bets dlgoris to the
Pareto-optimal front. D-metric would like to ansviersuch issue.
D-metric: Let be a set of uniformly distributed points along the
Pareto-optimal front. Let A be an approximatiorhe Pareto-optimal
front.

‘ ‘ Eq. 2.17

where | is the minimum Euclidean distance betweeand
the points int . A very low value of D-metric is representativeaof
close and well-spread of the Pareto approximationtf The
was approximated with 100 points for all the bieative problems
and 1000 points for the three-objective.

The results are reported by means of box plotschvktatistically infers the
outcomes of the 30 runs. On each box, the centlrépresents the median, the
edge of the box are the 2%nd 78 percentiles, the whiskers extend to the most
extreme data points not considered outliers. Ireiotd analyze the convergence
history, two snapshots for ADEN equal to 6 and Hdentaken.
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As for GeDEA-Il and GeDEA-II-K, the population sizendi depends on
problem dimensionalitic:

Eq. 2.18

while for the other genetic parameters the reasleeferred to39]. Equation Eq.
2.18 is the result of different experiments on GAEIEaimed to squeeze out the
best performance from the algorithm reducing theral direct evaluations. As a
result, the number of generations depends on tloblgm dimensionality;
however, in the best case, which is for ADEN edadlO and 40 design variables,
only 20 generations are performed. On the othed hASEMOO was used in
synchronous mode, one sampling point at a timdy artinitial sampling database
of 2k points. The synchronous mode is the one that gtega the best
performance.

$/ 0

The fundamental aspect of this investigation is\whey low number of the
direct evaluations offered to the three algorithmerder to converge towards the
Pareto-optimal front. Compared to the test campé&jowed in [B9], in which
GeDEA-Il has demonstrated to be superior with relsge competitors, the
number of direct evaluations are here reduced B @ average. As a result, the
Pareto approximation is intrinsically weak compatedother investigations in
which thousands of evaluations are used. HowevienvaADEN is representative
of all those industrial applications when costlgelity models are employed and
computational efforts and time are in short supply.

All the figures report a specific suite problem lwiour main information:
two plots of the Pareto approximation for dimenaldg equal to 25 and two box-
plots of the of D-metric and HV. The first plotuitrates the Pareto approximation
at ADEN equal to 10 of a single run featuring a mealue of the HV, while the
second one summarizes all the runs. Comparisoneeatihe two is intended to
show how the low ADEN affects the coverage of thereB-optimal front.
Sometimes, the lack in the full coverage of theffrie not a matter of exploration
capability, whereas reflects the stochastic natidirthe EAs added with the low
ADEN.
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As far as the ZDT1, ZDT2 and ZDT3 bi-objective gehs are concerned,
ASEMOO seems to converge towards the Pareto-opfimal much better than
GeDEA-II; furthermore, ASEMOO offers a high qualdpproximation after only
ADEN=6, as suggested by both the HV and D-metrigyie 2.2 to Figure 2.4). It
is worth nothing that ASEMOO is almost insensitieethe problem scalability.
Increasing the number of design variables slightigteriorates ASEMOO
performance at least for low ADEN values, while AlDEN=10 it seems that the
effect is negligible. On the other hand, the diffiees experienced by GeDEA-II
are related with the spread of solutions rathen th& distance of solutions from
the Pareto-optimal front. In fact, GeDEA-II convesgtoward the front only in
some regions and clusters few solutions arouncethpsts. Such behavior is well
explained due to the adverse juncture of limitedypation size with the very low
number of direct evaluations that are the worsecasenario for a genetic
algorithm. As the dimension gets higher, this ditimis mitigate by a larger
amount of direct evaluations, but still more ofrthevill be needed to reach the
competitor’s Pareto front. As for repeatability, ialhis proportional to the width
of the boxplots body, ASEMOO is superior to GeDHANle to the deterministic
nature of EHVI function sampling criterion. At leéa®r these three problems
characterized by convex, non-convex and discretetd; Kriging approximation
adopted in ASEMOO algorithm works properly. Beamimd that ASEMOO was
tuned on such problem$&4]. The cooperation strategy adopted by GeDEA-II-K
has the effect to accelerate the Pareto front egeeprocess in all the three-suite
cases. GeDEA-1I-K’s performance gets really clas¢he one of ASEMOO, and
this is even truer when the problem dimensionajiys higher. From the single
run plot of Figure 2.4 it can be inferred that GEDE-K has a poor uniformity in
the front approximation compared to ASEMOO, but gthas found all the four
chunks of the Pareto-optimal front. Moreover, GeBEK has improved
repeatability.
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Figure 2.2: Test function ZDT1: Pareto front fangle run (top left) and all runs(top right)
for design space dimension = 25; at the bottom,dmswergence history reported at ADEN equal
to 6 and 10 of D-metric and normalized Hyper-voluimredifferent design space dimensions, 6
(green), 25 (orange) and 40 (pink).

Figure 2.3: Test function ZDT2: Pareto front fangle run (top left) and all runs(top right)
for design space dimension = 25; at the bottom,dmswergence history reported at ADEN equal
to 6 and 10 of D-metric and normalized Hyper-voluimedifferent design space dimensions, 6
(green), 25 (orange) and 40 (pink).
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Figure 2.4: Test function ZDT3: Pareto front fangle run (top left) and all runs(top right)
for design space dimension = 25; at the bottom,dmswergence history reported at ADEN equal
to 6 and 10 of D-metric and normalized Hyper-voluimedifferent design space dimensions, 6
(green), 25 (orange) and 40 (pink).

The outcomes change when ASEMOO is applied to rmudilal and non-
uniform fronts as those featured by ZDT4 and ZDT@bjems, respectively. For
instance, the ZDT4 tests demonstrated an overtiofiperformance (Figure 2.5):
GeDEA-II outperforms ASEMOO, and reveals a behawpecular to the one
recorded by its competitor in the previous probler@n such multimodal
landscape, ASEMOO is affected by dimensionalityuéss which cause the
boxplot width and median to get higher as the desigriables increase. As for
GeDEA-II, the enhancement of performance with higtienensions observed
before recurs for both ZDT4 and ZDT6, and it isremeore pronounced. In such
battlefield, GeDEA-II-K clearly improves the unifaity of the front converge as
depicted in Figure 2.5 and Figure 2.6.
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Figure 2.5: Test function ZDT4: Pareto front fangle run (top left) and all runs(top right)
for design space dimension = 25; at the bottom,dmswergence history reported at ADEN equal
to 6 and 10 of D-metric and normalized Hyper-voluimredifferent design space dimensions, 6
(green), 25 (orange) and 40 (pink).

Figure 2.6: Test function ZDT6: Pareto front fangle run (top left) and all runs(top right)
for design space dimension = 25; at the bottom,dmswergence history reported at ADEN equal
to 6 and 10 of D-metric and normalized Hyper-voluimedifferent design space dimensions, 6
(green), 25 (orange) and 40 (pink).
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As for the three-objective problems, DTLZs' clasaswadopted. Some
common considerations can be extrapolated fromsikeDTLZS’ test cases
reported from Figure 2.7 to Figure 2.12. As the hamof objective rises, the
number of fithess evaluations needed to convergeeply toward the Pareto-
optimal front increases. The level of front coverapes deteriorate moving from
bi- to three-objective problems, since the 3D topglof the Pareto-optimal front
requires a higher number of points in order to haveomparable resolution.
Exception made by the DTLZ5 that has a 3D line a®t®-optimal front, and for
which GeDEA-II and GeDEA-II-K reach a remarkable réta front
approximation. In the other cases, limiting ADENtém leads to poor results.
However, in such adverse conditions GeDEA-II seémbe slightly superior at
high dimensions, while at low dimensions the penfance is comparable with
ASEMOO. Moreover, ASEMOO is very sensitive to tlearch space dimensions
for all those test problems featuring a sphericate®-optimal front. Finally,
repeatability is problem dependent and no geneat#diz can be formulated.

GeDEA-II-K enhances GeDEA-II performance over ak tthree-objectives
tests. Both repeatability and the front coverage improved. It is symptomatic
DTLZ6 in Figure 2.12 where points of GeDEA-II anlSBEMOO are clustered
along edges of Pareto-optimal front patches; thisat the case for GeDEA-II-K
that pushes the search inside all the patches. I&lcwvior it is even more evident
in the plot comprising all the runs.

Some minor notes on DTLZ3 that seems to be impabletifor all three the
algorithms, at least for ADEN equal to 10. Des@&DEA-II-K gets nearer to the
spherical front, it is still too far. Moreover, lattugh on DTLZ5 all competitors
reach the Pareto-optimal front, on the modifiedsier DTLZ-mod (Figure 2.11)
ASEMOO gets trapped in some local front, whereas dther two algorithms
collapse on the front, having GeDEA-II-K a supespread of solutions.
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edaa@ and 10 of D-metric and
normalized Hyper-volume for different design spdaaensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.7: Test function DTLZ2.
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edad and 10 of D-metric and
normalized Hyper-volume for different design spdorensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.8: Test function DTLZ3
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edaa@ and 10 of D-metric and
normalized Hyper-volume for different design spdtaensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.9: Test function DTLZ4.
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edaa@ and 10 of D-metric and
normalized Hyper-volume for different design spdaaensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.10: Test function DTLZ5.
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edad and 10 of D-metric and
normalized Hyper-volume for different design spdorensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.11: Test function DTLZ5-mod.
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(a) Pareto front approximation of a single (b) Pareto front approximation of all runs
run with dimensionality = 25. with dimensionality = 25.

(c) Box-plot convergence history reported at ADEN edad and 10 of D-metric and
normalized Hyper-volume for different design spdorensions, 6 (green), 25 (orange)
and 40 (pink).

Figure 2.12: Test function DTLZ6.

2.5 Conclusions

The cooperation between GeDEA-II genetic algoritttmd ASEMOO
Kriging-based algorithm is realized by means of knging filter featured in the
GeDEA-II-K algorithm. GeDEA-II-K shares the samearfrework of its
predecessor (i.e., GeDEA-Il) and adds the Krigiitigrf operator at the end of
GeDEA-II's reproduction phase; the filter acts aseection operator of the
GeDEA-II's offspring; according to the inferred amfnation coming out from the
Kriging model, the filter decides which individuigl more promising and so can
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be evaluated. Furthermore, the information of th/Ecriterion is introduced in
filter to exploit the Kriging exploration-exploiian balance capability.

The comparison over two- and three-objective tesictions revealed the
effectiveness of GeDEA-II-K, which is able to un@DEA-II and ASEMOO in
such a way to avoid destructive interactions betwdbe two and to
synergistically intensify the strengths of both.eT¢éomparison made use of very
few direct evaluations, which resembles the ref@ &pplication where high-
fidelity models are employed.

As two-objective test problems are concerned, gatesassisted based
algorithms as ASEMOO could make the difference onvergence toward the
Pareto-optimal front reaching an outstanding resmuwith high repeatability
when a very low number of direct evaluations aredusThis is true if the
surrogate model gets an appropriate insight onfithess functions landscape,
otherwise the performance rapidly deterioratesc&iBeDEA-1I-K does not rely
only on Kriging model, its performance is high-leveaven when ASEMOO
discloses its weakness. Of course, when ASEMOO svpr&perly, GeDEA-II-K
cannot assure a so high Pareto front resolutiondiilit its front approximation
always reaches a “minimum level” that could be aered sufficient for real-life
MOOPs. Moreover, GeDEA-II-K always assures a befterformance than
GeDEA-II regardless of the problem at hand.

Dealing with three-objective problems has a majopact on performance
principally because of to the limited number ofedirevaluations compared to the
3D topology of the Pareto-optimal front. All compets get pour performance
compared to bi-objective problems. However, GeDEK-lI maintains that
“‘minimum level” among test problems and greatly royes the capability of
covering the Pareto-optimal front proven by GeDHEAdompatibly with the
number of direct evaluations.

The dimensionality of the design space affectsinosite directions the three
algorithms: for ASEMOO the increase of dimensiayalis detrimental on
performance, while GeDEA-Il and GeDEA-II-K experenbenefits due to total
amount of direct evaluations.






Chapter 3
Supersonic Compressor

Cascades

3.1 Why Supersonic Flows

Since 1938 the need for compressor stages to obigher pressure ratios
with large flow capacity has pushed the developnwnhigh-speed fans and
compressors operating with supersonic relative ilach numbers, the so called
transonic compressor. The advantage to operataeght relative inlet velocity
directly stems from Eulé& momentum equation

h= (U, - UGy Eqg. 3.1

It is clear that the two factors controlling spexiénergy transfen within the
compressor rotor are the blade speednd the absolute flow turning, which
cannot be increased above certain limits. For simereasing wheel speed,
thereby the relative inlet velocity, is an effeetiway to augment the energy
transfer, while keeping the aerodynamic loadinghamged. This is the main
reason of high pressure ratios achieved in tragsmTmpressors.

Unfortunately, near—tip rotor sections experiengpessonic relative flows,
shock waves phenomena arise in the inlet and passagions drastically
affecting efficiency of the machine due to both émropy rise across shocks and
the interaction of the shock waves with the bouyndiyer.

Research on supersonic cascades meant to be @eeopithe puzzle to allow
considerable insight on the complex flow insidens@nic compressors. Despite
flow phenomena are highly three dimensional in regtsystematic analysis of 2D
supersonic cascades is a well posed starting pminhderstand how to mitigate
losses related to shock waves while preservingradgas of their compression
mechanism.
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3.2 Historical Survey

In the late ‘40s, there were still many doubts loa possibility to design an
efficient supersonic axial flow compressor due tmck waves losses. This
diehard certainty was corroborated by the expeeeamcisolated bodies, for which
the large energy losses usually occur due to wegstems that extend far from the
bodies themselves. In the milestone work by Kantowl950) [70] it was
theoretically demonstrated that a cascade couldegneliminate this extended
wave system, or at least weakening its strengthfrdam the cascade, thus
allowing to efficiently exploit the shock waves cprassion mechanism inside the
blade passage. Since then, much effort has beea toatksign an airfoil able to
efficiently handle supersonic inlet flow and thehement wave shock system.
Nowadays, th&-shape profilseems to be the solution to this problem.

Over the years, various cascade geometries havwe designed for both
rotors and stators. The way the rotor mechanicatggnis transferred to the fluid
marks the division between different kind of supeis cascades classesl]
(Starken and Lichtuff 1970)the pure impulse cascadé&igure 3.1), thehigh
turning supersonic reaction cascadend thelow-turning supersonic reaction
cascadg(Figure 3.2). Recalling Euler's momentum equatitre, specific energy
transfer is proportional to the absolute flow tami which can be realized in
different ways such as decelerating the relativiooiy, turning the relative
velocity, or a mix of the two.

Figure 3.1: Supersonic impulse cascade (from Staakel Lichtuff 197071]).
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Figure 3.2: Low-turning supersonic reaction casdfaen Starken and Lichtuff 19701]).

In the impulse cascade the mechanical energy of rther is mainly
transferred into kinetic energy of the fluid witlicany static pressure increase.
The entire change in the static pressure has te péce completely in the
following stator at high supersonic velocity; thedunle of the relative inlet Mach
number remains nearly unchanged across the rowe wie flow undergoes to a
high turning symmetrical to the inlet axial flowrection. Although various design
procedures have been developed by Shapiro (19B4) PBtratford (1962),
Oswatitsch (1956)73], all methods require a local acceleration ancetization
of the flow that may lead to separation of the lotarg layer.

In order to accommodate the incoming flow out fronpulse rotors, the high
turning supersonic reaction cascade was designemdore high static pressure
rise and flow turning. Details on such kind of dgsare found in Wilcox (1955)
[74], Hartman (1953)715], Klapproth (1952) T76€], Shapiro (1953)72], Johnson
(1959) [77].

The velocity triangles of Figure 3.1 and Figure 8tibw how the exit flow
condition changes from supersonic to subsonic,gg@iom an impulse to a low-
turning supersonic cascade.

As for thelow-turning supersonic cascadéhe absolute flow turning (see
Figure 3.2) is mainly due to deceleration of rekatvelocity through sound speed
rather than turning of the relative flow, so thatne part of the transferred energy
is already converted into pressure energy withenrtitor producing a high static
pressure. The deceleration of the inlet superstiow can be realized in two
different ways across the rotor cascade:

1. compression due to the flow area contraction widlteteration of
supersonic flow through sound speed and furthéungidn to subsonic
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exit condition. Similar to a convergent-divergenobzanle, the
supersonic deceleration is realized with a reduadtiothe flow area in
the forward part of the blade passage until sdmioat, while in the aft
part subsonic deceleration is continued by meams aficrease in area.
The main difference between a nozzle and a cassdbat in the latter
such area variations can be realized only by flefledtion, due to the
geometric periodicity constraint of the cascadesags itself. However,
deflection has opposite sign regarding the supé&sand subsonic
branch, thus could compensate the different dedlest and leave the
flow direction unchanged between cascade inletoartiet;
2. compression due to a normal shock wave in the ljadsage.

In principle, such methods could actually provittenf deceleration without
flow turning, or at least with a moderate turnifrgpractical application, however,
both methods have severe limitations. Due to stalpitoblems similar to those of
a convergent-divergent engine inlég], the first method requires a normal shock
wave behind the throat area in the diverging pathe passage. The exact shock
location, from which the shock strength depends, fisnction of on the exit back
pressure, and so of the cascade operation. Inrdatiqe, there can be operating
regimes where the shock strength becomes too se@ereéhe other hand, the
second method is impracticable due to entropy asmss the shock, which
becomes unacceptable for Mach numbers ahead ofhbek above 1.67P)
(Lichtfuss and Starken 1974). Nevertheless, $hehape profilebelongs to the
low-turning cascadelass and, from now on, particular attention Ww#l paid on
such class.

+ (" #

Supersonic cascades that adopt the shock wave essipn mechanism are
subject to two peculiar sources of loss: the entnige across the shock and the
interaction mechanism of the shock waves with tbanblary layer. Over the
years, there has been the tendency to minimizéotheer loss acting on both the
reduction of the Mach number ahead of the shockoanthe shock wave pattern,
moving from a normal to an oblique shock within ttascade passage. A weaken
shock could, in principle, moderate the shock bauydater interaction too.

In the Double Circular Arc profiles (DCA) the suwatiand pressure sides are
defined by two circular arcs. The convex curvatofdghe suction side induces
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acceleration to the incoming supersonic flow, whishdeflected by supersonic
expansion waves (Prandtl-Meyer turning) in ordefaibow the suction surface
curvature. As a result, the inlet Mach number iases from the leading edge till
the normal shock wave located at the entranceeopéissage. The shock strength
becomes overblown for Mach number ahead of thekshomund 1.6, restricting
the operating range to a maximum inlet Mach nunabeund 1.3.

This limitation led to the concept of Multiple Cidar Arc profiles (MCA),
which incorporates and extends the DCA definitiashesne to include the
potential for defining the suction surface with tweo more circular arcs of
different curvature. A low curvature is usually atexd for the suction forward
surface, which ensures reduced acceleration anckdbeses of the flow in the
entrance region. This concept was first propose8dyer and Smith (19678().
Comparison of results obtained from both rotorssi@lowet al. (1968) B1]) and
linear cascade (Mikolajczadt al. (1971) B2]) tests with MCA and DCA profiles
indicates that definite advantage by way of efficie and maximum pressure
ratio exists when MCA are used, confirming thatessive supersonic expansion
in the cascade entrance region deteriorates peasftoen Further reduction in
curvature of the entrance region suction surfaegatterize a new type of profile
called Circular-Wedge profile (CW) investigated Bynery et al. (1960) B3].
Since CW profiles features an infinite curvature.(iflat surface) in the forward
region, the upstream Mach number is kept almosstemt up to the normal shock.
Another similar profile is the J-shape profile deped by Hearsey and
Wennerstrom (19708H].

Despite wide improvements on the reduction of Maamber ahead of the
shock, the main issue regarding all the previoa$lprshapes is the normal shock
wave at the passage entrance. Such shock topalbgyeintly restricts the cascade
operating range to an inlet Mach number around T work at higher inlet
Mach numbers while preserving efficiency, the ndrrelaock wave must be
avoided and replaced with several oblique shockewaVhe ensemble of oblique
shocks can produce the same amount of pressureragsenore efficient way. In
principle, the shock losses could be altogetherdmeb by usinghomentropic
compressior{isentropic compression), which was firstly propbssy Oswatitsch
(2947) B5] for supersonic aircraft intakes. Isentropic coegsion can be applied
on supersonic cascades in two different wawster compressionand outer
compressiondepending on whether the isentropic compressikastplace within
the passage or in the entrance region; of counsexed solution is also possible.
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Kantrowitz (1950) 70] was the precursor of thenternal compression
concept applied to transonic compressors, conceeviqusly employed in
supersonic diffusers for supersonic cascades. Agtua the Kantrowitz’s rotor
the relative supersonic flow is decelerated throtighspeed of sound by a normal
shock inside the passage, and then, in the passalggonic region further
diffusion is accomplished by area divergence. Titodilp proposed by Kantrowitz
is depicted in Figure 3.3. The reduction of the Maamber ahead of the normal
shock was the only way to improve rotor efficierasyd, albeit with simplicity, it
was pursued adding thickness on the suction sgldgepicted in Figure 3.3. The
experiments highlighted that the subsonic diffusiegion diverged too rapidly
leading to serious separation losses, which colslol lbe exaggerated by shock-
boundary-layer interaction. It was mandatory toucslthe rate of this divergence
and also the annulus was made to converge downsties a result, the pressure
ratio materially decreased compared to the desaunevand the Mach number
leaving the blading was therefore about 0.97 irbt&a0.68. It is worth nothing
that the inclusion of a concave region on the suctside of the blades
immediately behind the entrance region considerabfyroved the efficiency of
the compressor.

Figure 3.3: Supersonic profile proposed by Kanttp\{d 950) [F(Q].
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On the other hand, thexternal compressioprinciple, orspike-type diffuser
concept, was applied to rotors by Creagh and Kiathp(1953) 86] and by
Lawrence and Melvir{(1954) B7] (Figure 3.4). The compression takes place in
the entrance region, before the flow gets intoghssage. The effect of external
compression is to decrease the streamline areeirbliade inlet region, thus
effecting a reduction in the in flow Mach numbeltla passage-inlet closure line
(line c-d in Figure 3.4), where the Mach numberwtiseach unity. According to
the experiments, the sonic throat at the passaenee is very sensible to inlet
conditions and dastrically deteriorates at off-gesaperation.

Figure 3.4: External compression principle appt@dompressor cascades (Creagh and
Klapproth (1953) 86])
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Figure 3.5: Pre-compression airfoil (Morgsal 1972 BS)).

A more effective geometry, even in off-design opierss, is the one proposed
by Morris et al. (1972) B8] and depicted in Figure 3.5. The precompression
design model assumes that the shock across thealhamtrance must be oblique
and attached to the leading edge of the airfoil.

The pre-compression is the result of the concaviaai of the suction side
(BC in Figure 3.5) that generates a series of cesgion waves that diffuse the
supersonic flow. Channel flow downstream of theiqu@ shock is subsonic,
turning and stream tube area are made compatilile the exit aerodynamic
conditions.

Il(ll
The S-shape profildelongs to the low-turning supersonic profile slasd
features the pre-compression mechanism. The PAWdsBade investigated by
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Schreiber (1986)89] at DFVLR has been taken as reference. The dedsigh
wave pattern, the real shock-wave pattern at dgsigssure ratio, and a Schlieren
visualization are shown in Figure 3.6 and Figuié 3.

Figure 3.6: PAV 1.5 cascade: design inlet wavegpatta) and experimental shock wave
pattern at design pressure ratio (from Schrei®@}).[

Figure 3.7: Schlieren photograph of the PAV1.5 adscat inlet Mach of 1.5.

The curvature of both suction and pressure sidetla@dvedge angle of the
leading edge drive the main phenomena in the irdgion. First, the finite
thickness of the leading edge develops a detacbedshock, which is normal at
least in the very near region of the leading edgeo oblique shock branches
depart from the bow, a weaker one that extendsthmoupstream region and a
stronger one that runs into the covered passage froht portion of the suction
surface features a concave curvature, similartyh¢oMiller's design, from which
left-running characteristicsdepart towards the detached bow shock of the
adjacent blade, and their coalescence forms thegmpression shock wave
responsible for the pre-compression mechanism.otih this shock is relatively
weak, it significantly decelerates the incomingaflentering the covered passage,
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from a peak value of about 1.67 to a level arourd Erom the CFD analysis
reported in Figure 3.8, it can be noted that thera region of expansion waves
between the bow shock and the pre-compression whveggure 3.9 the contours
of the Mach number for the same cascade are rehbofige reason of such
expansion fan is briefly explained. After the shdoéw, the subsonic flow

approaches the leading edge “upper side” (i.e.otiee that leads to the suction
side) with a certain incidence. In front of thedewy edge curved surface, the flow
accelerates until sonic velocity (point A in Figu8e). In order to follow the

remaining part of the leading edge, which is charaed by a continuous
lowering of the surface slope, the flow needs tm tonore. However, since the
flow is just above sonic Mach, such deflection banrealized only by means of
the Prandtl-Meyer expansion waves. The turning,ctvhis associated with

supersonic flow acceleration, proceeds until thefase slope reaches its
minimum. Such condition is realized in point B aglire 3.9; point B identifies

the end of the expansion fan and here the flowitsasaximum Mach number of

1.8. Beyond point B, the variation of the suctiamrface slope changes from
negative (i.e., such negative variation causestitomg expansion fan) to positive.

Figure 3.8: Simulated Schlieren picture of the iegedge of the PAV 1.5 cascade at inlet
Mach number = 1.457 (Sonodaal.[91]).



3.2 Historical Survey 65

Figure 3.9: Contours of Mach of the leading edggame of the PAV 1.5 cascade at inlet
Mach number = 1.457.

A change in the suction surface curvature appetrsid-portion, from
concave to convex, inducing reacceleration of ke fo a Mach number of 1.52,
before it encounters a shock system at around 6@elcAs it will be clear from
the discussion of the cascade optimization in sec§4.6, the suction surface
curvature of the forepart is critical for the valaethe Mach number. In fact, a
concave curvature has the advantage to diffusestipersonic flow, while a
convex surface operates in the opposite direckmom this point of view, it is
harmful to change curvature (i.e., from concavednvex) before the supersonic
flow encounters the passage shock. In the cas@&¥WfIP5 cascade this was done
on propose in order to have a higher pre-shock Mashber and thus a strong
shock wave/boundary layer interaction.

In Schreiber’s investigatior8p], a proper value of static backpressure was
imposed to achieve a strong boundary layer shoekaation, giving rise to the
so-calledambda shock syste(aeeFigure 3.10), which is composed by a leading
oblique shock and a rear strong curved obliquelsh®ach particular pattern can
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be interpreted as Blach reflection phenomenom which the intensity of the
oblique passage shock increases to such a levelhthegular reflection of the
oblique passage shock is not possible (SchreileSsarken 199292)). In lieu of

a simple Mach reflection, near the suction surfdmee oblique passage shock is
replaced with a quasi-normal shock, whose intevacwith the boundary layer
gives rise to the lambda shock system, in additom severe boundary layer
separation. It has been observed that the lambatzk stevelops when the oblique
shock passages impinges on a relatively strongeconurved part of the profile
surface.

As for the pressure surface, the convex curvatarethie front region
accelerates the flow until the 20% chord where @asgoormal shock reduces the
pre-shock Mach number of 1.15 to subsonic valuesmRhis point to the trailing
edge, the flow is subsonic and it is not clear hbe pressure shape affects the
flow diffusion.

Figure 3.10: Flow structure of strong interactioraicascade blade passage (from Schreiber
[89)]).

3.3 Supersonic Cascade Inlet Flow

The inlet Mach numbem, is a fundamental parameter to discriminate
different flow configurations of linear supersowmi@scades. Beside the inlet Mach
number itself, it is of paramount importance theabxxomponent of the inlet
Mach number M, , as illustrated in Figure 3.11. Two different flow
configurations exist:
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1. As long as the inlet axial Mach number is supersonj >1, the
upstream flow field is not influenced by disturbas@manated from
the cascade. The shock and expansion waves caysix beading
edges and the suction surfaces are enveloped bildde passages
(left sketch in Figure 3.11).

2. On the other hand, with a subsonic axial Mach numgmit
supersonic upstream Mach number>1) the perturbations coming
from the cascade propagates to infinity in the ng@sh direction and
influence the incoming flow. This second type a@iwilis of practical
interest for transonic compressor.

All issues related with thetarting of supersonic cascades, unstarted flows,
unstarted and choked flows and supersonic axial Mach numib@vs in
supersonic cascades are discussed in severalnefsreas Lichtfuss and Starken
1974 [r9 and Schreibeet al. [93]. For brevity, the focus of this dissertation is
only devoted tostarted supersonic cascades with subsonic axial Mach nisnbe
and subsonic exit Mach number, due to their appgdbr transonic compressor
rotor applications. In this mode, if the inlet Maghmber is sufficiently high, the
cascade operates along the so call@due incidenceurve.

Figure 3.11: Supersonic flow in blade row (& and Suter 1986p4].

3.4 Unique Incidence flow

As far as the supersonic cascade with inlet subsaxial Mach number is
started, the inlet Mach number and flow directioe dependent one another, at
least within a range of static back pressures atet Mach numbers. It is not
possible to change, without not affectings,. The cascade operation is possible
only along the so callegnique incidence curve

The unique incidence behavior is the result ofdhloenditions:
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1. subsonic axial Mach number,, <1 for which the information
can travel upstream along the a>'<ial direction; éRistence of
the cascade affects the incoming flow by means ehkw
compression and expansion shock waves, which mainly
depends on stagger angle, solidity and suctiorasenprofile.

2. Honor the cascadgeriodic conditionat inlet, namely, the
approaching Mach number and flow direction musteatp
among all profiles.

3. The idealized passage shock wave is attached tde#uidng
edge of the airfoil and meets the suction surfddbe adjacent
one, serving as a “stopper” for information comifrgm
downstream of the cascade.

How these three conditions imply the unique incaerflow can be
rigorously demonstrated applying the characteristethod to cambered profile
with sharped or blunt leading edge profiles (LiobH# and Starken 19749).
Nevertheless, a simple reasoning on flat-plateagiescould intuitive convince the
reader on the veracity of the existence of theumigcidence flow.

$ : 1)

When infinite flow (M, b, ) approaches a semi-infinite flat-plate cascade
with an inlet angles, diverse than the stagger angje two different wave
patterns exist depending on the incidence, posdivaeegative, of the incoming
flow over the first (lowest) blade, as illustrated Figure 3.12. In the case of
positive incidence, Prandtl-Meyer expansion wawa#ered on the leading edge
of the first blade develop in the upper region, acdelerate the flow up tei,
and turn it into the flat plate directiof = ¢ (Figure 3.12 - a). Due to subsonic
axial Mach number, this expansion fan perturbsfine ahead of all the other
blades, which experience a uniform inlet flom {, ;). From a mathematical
point of view, the left-running Mach lines emanfitam the suction surface of the
first blade extend in front of all the other blad&kerefore, downstream of the
first blade, the incoming flow is characterized(by, , ) and approaches all the
other blades with null incidence.

As for negative incidence, at the leading edgeheffirst blade the Prandtl-
Meyer fan is replaced by a compression shock wakgh is in charge to turn the
flow up to 4, = g and decelerate the Mach numbemo(Figure 3.12 — b).
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Figure 3.12: Semi-infinite flat-plate cascade vétibsonic axial inlet-flow Mach number.

As a result, for a semi-infinite cascade the blackss be distinguished into
two groups according to inlet flow conditions:

1. the first blade, which experiences an inlet floln( ®, , 5, ) and sets
the incoming flow condition 1, , 4,) for the remaining blades; it
assures the periodic condition for the entire adesca

2. All the blades except the first one, for which atei flow of (M, , &,)
is applied.

What happens if the infinite flow angle, varies? The first blade adapts the
shock system centered on its leading edge in sweayao turn the flow into the
direction of the flat plate, i.es, =¢g. Even though the angle of the infinite flow
changes, the incoming flow applied to the secondl ah the other blades has
always the same direction, owning to the straidguies.

An infinite cascade has no first blade, so thathis case only 1, , ) is
possible as periodic solution of the inlet flow.eThnique incidence relationship
betweenM; and 4, is of the forms, =g," M,, which is valid as long as straight
plates are used as blade profiles.

It is worth nothing that there is a substantiafedénce in the incoming flow
between the semi- and infinite cascade. In the fiase, the flow could assume
values of (M, , b, ) different than (1, , 4,), at least in the upstream region before
the flow meets the shock wave system emanated thierfirst blade. On the other
hand, the infinite cascade influences the entoes farea upstream of the cascade
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as shown in Figure 3.13: the left-running Mach dineshich emanate from the
front part of the blade suction surface and gaamtf of the cascade, influence the
inlet flow and, consequently, are the reason fa #xistence of the unique
incidence.

Although simplicity of flat-plate profile cascadenoving to S-Shape
supersonic cascades makes the analysis more categliand changes the shape
of the unique incidence curve. The inlet-flow bebawcan be summarized in a
diagram, in which the inlet flow anglg is plotted against the inlet-flow Mach
numberm; . In Figure 3.14 and Figure 3.15 a comparison af-glate and S-
shape cascade is reported. A very detailed exptanaf the unique incidence
phenomenon is reported in several references, eayine(1957) 95,
Novak(1967) 96], Lichtfuss and Starken (197479], York and Woodard(1976)
[97], and Bdlsc and Suter (1986M).

Figure 3.13: Infinite flat-plate cascade at sulisenial inlet-flow Mach number.
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Figure 3.14: Inlet-flow angle boundaries of a-fiddte cascade (Lichtuff and Starken (1974)
[79)).

Figure 3.15: Inlet-flow angle boundaries of a S@hcascade (Schreiber (1998)]].

$ 1 ) #

The unique incidence relation holds within a coafinoperating range of
Mach numbers and static back pressures, for wiiehekistence of an attached
shock wave at the leading edge is possible. Asctipin Figure 3.14 the curve
starts from an inlet Mach number around 1.1 and engoint S, where the axial
Mach number reaches unity. Beyond S point the clesbas no influence on the
upstream flow, thereby the Mach number and floveation are independent,

within certain limits.



72 Chapter 3 Supersonic Compressor Cascade

In Figure 3.16, the schematic flow field well regoces what happens at any
point of the unique incidence curve when the stasickpressure is increased and
the inlet flow conditions are fixed.

Figure 3.16: Supersonic flow in a compressor adsdar different operating points (Bh
and Suter 1986H]).

For as far as the shock wave stays inside the daspassage, this is
condition (I) and (ll) of Figure 3.16, the changestatic backpressure affects only
the shock pattern within the blade passage andpéadie, whereas the upstream
flow field is not influenced. Precisely, the incseain static backpressure forces
the shock wave to move towards the passage entréiheee is a limit in static
backpressure for which the shock is exactly atpghssage entrance (condition
(1) ); a further increase would give rise to aat#ted shock in front of the passage
entrance (condition (111)) leading to the so callatstarded or spill conditignin
which the static backpressure has an influencehenirtlet flow. The unique
incidence does not hold any more and a new reldigtween the inlet Mach
number and flow direction is established and, unlikique incidence, it becomes
parametric with the static backpressure. The opgyatondition (Il) is the
inception of the unique incidence and representhijhest static pressure ratio
obtainable for a cascade working in the uniquedeicce regime at given inlet
Mach number. For lower inlet Mach numbers, the uaiacidence relation holds
until a specific inlet Mach number below which ataehed shock wave at the
entrance passage is no more possible, irrespeofibe static backpressure.
Although a sharp leading edge is concerned, thdirlgaedge wedge angle
requires a minimum Mach number for the shock tatt@ched. Under this value,
the supersonic cascade works in the unstarted mode.

In the unique incidence operations, the cascadbasked. Each point of the
unique incidence curve is characterized by a sigeaifass flow. In fact, the
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variation in static back pressure does not affeetinlet flow, thereby the mass
flow remains unchanged.

$

Generally, a supersonic cascade adopted in a wimiket experiments can be
assimilated with a semi-infinite cascade. The adesdast blade establishes the
appropriate periodic inlet flow conditionM, , #,) for the remaining blades
according to the unique incidence relation. Figduk7 shows a sketch of a wind
tunnel test section.

Figure 3.17: Nozzle exit flow and cascade inleeflvith periodic wave pattern behind
neutral characteristic of first blade (Schreibeal. (1993) P3J)).

The incoming flow could be considered with good ragpnation two-
dimensional, irrotational, and isentropic up to #teong shock wave inside the
blade passage. In fact, supersonic blades arelyshalracterized by thin leading
edges and low front chamber, which minimize totaspure losses related with
the inlet wave pattern. This assumption is corrateat by experimental results as
those reported in Figure 3.18, which justify thetstanding performance of
simplified numerical methods, for instance thosselblaonsimple-wave theoryin
the prediction of the inlet flow region ahead of frassage shock wave.
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Under the assumption of irrotational and isentrojiaev, the inlet region
obeys to thesimple-wave theorgnd, thereby, to the Prandtl-Meyer relation, also
known as Riemann invariant,

by +n(My ) = b +n(M,)
k+1 %° k- 05 Eq. 3.2

0.5
nM)= —= arctan—l(Mz—) - arctanM % 1
k-1 k+ 1

, Which establishes the existence of an invariamntity between two points of
the flow domain, for instance at the nozzle exd ahead of the cascade entrance
plane.

Another consequence of these hypotheses is theeeegsofcharacteristics
curves along which the Mach number and flow angie eonstant. As for
supersonic cascades, characteristics usually héimear pattern as that reported
in Figure 3.17. Among all characteristics, tteutral characteristicemanating
from the front portion of each blade, is a speciaive because it represents the
cascade inlet flow periodic conditiom( , 5,). All Mach lines being upstream of
the neutral inlet characteristic attenuate the kheve arising at the sane profile,
whereas all downstream Mach lines interfere witle thock wave of the
following blade.
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Figure 3.18: Flow angle and Mach number distritruin the entrance region at supersonic
inlet flow conditions (Tweedt Dlet al. (1998) P8)).

When the nozzle flowM, , 4, ) differs from the unique incidence condition,
the first blade adjust the flow with a compressmmexpansion waves system
centered at the leading edge, depending on whethés higher or lower than a
b, , respectively. Both turning mechanism adjust tloavf but with different
repercussions on the assumptions of irrotationadl @&@entropic flow. The
expansion fan accelerates the flow ingaasi-isentropicway, whereby the
compression shock waves deteriorates the flow pwtrti is to prefer the first
mechanism because it guarantees the validity of Eiemann invariant
assumption, which makes it possible to estimate#seade inlet condition given
the nozzle flow {4, , 6, ) and the unique incidence relatienp= f(M,) . Although
the unique incidence condition is not knownpriori, the relationship can be
obtained from theoretical calculations for the iagting Mach number range.
Such unique incidence calculation also should mhelthe leading edge blockage
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effect and the shock losses of the entrance watterpaStarkeret al. (1984)
[99)).

3.5 Cascade Influence Parameters

I ) )

The relative inlet Mach number of a cascade icthtriconnected with the
wheel speed U of a compressor rotor, which indeetthe key parameter behind
high specific energy transfer: the higher the redatnlet Mach number, the
higher the static pressure ratio achievable in mgoméc compressor cascades. The
upper plot in Figure 3.19 shows the maximum statessure ratio achieved with
ARL-SL19 cascade over the inlet Mach number rang8 fio 1.72; corresponding
total pressure losses are reported in the lower @lo the other hand, increasing
static pressure ratio is made to the detrimenttad pressure losses.

Figure 3.19: Influence of the inlet Mach numbertlo® maximum achievable static pressure
ratio and the corresponding total pressure losses.
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;o 0 )

On the unique incidence operating line, the vaaf static backpressure
(cascade throttling) affects only the flow insitie passage, modifying the shocks
pattern and their interaction with the boundaryelaywhile the inlet region
remains unaltered. According to Tweeelt al. (1988) P§], increasing static
backpressure, from moderate to high static pregsties, causes an increment of
losses. In particular, there is a reduction ingheck loss, but with corresponding
increases in the viscous loss, which can be ataibwmostly to a change from
weak to strong suction surface boundary layer seijpar. The losses coefficient
can be expected to be approximately 0.10-0.15. Mane in throttling the
cascade the exit flow angle can vary at most by 3 fileg] and the exit Mach
number shifts to supersonic values for low valuestatic back pressure .

|/ 20)

The Axial Velocity Density Ratio (AVDR) has a stgpimfluence on the total
pressure losses, the flow exit angle and the shpeki®rn. Increasing AVDR
means to increase the spanwise stream tube comeerdgkat, for a supersonic
flow, tends to lower the Mach number in the passtwgeby reducing the shock
loss and the losses from the shock boundary laytaraction region. The
sensitivity of AVDR on total pressure losses slyickepends on the level of static
backpressure, with the loss reduction being momngunced at higher static
pressure ratios. As for the exit flow angle (orwfldurning since the inlet
conditions are unchanged), an increase in AVDR ywwaduces the exit flow
angle and thereby increase the flow turning. Theatian of the shocks pattern
with AVDR is depicted in Figure 3.20.

Figure 3.20: Influence of AVDR on shock wave pasitat constant back pressure (Schreiber
and Starken (19929p)).
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3.6 Relation Between Linear Cascade And Rotor Blade
Element

The experiments performed in wind tunnel are uguzdiried out at unique
incidence condition because it is the condition aihcan be established most
easily in linear cascades with supersonic inlewfld/hat happens to the behavior
of a liner cascade foil when its profile is adopteside a transonic compressor
rotor? Could the experimental test on linear cassde somehow useful during
the design phase of 3D rotors?

Such problem was handled for the first time by Nbltzak et al. [82].
Performance of three airfoil shapes tested in timeacade were compared to the
performance of similar airfoils tested in rotor. particular, a “J” profile, a
circular arc CA profile and a multi-circular arc QW) profile were selected,
keeping the same chord (3.75 in.), same camberdéd), and comparable
maximum thickness. Results for the three bladesshosvn in Figure 3.21. The
cascade results denoted by a solid line are takenigue incidence condition for
different static back pressures till the spill goim symbols there is the rotor
incidence which is essentially constant and in geggdeement with cascade
results for the MCA and CA cascade, at least fatisipressure ratios near spill
point. As for the “J” section, in the rotor thiscdien chocked at a different
incidence condition at all pressure ratio perhapgtie different values of AVDR
between cascade and rotor test, highlighting tharpaunt importance of such
parameter on blade performance. In fact, for simmédues of AVDR both turning
angle and total pressure losses are comparable.

Beyond the spill point, the compressor rotor seémbe able to operate at
higher static pressure ratios than the cascadegegepting a subcritical operation
beyond spill point since the periodicity requiremenautomatically satisfied in
the annular geometry of the rotor.
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Figure 3.21: Incidence versus static pressure fatisupersonic blades. The solid lines show
results for cascades and are all at unique inceleandition, the points for results obtained in the
rotor (Mikolajczaket al [82)).

Also in the work of Schreiber and Starkd®(] a comparison between rotor
blade section and its homologous linear cascade cmaslucted for a Mach
number in the range 0.82-1.1. Figure 3.22 showsdiad pressure loss coefficient
as a function of the inlet flow angle for differeintet Mach numbers. Both the
cascade and the rotor section performance areegloitthe diagram. The overall
loss behavior in terms of both the shape and theesaof the loss curves are in
good agreement. However, the various Mach numlmersred by the rotor due to
its operating condition, in addition with the high®/DR of the rotor tests, could
explain the discordance of the choking angle. imctgsion, the experimental tests
on 2D linear cascade are a convenient tool to gasight on the complex
transonic axial compressor blade element withinnthele operating range.
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Figure 3.22: comparison of total pressure lossfuneft of rotor blade element and cascade
(AVDR of the cascade tests 1.1 -1.17).



Chapter 4
Shape Optimization of a
Supersonic Compressor

Cascade

The DLR-PAV-1.5 supersonic compressor cascade destte DLR by
Schreiber §9 is a very well documented example of blading deiag thepre-
compression mechanisamd it has been taken lagseline geometrior the scope
of this work. The cascade was especially desigoednivestigations on strong
shock-wave boundary layer interaction. The geomistitypical for a tip section
of a highly loaded transonic fan operating withaamal Mach number of 0.6 and a
relative inlet Mach number of 1.5. The cascade toagdrovide a static pressure
ratio of more than 2.0 with little flow turning.

4.1 Baseline Cascade

$ %

The shape of the airfoil employed in the DLR-PA\-tascade is given by
points in Schreiber and Starke®?] and reported in Table 4.1. Unfortunately, in
the open literature pressure and suction sidesep@ted with only 32 points for
each side; moreover, both leading and trailing sdgee missing. It must be
stressed that the lack of information, at leastlierleading edge zone, is of major
concern due to the importance of such region iabéishing the first shock wave,
thereby influencing the overall cascade performanthis matter and its
repercussion will be discussed more in depth irgtitevalidation section 84.2.4.

In order to heal the gaps at the front and rear ghathe foil, leading and
trailing edges were reconstructed with cubic sglisafeguarding the continuity of
first and second order derivatives at the juncpomts, i.e. the extreme points of
the suction and pressure side. As a result, thenstauction of the baseline foil
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looks smooth, as it is clear from Figure 4.2, inickha close-up of leading and
trailing edge is illustrated.

Figure 4.1: Geometry of DLR-PAV-1.5 supersonic easc(Schreiber and Starked?]).

Figure 4.2: Reconstruction of the DLR-PAV-1.5 catzaclose-up of leading and trailing
edge.
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Suction Pressure

x/c ylc x/c ylc
0.00334 0.00702 0.00294 0.00267
0.00631 0.00681 0.00633 0.00233
0.01286 0.00643 0.01034 0.00201
0.03720 0.00518 0.03681 -0.00024
0.07257 0.00372 0.07205 -0.00315
0.10796 0.00277 0.10725 -0.00566
0.14337 0.00242 0.14246 -0.00751
0.17883 0.00325 0.17768 -0.00874
0.21422 0.00510 0.21290 -0.00941
0.24959 0.00750 0.24815 -0.00968
0.28495 0.01017 0.28337 -0.00951
0.32030 0.01296 0.31862 -0.00911
0.35564 0.01578 0.35388 -0.00856
0.39097 0.01862 0.38913 -0.00790
0.42631 0.02138 0.42440 -0.00715
0.46166 0.02413 0.45966 -0.00632
0.49698 0.02685 0.49494 -0.00549
0.53227 0.02912 0.53022 -0.00467
0.56754 0.03078 0.56549 -0.00410
0.60277 0.03166 0.60960 -0.00354
0.63365 0.03171 0.64487 -0.00319
0.66884 0.03064 0.68015 -0.00289
0.70411 0.02834 0.71542 -0.00269
0.73940 0.02560 0.75069 -0.00260
0.77471 0.02250 0.78596 -0.00261
0.81005 0.01942 0.82122 -0.00258
0.84537 0.01644 0.85650 -0.00263
0.88070 0.01343 0.89177 -0.00270
0.91602 0.01054 0.92705 -0.00281
0.95135 0.00763 0.96231 -0.00294
0.97340 0.00576 0.98825 -0.00308
0.99660 0.00380 0.99459 -0.00307

Table 4.1: Airfoil geometry of DLR-PAV-1.5 supersorcascade (Schreiber and Starken
[92)
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$ %

After airfoil reconstruction, it follows scaling dmotation operations in order
to meet the required cascade geometric paramedeesl by SchreibeBf)]. In
particular, chordc, pitch spacings and stagger angle are prescribed according
to Figure 4.3 and Table 4.2.

Figure 4.3:Definition of cascade geometric paransete
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Cascade Geometric Parameters

Chord c 170 [mm]
Picth-chord spacing s/c 0.65
Stagger angle g 148.1 [deq]

Maximum thickness t.../c  0.035

max

LE radius spacing re/c 0.0025

Table 4.2: DLR-PAV-1.5 geometric parameters.

4.2 Flow Solver And Computational Domain

In this section, the numerical model setup is dbed; which comprise the
computational grid and the CFD solver setup.

$ %

The computational grid was carried out by mean8NEYS® ICEM, which
is a powerful tool in the construction of structigrids; moreover, all procedures
can be journalized, making its employment suitalithin automatic optimization
loops.

A multiblock grid with one O-grid around the blades used to simulate the
cascade passage. As depicted in Figure 4.4, theuwational domain extends
from - 1.8&c,, <x < 2.77¢,,, wherex =0 corresponds to the blade leading edge.
The length of the computational domain is sligliigger than the one reported by
Kister and Schreibed Q1] and Sonodat al. [91]. Moreover, the periodic edges
were kept unchanged among all simulations, sinderahations applied during
optimization was very small compared with the spgsidimension.

The grid quality was assessed with the quality iwetoutines embedded in
ANSYS® ICEM CFD [L0Z. All grids developed in this work respect the rost
limits summarized in Table 4.3.

The final grid dimensions are outcomes of the gadsitivity analysis, which
is reported in 84.2.4. As a result, a coarse grigl3& elements were identified for
the optimization, whereas a more refined grid ok Tvere adopted for high
resolution calculations at the end of the optimaraprocedure.
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Figure 4.4: Computational grid topology.

ANSYS ® ICEM Grid quality metrics

min max
Quality 0.5 1
Orthogonal Quality 0.5 1
Equiangle Skewness 0.3 1
Aspect Ratio 4e-04 1
Skew 0.3 1
Determinant 0.5 1
Min Angle [deg] 30 90

Table 4.3: Quality metric limits for grid qualitssessment.

$ *+" 3"
All calculations were carried out by means of AN®YBluent v14 103, in
which the Reynolds Average Navier Stokes (RANS)atigns coupled with a
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turbulence model are solved adopting the finiteusrcd method approach. Two-
dimensional steady state simulations were perforrfed a fully turbulent
compressible ideal gas in double precision. Thenrsatups of the density-based
solver are summarized in Table 4.4.

As for the boundary conditions (BCs)paessure-far-fieldat the inlet with
specification of turbulence intensity and lengthlsavas prescribed, while at the
outlet apressure outleBC was imposed. Blade walls were treated as ponsils.
The turbulence model is the two equation sheasstte@nsport k- model (k -
SST) proposed by Mentet(4].

Convergence was established when all residuals weder 1e-06 and
oscillation of the inlet and exit Mach number, flangle and total pressure were
below a certain threshold.

ANSY SO Fluent solver setup

Formulation Implicit

Flux Type Roe-FDS
Gradient Least squares cell based
Flow

Spatial discretization o )
Turbulent Kinetic Energy Second Order Upwind

Specific Dissipation Rate

Table 4.4: ANSYS® Fluent solver setup.

$ 2.1 )

In order to avoid any kind of misunderstanding, pinecedure employed to
calculate the variables of interest (e.g., inled axit Mach number, flow angle,
loss coefficient) and the survey stations are Hereglustrated.

First, all global quantities, except for total e, were calculated with a
mass-weighted averagairface integral evaluated at the specific suistayions.
On the contrary, total pressure calculation emplotfes area-weighted average
surface integral.

Second, there are two survey stations referredlasand outlet stations. The
former corresponds to the computational domairnt i(fdee Figure 4.4); whereas
the outlet station is reported in Figure 4.3 asi@ta3 and it is located at 28%
axial chord behind the trailing edge.

The loss coefficient was defined as follow:
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Eqg. 4.1
W= Po1 = Po2
Por- B
$$ % " 3 2

In this section, the main outcomes of the grid gty and validation study
carried out on the baseline cascade will be ilaistt. Basically, the sensitivity
study is aimed at obtaining a reliable CFD modelevkaving computational time
and resources. Three grid sizes and two turbuleromiels were investigated.

As for the grid size, the number of elements waseased from 23k of the
coarse grid up to 77k of the refined one; a medjuit size of 33k has also been
tested (see Figure 4.5). A detailed list of theotogy nodes distribution is
reported in Table 4.5, whereas the topology veemlare defined in Figure 4.4.
Elements were added in those region consideredcatritfor the physic
phenomena, such as the zone right ahead of thadmsntrance, the leading
edge, the fore passage zone where the oblique gstahllishes, and the wake.

As for the turbulence models, the one equation aggr developed by
Spalart and Allmaras (SALDY and the two equation shear-stress transport k-
model (k -SST) proposed by Mented(4 were applied to each of the three
grids. For both models, the first grid spacing nalrto the blade surface was fixed
to 0.0008 [mm] in order to yield values gf <1 and 15 nodes inside the physical
boundary layer were guaranteed.
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Coarse Medium Refine

Variable description Topology Var. c1 oo c3
Inlet 1 nl 5 5 10
Inlet 2 n2 27 36 65
PS fore zone n3 30 35 60
PS middlel n4 16 20 35
PS middle 2 n5 15 19 35
PS aft zone né 40 53 60
Outlet n7 15 20 25
Trailing edge n8 18 20 35
Spanwise lower n9 15 15 27
Leading edge nlo0 20 25 35
SS fore zone nll 33 40 50
SS middle ni2 25 30 65
Spanwise upper nl3 16 16 27
O-grid layers - 46 53 74
O-grid GrowthRate - 1.2 1.16 1.1
O-grid height first layer [mm] - 0.0008 0.0008 0.0008
Total nodes 23k 33k 77k

Table 4.5: Topology parameters adopted in the ggithitivity study. The variables
“Topology Var.” are defined in Figure 4.4
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Figure 4.5: Computational grid of the baseline adscpassage. Comparison of three
different grid sizes: an overall view of the passégp), a close-up of the leading edge (middle)
and a close-up of the trailing edge (bottom).
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The CFD results were compared against Schreibeqerament PQ], in
which the baseline cascade was operated at unmgence condition with an
inlet Mach number of 1.45 and a static pressur® it 2.2. Similar numeric
calculations were also carried out by Schreid@®1] and Sonodat al.[91]. It is
worth nothing that Schreiber itself suggested thatbest way to reproduce the
flow field of a supersonic cascade is to set thie gnessure and the linear stream
tube thickness variation (AVDR) in such a way thia boundary layer loading
within the interaction region should be nearly itead for the experiment and the
numerical simulation J01]. In other words, the numeric boundary conditions
could slightly be adjusted with respect to the expental ones, in order to obtain
the best agreement of shock waves layout betweeremecal simulation and the
experiment. Since the AVDR is not a parameter in wumerical model (i.e.
AVDR = 1.00), only the Mach number and the statack pressure could be
modified. The best results were obtained for aetiMach number of 1.456 and a
static pressure ratio within the range 2.20-2.2ResSE values are also in good
agreement with the analysis operated by Soebddh [91].

In Figure 4.6 a sketch of the shock wave pattermiegns of the magnitude
of density gradient is reported for all six configtions (3 grids times 2 numerical
models), whereas in Figure 4.7 the experimentdkpabbtained from Schreiber
[9]] is illustrated. The pre-compression shock wavgioated by the coalescence
of the left-running characteristic, which are entantgafrom the concave forward
portion of the blade suction surface, is well cited by both turbulence models.
However, it seems that kSST gives a better resolution of the intersectemon
of the pre-compression shock with the bow shockth&sgray scale indicates, the
pre-compression shock is weaker than the obliqgegee shock, but it makes the
difference by reducing the Mach number ahead ofotiigjue shock wave from
1.75 to 1.35 (see Figure 4.8). The oblique shockenwdeparts from leading edge
and meets the adjacent blade at about 60% of ttiosusurface; the shock is
strong enough that the interaction with the boupdayer causes its separation
and a peculiar lambda shock establishes aboveefteation region. The lambda
shape is much well captured by the-8ST model with the refined grid rather
than SA computation. On the other hand, it seemtstiie Mach reflection branch
is peculiar only of the SA calculation, being thadW reflection just a blend gray
band in the k-SST visualization, even with refined grid. Moregvine slope of
the oblique shock is more prominent for the SA tthenk -SST.
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Regardless the turbulence model, the isentropichMaamber distribution
reported in Figure 4.8 is not affected at all by gnid size (Figure 4.8), except for
the resolution around the shock wave peaks. Fumibier, the experimental
behavior on the suction side from 22% to 50% ofrdhcould be caused by
experimental disturbances, which were reported tyr&Sber and Starker®?),
originated in the sidewall region of the test smttand faintly influencing the
blade mid-span test section. Except for this portibhe k -SST seems to be in
very good agreement with the experiments, whereAs o®erestimates the
isentropic Mach ahead of both the shock wavesdbkgue and quasi normal, see
Figure 4.7) and it is even in pore accuracy imesting the shock position.

In Figure 4.9 and Figure 4.10 the pitchwise disttitn of exit flow angle and
loss coefficient are reported. The experimentah aetre taken from Kiisters and
Schreiber 101]; unfortunately, the data is referred to the hagetascade tested
at different boundary conditions, i.e. inlet Maalmtber of 1.43, pressure ratio of
2.19 and AVDR 1.06. As a result, such data couldekploited only for a
gualitative comparison. Effectively, the loss camént curves were aligned on
the peak, and also the exit flow angle were ordsmelarly. As for the exit flow
angle, the variation inside the wake is not captwteall. Such behavior seems to
be related with the mixing phenomenon that is ieh#y unsteady and not
predictable by a steady state simulati@@]]. As for the loss coefficient, the k
SST captures the “bulge” patter on the right sitiéhe bell that is originated by
the shock wave boundary layer interaction (detactimtdambda shock). On the
other hand, from the wide bell base it can be refitithat the SA diffuses the
wake much more than the §SST; furthermore, there is no track of the “bulge”
pattern.

The variations of cascade global performance asnatibn of grid size,
turbulence model, and static pressure ratio, anensarized in Figure 4.11. The
lack of knowledge of the leading edge geometry @dug responsible for the
important difference of the inlet flow angle, theegiction of which is
overestimated of about 0.5 [deg] regardless gdd and turbulence model. As a
result, also the outflow angle is shifted to highatues than experimental one,
however the mean flow deflection is well capturgdtire SA model and slightly
less by the k-SST. As for the loss coefficient, the ST estimation is in good
agreement with the experiment, being the variatib.5% against the 5% of the
SA model. It is worth nothing that the loss trersl aafunction of static back
pressure is opposite for the two models. The reasfothis depends on the
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operating condition of the two cases. From a nurakmoint of view, it seems
that the k -SST case is beyond the spill point, in contrashwihat is happening
at the SA case, which indeed is working within threque incidence range but
with low static back pressure. This hypothesisdeaborated by tests operated
applying the Unique Incidence Control Loop (UIClg €FD calculations, in
which the cascade is forced to work at the unigeelence point. The increase of
static back pressure affects the-8ST performance, which already was working
beyond the unique incidence condition and nowlisgid to work at an even more
unfavorable condition, whereas pushes the SA caaeento the unique incidence
condition, this explaining the increase in casacsftieiency.

Overall, the CFD model based on the-8ST seems to well capture and
predict in good accuracy both the local and glgeaformance. The sensitivity on
the grid dimension suggested that for optimizapompose the medium or even
the coarse grid could be adopted, and that thee@fone should be used for
detailed analysis after the optimization is over.
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Figure 4.6: Density gradient magnitude for the baseascade evaluated via CFD.
Comparison between different turbulence modelsgaittisizes. Same gray scale among images.

Figure 4.7: Experimental shock wave pattern forltheeline cascade at near design

condition, M1=1.44, AVDR 1.01 anf), 2.21, obtained from Schreibed.
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Figure 4.8: Isentropic Mach number distribution othe baseline cascade: the-8ST
against SA turbulence model for different grid size

Figure 4.9: Pitchwise distribution of the outlesvil angle for the baseline cascade: the k
SST against SA turbulence model for different giizes. The survey section is at 28% axial chord
downstream the trailing edge
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Figure 4.10: Pitchwise distribution of the lossfficeent for the baseline cascade: the-k
SST against SA turbulence model for different giices. The survey section is at 28% axial chord
downstream the trailing edge.
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Figure 4.11: Global performance of the baselineaas as a function of grid size, turbulence
model and static pressure ratio. The inlet Machlmemis 1.456 and the static pressure ratio 2.21
for all calculations.

4.3 Unique Incidence Control Loop (UICL)

The unique incidence (Ul) point is a well-definedeaating condition at
which supersonic cascades could gain the bestrpafae in terms of cascade
loss coefficient, for a fixed inlet Mach number.€rbl point is within a flow
regime where there exist a strong relationship betwthe inlet Mach number
M, and the inlet Mach angle,. The reader is referred to 83.4 for a detailed
explanation of Ul condition.

The Unique Incidence Control Loop (UICL) is in cbarto control the
boundary conditions of CFD computation bringing dascade to work at its Ul
condition, for a prescribed inlet Mach number. THEL were developed in C
code and linked with ANSYS® Fluentt()3 by means of the User Defined
Function (UDF) library.

$ 7 1)68

The need for the UICL originates directly from ihgossibility to prescribe
a specific value of i1 , , »,) at the inlet boundary due to the physical behaofo
a supersonic cascader(>1) with a subsonic axial Mach numbem {, <1), for
which the information can travel upstream alonghbdirection, thereby allowing
the cascade to affect the incoming flow. Approaghine cascade, the flow at
infinite (M, 4, ) is deflected till (v , , »,) by a shock wave system released from
the cascade fore region; deflection is essentiarder for the incoming flow to
honor the cascade periodicity (83.4). This is #son why {1, , 5,) cannot be
treated as a boundary constraint for the simulatoart must be considered as a
result of the calculation.

From a numerical point of view, thpressure far fieldadopted as inlet
boundary condition allows one to specify the inamgninonlinear supersonic
Riemann invariant +n(M) = cost through the prescription of the flow at infinite
(m,, &, ). The Riemann invariant is the joining link betwethe infinite and the
inlet boundary. Owning to the constancy of the Riaminvariant in the entire
inlet region, the UICL can affectM , , »,) by tuning (w, &, ). Be aware that a
variation of the onlym, would affect the Riemann invariant, which, in turn
would have repercussions on baih, and 5,. A novel recursive procedure was
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developed to find the correct values fof (4, ) in order to achieve the required
M , , avoiding trial and error approaches.

$ 16" #

For a given cascade geometry and total quantitiéiseainlet boundary (i.e.,
P, andT, ), there are only two variables which influences thl point: m , (or
b,) and the outlet static pressupg. This holds under the hypothesis (1) of
supersonic inlet flow with subsonic axial Mach nenland (2) the cascade is
startedand does not work igpill conditions.

The UICL is based on a two-step strategy:

1. First, a very low value forp, is prescribed at the outlet; in such
condition, the inlet flow domain is completely im@mdent from the
static back pressurg, and the UICL can search, regardless for an
appropriate value of\,, &, ) in order to achieve the prescribed At
this stage the solutionv(, &, ) is unique and sets the starting point
(™, , by) for the following step.

2. In the second step, the main goal is the identiboaof a suitable
value forp, in order to push the cascade to operate at treokdition.
Starting from the conditionn§ , , 6,), p, is increased until a variation
of the inlet quantities 1 , , 4,) is detected. The operating condition
just before the inlet flow variation is observetjsi regarded as the
cascade Ul condition.

$ 1)6)

The UICL code implementation retraces #tatus machin@aradigm. At the
end of each CFD iteration, a UICL iteration begittee CFD code transmits the
flow domain to the UICL (Figure 4.12), which appliepecific actions based on
the analysis of the flow domain and, when necessarydifies the domain
boundary conditions; the UICL iteration ends retogrthe flow of control to the
CFD code, ready to start a new CFD iteration.

The code is divided into two parts, the Mach Lodat& Machine (MLSM)
in Figure 4.13 and the Unique Incidence Status MeclUISM) reported in
Figure 4.13 and Figure 4.14, respectively.

The status 'S-#‘,which is specified at the right-top corner of edtbck, is
stored and retained among UICL iterations, andedriyICL to the appropriate
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block at the beginning of the next iteration. Besilde status variable, there is the
Restart From Status (RFS) variable, which is ant@aaél memory for the status
machine. RFS is used in those circumstances inhadicertain block needs to
differentiate its own outpustatus,depending on the calling block. For instance,
the CFD CONVERGENCE TESdlock in Figure 4.13 implements such strategy:
when the conditions inside the block are satisfige outputstatus changes
according to the value of RFS.

Figure 4.12: Framework flowchart of the Uniqueitience Control Loop (UICL).
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Figure 4.13: Flowchart of the Mach Loop Status Mael{MLSM).
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Figure 4.14: Flowchart of the Unique Incidence &a¥lachine (UISM).
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In the Mach loop status machine, there are six rolicks (Figure 4.13). The

most important are hereafter described:

a. Tuning (My,4,) block: (My,4,) are tuned in order to meet the

required M. As shown in Figure 4.15y, is kept constant and
equal to the target value during all the iteraiiwrecess, whereas
b, is adjusted in such a way that, iteration afteraition, m ;
approachesMie . How 5, is updated is essential for this
procedure. According to the analysis of supersorascades
presented in 83.4, it seems a fairly strong hymtheto
approximate the Unique Incidence Curve to a lineadel, at
least within a neighborhood dhae.

The curve linear model is defined by the last tvaints (m,, 5,)
evaluated via CFD, circle symbols in Figure 4.15itération one,
the initial point(m,, 4, ). IS arbitrarily selected, bearing in mind
that », , therebys, , is relatedwith both the geometry of the
leading edge profile and the inlet Mach number. Wheration
one is completed, the issue of a second CFD psirdvbided
providing a fair value of the curve slope. As auleshe dashed
line in Figure 4.15 represents thgriori unique incidence curve,
being the slope value based amriori knowledge on supersonic
cascades rather than related to the specific casaatler
examination. The intersection of unique incidenaese with the
vertical line passing through the target Mach nunidbentifies the
new infinite condition for the next iteration. Frothe second
iteration on, only CFD results are used to build finear model.
The iterative process is carried on until a tolegan, - v .| wi,,
on the inlet Mach number is met. In the experimethts iterative
process usually converges after only four or fiegations with a
tolerance of 5.0E-05.

. CFD convergence test blockwhen the boundary conditions are

modified, there are a certain number of iteratinasded in order
to detect the perturbation on the flow domain. Tikigven more
true when the attention is paid on the inlet queestiand the
variation of boundary condition happens at the etuflection.
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Depending on grid dimension, flow filed Mach numb@&@FD
relaxation coefficients, and all those intrinsic malation
parameters, the number of iteration could vary fsmme dozens
to some hundreds. Low residuals and flat patteth@fariable of
interest are necessary conditions, but not sufficte guarantee
numeric convergence. By adopting smart locationsriamerical
probes”, it is possible to understand when the tgwiuis
completely propagated within the domain, thus tastically
reduce the total amount of iterations.

c. Spill Point Test at this point, MLSM has identified a suitable
value for(my, 4, ) in order to meet the required Mach target. The
main hypothesis is that the initial static backsgrege is low
enough guarantee a chocked flow condition insiéectscade. In
such situation, the inlet field is completely indedent from the
static back pressure.

The spill point test block is activated after thatis back pressure
is diminished, and it controls the variation of th&et flow angle.

If the test is positive, the back pressure is dishied and the
Mach Loop is started again.

The simplest solution would have been to adoptrg M@v value

of static back pressure; however, experiments sigdgkat a such
low value could induce numeric instabilities, aadefor certain
cascade geometries, besides the large amount of iteFRions

required to reach high pressure ratios typical loé unique

incidence operations. The spill point test blockrdduces low
complexity in the algorithm, while adding robusteeshe

searching procedure and keeping to a minimum tHe i@Fations.
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Figure 4.15: Procedure for tuninbl¢, 6y ) in ordeathieve a prescribei ;

$11

1

The Unique Incidence Status Machine (Figure 4.34fomposed by two

main blocks:

a. BC Spill Point Control: this block is in charge to increase the

static back pressure in order to force the castadeork just

before the spill point; this is the condition in iafn the shock
wave detaches from the leading edge and the irdeienthe back
pressure over the inlet region becomes remarkabteque

incidence relation does not hold any more.

The low back pressure coming out from MLCL is iraged by
steps. At a certain point, the cascade overconeesgitl point for

a specific value of the back pressure; such vauet acceptable
because pushes the cascade beyond the spill puinsa it is

regarded as a superior limit for the following bapkessure
attempts. This superior limit and the last accdptélck pressure
represent the starting points for a bisection nbtivehich ends
when a tolerance on the pressure ratio is achieved.
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In the experiments, the tolerance was set to 0.08#tich
represents the resolution on the Ul pressure rdm. such
tolerance, the number of back pressure attemptaracend ten.

b. CFD Spill Point Control: when a high value of static back
pressure is imposed, the cascade could overcomspiliepoint
and even reach its maximum pressure ratio, beyohidhwthe
only feasible solution is for a lower Mach numbada different
inlet flow angle. In this situation, after convenge is obtained,
even though the static back pressure is decreasttk tprevious
value, anhysteresisphenomena appears: the cascade will not
return to the previous operating point. In face tascade is now
operating in its subsonic regime or, in other wottle cascade is
unstarted
The CFD control on the spill point monitors theiadon of the
inlet flow angle and roughly stops the CFD simwativhen such
variation overcomes a prescribed tolerance. In g, the time
spent on a worthless numeric solution is avoided, diill the
information of the back pressure upper limit isaneéd and
exploited in the bisection method.

It is worth noting that experiments reveal a gneaiation in the
margin of back pressure beyond the spill point agndifferent
geometries.
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The UICL were employed in the CFD calculation of thaseline cascade for
both turbulence models, i.e., SA and the&ST. In the previous validation phase,
the numeric boundary conditions were tuned in otdeachieve good agreement
with the experimental shock wave pattern and teatispic Mach distribution
over the blade surface. In principle, there is gograntee that such boundary
conditions are specifically those for which the czale operates in its unique
incidence condition. Here, the inlet Mach numbekept constant equal to the one
adopted in the validation phase (i.e. 1.456), wthke static back pressure is free
to vary in order to be tuned by the UICL.

The main results in terms of shock wave patternis@ctropic Mach number
are reported in Figure 4.16 and Figure 4.17, raspdyg. The oblique shock wave
slope is now similar between the two configurati¢tiss is not the case in the
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validation phase), this is confirmed also by theifon of the isentropic Mach
peak around 60% of the blade suction side. The rddfarence in the shock
pattern can be appreciated in the strength andi@osif the “quasi normal”
shock, which is stronger for the KSST than the SA model and it is located at 28%
of chord against 18% of the SA case. As for théicsfressure ratio needed to
reach the unique incidence condition, the &ST works with a 2.186 pressure
ratio compared to a 2.269 of the SA. The formerenpedicts the experimental
pressure ratio of -1%, while the latter overestesdhe experimental by 2.7%. On
the other hand, the loss coefficient is capturet wery good accuracy by the k

SST with a discrepancy of 0.5%, while SA differsebg.7%.

Figure 4.16: Magnitude of the density gradient. Gillrulation of the unique incidence
condition by means of the Unique Incidence Contamp (UICL). The k -SST (left view) and
the SA (right view) were adopted as turbulence rt®de
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Figure 4.17: Isentropic Mach number distributioreothe baseline cascade at unique
incidence point: the k-SST against SA turbulence model.

4.4 Parameterization

Shape deformations were accomplished by superimgoai displacement
field to the baseline geometry points. The mainaatixge lies in the simplicity of
such approach because it does not require the »xpm@tion of the baseline
geometry with the curve related with parameterargtior instance a spline with
control points. This does not mean that the basegje@ometry is not approximated
at all, but that the approximation could be mad# any kind of curve, complex
splines with hundreds of control points or highedes curves, regardless the
purpose of the parameterization itself. The basel@gronstruction could be so
accurate that it is like to include the exact shaipine baseline cascade within the
design space. Thereby, the parameterization issémton the displacement field,
which defines thelx anddy displacement for each point of the baseline profih
this work, B-spline curves were selected to paranm the displacement field.
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A B-spline curve is a piecewise polynomial curvédirterl by a set of control
points which the curve ordinarily does not integtel The reader is referred to the
work of Mortenson 106 for a detailed explanation of B-spline curves dhelir
numeric implementation. Hereafter, the main forraidee reported. The B-spline
curve is defined as follows:

n

p(u) = ) PB,(U Eq. 4.2

parametric in the natural parametgrthe curve p(y) is defined by the control
points P and the basis functions polynomidﬂ;p(u), which depends on the
specific i-th control point, but its degreas independent on the number of control

points. The basis functions are defined iteratively

=1 ifti£U£ﬁ+l i
"' =0 otherwise _
-1 t _
a,p(u) = (u t) va-l(u) +( i+p u) B{Lp_l(u) Eq "
fpa bipm G

wherel are the knot values that relate the parametriabterul [0,/ 1 $ 3
to the control pointsﬁ’. In the case of a uniform B-spline the knot valaes
equal distributed with an appropriate multipliciti/the extremes:

t =0 if i<p
t=i-p+tl if BIiEn Eq. 4.5
t=n- pt2 if i>n

Compared with Bézier curves, B-spline curves have main advantages:
first, control points do not influence the curvelglly, but affect only a neighbor
region (ocal contro); second, the curve degree does not depend amuthber of
control points, so adding control points to augnteet control on deformation is
always possible.
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A specific MATLAB® [107] application with graphic interface were
developed with the goal to easily import, handle aarameterize a generic 2D
airfoil. The rough data is manipulated in such aywa build a very detailed
closed splinepoase(u), which loops from the trailing edgai{0) forth to the
leading edgeu=1) and back again to the trialing edge=Z). A linear relation
between the parameterand the curvilinear length of the pressure andi@uc
sides were imposed, and a uniform distributionradtk were used.

$$ *

The displacement field were modeled by a cubic Bispcurve pdispl(u),
which defines thelx anddy displacement for each point of the baseline. Sintd
the baseline B-splinePyqy, (U) loops around the foil and the parametdrehaves
in the same way, yielding a perfect match betwebe two B-spline
representations. As a result, the following canheatatically represent a generic
deformed geometry:

pmod(u) = Q)ase(u) + pdisp(u) Eq. 4.6

The main difference betweep,(u) and pyg,(u) is the number of control
points used. The former has hundreds of contrahtp well approximate the
baseline geometry, while the latter has as manytraonpoint as the
parameterization requires.

It was arbitrarily decided to prevent deformatidntite leading and trailing
edge profiles during optimization. In order to olieysuch constraint, inactive (or
fixed) control points were added in the leading dradling edge regions, as
illustrated Figure 4.18. In this way, the locallirghce of the active control points
on the not deformable region were avoided.
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Figure 4.18: B-spline control points: active cohpoints in green, while fixed ones in red.
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Feasible geometries are not guaranteed by the gmplt of the
displacement field. For instance, pressure andmusides could even intersect
depending on the control points range, at leaghénfore portion of the blade.
Curbing the control points range in order to avimittrsection extremely tapers
the search space; these geometries were justaeject

On the other hand, tapered fore portion geometsaigs exceptional to
accommodate the incoming flow, but less apprecibtethe manufacturing. The
minimum thickness and the covered area in the 3%8b of chord were monitored
during optimization.

4.5 Formulation Of The Optimization Problem

The aim of the multi-objective optimization problewas to minimize the
two-objective function:

F(P)=(f,f,)=w-p.) Eq. 4.7
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whereP is the vector of the optimization parameters arigien variables of the
design (i.e., the B-spline control points of thepificement field), is the cascade
loss defined in Eq. 4.1 ang. the static pressure ratio.

The constraints complete the problem formulation. pAnalty function
approach is adopted to handle geometric constraihis penalty tern@ depends
linearly on the level of violation of the constrin

Q=(Q Q)= (r.r)x aG

i=1

G = max{ 0k, - t%limi(} Lgie = = 9 Eq. 4.8
Gz = max{ O’A’;S%- A3>5%Iimi} Aks%nmit: - 10¢
wheret,,, . IS the lower bound of the minim thickness percgataariation,

A...imi 1S the lower bound of the percentage variatiorthef covered area from
leading edge till 35% of chorda is a linear weight andr,r,) are the
transformation coefficients in order to properlylgcthe violation to the objective
functions.

The reader is referred to Appendix A for a briefieev of the optimization
framework adopted.

4.6 Discussion Of Results

Two multi-objective optimizations were carried diyt means of the Kriging-
assisted genetic algorithm GeDEA-II-K (see 8Cha@erin the first analysis,
namely OPT1, the 14 design variables having comtfdhe forepart of the foil
were activated, while in the second one, namely Z)Rfie entire geometry was
allowed to be modified by the 21 degrees of freedembedded in the
parameterization. Although the CFD model was coragdsy only 33k elements,
for each computation 1.5h was required in ordeattain the Ul condition. For
both the optimizations, a population composed bynadviduals was evolved for
12 generations.

Figure 4.19 shows the Pareto-optimal front of baptimizations. The OPT1
accounts for more than 95% of the losses reductachieved in OPT2,
corroborating the fact that the forepart of thefodirgeometry is of utmost
importance when supersonic flows need to be accatatad.

As far as the OPT1 is concerned, two curves arerteg in Figure 4.19: the
green front takes into account designs that styorigspect the geometric
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constraints, while the red front is constructedludimg designs that did not
completely fulfill the constraints, but with a weédvel of violation. Since the
constraints violation is representative of airfdisturing a tapered shape in the
first 35% of chord, it is clear why the red fronbutd extend its left branch
towards regions of lower losses compared to thergh@nt. Even with the second
analysis such levels of losses (i.e., point Bl)d¢owt be reached.

On the other hand, the blue front in Figure 4.1€ereeto OPT2 and,
compared to OPT1, it enlarges the covered areartblangh static pressure ratios,
whereas little improvement in loss reduction isededd.

The results are presented by means of total preedeases contours, Mach
number contours, density gradient magnitude costqwhich resembles the
Schlieren pictures) and isentropic Mach numberrifistion. The few optimal
points reported in Figure 4.19 are taken into antéor comparison.

Figure 4.19: Pareto-optimal front.
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The disappearance of the strong shock wave bounidger interaction
explains the greatest improvement of the loss aoefit among all the Pareto
designs. The isentropic Mach number distributiomgyfe 4.20) reveals that
somehow the optimal designs are able to lower tkeming shock wave Mach
number, which is reduced from 1.5 for the basaiin&.32-1.38, and slightly shift
toward aft (i.e., from 58% of chord of the baselio&2%) the impinging point of
the passage oblique shock over the suction sidewAr pre-shock Mach number
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reduces the passage shock strength and the shoekbwandary layer interaction.
This phenomenon will be analyzed ahead. Althougth wiifferent degrees of

reduction, the flow reacceleration on the pressige of the baseline is damped,
thus the second shock wave is weakened; in additi@position of the shock

moves towards the leading edge at about 20% ofichor

The optimal designs featuring a higher pressuresdielong to the OPT2
analysis, in which the entire airfoil was modifiedluding the rear part. The flow
is first decelerated to subsonic velocity in theefrart of the passage and then it is
deflected furthermore in the rear part, thankshincreased exit solid angle (see
Figure 4.23). As a result, between the 60% and 45ée Figure 4.20) the
isentropic Mach number makes evidence of the higiating in agreement with
the flow pitchwise distribution of the outlet flolmngle (see Figure 4.21).
Moreover, OPT2 optimal designs have the maximuktiess location shifted aft
around 68% of chord, while the maximum value igytgly higher than the
baseline (see Figure 4.24).

As the pitchwise distribution of the loss coeffities concerned ( Figure
4.22), it can be observed very well the absencief'bulge-pattern” caused by
the boundary layer detachment, which is the reetilthe strong interaction
between the passage oblique shock and the boutalsy on the suction side
(lambda shock). Generally, the main differencesvbet optimal designs lay on
the region outside the “bell”. However, it is siteguhow the B1, B2 and Al can
achieve slightly lower losses under the “bell”. Téwplanation of such behavior is
not simply related with the tapered shape of thi@iaforepart (i.e., this could be
true only for B1 and B2 which do not respect thergetric constraint), but must
be searched on the interaction between the bowkskace in front of the leading
edge and the inlet flow domain. It will soon beatle
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Figure 4.20: Isentropic Mach distribution over Ra+eptimal front designs.

Figure 4.21: Pitchwise distribution of the outliet¥ angle for the Pareto-optimal front
designs.

Figure 4.22: Pitchwise distribution of the loss fficeent for the Pareto-optimal front designs.
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Figure 4.23: Suction and pressure side of the Bamgtimal front designs.

Figure 4.24: Geometric features of the Pareto-cgitinont designs.
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Two main mechanisms are responsible for the prekshdach number
reduction: the reduced flow acceleration on thdisacsurface near the leading
edge and the pre-compression mechanism.

$) "89 89

All the optimal designs have a lower negative iti@nber (see Figure 4.24)
that results in a decreased incidence flow anglerelver, compared to the
baseline, although the camber line continues tee hhe “bowl shape” (i.e., the
camber has negative tangent from 0% to 15% of chortthen increases toward
positive values), its depth is less pronounced @ the acceleration of the
incoming flow is restrained. Because of both trduped incidence and the softer
“bowl shape”, the flow experiences a limited accaien, which can be
appreciated in both the isentropic Mach numberitigion (see Figure 4.20) and
in the Mach number contours (Figure 4.26 and Figuz8).

Following the flow development on the suction sogfaafter the expansion, the

flow enters the region were the pre-compressiorhaigism is established. The

variation of the suction surface slope impose$éofiow a continuous deflection,
which is realized by compression Mach lines of ws@a&ngth departing the

suction surface. The baseline geometry (

Figure 4.25) is designed in such a way that thesehMines coalescence
towards a narrow region (i.e., vertex of the corapi@n fan) that is the result of
the intersection of the Mach lines with the leadauge bow shock of the previous
blade. Approaching the vertex, the contributioringf whole Mach lines becomes
significant and gives rise to a finite, but stibtrtoo strong, compression wave.
However, the intersection of compression Mach lingh shock waves is not
isentropic and, as a consequence, the compressiomduces a strong deficit in
total pressure that remains confined in a narroip stlledlinguina. Thelinguina
departs from the intersection point and goes dawast (see close-up of the
baseline geometry leading edge Figure 4.27). Inbdéeeline, thdinguina total
pressure loss is around 8%, which is remarkablepaoed to a 4% of mean total
pressure loss occurred through the passage oldigpek.
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The modifications of the camber “bowl shape” chatigedirection of the Mach
lines departing the suction surface, lines thatiooe coalescence towards a
narrow region. The “vertex” of the compression fetomes a wide spread region
that covers a wide part of the bow shock or pdiomgards directions beyond the
leading edge of the previous blade, depending emitimal design considered.

The simulated Schileren pictures reported in

Figure 4.25 and Figure 4.28 show in dark grey sgfreariations of density
that correspond to compression or expansion regtbasnformation of the Mach
contour resolve the ambiguity.

In the baseline configuration, it is not clear tdhvaw extent thdinguina
induces the formation of the lambda shock systarhjsoclear from the close-up
of Figure 4.27 that the existence of a low totagsure strip exactly at the top of
the lambda shock system has some drawbacks. Toeariee question further
investigations are required.

As far as the pressure side is concerned, theimegadbpe does not vary near
the leading edge (see Figure 4.24), contrary tostlaion side where the slope
had a jump of +2 [deg], thus leading to a wedgdefayger than the baseline.
However, this effect is mitigated by a faster slap@ease that produces a lower
acceleration of the flow and a very weak seconalskizave. The slope has small
variation among optimal design, at least until 5386 of chord, exception made
for B1 and B2 designs that do not respect the ga@r@nstraints and feature a
tapered shape.

$) " 89 . S

Proceeding along the suction surface, the bashhsea flat suction surface
slope (see Figure 4.24) between 28% and 48% ofdc{pmsition of the passage
obligue shock wave), thereby no more Mach Lines geeerated and the
supersonic Mach number remains more or less cdanatannd 1.38, before a
remarked acceleration up to 1.48 just before tloelshOn the other hand, all the
optimal designs features a peculiar profile of suetion surface slope, which
continues to increase and, therefore, additionattMenes are generated and thus
the flow is furthermore decelerated. The Mach liaesquasi-parallel one another
and shatter on the passage oblique shock wavea]iagany influence outside of
the cascade passage. The flow reaches the shoak inau at the 57-62% of
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chord with a Mach number of 1.32-1.38, dependingtio&® optimal design
contemplated.

$: )y 1)

The Unique Incidence (UI) condition introduces d@Har degree of freedom
in the optimization process related with the passsgpck wave obliquity. When
the static back pressure is increased, the pasddigele shock wave modifies its
obliqgueness, tending to be more “normal’. The shookvement can be
assimilated with a rigid rotation around a pivotrpdi.e., the hinge of the shock)
located nearby the leading edge. The rotation caceed until the Ul is achieved,
i.e., until the position of the shock wave does disturb the incoming inlet flow.
Precisely, the passage shock influences the shap@asition of the bow shock
lower branch, which, beyond a certain rotationngraits this variation at the
upper branch of the bow and, from there, the distace propagates in front of
the entire cascade. It can be observed that optegtns with high pressure ratio
(HPR) have passage shocks much more “normal” thaset performing a low
loss coefficient (LLC). In fact, as described by tlosses of Figure 4.27 and
Figure 4.30, the wakes released by the passag&ssloddHPR designs have a
higher total pressure deficit, even though the ghreck Mach distribution is
comparable with that of the LLC. It seems that ¢hes a limit in the pre-
compression mechanism, probably due to the fixestame solidity, beyond
which the pre-shock Mach number cannot be decre&sgldermore. In this
condition, the designs that can support a greatation of the shock wave are the
HPR, whereas those that are more susceptible tshihek rotation flow into the
LLC designs set. From this point of view, we caly $slaat the Ul condition
introduces a tradeoff between HPR and LLC.

The mechanism behind the maximum rotation of tres@ge shock wave is a
complex phenomenon related with both the bow sloéiont of the leading edge
and the location of pre-compression fan vertexnftbe Mach number contours
(Figure 4.29) and the numerical Schlieren visuéibres (Figure 4.28) of HPR
designs as A3 and C5, it can be inferred that ther@ noticeable shape
discontinuity in the wake front where the bow shaodets the passage shock: this
point turns out to be the hinge of the passagekshacaddition, a very short
expansion/compression branch departing the pressuface at 0.5% of chord
attaches to the hinge point. This interaction ginies to alinguina characterized
by a very low total pressure loss. It seems that lihguina establishes a
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decoupling effect between the passage and the hogeksletting the former to
rotate around its hinge for greater degree witladfgicting the shock bow.

The tough questions is in which manner the aigeibmetry can control the
existence of the expansion/compression branch,tlaactby the Ul condition.
There is no strong evidence that suggests thabtusrrence is somehow related
with the pressure surface profile only. We thinkttthe explanation should be
searched in the pre-compression mechanism. It sdébatsthe HPR designs
features a higher Mach number ahead of the bowkshmwer branch and a
weaker pre-compression fan near its vertex.
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Figure 4.25: Density gradient magnitude of the OBptimal designs. Passage global view
(top) and a close-up on the leading edge (bottom).
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Figure 4.26: Mach number contours of the OPT1 ogitiesigns. Passage global view (top)
and a close-up on the leading edge (bottom).
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Figure 4.27: Total pressure loss contours of th& Déptimal designs. Passage global view
(top) and a close-up on the leading edge (bottom).
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Figure 4.28: Density gradient magnitude of the OBp&mal designs. Passage global view
(top) and a close-up on the leading edge (bottom).
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Figure 4.29: Mach number contours of the OPT2 ogitiesigns. Passage global view (top)
and a close-up on the leading edge (bottom).
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Figure 4.30: Total pressure loss contours of th& Déptimal designs. Passage global view
(top) and a close-up on the leading edge (bottom).
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4.7 Conclusions

The DLR-PAV-1.5 supersonic compressor cascade wasiaed following
a multi-objective approach where loss coefficiend &tatic pressure ratio were
the two objectives to be optimized. The optimizatwas carried out by means of
the novel Kriging-assisted genetic algorithm GeDEK- (8Chapter 2) coupled
with CFD solver. The interesting peculiarity is thiae cascade was optimized at
its unique incidence condition. In particular, twptimizations were performed:
the first one took into account only the reshapohdhe forepart of the cascade
airfoil geometry, while the second one comprisesdhtire geometry. Among the
Pareto designs, the loss coefficient was reduce@39¢ and the static pressure
ratio by 6.5%. It was demonstrated that the foreg@ometry all alone was
responsible for the 95% of the loss reduction, kisdo the remarkable decrease of
the pre-shock Mach number by means of extended pre-compression
mechanism that involves the entire suction surtaité the passage shock.

The unique incidence condition introduced a tratldmtween the two
objectives. Higher compressions were achieved dsimg the obliquity of the
passage shock wave, which tended to a more “nortagdut, however with an
increase on the shock wave losses. Furthermoreadt identified a peculiar
mechanism that established on what extend the gasdeck can rotate before
the unique incidence is met.






Chapter 5
Shape Optimization of a

Transonic Compressor

In this chapter, the shape optimization of a transootor is carried out. The
NASA Rotor 67 (Figure 5.1) is taken as referencd an3D parameterization
involving lean, sweep and airfoil reshaping is &bl The novel Kriging-based
genetic algorithm GeDEA-1I-K is employed for a twbjective optimization, in
which total pressure ratio and polytropic efficignitave to be optimized at a
given operating condition.

Figure 5.1: Nasa Rotor 67 transonic fan.

5.1 NASA Rotor 67

Designedby NASA Lewis Research Center, the Rotor 67 (Figul® % a
low-aspect-ratio transonic rotor and is the ficgor of a two-stage faccording
to NASA report 108, the rotor has 22 blades and an aspect ratio of (bafed
on average span/root axial chord); the solidityesafrom 3.11 at the hub to 1.29
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at the tip, and the inlet and exit hub/tip radiadias are 0.375 and 0.478,
respectively. The running tip clearance is 1.016.Mhe design pressure ratio is
1.63 at a mass flow of 33.25 kg/sec and the desigeel speed is 16043 rpm,
which yields a tip speed of 429 m/sec.
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In literature there are several works focused an dghape optimization of
Rotor 67. The following review has the purpose ighhght which part of the
blade was parameterized and how the optimizatioategfies, in terms of
objectives and constraints, affect the outcomeshef optimization process; a
snapshot of blade parameterization and optimizasivategies are reported in
Table 5.1 and Table 5.2.

Authors Parameterization
Type Design
variables
Oyamaet al.[109 Airfoils shape: 4 spanwise sections; camber #rthickness 53
distribution
Pierret 110 Airfoils shape: 4 spanwise sections 35
Lian and Liou 117] Airfoils shape: 4 spanwise sections (perturbasipproach) 32
Lian and Kim [L12] Airfoils shape: 4 spanwise sections (perturbasipproach) 32
Okuiet al.[113 Airfoils shape: 5 spanwise sect.; camber + spanelord 14
distribution
Sweep
Luoetal.[114 Airfoils shape: 32 Hicks-Henne shape functionst(meation 238
approach)
Huetal [115 Blade loading (inverse design strategy) -
Only airfoil shape can change

Table 5.1: Previous studies on NASA Rotor 67: patanization.
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Authors Optimization Strategy
Method Objectives CFD
runs
% Oyamaet al. GA+CFD -Min. Entropy generation @peak efficiency 12800
§ g [109 -Constr.: mass flow + total pressure ratio
7
o Lian and Liou | RSM+CFD -Min. Entropy generation + Max. total 1023
E [117] offline pressure ratio @peak eff.
© - Constr.: mass flow
Lian and Kim | RSM+CFD - Max. total pressure ratio + Min. Blade 1678
[117) inline Weight @peak eff.
- Constr.: mass flow + probability of failure
Okui et al. DE+ANN +CFD | -Max. Isentropic eff.+ throttle marginpg@ak -
[113 eff.
-Const. mass flow @choke + mass flow
8 @stall
E Pierret 110 RBF+GA+CFD -Max. Isentropic Eff.+Structural obj -
B @Multipoint (near-stall, near-peak
efficiency and choke) Weights to
perform single obj.
Luoetal.[114 | Adjoint method -Min. Entropy generation @ Multipoi -
(near-stall, near-peak efficiency and
choke)
-Constr.: mass flow + total pressure ratio
Huetal [115 | Inverse method -Max. Isentropic Eff. @Design point -
- Constr.: mass flow @Choke

Table 5.2: Previous studies on NASA Rotor 67: ofg#tion strategies.

Starting from direct optimization methods, Oyaetaal. [109 minimized
flow loss manifested of Rotor 67 via entropy getierawith an adaptive range
genetic algorithm. According to the authors’ expede, maximizing isentropic
efficiency would endorse maximization of total mese ratio rather than
minimization of flow loss. Mass flow and total psese ratio were constrained,
being the variation compared to the baseline desigh5% and 1%, respectively.
After 200 generations with 64 individuals for pogudn (i.e., 12800 CFD
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evaluations on the whole!), isentropic efficiencyasvimproved by 1.78% at
design point. The entropy production was reducedegions between hub and
mid-span, and near tip. The former effect was @ua tliminishing of incidence
angle (Figure 5.2), while the latter was determimgdthe maximum camber
position that moves toward aft, resulting in a weyadknd shifted aft shock on the
blade suction side. Although the optimization wasf@rmed at design point, the
optimized design still maintained higher isentrogiiiciency over the entire range
of operating conditions, from the choke to statidahe stall margin remained
unchanged.

Figure 5.2: NASA Rotor 67 optimized foils (Oyaragal. [109))

When only aerodynamic objectives are taken intmaet; it is possible that
poor structural shapes, at least in the othergdatie blade, are achieved. In fact,
small thicknesses in the leading edge region pedjtiaffect shock losses, and
thus it reflects on global efficiency, but leadadblade shape which could not
satisfy mechanical constraints. Accounting for cincal objectives has been
demonstrated to be a feasible way to address thidgm (Pierret110). A single
objective formulation was defined by weighting asetnuctural objectives and
constraints at three operating points (e.g., nedk-snear-peak efficiency and
choke), and the optimization involved a geneticoatgm assisted by RBF
interpolation technique. As expected, higher valokesentropic efficiency were
achieved for the aerodynamic optimization compacethe aero-structural one,
for all the speed-line.

Lian and Liou 11] adopted a different parameterization approachyhich
modified rotor blades were defined superimposingupkation on the original
baseline Rotor 67°'s geometry. One of the advantafgserturbation approach
relies on the fact that the baseline geometrywismgs enclosed in the search space;
this is done by setting design variables to nultyrbation. The multi-objective
optimization was carried out at peak efficiency.eTiotal pressure ratio was
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maximized and the entropy generation minimized, levhmass flow was
constrained within a 0.5% variation with respecttie baseline. Among all the
Pareto points, the total pressure ratio increaseahizch as 1.8% and the entropy
production decreased by 6.2%, which implied an tiegic efficiency
enhancement of 0.7%.

It is worth nothing that the two aforementioned kgomdid not take into
account neither lean nor sweep deformations.

Although this survey is strictly focused on aeragyinc optimization, we
could not overlook the work of Lian and KirhQ2 in which both structural and
aerodynamic performance of Rotor 67 were contetuaptimized. Total
pressure ratio and rotor mass were taken as olgsctwhile mass flow rate and
probability of failure were treated as constraitisturns out that most of the
optimal designs broke the safety constraint, adtleath a safety factor a little bit
lower than one (above one safety constrain is rtege

Okui et al. [113 proposed a more flexible 3D parameterization.eEhmain
geometric deformations were permitted: variationttd mean camber line, the
spanwise distribution of chord, and sweep. The ktiless distribution was
maintained the same as the baseline to avoid meethasues. A multi-objective
evolutionary algorithm coupled with neural networkas adopted as optimizer.
The objectives to be maximized were peak isentragfficiency and throttle
margin. In order to accelerate the optimizationcpes and respect the baseline
choked mass flow two constraints related with theked and stall mass flow
were imposed, for which the off-design performarmmeeve was needed and
evaluated via CFD. Two optimizations were performEdst, only chord and
sweep variation were activated in the optimizagwacess; then, mean camber
design variables were introduced, and a new opéichiptor was identified. At the
end, a complete stage optimization was performexpikg fixed the stator and
increasing degrees of freedom of camber line patenzation. As the chord and
sweep deformations were activated, the optimalebtzatl a forward sweep shape
and a +0.3% gain in isentropic efficiency. Suchpghevolved the outward span
region and cut the bow shock into a very weak casgion shock on the suction
side and a weaker passage shock. On the contrdrgn the camber line
deformation was added, the optimal blade had aviack sweep shape and a
higher isentropic efficiency gain equal to +0.6%eTexplanation of this result is
due to the S-shape camber line and a barrelingddeagth, which are both able
to compensate the negative effects of backwardpweestability and efficiency.
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The last work related to the direct optimizatiopmach is the one of Luet
al. [114], in which an adjoint method was used. The maiwaathge of such
approach is that computational effort is insensitte the number of design
variables. In this case, the rotor was describetth B8 design variables. A
single-point and a multipoint optimization were fpemed in order to minimize
the entropy production, while keeping to a minimtira variation of mass flow
rate and total pressure ratio compared to the inaseThe single objective
multipoint optimization took into account three ogiéng conditions (i.e., near
choke, near peak efficiency and near stall), whiehe aggregated by means of
weights. In the single-point optimization, the igepic efficiency had an
increment of about 1.10%, but a noticeable decragatatal pressure ratio for all
the operating conditions between stall and peakieficy. On the other hand, in
the multipoint optimization gains of isentropic ieféncy were achieved at all
three operating conditions, with increments of @ldoA4% near choke, 0.84 near
peak efficiency, 0.54% near stall; the total pressatio was almost unchanged
compared to the baseline all over the range.

As far as the inverse optimization method is comedy we can enumerate
three studies related with Rotor 67. The first tmarks, i.e., the one of Tiow and
Zangeneh (2002)1[L§ and Watanabe and Zangeneh (20a3)7, are focused on
the inverse method itself and its ability to redoms the geometry given a target
loading, rather than realize a complete optimizatidwo different pressure-
loading distributions, which were derived from treal loading distribution of
Rotor 67 but arbitrary shaped, were tested in aiml@nalyze the repercussions on
the isentropic efficiency. The first distributionadh a completely aft-loaded
characteristic, while the second one was chosengit® a fore-loaded
characteristic at the hub of the blade and a mittiided characteristic form the
mid-span to the tip location. As for the adiabasfficiency, the second
distribution performed better with an improvemehabout 0.6% over most of the
working range. Moreover, the stall margin was iasexl by 3%.

In the third work, Huet al [115 optimized the blade loading pressure
distribution. For this purpose, the target loadprgssure was parameterized at
various span wise sections by B-spline control {oirmhe blade geometry
deformations affected only the 2D spanwise sectianisile lean and sweep
modifications were not included. Since the optimtiaa of the isentropic
efficiency was performed at a given operating pdime¢ optimized blade behavior
throughout the entire operating range was a mansaegpence of the outcomes of
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the optimization process. The main concern was awotrol choke flow rate,
keeping its value as near as possible to the In@sdlivo methods were proposed.
First, it was observed that changing the operapoigt while keeping the same
target pressure loading, could lead to a horizasttdt of the characteristic curve,
which indeed modify the choke flow rate. Seconé, ¢hoke flow was affected by
the peak position of the optimal pressure loadiAg. aft-loading resulted in
smaller throat areas and hence smaller choke fidvile fore-loading increased
the choke flow. The isentropic efficiency of NASAofRr 67 was increased by
1.26% at design point compared to the baselinelevthe choke flow rate was
reduced by -0.8%. Most of the improvement comemf@tb-100% of span. The
normal passage shock in the original rotor at eeci.8 was changed to an
oblique shock in the optimized blade.

5.2 Lean And Sweep Deformations

The 3D shock wave established in the blade pagsagsponsible not only
for losses related with both the shock itself and the shock-boundary layer
interaction but also for the stability of the comgsor in terms of stall margin. A
learned reshaping of the stacking line could peslyi affect the shape of the 3D
shock and, in turn, the compressor performance.ifestigations conducted so
far have demonstrated that there are three comgetéshaping groups: blade
airfoils deformation (11§, [109), sweep and lean.

Sweep and lean involve 3D deformations of the bktdeking line and they
are defined as the translation of the foil, seethan conformal plane, along the
rotation axis direction (sweep) or tangential di@t (lean) (see Figure 5.12).
Both lean and sweep can be detailed widhwvard and backward adjectives.
Different definitions are used in the literatures Aor the lean, forward and
backward refer to the agreement or not of the stgdine displacement with the
sense of rotation of the blade. On the other haediefer to forward or backward
sweep depending on the displacement direction, twtdould point in the
upstream (forward sweep) or downstream (backwagep)vdirection.

As far as sweep is concerned, backward sweep v&srvestigated by Hah
and Wennerstromlfl9 on Rotor 6, an aft-swept rotor developed to gjtken the
sweep effect, which demonstrated a remarkable imgonent in peak efficiency
but a detrimental reduction in stall margin. Suemadization was caused (Wadia
et al. [12() by the local increase of loading at the tip s®ttresulting in a
stronger bow shock, in addition with a more intemsgration of fluid particles on
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the suction side boundary layer (a secondary flbat follows the imbalance
between the centrifugal force and the pressureigmgd On the other hand, Hah
et al. [12]] showed the advantages of a forward-swept rotdeims of higher

margin stall and higher peak efficiency comparedh® baseline unswept rotor.
Denton and Xu confirmed similar results via CFR2Z,.

Despite blade sweep is known to be an effectivierigtie to redistribute the
radial loading 123, sweep also affects the meridional position af #hock,
which tends to resemble the shape of the sweepedwer, it has been observed
the so-called “endwall effect”, this is the shoghpeoaches the casing at right
angles (Haket al. [121]). Because of the superimposing of the sweep &aed t
“endwall effect”, near the casing the position lo¢ tshock is moved downstream
in the case of forward sweep whereas upstream enbtdckward sweep, as
depicted in Figure 5.3. Usually, a more backwarmlsitipn of the shock reflects a
better stability, and this partially justifies thenprovement in stall margin
observed with forward-swept rotors.

Figure 5.3: “Enwall effect” on shock structure neasing 124].

Investigations on the lean have highlighted thetige can produce favorable
effects thanks to the change on the 3D shock streiqBergneret al [6]). In
particular, forward lean (i.e., towards the direntiof rotation) resulted to have
positive influence on the overall rotor efficienGhn and Kim [7] and Benini
[8]). Moreover, an important investigation on theraynamics of swept and
leaned transonic compressor rotors conducted bjoRBiad Benini L25.

5.3 Blade Geometry

The geometry provided in NASA report(g comprise 14 blade spanwise
sections, which were formatted in a proper way ® diven to ANSYS®
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TurboGrid in order to reconstruct the baseline getoyn The result of such
operation is illustrated in Figure 5.4.

Figure 5.4: R67 geometry.

5.4 Flow Solver And Computational Domain

In this section, the numerical model setup is dbesdr which comprise the
computational grid and the CFD solver setup.

1$ %

As far as the numerical grid is concerned, the Astic Topology and
Meshing tool (ATM optimized) within ANSYS® TurboGlivl4 was used to
generate a multi-block structured grid. As depiatedrigure 5.5, there are three
blocks: inlet, passage and outlet. The passagé Mamritical because grid quality
is strongly dependent on how the grid topologynshered to the blade geometry,
being this match enforced by moving the topologyntad points. In an
optimization context, where blade geometry couldehemportant deformations,
the meshing tool should be enough robust to guaedmigh mesh quality also for
geometries far from the baseline one. Such toallshioe able to adapt the control
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points’ position to the new geometry. As deformagiancrease, the passage block
mesh could quickly deteriorate, at least keepinghanged the topology control
points. It turns out that ATM could handle this Iplem by optimizing control
points position and by smoothing the mesh, achgaimigh grid quality even for
distorted geometries.

Figure 5.5; Computational domain.

The main grid parameters were deduced from thosgted in the validation
analysis carried out ifLR§. In particular, the structured grid of the passapck
were created interpolating 10 spanwise layershaset depicted in Figure 5.6,
which are in such high number to reduce the mestortion when the baseline
geometry is modified. The topology is ATM based jehhindeed does not match
with any of the standard topologies. Tiaeget passage mesh sizeethod with a
target value of 1.7 M elements were prescribed. Titst layer height were
selected in order to achieve a y+ lower than uaityover the wall surfaces
imposing 2e+06 as reference Reynolds number .Insgamwise direction 110
elements were adopted, in addition 42 more nod#eishroud tip region. As for
the inlet and outlet blocks, H-grid topology witB 2nd 34 streamwise elements
respectively was selected. At the end, the wholshmeas composed by 2.2M
elements.
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Figure 5.6: ANSYS® TurboGrid topology: layers ofthumidspan and tip section.

Figure 5.7: Computational grid.

/$ *+ 3"

The steady state 3D flow field around the bladeewsrmputed by means of
the commercial CFD code ANSYS® CFX v14, in whicle fReynolds-averaged
form of the Navier—Stokes equations are solved gusinfinite-element based
finite-volume method.

The computational analysis comprised one bladeagasand a periodic
condition was applied on lateral passage surfatles.flow was fully turbulent
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and the k- SST [L04 turbulence model was adopted. All the computation
domain rotated at -16043 [rpm] along the z axise Betup of the CFX-Pre is
summarized in Table 5.3.

It is worth nothing that convergence was criticdroughout all the
calculation, so aiser functiorwas implemented with the purpose of adapting the
maximum timescale, which indeed is of utmost imgace for calculation
stability. In particular, at the beginning a valiele-007 [s] was set, then it was
increased up to 1e-004 [s], for then return to lowalues around 1le-005 [s]
before calculation was stopped.

The convergence was established when the RMS maxinesidue were
lower than 1e-005 and the variables of interestri@sd in the next paragraph
had an asymptotic behavior.
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ANSYSO CFX solver setup
Formulation Steady State
Domain Material Air Ideal Gas
Domain Motion -16043 @z-axis

BC

Solver Control

Reference Pressure 0 [atm]

Heat Transfer Total Energy

Turbulence Model k- SST + high speed
-Inlet + frame stationary
-Subsonic

nlet -Stationary Tot. Pressure 101325 [Pa]
-Direction normal to boundary
-Stationary Tot. Temp. 288.2 [K]
-Turbulence intensity 5%
-Outlet + frame stationary

outlet -Subsonic
-a)Average Static Pressure 50000[Pa]
-b)Mass Flow Rate
-Wall + no slip

-Adiabatic

Blade

o -Periodic

Periodic .
-Conservative Interface Flux
-Wall + no slip

Hub -Rotating frame
-Adiabatic
-Wall + no slip
-Rotating frame

Shroud )
-Counter Rotating wall
-Adiabatic

Advection Scheme High resolution

Turbulence Numerics High resolution

Timescale Control Auto timescale

Table 5.3: ANSYS® CFX solver setup.
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Performance was calculated at specific upstream davahstream survey
stations, which are shown in Figure 5.8. Thesaostatwere the same of those
adopted in the NASA Repori(g, for which experimental data are available.

Total pressure ratio and polytropic efficiency werealuated taken into
account quantities calculated withmass-weighted averageirface integral at the
appropriate survey stations. Specifically, theltptassure ratio was defines as

p, =P Eq.5.1
Pos

where p,, and p,, are the total pressure in the stationary franstadion 2 and 1,
respectively, extracted with the aforementioned swesighted integral. On the
other hand, the polytropic efficiency was defined a

-1
= In(p.)
h =9 Eq. 5.2

pol
|n h

—

01

in which T,, andT,, are the total temperatures in stationary framstagion 2 and
1, respectively. For completeness, the isentrdfficiency was defined as:

o1
g .
h, P -t Eq. 5.3
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TOl

In addition to global variables, spanwise distrdzlperformance is of utmost
importance because it can give a better understgr@h which part of the blade
affects in greater amount global performance. Giaespanwise location, the
value of a generic spanwise variable was repreteataf the pitchwise circular
arc. Similarly to the global variables, first togatessure and total temperature
were evaluated with the mass-weighted integrahensurface associated with the
pitchwise circular arc, and then total pressurm rad polytropic efficiency were
calculated for that specific spanwise location.sbch process, the quantities
belonging to section 1 were considered constamigatioe entire span.
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Figure 5.8: Survey stations for performance catauta
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The sensitivity analysis and the validation of @D model were previously
carried out in 12¢. Hereafter the main outcomes of the reconstru€ied model
employed in the optimization loop are reported.uFeg5.9 shows the isentropic
efficiency and the total pressure ratio against nbemalized mass flow. It is
common practice to normalize the mass flow raté wie choking mass flow. At
station 2 the spanwise distribution of the exitvMlangle is reported in Figure 5.10,
while in Figure 5.11 the blade-to-blade Mach contt®0% of span is depicted.
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Figure 5.9: Main performance of the NASA Rotor 67.
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Figure 5.10: Exit flow angle of the NASAS Rotor &7peak efficiency.

Figure 5.11: Mach number contour at 90% span of N/&R®tor 67.

5.5 Parameterization

Shape deformation was accomplished by superimpasutigplacement field
to the baseline geometry points. The reader ismexfeto § 4.4 for a detailed
explanation of the method. Briefly, the displacemield is described by a B-
spline surface that provides the displacementgenthree directions, i.edx, dy,
dz for each point of the baseline geometry.



5.5 Parameterization 145

[¢ "9 03+

A B-spline surface is the extension of the B-sploacept to 3D space. The
reader is referred to the work of Mortensda04j for a detailed explanation of B-
spline surfaces and their numeric implementatidre 3urface equation is defined
as the tensor product:

m n

p(u, w) = R, By (UN,_ (W Eq. 5.4

i=0 j=0

, Which is parametric in the natural parameterand w; the curve p(u,w) is
defined by the polyhedron control poirfls and the basis functions polynomials
B (WandN, (w) , which depends on the specific i-th or j-th cohpoint, but
their degreeX andL are independent on the number of control pointe Basis
function are defined in the same way as for thedmrensional case (see § 4.4.1).

/1 & * +

In this work, blade parameterization is the resfilsuperimposing two main
deformations: 2D profile deformation and 3D stagkime deformation, each of
which is treated independently with B-spline curvaféerwards, they are joined
together forming the final B-spline surface disglaent field.

For this purpose, six spanwise sections locat@&d®t30%, 61%, 92%, 97%,
100% of span were selected esntrol sections Each section is obtained by
intersecting the baseline blade with the streanduméace at the given span, being
such surface generated as revolution of the geanséteamline curve.

Il "+ 6

2D translations of control sections affect the ren8D shape of the staking
line (Figure 5.12). A pure sweep would produce rhcdion only on the
meridional plane, whereas a pure lean would resttagpstacking line only on the
tangential plane. Generally, modified blades ineavmix of the two.

Two B-spline curves were built interpolating themacement values at the
six control sections. These two curves are sufiicie describe the displacement
field spanwise. In fact, at a given span, theyascthe control section foil, which
is forced to lie in the conformal plane while trt®n imposed by the
displacement filed is applied.
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Such a displacement field involves 12 control pxir@ for lean and 6 for
sweep. However, in order to achieve an effectiakisy line deformation, it was
decided to use the control points to defisleapes each of which imposes
relationships between control points that becamenmmre independent one
another. As shown in Figure 5.13, lean and sweepeshare still independent,
and they can affect the blade in a local (neardiglobal manner. In the whole, 9
shapes were defined and adopted as design vanmalble optimization process.

Figure 5.12: Lean and sweep definition.

Figure 5.13: Blade parameterization: global an@ldeformations of sweep and lean.
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Each of the control sections foil was parameterizét a displacement field
approach having several control points. Simila2l§, foils were deformed using
the shapeapproach, which allows reducing the number ofglesariables while
keeping promising deformations within the searchcep Of course, this was
intended to be a trade-off between computationsbuees and width of the
search space.

The shapes were defined with the aim to decoumentaximum thickness
from the camber line shape as best as possibtedber to keep to a minimum the
number of design variables, only two shapes wenptad. Figure 5.14 shows
how the hub section could be reshaped applying aigh low values of its two
shape control points. Such high displacementsuatetp highlight the capability
of the parameterization approach, and are not septative of deformations
adopted in the optimization process. Moreover, tierd value was kept
unchanged.

In the whole, 2 shapes x 6 control sections adtl2t@lesign variables, plus
the 9 of the stacking line parameterization lead&lt design variables in total.

Figure 5.14: 2D foils deformations.
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Iy

A brief description on how the B-spline surface g@oising the two
deformation categories, i.e. staking line and 2[), fe presented. The modified
geometry is the result of the baseline geometryupgsed by the displacement
field:

pmod(u’ W) = poase( U, V\b + pdispl( U, V\) Eq. 55

where theu and w are the natural parameters of the B-spline surtheeformer
goes around the foil, being 0 at trailing edge, d&.%eading edge and 1 at trailing
edge; while the latter spans from hub to shrouthdo@ at hub and 1 at shroud. In
particular, p,.(U, W) represents the high fidelity approximation (itag number
of control points are of the same order of magmatatithe points) of the baseline
blade, which is defined by 14 spanwise sections.

On the other handp, (U, W) is defined as:

pdispl (U, W) = Hean(V\b + psweer(V\) + p fo& U V\) Eq. 5.6

in which both the lean and sweep displacementdieiee function of the only
spanwise location, whereas the foil displacemenioisly depends on the foil we
are looking at.

5.6 Formulation Of The Optimization Problem

The aim of the multi-objective optimization probleras to minimize the
two-objective function at a specific design massvftate:

FP)=(f, f,) = P.) Eq. 5.7

whereP is the vector of the optimization parameters arigien variables of the
design (i.e., the control parameter sifapesdescribing the displacement field),
h., is the polytropic efficiency calculated at the letistation in Eq 5.2 ang,
the total pressure ratio. The optimization wasatithe 98% of the choking mass
flow. A generic new design was first simulated Bbking condition imposing a
very low static pressure outlet and then, starfnogn this solution domain, an
outlet mass flow BC was adopted to reach the 98%s @hoking mass flow.
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The constraints complete the problem formulation. pAnalty function
approach was adopted to handle the violation orhio&ing mass flow, for which
a variation of 0.5% with respect to the baselins weceptable. The penalty term
Q depends linearly on the level of violation of tlemstraints:

Q=(Q.Q;)= (n.,r,)6G

‘rnchoke_ bl ™ mchokg nelN Eqg.5.8

G = max - 0.005,0
rT"choke_ bl

No geometric constraints were imposed, since tmgeaof the decision
variables was set in such a way that unfeasiblengé&ites were avoided. It is
worth noting, however, that the range was interatilgrset very wide with the aim
at reaching the most disparate configurations.

5.7 Discussion Of Results

The optimization was carried out by means of ASEM@B&e 8§2.2.2). In the
whole, 210 CFD direct evaluations were performdtk Wall-clock time for each
CFD computation was of 36 hours on an 8 core INH5E2650 2.0GHz.

The total pressure ratio (TPR) and the polytrofiiciency (E) were the two
objectives to be maximized at the operating point . In the Pareto-
optimal front, the optimal designs were much clieslein a narrow region
characterized by high TPR and moderate E. Be®| plso recorded this
clustered behavior due to the constraint imposedhenchoked mass flow; in
other words, it seems that for this optimizatiorolpem the Pareto front is
inherently narrow. Moreover, Oyana al. [109 stated that taking into account
the efficiency as objective inherently pushes tlarch towards high total
pressure ratios designs. Thereby, considering dted pressure ratio as second
objective could be in some extent repetitive, bot wrong from a theoretical
point of view, and could introduce a further ditfity for the optimizer to spread
designs over the just narrow Pareto-optimal fremeaddition, we believe that the
causes behind the clustering are to be also sahictibe extensively width of the
search space against a low number of CFD directuatians. In fact, the
parameterization was deliberately tailored in saclvay to guarantee a huge
search capability, aware of the complexity introgtlicfor the optimization
algorithm. From this point of view, it is not suiging that the Pareto-optimal
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front encloses designs that have similar shapesharsdsimilar performance. Still,
the improvements in TPR are remarkable and it iy \i&kely that a further
exploration could arrive at substantial resultsw# include designs that slightly
violate the constraint on the chocking mass flolae Pareto-optimal front is
enlarged by higher E designs.

The results presented hereafter involve two optidesigns. The first one is
TPR optimized (TPR-O), which belongs to the origiRareto-optimal front; it
increases TPR by 3%. The second design is E omdn{E-O) with a choking
mass flow 1% higher than the baseline rotor. lis B.9% higher than Rotor 67
(see Table 5.4). In Figure 5.15, the speed lineh@baseline and the optimized
geometries are reported. Both blades keep thefonpesince enhancement over
the entire operating range. However, the stall mao§both designs had a severe
drop compared to the baseline one. In Figure Shé&5bints further to the left of
each speed line are representative of those CFDputation beyond which
convergence was not achieved due to numericalbiisiss. Such instabilities of
the flow domain may be associated with the nedr-tadition.

The 3D blade and the blade-to-blade sections at midspan, and tip of the
baseline, TPR-O and E-O configurations are showRigure 5.17. The TPR-O
blade had a strong modification in both camber maagimum thickness along the
entire span, while the stacking line did not difser much from the baseline. In
particular, the blade was characterized by highenlered profiles toward rear in
the span region from hub to midspan; the oppostebior was recorded in the
outer span region. This reshaping was responsiblthé increased loading at hub
and midspan locations and a reduction in the athgion, as can be observed in
Figure 5.16.

As for the E-O design, the reshaping involved myathke stacking line and
only lightly the airfoils. The lean conferred asisape profile to the blade leading
edge. Starting from the hub, the lean was firstvéod until midspan and then
backwards; in the proximity of the tip, a strongrewvas observed in the direction
of rotation, creating a sort of “horn”. As for tisgveep, the blade had a forward
sweep from hub to midspan and then went backwasdit As well known, the
sweep is the major responsible for the increasdhaking mass flow and this was
the main reason why the E-O design had 1% incr@asghoking mass flow
compared to the baseline. Finally, at the hub sedi higher camber and slightly
lower thickness compared to the original design elzserved.
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Designs T.P.R. Polytropic Eff.

Baseline 1.615 0.9181 1
TPR-O 1.664 0.9244 1.0032
E-O 1.645 0.9266 1.0104

Table 5.4: Performance at optimization condition.
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Figure 5.16: Spanwise distribution of polytropii@&ncy and total pressure ratio of the
baseline and optimized configurations.
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Figure 5.17: Blade geometries of the baseline qutiinized configurations.

In order to gain insight on the improvements of th optimal designs,
Mach contours on blade-to-blade sections and obldde surface are reported in
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Figure 5.18 and Figure 5.19, respectively. Fothake configurations, the passage
shock wave approached the case with normal anglex@ected.

Compared to the baseline, the TPR-O design hadoaggr passage shock
wave near the tip, shock that was characterized byuasi-normal” inclination
with respect to the incoming flow. The interactiostween the severe shock and
the suction side boundary layer gave rise to a reabée boundary layer
detachment resulting in impressive wave lossesthBumore, TPR-O did not
accomplish further diffusion of the subsonic flofteathe “quasi normal” shock.
Both the compression mechanisms as the secondgeasteck, which was
visible in the baseline configuration, and the swlis flow turning due to airfoil
camber, were not implemented. Therefore, the floas weaccelerated in the
passage (look at the Mach contour on the pressdes gure 5.19) and the
compression effect of the first passage shock hadisAs a result, detrimental
performance was monitored in terms of both the wpen distributions of total
pressure ratio and polytropic efficient. Moving td hub, the deficit of
polytropic efficiency between 80% and 45% span masly due to the passage
shock that remained very strong compared to thelibastill 50% span. From 65%
span to hub, TPR-O design performed a higher totdsure ratio mainly thanks
to the highly curved rear camber that imposed &drigurning on the subsonic
flow. Furthermore, the hub corner stall featuredhmy baseline was here partially
absorbed by the change in the airfoil shape, bakimum thickness and camber,
but still a conspicuous wake was release.

As far as the E-O design is concerned, the passalgpie shock near tip was
similar to the baseline, except for the slightlwér obliqueness featured by E-O
that induced higher shock losses. Neverthelesseakev second passage shock
(look at the Mach contours on pressure side inféigul9) mitigated the effect of
first shock in such a way that the efficiency of thuter span was slightly higher
compared to the baseline. In this case, the shoukfary layer interaction was
not as severe as the one of TPR-O and was compavatii the one of the
baseline. The sweep introduced by E-O design affiette location of the first
passage shock, which resembled the sweep deformatidhe blade suction side
and, consequently, increased its obliquity witlpees to the incoming flow, thus
reducing the shock losses. As confirmed by the Maxttours on the suction side
and the spanwise distribution of the polytropidaadincy, the passage shock was
forked around 80% span in to branches of lowernsitg that advantaged the
efficiency, while contextually supporting a sigodnt compression effect. As
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reported in many studies, the substitution of argfrshock wave with a pair of
double weaker shocks is an optimum compromise lstwefficiency and
compression effect. Finally, at the inner regioamthe hub, the airfoil reshaping
makes the difference: for E-O design the corndlsts almost entirely absorbed
and, compared to the TPR-O design, the rear camemore soft, thus reducing
the losses in the wake (see span 10% in Figure) @48 achieving a higher
efficiency.

As far as the stall margin is concerned, the higledom permitted to the
parameterization may lead the optimization procesdind very impressive
configurations at design conditions, but less alppgan off-designs operations.
Unfortunately, the computational efforts neededeach the near-stall condition
(keep it simple with steady state simulation) was$ affordable in this work.
However, as suggested by Oleati al. [113], a multipoint optimization for sure
gives something extra and should be adopted witsep redesign of the blade is
accomplished.

It must be very clear that the results presentetborate the fact that the
optimization process needs more CFD computationgdch high-level results.
Nevertheless, the optimal designs that were foundas gave a snapshot over
some of the compelling mechanisms involved in tbarscompressors.
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Figure 5.18: Mach number contours at 90, 50 and §p&t of baseline and optimized
geometries.
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Figure 5.19: Mach number contours on the surfadbebaseline and optimized blades.

5.8 Conclusions

The multi-objective shape optimization of the NASXotor 67 transonic
compressor was carried out by means of a Krigirgetaoptimizer, ASEMOO,
coupled with a CFD solver. The polytropic efficigrend the total pressure ratio
were maximized at a specific mass flow rate coadijtwhile the choking mass
flow was constrained. A complete and deep reshapirtbe rotor geometry was
accomplished by means of a generalized parameienzdramework that
involved sweep and lean deformations, in additionthte modification of six
spanwise sections. In order to reduce the complefitthe problem, but still
allowing a huge exploration capability, 21 shapesencleverly defined and were
accounted as optimization variables.
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Due to the limited number of direct CFD evaluatigosed with a wide
range for the decision variables, the Pareto-optifrant was clustered in a
narrow region characterized by high values of tqedssure ratios and little
efficiency improvement. Two Pareto-optimal desigwere analyzed, being
representative for the maximization of each obyectiThe first optimal design
increased the overall polytropic efficiency by 0.9%th a contextual increment of
total pressure ratio of 1.8 by giving the blade@ppr back sweep and by slightly
changing the airfoil camber at the hub. The secoptimal design featured a
strong recambering of the entire blade, giving naefection at the inner regions
and unloading the outer span. Both the optimalgiebad a severe reduction of
the stall margin compared to the baseline.

The results corroborate the fact that the optinomaprocess needs more
CFD computations to reach high-level results. Unioately, computational
power was in small amount for this work. Nevertks|ghe optimal designs found
so far give a snapshot over some of the compelirgghanism involved in
transonic compressors, demonstrating the effeas®if the entire optimization
strategy.






Conclusions And Future
Work

In this Thesis, the shape optimizations of a sugrecscompressor cascade
and the transonic compressor NASA Rotor 67 weragded by means of an
automatic CFD-based optimization loop.

In order to carry out high speed turbomachineryinogitions, a novel
Kriging-assisted genetic algorithm for multi-objeet optimization problems,
namely the GeDEA-II-K, was specifically developedth the aim at speeding up
the optimization process by taking advantage of sherogate model. The
cooperation between the GeDEA-II genetic algorigomd the ASEMOO Kriging-
based algorithm is realized by means of the Kridilgr featured in the GeDEA-
[I-K algorithm. The comparison over two- and thidgective test functions
revealed the effectiveness of the GeDEA-II-K, whistable to unite GeDEA-II
and ASEMOO in such a way to avoid destructive sxtgons between the two
and to synergistically intensify the strengths offb The comparison made use of
very few direct evaluations, which resembles thad-liee application where high
costly models as CFD are used.

When optimization is employed in research, the rogli designs are the
primary outcomes of the optimization process, fores However, besides the
designs themselves, it is certainly more importamhat such optimal
configurations can tell us about the physics behineir improvements. An
impressive example came from the multi-objectivéiroation of a supersonic
compressor cascade. In this investigation, thespresratio and the cascade loss
coefficient were taken as objectives. A substaimti@irovement of both objectives
was achieved: among the Pareto designs, the le$gooent was reduced by 25%
and the static pressure ratio was raised by 6.5%va$ demonstrated that the
forepart geometry all alone was responsible for #8606 of the overall loss
reduction, thanks to the remarkable decrease opteeshock Mach number by
means of arextendedpre-compression mechanism, which involves therenti
suction surface until the passage shock. Moreavemas discovered that the
unique incidenceperating condition, at which the optimization was thanks to
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the unique incidence control loop (UICL), introdaca strong tradeoff between
the two objectives. An explanation of the flow magism accountable for such
behavior was given.

On the other hand, the multi-objective shape opttnon of the transonic
compressor NASA Rotor 67 was carried out by meahs &Kriging-based
optimizer, ASEMOO, coupled with a CFD solver. Thayropic efficiency and
the total pressure ratio were maximized at a sigeniass flow rate condition,
while the choking mass flow was constrained. A clatgpand deep reshaping of
the rotor geometry was accomplished by means @narglized parameterization
framework that involved sweep and lean deformatioims addition to the
modification of six spanwise sections. Although thikcomes were not as incisive
as those of the previous optimization due to thatdd number of direct CFD
evaluations joined with a wide range of decisionialdes, the optimal designs
found gave a snapshot over some of the compellisghamisms involved in
transonic compressors, demonstrating the effeas®if the entire optimization
strategy. The analysis of the Pareto optimal desapmroborates the fact that the
optimization process needs more CFD computationgdch high-level results.
Unfortunately, computational power was not avagablmuch amount.

As far as future work is concerned, various aspeftthe optimization loop
may be investigated further. In particular, the imptation engine can be
improved by introducing a tuning parameter that\vai the optimization engine to
switch between GeDEA-II-K and ASEMOO. In fact, whéme Kriging gets
insight on the function landscape (i.e., this hagpafter a certain number of
direct evaluations depending on the problem coniylexits capabilities are
simply superior. Another strong limitation that werscountered during this Ph.D.
regards the employment of CFD commercial packagsgle the optimization
loop. The limitation lays mainly on the requirecteinses and the software
customizability. Comparable open-source softwaravisilable but needs a steep
learning curve with no guaranteed results. Howewegigrts in this direction
would be useful.

As for the cascades, it would be very appealingpeédorm a multi-point
optimization, not just at the unique incidence.slt@quires a new control loop on
the CFD boundary conditions in order to force thscade to work at a specific
operating point. Finding new families of airfoilstiwv specific behaviors at given
design Mach numbers could be the first step foompietely redesign of a 3D
transonic compressor rotor based on these new i&gmiMoreover, such
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investigation could give further understanding ampessonic flow throughout
compressor cascades, simplifying this subject dorcall to its lowest terms.
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A.l Optimization Framework

The automatic optimization framework is in charge t¢onduce the
optimization process in an automatic and reliabsey wpreventing any kind of
disturbanceinternal (i.e., errors from programs inside the loop) anternal {.e.,
issues coming from the external environment, asdslwns and so on), by means
of error expectation handling. The entire framewonkas developed in
MATLAB®, Bash scripting and C code.

In the scope of this research, the general conakpgtrategy con be
summarized in the flowchart reported in Figure A.1.

Figure A.1: Optimization conceptual strategy.
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It comprise a starting procedure as the D.O.E.p@imization engine (i.e.,
the optimization algorithm, for instance the GeDEA), and the evaluation of
the design fitness in a parallel environment.

The realization of such conceptual strategy in rukicluster is reported in
the flow chart of Figure A.2. Each of the threedisvis independent from each
other, that is the crush of a level does not haneirmplication on the operation of
the others. In particular, the features of the leaee as follow:

1. Level O: refers to the optimization algorithm, whioutputs new
designs to be evaluated (“Population”) and waitstheir response
(“Fitness”).

2. Level 1: the “Exchange pool” is the link betweer thptimizer and
the hard computing environment. It represents theud where
requests of the optimization algorithm are conwkerte design
evaluation procedures, in order to calculate defigass and, in turn,
satisfy the algorithm’s request.

3. Level 2: calculations are performed in parallelaocluster machine,
or in several clusters; there is no limitation fréms point of view and
we can take advantage of all the available comjaunailt power.

Figure A.2: Optimization framework layout.

In Figure A.3 is shown how design fitness evaluai® accomplished. The
black-box named “watchdog” islaoping processhat is linked (yellow arrow) to
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a particular “critical process” that needs to bekied after; the watchdog endures
until the critical process terminates. The aim o#atchdog is to control the
evolution of the critical process and handle anydkof error by performing an
appropriate action. Once each critical processitsaswn tailored watchdog, the
optimization process can be started. Such apprsaictherently general and can
be adapted to any kind of program, commercial a@e,frinvolved in the
optimization loop.

Figure A.3: Flowchart Detail of a single design.
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