Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sansone, Francesco (2015) Technologies for a miniature LEO satellites telecommunication network. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

14Mb

Abstract (inglese)

The aim of this work is to investigate alternative strategies and technical solutions for the realization of low cost telecommunication networks based on miniature satellites. The research is particularly focused on nanosatellites, which represent a class of space vehicles weighing between 1 and 10 kg. Miniature satellites are advantageous as their design and production time is significantly lower than that of traditional satellites; moreover, their reduced mass results in very low production and launch costs, especially if piggyback launches are exploited. However, the reduced onboard resources still prevent the use of miniature satellites for complex or high performance applications. In this work, two strategies have been investigated to cope with the current limitations of miniature satellites.
The first strategy consists of using clusters of small, identical satellites with cooperation capabilities instead of traditional, large satellites, for the realization of telecom constellations. Such architecture implies several advantages; first, by replacing obsolete or damaged units with new ones it is possible to upgrade the system using more advanced technology, or to extend the system lifespan; second, if the amount of small satellites becomes sufficiently large – dozens to hundreds – then economy of scale applies, with significant cost savings. The analysis that was performed shows that such cost savings can sum up to 25% of the cost of constellations based on traditional, monolithic satellites with equivalent performance. Then, the technology gaps preventing the implementation of this strategy have been identified and discussed, the most critical one being the capability to autonomously execute proximity navigation and docking. Thus, as gap-filling technical development, a sensor for relative navigation suitable for autonomous cooperative spacecraft was designed, built and tested. This activity was carried out in the framework of the ARCADE-R2 experiment, which participated to ESA’s Rexus/Bexus programme in 2013.
The second strategy consists of enhancing the communication capabilities of miniature satellites. Optical communication was selected as break-through technology, and the task of precision laser beam pointing was identified as the most critical issue that prevents the use of lasercom terminals onboard miniature satellites. To cope with this, two systems have been proposed and modelled. The first consists of an actively-stabilized platform conceived to provide a stable base to laser pointing systems onboard micro/nano satellites; the second is a coarse pointing system for 3U CubeSats. Both systems are based on the parallel platform configuration, and share many similarities from a technical point of view. Detailed numerical models have been developed and used to preliminary size the needed actuators and sensors. Then, a testbed have been built, which features an excitation stage used to simulate the residual attitude motion of a miniature satellite in LEO and a simplified prototype of the stabilization platform. Laboratory tests have been carried out to validate the models of the system and assess its performance.

Abstract (italiano)

Lo scopo di questo lavoro è di esplorare strategie alternative e soluzioni tecniche per la realizzazione di reti di telecomunicazioni a basso costo basate su satelliti miniaturizzati. La ricerca si è focalizzata in particolare sui nanosatelliti, che rappresentano una classe di veicoli spaziali di massa compresa tra 1 e 10 kg. I satelliti miniaturizzati sono convenienti perché il tempo richiesto per il loro design e produzione è nettamente inferiore di quello richiesto per satelliti tradizionali; inoltre, la loro massa contenuta implica bassi costi di produzione e lancio, soprattutto se vengono sfruttati lanci piggyback. Tuttavia, le limitate risorse di bordo impediscono al giorno d’oggi l’utilizzo di satelliti miniaturizzati per applicazioni complesse o ad alte prestazioni. In questo studio, due strategie sono state investigate per superare le attuali limitazioni dei satelliti miniaturizzati.

La prima strategia consiste nell’utilizzare flotte di satelliti identici e di piccole dimensioni, dotati di capacità di cooperazione, al posto dei tradizionali satelliti di grandi dimensioni, per la realizzazione di costellazioni per telecomunicazioni. Quest’architettura implica una serie di vantaggi; innanzitutto, sostituendo unità obsolete o danneggiate con unità nuove è possibile aggiornare il sistema con tecnologie più avanzate, o estendere la vita operativa del sistema; inoltre, se il numero totale di piccole unità diventa sufficientemente elevato – decine o centinaia – si può applicare economia di scala, con risparmi significativi. L’analisi che è stata effettuata mostra che tali riduzioni di costo possono ammontare al 25% del costo di una costellazione basata su satelliti tradizionali con prestazioni equivalenti. Successivamente, i limiti tecnologici che impediscono l’implementazione di questa strategia sono stati identificati e discussi, e la capacità di effettuare autonomamente navigazione relativa di prossimità e manovre di docking è stata individuata come la più critica. Per questo, quale tecnologia abilitante, un sensore di navigazione relativa per satelliti autonomi e cooperativi è stato sviluppato e testato. Questa attività si è svolta nell’ambito dell’esperimento ARCADE-R2, che ha partecipato al programma Rexus/Bexus dell’ESA nel 2013.

La seconda strategia consiste nell’aumentare le capacità di telecomunicazione dei satelliti miniaturizzati. La comunicazione ottica è stata selezionata come tecnologia innovativa abilitante, e l’estrema accuratezza di puntamento richiesta da un sistema telecom laser è stata identificata come l’aspetto più critico che impedisce al giorno d’oggi l’utilizzo di terminali ottici a bordo di satelliti miniaturizzati. Per superare questo limite, due dispositivi sono stati proposti e studiati. Il primo consiste in una piattaforma stabilizzata attivamente il cui scopo è fornire una base stabile al sistema di puntamento del laser a bordo di micro/nano satelliti; il secondo consiste in un sistema di coarse pointing per CubeSat 3U. Entrambi i dispositivi si basano sulla configurazione del manipolatore parallelo e sono accomunati da varie somiglianze tecniche. Modelli numerici dettagliati sono stati sviluppati e utilizzati per dimensionare preliminarmente attuatori e sensori. Successivamente, è stato realizzato un sistema di test, composto da uno shaker rotativo, usato per simulare il moto d’assetto residuo di un satellite miniaturizzato in LEO, e da un prototipo semplificato della piattaforma stabilizzata. Test di laboratorio sono stati condotti per validare i modelli numerici e valutare le prestazioni del sistema in via preliminare.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Francesconi, Alessandro
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE TECNOLOGIE E MISURE SPAZIALI > SCIENZE E TECNOLOGIE PER APPLICAZIONI SATELLITARI E AERONAUTICHE
Data di deposito della tesi:02 Febbraio 2015
Anno di Pubblicazione:28 Ottobre 2015
Parole chiave (italiano / inglese):miniature satellites telecommunication
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/05 Impianti e sistemi aerospaziali
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:7928
Depositato il:28 Gen 2016 15:36
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. http://www.nasa.gov/directorates/heo/scan/services/networks/txt\_ tdrs\_fleet.html$\#$.VJrPa14AKA (retrieved: December 2014). Vai! Cerca con Google

2. http://www.esa.int/Our\_Activities/Observing\_the\_Earth/Copernicus/Sentinel-1/Laser\_link\_offers\_high-speed\_delivery (retrieved: December 2014). Vai! Cerca con Google

3. A. Jain, N. Trost, Current and near-future space launch vehicles for manned trans-planetary space exploration: phobos-deimos mission architecture case study, in Proc. AIAA Space 2013 Conference and Exposition, AIAA Paper 2013-5384, San Diego, CA, USA, 2013, 1–8. Cerca con Google

4. M. Sturza, LEOs - The Communications Satellites of the 21st Century, inProc. Northcon ’96 , Seattle, WA, November 1996, pp. 114–118. Cerca con Google

5. S. Reid, ORBCOMM System Overview, technical report by ORBCOMM LLC, December 2001, available at http://www.m2mconnectivity.com.au/sites/default/files/more-information/System\_Overview\_Rev\_G.pdf. Vai! Cerca con Google

6. F. J. Dietrich, The Globalstar Satellite Cellular Communication System: Design and Status, in. Proc. 5\superscript{th International Mobile Satellite Conference, June 1997, Pasadena, CA, USA, pp.139-144. Cerca con Google

7. S. R. Pratt et al., An Operational And Performance Overview of the Iridium Low Earth Orbit Satellite System, IEEE Communication Surveys, Second Quarter 1999. Cerca con Google

8. S. Karim, A. Q, Rogers, E. J. Birrane, Bridging the Information Divide: Offering Global Access to Digital Content with a Disruptive Cubesat Constellation, in Proc. 28\superscript{th Annual AIAA/USU Conference on Small Satellites, August 2014, Logan, Utah, USA. Cerca con Google

9. M. Sweeting, M. Fouquet, Earth Observation Using Low Cost Micro / Mini Satellites, Acta Astronautica, Vol. 39, N0 9-12, pp. 823-826, 1996. Cerca con Google

10. R. Funase et al., 50kg-class Deep Space Exploration Technology Demonstration Micro-spacecraft PROCYON, in Proc. 28\superscript{th Annual AIAA/USU Conference on Small Satellites, August 2014, Logan, Utah, USA. Cerca con Google

11. P. Kolodziejski et al., Lunar Exploration Communications relay Microsatellite, in Proc. 21\superscript{th Annual AIAA/USU Conference on Small Satellites, August 2014, Logan, Utah, USA. Cerca con Google

12. http://www.slideshare.net/mpariente/nanosatellite-industryoverview - retrieved: February 2013 Vai! Cerca con Google

13. http://en.wikipedia.org/wiki/List\_of\_CubeSats - retrieved: February 2013 Vai! Cerca con Google

14. D. L. Blaney, Interplanetary CubeSats: Small, low cost missions beyond low Earth Orbit, in Proc. 43\superscript{rd Lunar and Planetary Science Conference, 2012, Texas, id 1868. Cerca con Google

15. A. Batista, E. Gomez, H. Qiao and K. E. Schubert, Constellation Design of a Lunar Global Positioning System Using CubeSats and Chip-Scale Atomic Clocks, in Proc. Int. Conference on Embedded Systems and Applications ESA 12, 16-19 July, 2012, Las Vegas, Nevada, Usa. Cerca con Google

16. J. Bouwmeester, J. Guo, Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology, Acta Astronautica 67, December 2010, pp. 854 -862. Cerca con Google

17. K. Otte, L. Makhova, A. Braun, I. Konovalov, Flexible Cu(In,Ga)Se2 thin-film solar cells for space application, Thin Solid Films 511-512, July 2006, pp. 613-622. Cerca con Google

18. R. Barrett et al., Development of a passively deployed rollout solar array, AIAA Journal, 2006, 21 (12), pp. 4011-4023. Cerca con Google

19. L. Bettiol, F. Branz, A. Francesconi, Dynamic Analysis of Thin-film Solar Panels in LEO, in Proc. IAC 2014, 29 September - 3 October 2014, Toronto, Canada. Cerca con Google

20. C. Scharlemann et al., Propulsion for nanosatellites, in Proc. 32\superscript{nd International Electric Propulsion Conference, Wiesbaden, Germany, September 2011, pp. 11-15. Cerca con Google

21. P. Shaw, Pulsed plasma thrusters for small satellites, doctoral thesis, University of Surrey, June 2011. Cerca con Google

22. K. A. Carroll, S. Rucinski, R. E. Zee, Arc-minute nanosatellite attitude control: enabling technology for the BRITE stellar photometry mission, in Proc. 18\superscript{th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, August 2004, SSC04-V-2. Cerca con Google

23. K. Sarda et al., On-Orbit Performance of the Bright Target Explorer (BRITE) Nanosatellite Astronomy Constellation, in Proc. 28\superscript{th Annual AIAA/USU Conference on Small Satellites, August 2014, Logan, Utah, USA. Cerca con Google

24. B. Seng et al., The AeroAstro Fast-Angular-Rate Miniature Star Tracker- Algorithm and Simulation Results, in Proc. 19\superscript{th Annual AIAA/USU Conference on Small Satellites, 8-11 August 2005, Logan, Utah, USA. Cerca con Google

25. J. A. King et al., Nanosat Ka-Band Communications - A Paradigm Shift in Small Satellite Data Throughput, in Proc. 26\superscript{th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, August 13-16 2004, SSC12-VI-9. Cerca con Google

26. J. Fabrega et al., Venus Express: the First European Mission to Venus, in Proc. 54\superscript{th IAC, September 29 - October 3, 2003, Bremen, Germany. Cerca con Google

27. http://www.cnes-multimedia.fr/alphabus/ALPHABUS\%20VGB.pdf, Alphabus brochure by CNES, (retrieved: January 2015). Vai! Cerca con Google

28. S. Tamaskar, Modular Spacecraft Architecture, A New Paradigm in Spacecraft Design, in Proc. 61\superscript{st IAC, September 27 - October 1, 2010, Prague, Czech Republic Cerca con Google

29. J. Esper et al., Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite, in Proc. AIAA 2nd Responsive Space Conference, April 19-22, 2004, Los Angeles, CA. Cerca con Google

30. T. Orii et al., Development of Versatile Small Satellite, Acta Astronautica, Vol. 50, No. 9, pp. 557-567, 2002. Cerca con Google

31. D. Voss, J. Coombs, T. Fritz, A Novel Spacecraft Standard for a Modular Nanosatellite Bus in an Operationally Responsive Space Environment, in Proc. AIAA 7\superscript{th Responsive Space Conference, April 27-30, 2009, Los Angeles, CA. Cerca con Google

32. E. Cohan et al., Analysis of Modular Spacecraft Bus Design for Rapid Response Missions, in Proc. 4\superscript{th Responsive Space Conference, April 24-27, 2006, Los Angeles, CA. Cerca con Google

33. S. Dong et al, Self-Assembling Wireless Autonomously Reconfigurable Module Design Concept, Acta Astronautica , Vol. 62, Nos. 2-3, 2008, pp. 246 –256. Cerca con Google

34. S. Moynahan, S. Touhy, Development of a Modular On-orbit Serviceable Satellite Architecture, in Proc. IEEE 2001 Aerospace Conference, 10-17 March ,2001 Big Sky, Montana, USA Cerca con Google

35. O. Brown, P. Emerenko, Fractionated Space Architectures: A Vision for Responsive Space, Defense Advanced Research Projects Agency Arlington Va, 2006. Cerca con Google

36. D. M. LoBosco et al., Pleiades Fractioned Space System Architecture and the Future of National Security Space, in Proc. of AIAA SPACE 2008 Conference \& Exposition, AIAA-2008-7687, San Diego, CA, USA. Cerca con Google

37. J. Chu, J. Guo, E. K. A. Gill, Fractionated Space Infrastructure for Long-Term Earth Observation Missions, in Proc. IEEE 2013 Aerospace Conference, 2-9 March, 2013 Big Sky, Montana, USA. Cerca con Google

38. J. R. Wertz and W. J. Larson, Space Mission Analysis and Design, Kluwer Academic Publishers Group, 1999. Cerca con Google

39. T. P. Wright, Factors Affecting the Cost of Airplanes, Journal of the Aeronautical Sciences. 3: 122-128, 1936. Cerca con Google

40. D. Orban , G. J. K. Moernaut , The Basics of Patch Antennas, Orban Microwave Products. Cerca con Google

41. L. Ritchey, A Survey and Tutorial of Dielectric Materials Used in the Manufacture of Printed Circuit Boards, Circuitree magazine, November 1999. Cerca con Google

42. N. Chamberlain et al., Microstrip Patch Antenna Panel for Large Aperture L-band Phased Array, in IEEE Aerospace Conference, March 2005, pp. 1185-1192. Cerca con Google

43. Y.K. Chang, K. L. Hwang, S. J. Kang, SEDT (System Engineering Design Tool) Development and Its Application to Small Satellite Conceptual Design, Acta Astronautica, vol. 61, pp. 676–690, 2007. Cerca con Google

44. G. Belvedere, P. Gaudenzi, A model of the Reliability and Technical Risk of Nanosatellites and Their Relation with Mission Objectives and Cost, in Proc. 4\superscript{th Int. Workshop SECESA 2010, October 13-15, 2010, Lausanne, Switzerland. Cerca con Google

45. D. A. Bearden, R. Boudreault, J. R. Wertz, Cost Modeling in Reducing Space Mission Cost, Torrance, CA, Microcosm Press, 1996. Cerca con Google

46. http://tdrs.gsfc.nasa.gov/ Vai! Cerca con Google

47. http://www.esa.int/Our\_Activities/Telecommunications\_Integrated\_Applications/EDRS Vai! Cerca con Google

48. K. L. Kausza, M. A. Paluszek, Intersatellite Links: Lower layer Protocols for Autonomous Constellations, 1\superscript{st Joint Space Internet Workshop, 13-16 November 2000, Greenbelt, , Maryland, USA. Cerca con Google

49. K. Hogie et al., Using Standard Internet Protocols and Applications in Space, Computer Networks, 47, 2005, pp. 603 - 650. Cerca con Google

50. W. Ivancic, Internet Technologies for Space Applications, DARPA Fractionated Spacecraft Workshop, 3-4 August 2006, Colorado Springs, USA Cerca con Google

51. L. Wood et al., IPv6 and IPSec on a Satellite in Space, in Proc. 58\superscript{th IAC, 24-28 September 2007, Hyderabad, India Cerca con Google

52. L. Wood, Data Routing and Transmission Protocols,DARPA Fractionated Spacecraft Workshop, 3-4 August 2006, Colorado Springs, USA Cerca con Google

53. W. Ivancic et al., IPv6 and IPsec Tests of a Space-Based Asset,the Cisco Router in Low Earth Orbit (CLEO), Technical Report NASA/TM-2008-215203, May 2008. Cerca con Google

54. J. E. Tomayko, Computers in Spaceflight: The NASA Experience, NASA Contractor Report 182505, March 1988. Cerca con Google

55. M. Meltzer, Mission to Jupiter: a History of the Galileo Project, NASA SP 2007-4231, NASA, 2007. Cerca con Google

56. A.H. Jallad, T. Vladimirova, Distributed Computing for Formation Flying Missions, in Proc. 2006 IEEE/ACS International Conference on Computer Systems and Applications, Dubai/Sharjah, UAE, 8-11 March, 2006. Cerca con Google

57. R. Golding, T. Wong, Adaptive distributed computing for fractionated space systems, DARPA Fractionated Spacecraft Workshop, Colorado Springs, 3-4 August, 2006. Cerca con Google

58. J. Townsend et al., Effects of a Distributed Computing Architecture on the Emerald Nanosatellite Development Process, in Proc. of the 14\superscript{th Annual AIAA/USU Conference on Small Satellites, Logan, UT, August, 2000. Cerca con Google

59. B. Palmintier et al., A Distributed Computing Architecture for Small Satellite and Multi-Spacecraft Missions, in Proc. 16\superscript{th Annual AIAA/USU Conference on Small Satellites, 12-15 August 2002, Logan, Utah, USA. Cerca con Google

60. M. Swartwout, A Standardized, Distributed Computing Architecture: Results from Three Universities , in Proc. 19\superscript{th Annual AIAA/USU Conference on Small Satellites, 8-11 August 2005, Logan, Utah, USA. Cerca con Google

61. T. Imura, Y. Hori, Mximizing Air Gap and Efficiency of Magnetic resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula, IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, October 2011. Cerca con Google

62. T. Miura et al., Experimental Study of Rectenna Connection for Microwave Power Transmission, Electronics and Communications in Japan, Part 2, Vol. 84, No. 2, 2001. Cerca con Google

63. J. M. Lafleur J.M., J. H. Saleh, Feasibility Assessment of Microwave Power Beaming for Small Satellites, in Proc. 6\superscript{th International Energy Conversion Engineering Conference, AIAA 2008-5714, Cleveland, OH, July 28-30, 2008. Cerca con Google

64. J.M. Lafleur, J.H. Saleh , System-Level Feasibility Assessment of Microwave Power Beaming for Small Satellites, Journal of Propulsion and Power, vol.25 no.4, 2009, pp. 976-983. Cerca con Google

65. V. Jamnejad, A. Silva, Microwave Power Beaming Strategies for Fractionated Spacecraft Systems, in Proc. 2008 IEEE Aerospace Conference, Big Sky, MT, March 1-8, 2008. Cerca con Google

66. D. Pinard et al., Accurate and Autonomous Navigation for the ATV, Aerospace Science and Technology, vol. 11(6), pp. 490-498, 2007. Cerca con Google

67. D. W. Miller, et al., SPHERES: a Testbed for Long Duration Satellite Formation Flying in Micro-Gravity Condition, in Proc. 2000 AAS/AIAA Space Flight Mechanics Meeting, 23-26 January , 2000, Clearwater, Florida, USA. Cerca con Google

68. L. Rodgers, Concepts and Technology Development for the Autonomous Assembly and Reconfiguration of Modular Space Systems, Master of science thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, February 2006. Cerca con Google

69. M. Marszalek et al., Intersatellite Links and Relative Navigation: Pre-conditions for Formation Flights with Pico- and Nanosatellites, in Proc. 18\superscript{th IFAC World Congress, 28 August - 2 September, 2011, Milano, Italy. Cerca con Google

70. K. E. Wenzel, A. Masselli, A. Zell, Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle, Journal of Intelligent \& Robotic Systems, 61, 1-4, 2010, pp. 221–238. Cerca con Google

71. L. Meier, P. Tanskanen, F. Fraundorfer, M. Pollefeys, Pixhawk: A system for autonomous flight using onboard cimputer vision, in Proc. IEEE International Conference on Robotics and Automation, 9-13 May 2011, Shanghai, China, pp. 2992-2997. Cerca con Google

72. F. Kendoul, I. Fantoni, K. Nonami, Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles, Robotics and Autonomous Systems , 57, 2009, pp. 591–602. Cerca con Google

73. S. Grzonka, G., Grisetti, W. Burgard, Towards a navigation system for autonomous indoor flying, in Proc. IEEE International Conference on Robotics and Automation, Kobe, Japan, 12-17 May 2009, pp. 2878–2883. Cerca con Google

74. R. He, S. Prentice, N. Roy, Planning in information space for a quadrotor helicopter in a GPS-denied environment, in Proc. IEEE International Conference on Robotics and Automation (ICRA), 19–23 May 2008, Pasadena, CA, USA, pp. 1814–1820. Cerca con Google

75. L. Rodgers et al., A Universal Interface for Modular Spacecraft, in Proc. 19\superscript{th Annual AIAA/USU Conference on Small Satellites, August 2005, Logan, Utah, USA. Cerca con Google

76. D. Miller, Universal Docking Port, design document, available at http://ssl.mit.edu/spheres/spheresLibrary/projectDocumentation.html (retrieved: December 2014). Vai! Cerca con Google

77. P. Tchoryk, A. B. Hays, J. C. Pavlich, A Docking Solution for On-Orbit Satellite Servicing: Part of the Responsive Space Equation, in Proc. of the 1\superscript{st Responsive Space Conference, 1-3 April, 2003, Redondo Beach, CA, USA. Cerca con Google

78. J. C. Pavlich, P. Tchoryk, A. B. Hays, G. Wassick, KC-135 Zero-G Testing of a MicroSatellite Docking Mechanism, in Proc. SPIE AeroSense Symposium, Space Systems Technology and Operations Conference, 24 April 2003, Orlando, FL, USA. Cerca con Google

79. http://www.rexusbexus.net/ Vai! Cerca con Google

80. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/ Vai! Cerca con Google

81. http://www.snsb.se/en/Home/Home/ Vai! Cerca con Google

82. http://www.sscspace.com/ Vai! Cerca con Google

83. http://www.moraba.de/ Vai! Cerca con Google

84. A. Boesso, A. Francesconi, ARCADE small scale docking mechanism for microsatellites, Acta Astronautica, 86, 77-87, 2013. Cerca con Google

85. L. Olivieri, A. Francesconi, Design of a docking mechanism for small spacecraft, in Proc. 63\superscript{rd IAC, 1-5 October 2012, Naples, Italy. Cerca con Google

86. L. Olivieri, F. Branz, L. Savioli, A. Francesconi, Conceptual design of small spacecraft docking mechanism actuated by electroactive polymers, in Proc. 2\superscript{nd IAA Conference on University Satellites Missions and Cubesat Winter Workshop, 3-9 February 2013, Rome. Cerca con Google

87. On-Orbit Satellite Servicing Study, Project Report, NASA (2010) Cerca con Google

88. J. H. Saleh, E. Lamassoure, D. E., Hastings, Space system flexibility provided by on-orbit servicing: part I Journal of Spacecraft and Rockets 39 (4), 551-560, 2001. Cerca con Google

89. E. L. Gralla, Strategies for launch and assembly of modular spacecraft, Master Thesis, Massachusetts Institute of Technology, 2006. Cerca con Google

90. S. I. Nishida, S. Kawamoto, Y. Okawa, F. Terui, S. Kitamura, Space debris removal system using a small satellite, Acta Astronautica 65, 95-102, 2009. Cerca con Google

91. M. H. Kaplan, Space debris realities and removal. , in Proc. of the 16\superscript{th Improving Space Operations Workshop 2010. Cerca con Google

92. K. Levenberg, A method for the solution of certain non-linear problems in least squares, The Quarterly of Applied Mathematics 2, 164-168 (1944). Cerca con Google

93. D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics 11 (2), 431-441 (1963). Cerca con Google

94. M. Shikatani et al., ETS-VI experimental optical inter-satellite communication system, Communications, 1989. ICC'89, BOSTONICC/89. Conference record.'World Prosperity Through Communications', IEEE International Conference on. IEEE, 1989. Cerca con Google

95. G. Baister, P. Gatenby, J. Lewis, M. Witting, The SOUT Optical Intersatellit Communication Terminal,Iff Roc. Optoelectronics, Vol. 141 No. 6, Dec. 1994. Cerca con Google

96. A. Biswas, G. Williams, K. E. Wilson, Results of the STRV-2 lasercom terminal evaluation tests, Optoelectronics and High-Power Lasers \& Applications, International Society for Optics and Photonics, 1998. Cerca con Google

97. G. Griseri, SILEX Pointing Acquisition and Tracking: ground tests and flight performance, in Proc. 4\superscript{th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, The Netherlands, 18-21 October 1999. Cerca con Google

98. http://www.esa.int/Our\_Activities/Telecommunications_Integrated\_Applications/Artemis$ Vai! Cerca con Google

99. K. Pribil et al., High data rate inter-satellite-communication system SOLACOS, Journal of Space Communications, Volume 15, Issue 2, April 1998, pp. 97-104. Cerca con Google

100. E. Rugi, Terminals and mechanisms for optical communication, EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP 438 (1999): 67-72. Cerca con Google

101. Y. Fujiwara et al., Optical inter-orbit communications engineering test satellite (OICETS), Acta Astronautica 61 (2007) 163-175. Cerca con Google

102. M. Gregory et al., Tesat Laser Communication Terminal Performance Results on 5.6 Gbit Coherent Inter Satellite And Satellite To Ground Links, in Proc. International Conference on Space Optics, 4-8 October 2010, Rhodes, Greece. Cerca con Google

103. Y. Koyama et al., SOTA:Small Optical Transponder for Micro-Satellite, in Proc. International Conference on Space Optical Systems and Applications, 11-13 May, Santa Monica, CA, USA, 2011. Cerca con Google

104. M. Bacher et al., A Modular Solution for Routine Optical Satellite-to-ground Communications on Small Spacecrafts, in Proc. International Conference on Space Optical Systems and Applications (ICSOS) 2012, 9-12 October 2012, Ajaccio, Corsica, France. Cerca con Google

105. S. Alluru, J. Y. Mcnair, An Optical Payload for Cubesats, in Proc. 24\superscript{th Annual AIAA/USU Conference on Small Satellites, 9-12 August, Logan, Utah, USA. Cerca con Google

106. P. Rossmann, Potential of Optical Communication Systems for Nanosatellites, in Proc. 4S Symposium, 26-30 May, 2014, Porto Petro, Majorca, Spain. Cerca con Google

107. T. Kubo-oka et al., Optical Communication Experiment Using Very Small Optical TrAnsponder Component on a Small Satellite RISESAT, in Proc. International Conference on Space Optical Systems and Applications, 9-12 October, Ajaccio, Corsica, France, 2012. Cerca con Google

108. http://www.astrium.eads.net/en/equipment/antenna-pointing-mechanism-electronics-apme.html - retrieved: February 2013 Vai! Cerca con Google

109. SSTL Antenna Pointing Mechanism Sales Brochure, July 2012. Cerca con Google

110. V. W. S. Chan, Optical satellite networks, Journal of Lightwave Technol. 21, No. 11, November 2003, pp. 2811-2827. Cerca con Google

111. J. Wang and C. M. Gosselin, Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators,Jurnal of Mechanical Design (ASME), March 2004, Vol. 126, pp. 319 - 326. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record