Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Scapin, Giorgia (2015) Carbon nanotube-polymer scaffolds and biomimetic peptides as a system to promote human cell differentiation toward the neuronal phenotype: analysis of a model cell line and circulating multipotent cells. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
10Mb

Abstract (inglese)

Carbon nanotubes (CNTs) are attractive candidates for the development of scaffolds for neural regeneration thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. This thesis work concerns the development of a freestanding nanocomposite scaffold composed of multi-walled CNTs in a poly-L-lactic (PLLA) matrix that combines the conductive, mechanical and topographical features of CNTs with the biocompatibility of PLLA. Such CNT-PLLA scaffold resulted to support growth and differentiation of neuronal SH-SY5Y cells better than PLLA alone. In order to mimic guidance cues from the neural environment, biomimetic peptides were designed to reproduce regulatory motifs from L1CAM and LINGO1 proteins, that are involved in neurite outgrowth control. Both peptides - which neither alter cell proliferation nor induce cell death - could specifically and positively modulate neuronal differentiation when either used to coat well bottoms or added to the culture medium (with highest efficiency at 1 uM concentration). Furthermore, cell differentiation resulted to be synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation.
Then, the CNT-PLLA matrix was electrospun into fibres of submicrometric size in order to better mimic the neural environment, i.e. neuronal processes and collagenous components of the extracellular matrix. These scaffolds were shown to be biocompatible and to promote the formation of new neurites that extend along the scaffold fibres. Since cells are influenced by the scaffold topography, the orientation of the scaffold fibres opens up the perspective to promote a polarized neurite outgrowth. Moreover, the neuritogenic properties of the scaffolds are further enhanced when LINGO1 derivative peptide is added to culture medium; this represents a good starting point for developing next generation scaffolds upon peptide functionalization. Moreover, human circulating multipotent cells (hCMCs) were grown onto the scaffolds and treated with peptides in order to asses if this autologous and accessible source of stem cells is capable of neuronal differentiation thanks to the scaffold and peptide characteristics. The CNT-PLLA scaffolds and its respective electrospun version resulted to be suitable for hCMCs adhesion and growth, showing a very good level of biocompatibility, and the hCMCs growing onto the scaffolds showed typical features of cells from the neuronal lineage, such as long neuritic protrusions that are tipped with fan-shaped structures resembling growth cones. Moreover, soon after cell seeding, the scaffolds were shown to promote the upregulation of markers typical of the neuronal lineage.The biomimetic peptides were also shown to influence cell morphology and to upregulate neuronal markers. These results suggest that hCMCs can acquire neuronal commitment thanks to scaffold/peptide properties per se, i.e. even in the absence of those typical growth factors that are normally used to promote the neuronal differentiation of stem cells. Further improvements in the scaffold geometry and composition, functionalization with peptides and culture conditions are necessary to achieve the complete neuronal differentiation of cells and to control the neuron subtype obtained, but our system resulted to be a good starting point for setting up implantable scaffolds for autologous neuronal differentiation. Future functional assessment of synaptic transmission and electrophysiological properties of cells onto the scaffolds will be of great interest. Moreover, coupling such scaffolds with electrical stimulation (which is readily achievable using CNT based materials) can boost further analyses aimed at studying neuronal differentiation and has great potential in nerve injury repair as well as neuron prosthesis.

Abstract (italiano)

I nanotubi di carbonio (CNTs) sono i candidati ideali per lo sviluppo di supporti volti a promuovere la rigenerazione neurale grazie alla loro abilità di condurre gli stimoli elettrici e alla loro nanotopografia in grado di mimare l'ambiente neurale. Questo lavoro riguarda lo sviluppo di supporti nanocompositi costituiti da CNTs dispersi in una matrice di acido polilattico (PLLA) e quindi in grado di combinare le caratteristiche nanotopografiche e di conduttività dei CNTs con la biocompatibilità del PLLA. Tali supporti, sono risultati essere in grado di supportare la crescita e il differenziamento delle cellule neuronali SH-SY5Y in modo migliore rispetto al solo PLLA. Al fine di mimare gli stimoli guida dell'ambiente neurale, sono stati sintetizzati anche dei peptidi biomimetici ricavati da specifici motivi regolativi delle proteine L1CAM e LINGO1, le quali sono coinvolte nel controllo dell'accrescimento neuritico. Entrambi i peptidi non hanno dimostrato effetti negativi sulla vitalità e la proliferazione cellulare, promuovendo invece il differenziamento neuronale in modo sequenza specifico e con i maggiori effetti quando utilizzati a concentrazione 1 uM. Inoltre, quando usati in combinazione, supporti e peptidi sono in grado di agire in modo sinergico e di aumentare ulteriormente il differenziamento cellulare.
Successivamente, al fine mimare al meglio l'ambiente neurale, la matrice CNT-PLLA è stata elettrospinnata in fibre di dimensione submicrometrica con lo scopo di rappresentare i processi neuronali e la componente collagenosa della matrice extracellulare. Tali supporti si sono rivelati essere biocompatibili e in grado di promuovere la formazione di nuovi neuriti che si allungano seguendo l'orientamento delle fibre del supporto. Dal momento che le cellule sono influenzate dalla topografia del supporto, l'allineamento delle fibre suggerisce la possibilità di poter ottenere una crescita neuritica polarizzata. Inoltre, le proprietà neuritogeniche del supporto aumentano quando il peptide derivato da LINGO1 viene aggiunto al terreno di coltura; questi risultati rappresentano un buon punto di partenza per sviluppare supporti più avanzati a seguito della funzionalizzazione con tale peptide. In aggiunta, cellule circolanti multipotenti umane (hCMCs) sono state coltivate sui supporti e trattate con i peptidi al fine di determinare se tale fonte di cellule staminali autologa ed accessibile sia capace di differenziazione neuronale grazie soltanto alle caratteristiche dei supporti e dei peptidi. I supporti CNT-PLLA e la rispettiva versione elettrospinnata sono risultati essere adatti all'adesione e alla crescita delle hCMCs, mostrando buoni livelli di biocompatibilità; inoltre, le hCMCs coltivate sui supporti hanno mostrato caratteristiche tipiche delle cellule neuronali come lunghe protrusioni neuritiche terminanti con strutture a forma di ventaglio simili ai coni di crescita. I supporti inoltre promuovono l'espressione di marcatori tipici del lignaggio neuronale. Anche i peptidi si sono rivelati essere in grado di influenzare la morfologia cellulare e di upregolare marcatori neuronali. Questi risultati suggeriscono che le hCMCs sono capaci di acquisire un commitment neuronale solo grazie alle caratteristiche dei supporti e dei peptidi e senza l'ausilio dei fattori di crescita che sono tradizionalmente usati per promuovere il differenziamento neuronale di cellule staminali. Sono necessari ulteriori studi riguardanti la composizione e geometria dei supporti, funzionalizzazione con i peptidi e condizioni di coltura per acquisire una completa differenziazione neuronale e controllare il tipo neuronale ottenuto; ma tale sistema sembra essere un buon punto di partenza per progettare supporti trapiantabili per promuovere la rigenerazione neurale. Sarebbe interessante poter valutare la trasmissione sinaptica e le proprietà fisiologiche delle cellule cresciute sui supporti così come utilizzare tali supporti per stimolare elettricamente le cellule e valutare un eventuale miglioramento nel differenziamento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Filippini, Francesco
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > BIOSCIENZE E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:02 Febbraio 2015
Anno di Pubblicazione:01 Febbraio 2015
Parole chiave (italiano / inglese):Biomimetic peptides; Carbon nanotube scaffold; L1; LINGO1; Neuronal differentiation; Stem cells
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:7935
Depositato il:23 Nov 2015 15:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abney JR, Meliza CD, Cutler B, Kingma M, Lochner JE, Scalettar BA. Real-time imaging of the dynamics of secretory granules in growth cones. Biophys J. 1999;77(5):2887-95. Cerca con Google

Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 2000 Jan;299(1):39-46. Cerca con Google

Ahn HS, Hwang JY, Kim MS, Lee JY, Kim JW, Kim HS, Shin US, Knowles JC, Kim HW, Hyun JK. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomater. 2015 Feb;13:324-34. Cerca con Google

Alberts P, Rudge R, Hinners I, Muzerelle A, Martinez-Arca S, Irinopoulou T, Marthiens V, Tooze S, Rathjen F, Gaspar P, Galli T. Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol Biol Cell. 2003 Oct;14(10):4207-20. Cerca con Google

Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M, Kessler H, Spatz JP. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem. 2004 Mar 19;5(3):383-8. Cerca con Google

Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: technology update. Med Devices (Auckl). 2014 Dec 1;7:405-24. doi: 10.2147/MDER.S59124. eCollection 2014. Cerca con Google

Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther. 2010 Oct;21(10):1226-38. Cerca con Google

Bai Y, Markham K, Chen F, Weerasekera R, Watts J, Horne P, Wakutani Y, Bagshaw R, Mathews PM, Fraser PE, Westaway D, St George-Hyslop P, Schmitt-Ulms G. The in vivo brain interactome of the amyloid precursor protein. Mol Cell Proteomics. 2008 Jan;7(1):15-34. Cerca con Google

Bareket-Keren L, Hanein Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front Neural Circuits. 2013 Jan 9;6:122. Cerca con Google

Berezin V, Bock E. NCAM mimetic peptides: Pharmacological and therapeutic potential. J Mol Neurosci. 2004;22(1-2):33-39. Cerca con Google

Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010 May-Jun;28(3):325-47. Cerca con Google

Brahms S, Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. .J Mol Biol. 1980;138(2):149-178. Cerca con Google

Brunetti V, Maiorano G, Rizzello L, Sorce B, Sabella S, Cingolani R, Pompa PP. Neurons sense nanoscale roughness with nanometer sensitivity. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6264-9. Cerca con Google

Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol. 2009 Feb;4(2):126-33. Cerca con Google

Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, Cipollone S, Prato M, Ballerini L. Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci. 2011 Sep 7;31(36):12945-53. Cerca con Google

Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J. Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun. 2009 Jul 10;384(4):426-30. Cerca con Google

Chao TI, Xiang S, Lipstate JF, Wang C, Lu J. Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells. Adv Mater. 2010 Aug 24;22(32):3542-7. Cerca con Google

Chen CS, Soni S, Le C, Biasca M, Farr E, Chen EY, Chin WC. Human stem cell neuronal differentiation on silk-carbon nanotube composite. Nanoscale Res Lett. 2012 Feb 14;7(1):126. doi: 10.1186/1556-276X-7-126. Cerca con Google

Chen H, Yuan L, Song W,Wu Z, Li D. Biocompatible polymer materials: Role of protein–surface interactions. Progress in polymer science 2008;33:1059-1087. Cerca con Google

Chen YS, Hsiue GH. Directing neural differentiation of mesenchymal stem cells by carboxylated multiwalled carbon nanotubes. Biomaterials. 2013 Jul;34(21):4936-44. Cerca con Google

Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des. 2006;12(36):4751-70. Cerca con Google

Cho Y, Borgens RB. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. J Biomed Mater Res A. 2010 Nov;95(2):510-7. Cerca con Google

Cho, Y., Borgens, R.B., 2010b. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrow th of PC12 cells. J. Biomed. Mater. Res. A 95A, 510–517. Cerca con Google

Choudhary V, Gupta A. Polymer/Carbon Nanotube Nanocomposites, Carbon Nanotubes - Polymer Nanocomposites, Dr. Siva Yellampalli 2011 (Ed.), ISBN: 978-953-307-498-6. Cerca con Google

Chow SY, Moul J, Tobias CA, Himes BT, Liu Y, Obrocka M, Hodge L, Tessler A, Fischer I. Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res. 2000 Aug 25;874(2):87-106. Cerca con Google

Christopherson GT, Song H, Mao HQ. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009 Feb;30(4):556-64. Cerca con Google

Cirillo V, Guarino V, Alvarez-Perez MA, Marrese M, Ambrosio L. Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance. J Mater Sci Mater Med. 2014 Oct;25(10):2323-32. Cerca con Google

Cizkova D, Kakinohana O, Kucharova K, Marsala S, Johe K, Hazel T, Hefferan MP, Marsala M. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience. 2007 Jun 29;147(2):546-60. Cerca con Google

Cízková D, Rosocha J, Vanický I, Jergová S, Cízek M. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. 2006 Oct-Nov;26(7-8):1167-80. Cerca con Google

Colangelo AM, Bianco MR, Vitagliano L, Cavaliere C, Cirillo G, De Gioia L, Diana D, Colombo D, Redaelli C, Zaccaro L, Morelli G, Papa M, Sarmientos P, Alberghina L, Martegani E. A new nerve growth factor-mimetic peptide active on neuropathic pain in rats. J Neurosci. 2008 Mar 12;28(11):2698-709. Cerca con Google

Comisar WA, Hsiong SX, Kong HJ, Mooney DJ, Linderman JJ. Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels. Biomaterials. 2006 Apr;27(10):2322-9. Cerca con Google

Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm Suppl. 2007;(72):17-28. Cerca con Google

Cui HF, Vashist SK, Al-Rubeaan K, Luong JH, Sheu FS. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol. 2010 Jul 19;23(7):1131-47. Cerca con Google

Curtis A, Wilkinson C. Nanotechniques and approaches in biotechnology. Trends Biotechnol. 2001 Mar;19(3):97-101. Cerca con Google

Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997 Dec;18(24):1573-83. Cerca con Google

Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 1995 Jan14;84(1):109-29. Cerca con Google

David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981 Nov 20;214(4523):931-3. Cerca con Google

David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices. 2014 Feb;16(1):43-53. Cerca con Google

De Angelis E, Watkins A, Schäfer M, Brümmendorf T, Kenwrick S. Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet. 2002 Jan 1;11(1):1-12. Cerca con Google

Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev. 2011 Apr;91(2):555-602. Cerca con Google

Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2005;6(1):204. Cerca con Google

Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol. 2011;1;3(3). Cerca con Google

Deogracias R, Espliguero G, Iglesias T, Rodríguez-Peña A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci. 2004 Jul;26(3):470-80. Cerca con Google

D'Este M, De Nardi M, Menna E. A co-functionalization approach to soluble and functional Single-Walled Carbon Nanotubes. Eur J Org Chem 2006; (11): 2517-2522. Cerca con Google

Di Liddo R, Bertalot T, Barbon S, Rajendran S, Gasparella M, Parnigotto PP, Conconi MT. Differentiative potential of fibroblast-like cells from human peripheral blood. National congress S.I.A.I. - Società Italiana di Anatomia e Istologia, Pistoia 2012a, Congress book. Cerca con Google

Di Liddo R, Rajendran S, Bertalot T, Barbon S, Mandoli A, Conconi MT. Neuron-like cells arise in vitro from human circulating multipotent cells. 4th Intl. Congr. on Stem Cells & Tissue Formation, Dresden 2012b, Congress Book. Cerca con Google

Ditlevsen DK, Owczarek S, Berezin V, Bock E. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling. Neurochem Int. 2008 Nov;53(5):137-47. Cerca con Google

Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011 Jan;6(1):13-22. Cerca con Google

Edsjö A, Lavenius E, Nilsson H, Hoehner JC, Simonsson P, Culp LA, Martinsson T, Larsson C, Påhlman S. Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment. Lab Invest. 2003 Jun;83(6):813-23. Cerca con Google

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006 Aug 25;126(4):677-89. Cerca con Google

Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gürlek A, Nabawi A, Lohman R, Patrick CW Jr. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999 Jun;20(12):1109-15. Cerca con Google

Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev. 2013 Dec;65(15):2034-44. Cerca con Google

Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, Prato M, Ballerini L. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano. 2012 Mar 27;6(3):2041-55. Cerca con Google

Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: Experimental strategies and future perspectives. Adv Drug Deliv Rev. 2014 Nov 14. pii: S0169-409X(14)00273-7. Cerca con Google

Fernandez-Enright F, Andrews JL, Newell KA, Pantelis C, Huang XF. Novel implications of Lingo-1 and its signaling partners in schizophrenia. Transl Psychiatry 2014;4:e348. doi: 10.1038/tp.2013.121. Cerca con Google

Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997 Nov;19(5):1031-47. Cerca con Google

Fon D, Zhou K, Ercole F, Fehr F, Marchesan S, Minter MR, Crack PJ, Finkelstein DI, Forsythe JS. Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials. 2014 Mar;35(9):2692-712. Cerca con Google

Fu QL, Hu B, Li X, Shao Z, Shi JB, Wu W, So KF, Mi S. LINGO-1 negatively regulates TrkB phosphorylation after ocular hypertension. Eur J Neurosci. 2010 Mar;31(6):1091-7. Cerca con Google

Furtado CA; Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 2004;126(19):6095-6105. Cerca con Google

Gaharwar AK, Sant S, Hancock MJ, Hacking SA. Nanomaterials in Tissue Engineering Fabrication and Applications. Woodhead Publishing. 2013 Jul 64-88 Cerca con Google

Gertz CC, Leach MK, Birrell LK, Martin DC, Feldman EL, Corey JM. Accelerated neuritogenesis and maturation of primary spinal motor neurons in response tonanofibers. Dev Neurobiol 2010; 70(8):589-603. Cerca con Google

Gheith MK, Pappas TC, Liopo AV, Sinani V, Shim BS, Motamedi M, Wicksted JP, Kotov NA. Stimulation of neural cells by lateral layer-by-layer films of single-walled currents in conductive carbon nanotubes. Adv. Mater. 2006 Nov;18: 2975-78. Cerca con Google

Gheith MK, Sinani VA, Wicksted JP, Matts RL and Kotov, NA. Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv Mater 2005;17:2663-2667. Cerca con Google

Gordon T, Udina E, Verge VM, de Chaves EI. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Control. 2009 Oct;13(4):412-41. Cerca con Google

Gouveia RM, Gomes CM, Sousa M, Alves PM, Costa J. Kinetic analysis of L1 homophilic interaction: role of the first four immunoglobulin domains and implications on binding mechanism. J Biol Chem. 2008 Oct 17;283(42):28038-47. Cerca con Google

GrandPré T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002 May 30;417(6888):547-51. Cerca con Google

Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-2723. Cerca con Google

Haspel J, Friedlander DR, Ivgy-May N, Chickramane S, Roonprapunt C, Chen S, Schachner M, Grumet M. Critical and optimal Ig domains for promotion of neurite outgrowth by L1/Ng-CAM. J Neurobiol. 2000 Feb 15;42(3):287-302. Cerca con Google

Haspel J, Grumet M. The L1CAM extracellular region: a multi-domain protein with modular and cooperative binding modes. Front Biosci. 2003 Sep 1;8:s1210-25. Cerca con Google

Hirsch A. Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition. 2002,41,1853-59. Cerca con Google

Hsu YC, Chen SL, Wang DY, Chiu IM. Stem cell-based therapy in neural repair. Biomed J. 2013 May-Jun;36(3):98-105. Cerca con Google

Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett 2004;4(3):507-511. Cerca con Google

Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett 2004;4(3):507-511. Cerca con Google

Huang YA, Kao JW, Tseng DT, Chen WS, Chiang MH, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS One. 2013 Aug 13;8(8):e73890. Cerca con Google

Huang YJ, Wu HC, Tai NH, Wang TW. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small. 2012 Sep 24;8(18):2869-77. Cerca con Google

Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials. 2011 Sep;32(26):6068-79. Cerca con Google

Inoue H, Lin L, Lee X, Shao Z, Mendes S, Snodgrass-Belt P, Sweigard H, Engber T, Pepinsky B, Yang L, Beal MF, Mi S, Isacson O. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14430-5. Cerca con Google

Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 2007 May;7(5):1123-8. Cerca con Google

Jepson S, Vought B, Gross CH, Gan L, Austen D, Frantz JD, Zwahlen J, Lowe D, Markland W, Krauss R. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions. J Biol Chem. 2012 Jun 22;287(26):22184-95. Cerca con Google

Ji B, Li M, Wu WT, Yick LW, Lee X, Shao Z, Wang J, So KF, McCoy JM, Pepinsky RB, Mi S, Relton JK. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci. 2006 Nov;33(3):311-20. Cerca con Google

Jin GZ, Kim M, Shin US, Kim HW. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett. 2011 Aug 21;501(1):10-4. Cerca con Google

Joshi S, Guleria R, Pan J, DiPette D, Singh US. Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene. 2006 Jan 12;25(2):240-7. Cerca con Google

Jouet M, Rosenthal A, Armstrong G, MacFarlane J, Stevenson R, Paterson J,Metzenberg A, Ionasescu V, Temple K, Kenwrick S. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet. 1994 Jul;7(3):402-7. Cerca con Google

Kalus I, Schnegelsberg B, Seidah NG, Kleene R, Schachner M. The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1. J Biol Chem. 2003 Mar 21;278(12):10381-8. Cerca con Google

Kamiguchi H, Lemmon V. Neural cell adhesion molecule L1: signaling pathwaysand growth cone motility. J Neurosci Res. 1997 Jul 1;49(1):1-8. Cerca con Google

Kamiguchi H, Lemmon V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J. Neurosci. 2000;20:3676–3686. Cerca con Google

Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008 Jul;3(7):434-9. Cerca con Google

Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4(3):363-371. Cerca con Google

Kenwrick S, Watkins A, De Angelis E. Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet. 2000 Apr 12;9(6):879-86 Cerca con Google

Khang D, Kim SY, Liu-Snyder P, Palmore GT, Durbin SM, Webster TJ. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007 Nov;28(32):4756-68. Cerca con Google

Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, Dokmeci MR, Khademhosseini A. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014 Aug;35(26):7346-54. Cerca con Google

Kim JA, Jang EY, Kang TJ, Yoon S, Ovalle-Robles R, Rhee WJ, Kim T, Baughman RH, Kim YH, Park TH. Regulation of morphogenesis and neural differentiation of human mesenchymal stem cells using carbon nanotube sheets. Integr Biol (Camb). 2012 Jun;4(6):587-94. Cerca con Google

Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 2008;29(26):3574-3582. Cerca con Google

Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010 Mar 23;4(3):1481-92. Cerca con Google

Kotov AN, Winter JO, Clements IP, Jan E, Timko EP, Campidelli EP, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV,Silva GA, Shi Kam NW, Patolsky F, Ballerini L. Nanomaterials for Neural Interfaces. Adv. Mater. 2009, 21, 3970–04. Cerca con Google

Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon-nanotube shape and individualization critical for renal excretion. Small. 2008 Aug;4(8):1130-2. Cerca con Google

Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, Neimark AV. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Health Mater. 2014Nov;3(11):1745-52. Cerca con Google

Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater. 2014 Oct;10(10):4425-36. Cerca con Google

Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009 Sep;30(26):4325-35. Cerca con Google

Li J, McNally H, Shi R. Enhanced neurite alignment on micro-patterned poly-L-lactic acid films. J Biomed Mater Res A. 2008 Nov;87(2):392-404. Cerca con Google

Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J Nanosci Nanotechnol. 2006 May;6(5):1365-74. Cerca con Google

Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A. 2011 Jan;96(1):13-20. Cerca con Google

Lizundia E, Sarasua JR, D'Angelo F, Orlacchio A, Martino S, Kenny JM, Armentano I. Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. Macromol Biosci. 2012 Jul;12(7):870-81. Cerca con Google

Llorens F, Gil V, Iraola S, Carim-Todd L, Martí E, Estivill X, Soriano E, del Rio JA, Sumoy L. Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain: interaction of its intracellular domain with Myt1l. Dev Neurobiol. 2008 Mar;68(4):521-41. Cerca con Google

Loers G, Chen S, Grumet M, Schachner M. Signal transduction pathways implicated in neural recognition molecule L1 triggered neuroprotection and neuritogenesis. J Neurochem. 2005 Mar;92(6):1463-76. Cerca con Google

Lopes FM, Schröder R, da Frota ML Jr, Zanotto-Filho A, Müller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res. 2010 Jun 14;1337:85-94. Cerca con Google

Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005 Jun;5(6):1107-10. Cerca con Google

Lowery LA, Van Vactor D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol. 2009 May;10(5):332-43. Cerca con Google

Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 2009 Jan;9(1):264-8. Cerca con Google

Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, Altevogt P, Saftig P, Reiss K. L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol. 2005 Oct;25(20):9040-53 Cerca con Google

Martinez-Arca S, Coco S, Mainguy G, Schenk U, Alberts P, Bouillé P, Mezzina M, Prochiantz A, Matteoli M, Louvard D, Galli T. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci. 2001 Jun 1;21(11):3830-8. Cerca con Google

Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, Shimizu N. Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng 2007;103(3):216-220. Cerca con Google

Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubesand use as substrates for neuronal growth. J Mol Neurosci 2000;14(3):175-182. Cerca con Google

Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007 Jun 27;27(26):6931-6. Cerca con Google

McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999 Dec;5(12):1410-2. Cerca con Google

Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004 Mar;7(3):221-8. Cerca con Google

Mi S, Pepinsky RB, Cadavid D. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 2013;27(7):493-503. Cerca con Google

Mikulak J, Negrini S, Klajn A, D'Alessandro R, Mavilio D, Meldolesi J. Dual REST-dependence of L1CAM: from gene expression to alternative splicing governed by Nova2 in neural cells. J Neurochem 2012;120(5):699-709. Cerca con Google

Mosyak L, Wood A, Dwyer B, Buddha M, Johnson M, Aulabaugh A, Zhong X, Presman E, Benard S, Kelleher K, Wilhelm J, Stahl ML, Kriz R, Gao Y, Cao Z, Ling HP, Pangalos MN, Walsh FS, Somers WS. The structure of the Lingo-1 ectodomain, a module implicated in central nervous system repair inhibition. J Biol Chem. 2006 Nov 24;281(47):36378-90. Cerca con Google

Munnamalai V, Weaver CJ, Weisheit CE, Venkatraman P, Agim ZS, Quinn MT, Suter DM. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochem 2014;130(4):526-540. Cerca con Google

Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials. 2012 Jul;33(21):5230-46. Cerca con Google

Oudega M, Gautier SE, Chapon P, Fragoso M, Bates ML, Parel JM, Bunge MB. Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials. 2001 May;22(10):1125-36. Cerca con Google

Park SY, Choi DS, Jin HJ, Park J, Byun KE, Lee KB, Hong S. Polarization-controlled differentiation of human neural stem cells using synergistic cues from the patterns of carbon nanotube monolayer coating. ACS Nano. 2011 Jun 28;5(6):4704-11. Cerca con Google

Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med. 2012 Nov;16(11):2564-82. Cerca con Google

Petrinovic MM, Duncan CS, Bourikas D, Weinman O, Montani L, Schroeter A, Maerki D, Sommer L, Stoeckli ET, Schwab ME. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development. 2010 Aug 1;137(15):2539-50. Cerca con Google

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. Cerca con Google

Pettikiriarachchi JTS, Parish CL, Shoichet MS, Forsythe JS, Nisbet DR. Biomaterials for Brain Tissue Engineering. Aust. J. Chem. 201063:1143-1154 Cerca con Google

Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol. 2007 Nov;2(11):713-7. Cerca con Google

Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007 Jan 10;168(1):58-74. Cerca con Google

Puttagunta R, Schmandke A, Floriddia E, Gaub P, Fomin N, Ghyselinck NB, Di Giovanni S. RA-RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. J Cell Biol. 2011 Jun 27;193(7):1147-56. Cerca con Google

Reid AJ, Shawcross SG, Hamilton AE, Wiberg M, Terenghi G. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations. Neurosci Res. 2009 Oct;65(2):148-55. Cerca con Google

Rietze RL, Reynolds BA. Neural stem cell isolation and characterization. Methods Enzymol. 2006;419:3-23. Cerca con Google

Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL,Monleón Pradas M. Substrate chemistry-dependent conformations of single lamininmolecules on polymer surfaces are revealed by the phase signal of atomic forcemicroscopy. Biophys J. 2007 Jul 1;93(1):202-7. Cerca con Google

Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst. 1983;71:741-747. Cerca con Google

Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013;2013:ID 676815. Cerca con Google

Salice P, Fabris E, Sartorio C, Fenaroli D, Figà V, Casaletto, Cataldo S, Pignataro P, Menna E. An Insight into the Functionalisation of Carbon Nanotubes by Diazonium Chemistry: Towards a Controlled Decoration. Carbon. 2014;74,73-82. Cerca con Google

Salice P, Fenaroli D, De Filippo CC, Menna E, Gasparini G, Maggini M. Efficient functionalization of carbon nanotubes: an opportunity enabled by flow chemistry. Chimica Oggi / Chemistry Today. 2012;30(6):37-39. Cerca con Google

Scapin G, Salice P, Tescari S, Menna E, De Filippis V, Filippini F. Enhanced Neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold. Nanomedicine. 2014 Dec 26. pii: S1549-9634(14)00563-2. doi: 10.1016/j.nano.2014.11.001. Cerca con Google

Scheib J, Höke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013 Dec;9(12):668-76. Cerca con Google

Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair andregeneration. Annu Rev Biomed Eng. 2003;5:293-347. Cerca con Google

Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8948-53. Cerca con Google

Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta. 2011 Mar;1810(3):350-60. Cerca con Google

Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004 Feb 27;303(5662):1352-5. Cerca con Google

Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci. 2006 Jan;7(1):65-74. Cerca con Google

Silva GA. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surg Neurol. 2007 Feb;67(2):113-6. Cerca con Google

Singh A, Rokes C, Gireud M, Fletcher S, Baumgartner J, Fuller G, Stewart J, Zage P, Gopalakrishnan V. Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCF(β-TRCP) in neuroblastoma cells. Cancer. 2011 Nov 15;117(22):5189-202. Cerca con Google

Sorkin R, Greenbaum A, David-Pur M, Anava S, Ayali A, Ben-Jacob E, Hanein Y. Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology. 2009 Jan 7;20(1):015101. Cerca con Google

Soroka V, Kiryushko D, Novitskaya V, Ronn LC, Poulsen FM, Holm A, Bock E, Berezin V. Induction of neuronal differentiation by a peptide corresponding to the homophilic binding site of the second Ig module of the neural cell adhesion molecule. J Biol Chem. 2002 Jul 5;277(27):24676-83. Cerca con Google

Sridharan I, Kim T, Wang R. Adapting collagen/CNT matrix in directing hESC differentiation. Biochem Biophys Res Commun. 2009 Apr 17;381(4):508-12. Cerca con Google

Staii C, Viesselmann C, Ballweg J, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Distance dependence of neuronal growth on nanopatterned gold surfaces. Langmuir. 2011 Jan 4;27(1):233-9. Cerca con Google

Stein T, Walmsley AR. The leucine-rich repeats of LINGO-1 are not required for self-interaction or interaction with the amyloid precursor protein. Neurosci Lett. 2012;509(1):9-12. Cerca con Google

Stout DA, Webster TJ. Carbon nanotubes for stem cell control. MaterialsToday. 2012 Jul;15(7-8):312-18. Cerca con Google

Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L. Interactions Between Cultured Neurons and Carbon Nanotubes: A Nanoneuroscience Vignette. J Nanoneurosci. 2009 Jun 1;1(1):10-16. Cerca con Google

Tay CY, Gu H, Leong WS, Yu H, Li HQ, Heng BC, Tantang H, Loo SCJ, Li LJ, Tan LP. Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon. 2010 Apr;48(4):1095-04. Cerca con Google

Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, Chan WM, Andrews C, Demer JL, Robertson RL, Mackey DA, Ruddle JB, Bird TD, Gottlob I, Pieh C, Traboulsi EI, Pomeroy SL, Hunter DG, Soul JS, Newlin A, Sabol LJ, Doherty EJ, de Uzcátegui CE, de Uzcátegui N, Collins ML, Sener EC, Wabbels B, Hellebrand H, Meitinger T, de Berardinis T, Magli A, Schiavi C, Pastore-Trossello M, Koc F, Wong AM, Levin AV, Geraghty MT, Descartes M, Flaherty M, Jamieson RV, Møller HU, Meuthen I, Callen DF, Kerwin J, Lindsay S, Meindl A, Gupta ML Jr, Pellman D, Engle EC. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010 Jan 8;140(1):74-87. Cerca con Google

Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, Houlé JD. Combining peripheral nerve grafts and chondroitinase promotes functional axonalregeneration in the chronically injured spinal cord. J Neurosci. 2009 Nov 25;29(47):14881-90. Cerca con Google

Vacca M, Albania L, Della Ragione F, Carpi A, Rossi V, Strazzullo M, De Franceschi N, Rossetto O, Filippini F, D'Esposito M. Alternative splicing of the human gene SYBL1 modulates protein domain architecture of Longin VAMP7/TI-VAMP, showing both non-SNARE and synaptobrevin-like isoforms. BMC Mol Biol. 2011;12:26. Cerca con Google

Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, Decorte A, Heymans K, Adriaensen J, Bruining M, Van Remoortere M, Borghys H, Meert T, Peeters J, Brewster ME. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005 Apr;26(11):1307-15. Cerca con Google

Von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010 Jan;339(1):131-53. Cerca con Google

Wang F. Regenerative Medicine in Neurological Disorders: The Present Situation and Future Issues with Stem Cell Therapy. J Neurol Disord Stroke. 2013 Jul 1(1): 1005. Cerca con Google

Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013 Dec;65(15):1964-2015. Cerca con Google

Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE. Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells. 2011 Feb;29(2):169-78. Cerca con Google

Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J (Engl). 2010 Apr 20;123(8):1086-92. Cerca con Google

Xie J, Macewan MR, Willerth SM, Li X, Moran DW, Sakiyama-Elbert SE, Xia Y. Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Adv Funct Mater. 2009 Jul 24;19(14):2312-2318. Cerca con Google

Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, Li S, Ma PX. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials. 2014 Jan;35(1):225-35. Cerca con Google

Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, Ozawa M, Ohyama-Goto R, Kitamura N, Kawano M, Tan-Takeuchi K, Ohtsuka C, Miyawaki A, Takashima A, Ogawa M, Toyama Y, Okano H, Kondo T. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007 Mar;25(3):562-70. Cerca con Google

Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891-1900. Cerca con Google

Yang K, Jung K, Ko E, Kim J, Park KI, Kim J, Cho SW. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10529-40. Cerca con Google

Yao L, McCaig CD, Zhao M. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus. 2009 Sep;19(9):855-68. Cerca con Google

Yao L, Pandit A, Yao S, McCaig CD. Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng Part B Rev. 2011 Jun;17(3):143-53. Cerca con Google

Yu W, Jiang X, Cai M, Zhao W, Ye D, Zhou Y, Zhu C, Zhang X, Lu X, Zhang Z. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration. Nanotechnology. 2014 Apr 25;25(16):165102. Cerca con Google

Zahir T, Chen YF, MacDonald JF, Leipzig N, Tator CH, Shoichet MS. Neural stem/progenitor cells differentiate in vitro to neurons by the combined action of dibutyryl cAMP and interferon-gamma. Stem Cells Dev. 2009 Dec;18(10):1423-32. Cerca con Google

Zhang X, Prasad S, Niyogi S, Morgan A, Ozkan M, Ozkan CS. Guided neurite growth on patterned carbon nanotubes. Sens Actuators B Chem. 2005;106:843-50. Cerca con Google

Zhao X, Yip PM, Siu CH. Identification of a homophilic binding site in immunoglobulin-like domain 2 of the cell adhesion molecule L1. J Neurochem. 1998 Sep;71(3):960-71. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record