Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dal Sasso, Gregorio (2015) Characterization of archaeological bones from the Al Khiday cemetery (Central Sudan): structure and microstructure of diagenetically altered bioapatite. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
14Mb

Abstract (inglese)

Bone is a composite material constituted by the association of an organic matrix and bioapatite nano-crystals. Human bones, frequently recovered from archaeological contexts, represent a valuable source of information on health, demography, age, diet and mobility of ancient populations as well as on environmental conditions experienced. However the reliability of such information depends on the preservation state of bone material and its constituents, i.e. the preservation of the in vivo chemical and isotopic composition. Bone alteration is caused by taphonomic and diagenetic processes, mainly driven by environmental conditions, affecting bones since the death of the individual and during burial. Therefore, a diagenetic study on archaeological bones, aiming to accurately determine their preservation state, taking into account the archaeological and palaeoenvironmental contexts, is a fundamental step when retrieving information by chemical or isotopic analyses.
Based on this perspective, this research project is mainly addressing the radiocarbon dating of the bioapatite fraction of human bones, coming from the archaeological site 16D4 – Al Khiday 2 (Sudan) and the assessment of the reliability of results. At 16D4, a multi-stratified cemetery was excavated and several burial phases were recovered. In fact, the site was used as a burial ground at different periods along almost the entire Holocene. The well-defined archaeological context provided a set of samples suitable to investigate the reliability of the radiocarbon dating of bioapatite as well as the influence of environmental/climatic changes, occurring in Central Sudan along the Holocene, on bone diagenesis. Firstly a multi-disciplinary study on bones and associated soil sediments has been carried out, in order to define the preservation state of bones as well as to provide a model for diagenetic processes taking into account pedogenic processes and changes in environmental, climatic and local burial conditions.
Based in the established model for diagenetic alteration of these bones, radiocarbon dating on selected bioapatite samples was performed and reliability of results discussed.
Characterization of bone samples was carried out by optical and scanning electron microscopy, X-ray computed micro-tomography, X-ray powder diffraction, Fourier transform infrared spectroscopy and micro-Raman spectroscopy. Samples of pedogenic calcrete horizon, found at the 16D4 site, were analysed by optical, cathodoluminescence, and scanning electron microscopy. Bone and calcrete samples were prepared for 14C-AMS dating.
Results from this case study prove that the radiocarbon dating of bioapatite for heavily altered bone samples may not be reliable. Characterization of bones and associated soil sediments provided valuable information on the diagenetic history of bones and on the influence of changes in environmental and local burial conditions on bone preservation. Moreover, results highlight the relevance of a multi-disciplinary approach to the study of the archaeological and palaeoenvironmental contexts

Abstract (italiano)

Il tessuto osseo è composto principalmente da una frazione organica e una minerale, detta bioapatite. Lo studio di ossa umane, frequentemente rinvenute durante scavi archeologici, forniscono importanti informazioni sulla salute, demografia, antichità, dieta e mobilità di popolazioni vissute nel passato, nonché informazioni riguardo alle condizioni paleo-ambientali. Tuttavia, l’affidabilità di queste informazioni dipende molto dallo stato di conservazione delle ossa stesse, ed in particolare dalla conservazione della loro originale composizione chimica e isotopica. L’alterazione delle ossa è dovuta a processi tafonomici e diagenetici, principalmente influenzati dalle condizioni climatico-ambientali, che interessano le ossa dalla morte dell’individuo e durante il seppellimento. Di conseguenza, lo studio della diagenesi di ossa archeologiche, che mira a determinarne lo stato di conservazione, tenendo in considerazione il relativo contesto archeologico e paleo-ambientale, è di fondamentale importanza nell’interpretazione di risultati ottenuti da analisi chimiche e isotopiche. Sulla base di queste considerazioni si inserisce il presente progetto di ricerca, finalizzato alla datazione al radiocarbonio della bioapatite di ossa umane provenienti dal sito archeologico 16D4 – Al Khiday 2 (Sudan) e a determinarne l’affidabilità. Lo scavo del sito 16D4 ha portato alla luce un cimitero caratterizzato da diverse fasi di sepoltura, appartenenti a differenti periodi di uso cimiteriale dell’area cronologicamente distribuiti durante l’Olocene. Questo particolare contesto archeologico fornisce un interessante caso studio che permette di valutare l’affidabilità della datazione sulla bioapatite e allo stesso tempo di studiare l’influenza dei cambiamenti climatici, avvenuti in Sudan centrale durante l’Olocene, sulla diagenesi delle ossa. Prima di procedere con la datazione al radiocarbonio, campioni di ossa e di suoli (campionati sul sito) sono stati esaminati con approccio multidisciplinare al fine di determinare lo stato di conservazione delle ossa e caratterizzare la diagenesi delle ossa tenendo in considerazioni processi pedogenetici cambiamenti delle condizioni climatico–ambientali e di seppellimento. Successivamente alcuni campioni di bioapatite sono stati datati al radiocarbonio e l’affidabilità dei risultati è stata discussa.
I campioni di ossa sono stati analizzati mediante microscopia ottica ed elettronica a scansione, diffrazioni a raggi X su polvere, micro-tomografia a raggi X, spettroscopia IR a trasformata di Fourier e micro-Raman. I campioni di un orizzonte carbonatico, campionati sul sito archeologico, sono stati analizzati mediante microscopia ottica, in catodoluminescenza e elettronica a scansione. Le datazione al radiocarbonio mediante spettrometria si massa con acceleratore sono state ottenute su campioni di bioapatite e di carbonati pedogenetici.
I risultati ottenuti su questo caso studio dimostrano che la datazione di bioapatite di campioni molto alterati non è affidabile. Lo studio di ossa e suoli ha fornito importanti informazioni sull’ alterazione diagenetica delle ossa e sulla sua dipendenza dai cambiamenti climatici e ambientali avvenuti nella regione durante l’Olocene abbiano. Inoltre, i risultati ottenuti in questo lavoro evidenziano l’importanza di un approccio multidisciplinare allo studio di contesti archeologici e paleo-ambientali

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Artioli, Gilberto
Correlatore:Maritan, Lara - Angelini, Ivana
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE DELLA TERRA
Data di deposito della tesi:02 Febbraio 2015
Anno di Pubblicazione:02 Febbraio 2015
Parole chiave (italiano / inglese):radiocarbon dating, bioapatite, bone, diagenesis, FTIR, XRPD, SEM, Sudan
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/09 Georisorse minerarie e applicazioni mineralogico- petrografiche per l'ambiente ed i beni culturali
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:7947
Depositato il:20 Nov 2015 14:14
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Achyuthan H. , Flora O., Braida M., Shankar N., Stenni B., 2010. Radiocarbon ages of pedogenic carbonate nodules from Coimbatore region, Tamil Nadu, Journal of the Geological Society of India, 75 (6), 791-798. Cerca con Google

Armenteros I., 2009. Diagenesis of carbonate in continental settings. In: Alonso-Zarza A.M., Tanner L.H. (Eds), Developments in Sedimentology, 62, 61-151. Cerca con Google

Ascenzi A., Bonucci E., Ostrowski K., Sliwowski A., Dziedzic-Goclawska A., Stachowicz W., Michalik J., 1977. Initial studies on the crystallinity of the mineral fraction and ash content of isolated human and bovine osteons differing in their degree of calcification. Calcified Tissue Research, 23, 7-11. Cerca con Google

Asscher Y., Weiner S., Boaretto E., 2011a. Variations in atomic disorder in biogenic carbonate hydroxyapatite using the infrared spectrum grinding curve method. Advanced functional materials, XX, 1-6. Cerca con Google

Asscher Y., Regev L.,Weiner S., Boaretto E., 2011b. Atomic disorder in fossil tooth and bone mineral: an FTIR study using the grinding curve method. Archaeoscience, 35, 135-141. Cerca con Google

Awonusi A., Morris D.M., Tecklenburg M.M.J., 2007. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcified Tissue International, 81, 46-52. Cerca con Google

Balter, V., Saliège J.F., Bocherens H., Person A., 2002. Evidence of physico–chemical and isotopic modifications in archaeological bones during controlled acid etching. Archaeometry, 44 (3), 329-336. Cerca con Google

Beasley M.M., Bartelink E.J., Taylor L., Miller R.M., 2014. Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science, 46, 16-22. Cerca con Google

Bell, L.S., 1990. Palaeopathology and diagenesis; an SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science, 17, 85–102. Cerca con Google

Berna, F., Matthews, A., Weiner, S., 2004. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science, 31 (7), 867-882. Cerca con Google

Boschian, G., 1997. Sedimentology and soil micromorphology of the Late Pleistocene and Early Holocene deposits of Grotta dell’Edera (Trieste Karst, NE Italy). Geoarchaeology 12, 227–249. Cerca con Google

Brady A.L., White C.D., Longstaffe F.J., Southam G., 2008. Investigating intra-bone isotopic variations in bioapatite using IR-laser ablation and micromilling: Implications for identifying diagenesis? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 190–199. Cerca con Google

Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., Babel, U., 1985. Handbook for Soil Thin Section Description, Waine Research Publication, Albrighton. Cerca con Google

Cailleau G., Braissant O., Verrecchia E. P., 2011. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences, 8, 1755–1767. Cerca con Google

Canti, M.G., 2003. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 54, 339–361. Cerca con Google

Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240 Cerca con Google

Child, A.M., 1995. Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science, 22, 165-174. Cerca con Google

Collins M.J., Nielsen-Marsh C.M., Hiller J., Smith C.I., Roberts J.P., Prigodich R.V., Weiss T.J., CsapoJ.,Millard A.R., Turner-Walker G., 2002. The survival of organic matter in bone: A review. Archaeometry, 44 (3), 383-394. Cerca con Google

Cremaschi, M., Salvatori, S., Usai, D., Zerboni, A., 2007. A further tessera to the huge mosaic: studying the ancient settlement pattern of the El Salha region (south-west of Omdurman, Central Sudan). In: Kroeper, K.,Chlodnicki, M., Kobusiewicz, M., (Eds) “Archaeology of the Earliest North-eastern Africa, 39-48, Poznan Archaeological Museum. Cerca con Google

Crowley B.E., Wheatley P.V., 2014. To bleach or not to bleach? Comparing treatment methods for isolating biogenic carbonate. Chemical Geology, 381, 234–242. Cerca con Google

Dal Sasso G., Maritan L., Usai D., Angelini I., Artioli G., 2014-a. Bone diagenesis at the micro-scale: Bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 30-42. Cerca con Google

Dal Sasso G., Maritan L., Salvatori S., Mazzoli C., Artioli G., 2014-b. Discriminating pottery production by image analysis: a case study of Mesolithic and Neolithic pottery from Al Khiday (Khartoum, Sudan). Journal of Archaeological Science, 46, 125-143. Cerca con Google

Deutz P., Montañez I.P., Monger H.C., Morrison J., 2001. Morphology and isotope heterogeneity of Late Quaternary pedogenic carbonates: Implications for paleosol carbonates as paleoenvironmental proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 15, 293-317. Cerca con Google

Deutz P., Montañez I.P., Monger H.C., 2002. Morphology and Stable and Radiogenic Isotope Composition of Pedogenic Carbonates in Late Quaternary Relict Soils, New Mexico, U.S.A.: An Integrated Record of Pedogenic Overprinting. Journal of Sedimentary Research, 72, 809-822. Cerca con Google

Duyckaerts, G., 1959. The infra-red analysis of solid substances: a review. Analyst, 84, 201–214. Cerca con Google

Edwards H.G.M., Farwell D.W., de Faria D.L.A., Monteiro A.M.F., Afonso M.C., De Blasis P., Eggers S., 2001. Raman spectroscopic study of 3000-year-old human skeletal remains from a Sambaqui, Santa Catarina, Brazil. Journal of Raman Spectroscopy, 32, 17–22. Cerca con Google

Elagib N.A., Mansell M.G., 2000. Recent trends and anomalies in mean seasonal and annual temperatures over Sudan. Journal of Arid Environments, 45, 263–288. Cerca con Google

Elliot, J.C., 2002. Calcium phosphate biominerals. In: Kohn, M.J., Rakovan, J., Hughes, J.M. (Eds.), Phosphates: Geochemical, Geobiological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 427–453. Cerca con Google

Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marín-Monfort, D., Sánchez, B., Geigl, E., Alonso, A., 2010. Early bone diagenesis in temperate environments Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 62–81. Cerca con Google

Gaballo V., 2009. Studio di reperti osteologici provenienti dalla necropoli 16-D-4 (Sudan) attraverso analisi spettroscopiche e spettrochimiche. Unpublished Master thesis in Scienze per i beni culturali, University of Parma. Cerca con Google

Garvie-Lok S.J. , Varney T.L., Katzenberg M.A., 2004. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. Journal of Archaeological Science, 31, 763–776. Cerca con Google

Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum, Quaternary Science Review, 19, 189-211. Cerca con Google

Geyh M.A., Eitel B., 1998. Radiometric dating of young and old calcrete. Radiocarbon, 40, 795-802. Cerca con Google

Gómez-Morales, J., Iafisco, M., Delgado-López, J.M., Sarda, S., Drouet, C., 2013. Progress in the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials, 59, 1-46. Cerca con Google

Grunenwald A., Keyser C., Sautereau A.M., Crubézy E., Ludes B., Drouet C., 2014. Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. Journal of Archaeological Science, 49, 134-141. Cerca con Google

Gunasekaran S., Anbalagan G., Pandi S., 2006. Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892-899. Cerca con Google

Hackett, C.J., 1981. Microscopical focal destruction (tunnels) in excavated human bones. Medicine Science and the Law, 21, 243–265. Cerca con Google

Hassan A.A., Termine J.D., Haynes C., 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon, 19 (3), 364-374. Cerca con Google

Haynes C., 1968. Radiocarbon, analysis of inorganic carbon of fossil bone and enamel. Science 161, 687–688. Cerca con Google

Hedges, R.E.M., 2002. Bone diagenesis: an overview of the processes. Archaeometry, 44 (3), 319-328. Cerca con Google

Hedges, R.E.M., Millard, A.R., Pike, A.W.G., 1995. Measurements and Relationships of Diagenetic Alteration of Bone from Three Archaeological Sites. Journal of Archaeological Science, 22, 201–209. Cerca con Google

Hiatt E.E., Pufahl P.K., 2014. Cathodoluminescence petrography of carbonate rocks: a review of applications for understanding diagenesis, reservoir quality, and pore system evolution. In: Coulson, I.M. (Eds), Cathodoluminescence and its application to geoscience, Mineralogical Association of Canada short course 45, Fredericton NB, 75-96. Cerca con Google

Hollund, H.I., Ariese F., Fernandes R., Jans M.M.E., Kars H., 2012. Testing an alternative high throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry, 55 (3), 507-532. Cerca con Google

Jans, M.M.E., Kars,H., Nielsen-Marsh, C.M., Smith, C.I., Nord, A.G., Arthur, P., Earl, N., 2002. In situ preservation of archaeological bone: a histological study within multidisciplinary approach. Archaeometry, 44(3), 343–352. Cerca con Google

Jans, M.M.E., Nielsen-Marsh, C.M., Smith, C.I., Collins, M.J., Kars, H., 2004. Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31, 87-95. Cerca con Google

Julien, C.M., Massot, M., Poinsignon, C., 2004. Lattice vibrations of manganese oxides Part I. Periodic structures. Spectrochimica Acta Part A, 60, 689-700. Cerca con Google

Kazanci M., Roschger P., Paschalis E.P., Klaushofer K., Fratzl P., 2006. Bone osteonal tissue by Raman spectral mapping: orientation-composition. Journal of Structural Biology, 156, 489-496. Cerca con Google

King C.L., Tayles N., Gordon K.C., 2011. Re-examining the chemical evaluation of diagenesis in human bone apatite. Journal of Archaeological Science, 38 (9), 2222–2230. Cerca con Google

Koch P.L., Tuross N., Fogel M.L., 1997. The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite. Journal of Archaeological Science, 24, 417–429. Cerca con Google

Lebon M., Müller K., Bellot-Gurlet L., Paris C., Reiche I., 2011. Application des micro-spectrométries infrarouge et Raman à l’étude des processus diagénétiques altérant les ossements paléolithiques. Archeosciences, revue d’archéométrie, 35, 179-190. Cerca con Google

Lebon, M., Reiche, I., Bahain, J-J., Chadefaux, C., Moigne A-M., Fröhlich, F., Sémah, F., Schwarcz, H.P., Falguères, C., 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier Transform Infrared Spectrometry. Journal of Archaeological Science, 37, 2265-2276. Cerca con Google

Lebon M., Zazzo A, Reiche I., 2014. Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 110-119. Cerca con Google

Lee-Thorp, J.A., 2008. On isotopes and old bones. Archaeometry, 50 (6), 925-950. Cerca con Google

LeGeros, R.Z., 1981. Apatites in biological systems. Progress in Crystal Growth and Characterization of Materials, 4, 1-45. Cerca con Google

Lòpez-González F., Grandal-d’Anglade A., Vidal-Romanì J.R., 2006. Deciphering bone depositional sequences in caves through the study of manganese coatings. Journal of Archaeological Science, 33, 707-717. Cerca con Google

Lutterotti, L., 2010. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research, B, 268, 334-340. Cerca con Google

Machette M. N., 1985. Calcitic soils of the southwestern United States. Geological Society of America Special Papers, 203, 1-22. Cerca con Google

Macklin, M.G., Woodward, J.C., Welsby, D.A., Duller, G.A.T., Williams, F.M., Williams, M.A.J., 2013. Reach-scale river dynamics moderate the impact of rapid Holocene climate change on floodwater farming in the desert Nile. Geology, 41, 695-698. Cerca con Google

Morris M.D., Mandair G.S., 2011. Raman assessment of bone quality. Clinical Orthopaedics and Related Research, 469 (8), 2160-2169. Cerca con Google

Müller, K., Chadefaux, C., Thomas, N., Reiche, I., 2011. Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 39-51. Cerca con Google

Newman B.D., Campbell A.R., Norman D.I., Ringelberg D.B., 1997. A model for microbially induced precipitation of vadose-zone calcites in fractures at Los Alamos, New Mexico, USA. Geochimica and Cosmochimica Acta, 61 (9), 1783-1792 Cerca con Google

Nicoll, K., 2004. Recent environmental changes and prehistoric human activity in Egypt and Northern Sudan. Quaternary Science Review, 23, 564-580. Cerca con Google

Nielsen-Marsh, C.M., Hedges, R.E.M., 2000. Patterns of diagenesis in bone I: the effects of site environments. Journal of Archaeological Science, 27, 1139-1150. Cerca con Google

Nielsen-Marsh C.M., Hedges R.E.M., 2000-b. Patterns of Diagenesis in Bone II: Effects of Acetic Acid Treatment and the Removal of Diagenetic CO32-. Journal of Archaeological Science, 27, 1151–1159. Cerca con Google

Ostwald, W., 1897. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für physikalische Chemie, 22, 289-330. Cerca con Google

Otto C., de Grauw C.J., Duindam J.J., Sijtsema N.M., Greve J., 1997. Applications of Imaging in Micro-Raman Biomedical Research. Journal of Raman Spectroscopy, 28,143-150. Cerca con Google

Paschalis, E. P, Di Carlo E., Betts F., Sherman P., Mendelsohn R., Boskey A. L., 1996. FTIR microspectroscopic analysis of human osteonal bone. Calcified Tissue International, 59, 480-487. Cerca con Google

Penel G., Leroy G., Rey C.,Bres E., 1998. MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites. Calcified Tissue International, 63, 475-481 Cerca con Google

Person A., Bocherens H., Saliège J., Paris F., Zeitoun V., Gérard M., 1995. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science, 22, 211-221. Cerca con Google

Pitre, M.C., Correia, P.M., Mankowski, P.J., Klassen, J., Day, M.J., Lovell, N.C., Currah, R., 2013. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Journal of Archaeological Science, 40, 24-29. Cerca con Google

Poduska, K.M., Regev, L., Boaretto, E., Addadi, L., Weiner, S., Kronik, L., Curtarolo, S., 2011. Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins. Advanced Materials, 23, 550-554. Cerca con Google

Popa, N.C., 1998. The (hkl) Dependence of diffraction-line broadening caused by strain and size for all laue groups in Rietveld refinement. Journal of Applied Crystallography, 31, 176-180. Cerca con Google

Potter, M. R., Rossman, G. R., 1979. Mineralogy of manganese dendrites and coatings. American Mineralogist, 64, 1219-1226. Cerca con Google

Pucéat E., Reynard B., Lécuyer C., 2004. Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chemical Geology, 205, 83–97. Cerca con Google

Regev, L., Poduska, K.M., Addadi, L., Weiner, S., Boaretto, E., 2010. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. Journal of Archaeological Science, 37 (12), 3022-3029. Cerca con Google

Reiche, I., Favre-Quattropani, L.,Vignaud, C., Bocherens, H., Charlet, L., Menu, M., 2003. A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Measurement Science and Technology, 14, 1608-1619. Cerca con Google

Reiche I., Lebon M., Chadefaux C., Müller K., Le Hô A., Gensch M., SchadeU., 2010. Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Analytical and Bioanalytical Chemistry, 397, 2491-2499. Cerca con Google

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.M., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., Van der Plicht, J., 2013. IntCal13 andMarine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal. BP. Radiocarbon, 55,1869–1887. Cerca con Google

Rey C., Combes C., Drouet C., Grossin D., 2011. Bioactive Ceramics: Physical Chemistry. In: Ducheyne P., Healy K.E., Hutmacher D.W., Grainger D.W., Kirkpatrick C.J. (Eds.), Comprehensive Biomaterials, 1, Elsevier, 187-221. Cerca con Google

Richter D.K., Immenhauser A., Neuser R.D., 2008. Electron backscatter diffraction documents randomly orientated c-axes in moonmilk calcite fibres: evidence for biologically induced precipitation. Sedimentology, 55 (3), 487-497. Cerca con Google

Rink W.J., Schwarcz, H.P., 1995. Tests for Diagenesis in Tooth Enamel: ESR Dating Signals and Carbonate Contents. Journal of Archaeological Science, 22 (2), 251–255. Cerca con Google

Roche, D., Ségalen, L., Balan, E., Delattre, S., 2010. Preservation assessment of Miocene-Pliocene tooth enamel from Tugen Hills (Kenian Rift Valley) through FTIR, chemical and stable-isotope analyses. Journal of Archaeological Science, 37, 1690-1699. Cerca con Google

Salesse K.,Dufour E. Lebon M., Wurster C., Castex D., Bruzek J., Zazzo A., 2014. Variability of bone preservation in a confined environment: The case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 43-54. Cerca con Google

Saliège, J.-F., Person, A., Paris, F., 1995. Preservation of 12C/13C original ratio and 14C dating of the mineral fraction of human bones from Saharan tombs. Niger. Journal of Archaeological Science 22, 301–312. Cerca con Google

Salvatori S., Usai D.(eds), 2008. A Neolithic cemetery in the Northern Dongola Reach (Sudan): Excavation at Site R12. Sudan Archaeological Research Society Publication. Cerca con Google

Salvatori, S., Usai, D., 2009. El Salha Project 2005: New Khartoum Mesolithic sites from central Sudan. Kush, 19, 87-96. Cerca con Google

Salvatori, S., Usai, D., Zerboni, A., 2011. Mesolithic site formation and palaeoenvironment along the White Nile (Central Sudan). African Archaeological Review, 28, 177-211. Cerca con Google

Salvatori, S., 2012. Disclosing archaeological complexity of the Khartoum Mesolithic. New data at the site and regional level. African Archaeological Review, 29, 399-472. Cerca con Google

Salvatori S., Usai D., Abdelrahman M.F., Di Matteo A., Iacumin P., Linseele V., Magzoub M.K., 2014. Archaeological evidence at Al Khiday. New insight on the prehistory and History of Central Sudan. In: Anderson J.R., Welsby D.A. (Eds), Proceedings of the 12th International Conference of Nubian Studies, Peeters Publishers, Leuven, Belgium. Cerca con Google

Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J. J., Buffière, J. Y., Josserond, C., 2003. X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 200, 273-286. Cerca con Google

Scherrer, P., 1918. Bestimmung der Größe und der inneren Struktur von Kolloidteilchenmittels Röntgenstrahlen Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 2, 98-100. Cerca con Google

Sereno P.C., Garcea E.A.A., Jousse H., Stojanowski C.M., Saliége J.F., Maga A., Ide O.A., Knudson K.J., Mercuri A.M., Stafford T.W., Kaye T.G., Giraudi C., N’siala I.M., Cocca E., Moots H.M., Dutheil D.B., Stivers J.P. 2008. Lakeside Cemeteries in the Sahara: 5000 Years of Holocene Population and Environmental Change. PlosOne, 3 (8), 1-22. Cerca con Google

Shahack-Gross R., Bar Yosef O., Weiner S., 1997. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining. Journal of Archaeological Science, 24, 439–446. Cerca con Google

Smith, C.I., Nielsen-Marsh, C.M., Jans, M.M.E., Collins, M.J., 2007. Bone diagenesis in the European Holocene I: patterns and mechanisms. Journal of Archaeological Science, 34, 1485-1493. Cerca con Google

Smith G.D., Clark R.J.H., 2004. Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137-1160. Cerca con Google

Sponheimer, M., Lee-Thorp, J.A., 1999. Alteration of enamel carbonate environments during fossilization. Journal of Archaeological Science, 26, 143-150. Cerca con Google

Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison, WI. Cerca con Google

Stoops, G., Marcellino, V., Mees, F., 2010. Interpretation of micromorphological features of soil and regoliths. Elsevier, Amsterdam. Cerca con Google

Sudarsanan, K., Young., R.A:, 1969. Significant precision in crystal structural details: Holly Springs hydroxyapatite. Acta Crystallographica B, 25, 1534–1543. Cerca con Google

Surovell T.A., Stiner, M.C., 2001. Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. Journal of Archaeological Science, 28, 633-642. Cerca con Google

Tebo, B.M., Johnson, H.A., McCarthy, J.K., Templeton, A.S., 2005. Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13 (9), 421-428. Cerca con Google

Termine, J.D., Posner, A.S., 1966. Infra-red determination of percentage of crystallinity in apatitic calcium phosphates. Nature, 211, 268-270. Cerca con Google

Terrasi F., De Cesare N., D’OnofrioA., Lubritto C., Marzaioli F., Passariello I., Rogalla D., Sabbarese C., Borriello G., Casa G., Palmieri A., 2008. High precision 14C AMS at CIRCE. Nuclear Instruments and Methods in Physics Research B, 266, 2221–2224. Cerca con Google

Thomas D.B., Ewan Fordyce R., Frew R.D., Gordon, K.C. 2007. A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy. Journal of Raman Spectroscopy, 38, 1533-1537. Cerca con Google

Thompson,T.J.U., Islam, M., Piduru, K., Marcel, A., 2011. An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 168–174. Cerca con Google

Timlin J.A., Carden A., Morris M.D., 1999 Chemical Microstructure of Cortical Bone Probed by Raman Transects. Applied Spectroscopy,53 (11)1429-1435. Cerca con Google

Trueman, C.N.G., Behrensmeyer, A.K., Tuross, N., Weiner, S., 2004. Mineralogical and compositional changes in bones exposed on soil surface in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721-739. Cerca con Google

Turner-Walker, G., Syversen, U., 2002. Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry, 44 (3), 461–468. Cerca con Google

Ungár, T., Tichy, G., Gubicza, J., Hellmig, R.J., 2005. Correlation between subgrains and coherently scattering domains. Powder Diffraction, 20 (4), 366-375. Cerca con Google

Usai D., 2003. The Is.I.A.O. El Salha project. Kush, 18, 173-182. Cerca con Google

Usai D., Salvatori S., 2002. The Is.I.A.O. El Salha archaeological project. Sudan & Nubia, 6, 67-72. Cerca con Google

Usai D., Salvatori S., 2005. The IsIAO archaeological project in the El Salha area (Omdurman South, Sudan): results and perspectives. Africa, 60 (3-4), 474-493. Cerca con Google

Usai D., Salvatori, S. 2007. The oldest representation of a Nile boat. Antiquity, 81, 314. Cerca con Google

Usai D. Salvatori S. Iacumin P. Di Matteo A. Jakob T. Zerboni A., 2010. .Excavating a unique pre-Mesolithic cemetery in Central Sudan. Antiquity,84, 323. Cerca con Google

VašinováGaliová M., NývltováFišáková M., Kynický J., Prokeš L., Neff H., Mason A.Z., Gadas P., Košler J., Kanický V., 2013. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta, 105, 235-243 Cerca con Google

Vogel J.C., Geyh M.A., 2008.Radiometric dating of hillslope calcrete in the Negev Desert, Israel. South African Journal of Science, 104, 11-12. Cerca con Google

Wang, Y., McDonald, E., Amundson, R., McFadden, L., Chadwick, O., 1996. An isotopic study of soils in chronological sequences of alluvial deposits, Providence Mountains, California. Geological Society of America Bulletin, 108, 379-391. Cerca con Google

Weiner, S., 2010. Biological materials: bones and teeth. In: Weiner, S., Microarchaeology: beyond the visible archaeological record, Cambridge University press, 99-134. Cerca con Google

Weiner, S., Bar-Yosef, O., 1990. State of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science, 17, 187-196. Cerca con Google

Weiner, S., Traub, W., 1992. Bone structure: from ångstroms to microns. The FASEB Journal, 6, 879–885. Cerca con Google

Weiner, S., Wagner, H.D., 1998. The material bone: Structure-mechanical function relations, Annual Review of Materials Science, 28, 271-298. Cerca con Google

Weninger, B. and Jöris, O., 2008. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution, 55, 772-781. Cerca con Google

Weninger, B., 1986. High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeologica, IV, 11-53. Nitra. Cerca con Google

Williams, M.A.J., 2009. Late Pleistocene and Holocene environments in the Nile basin. Global and planetary change, 69, 1-15. Cerca con Google

Williams, M.A.J., Adamson, D., 1980. Late Quaternary depositional history of the Blue and White Nile rivers in central Sudan. In Williams, M.A.J., Faure, H., (Eds.), The Sahara and the Nile: Quaternary environments and prehistoric occupation in northern Africa, 281–304. Rotterdam: Balkema. Cerca con Google

Williams, M.A.J., Jacobsen, G.E., 2009. A wetter climate in the desert of northern Sudan Cerca con Google

9900-7600 years ago, Sahara, 22, 7-14. Cerca con Google

Williams M.A.J., Usai D., Salvatori S., Williams F.M., Zerboni A., Maritan L., submitted. Late Quaternary environments and prehistoric occupation in the lower White Nile valley, central Sudan. Quaternary Science Reviews. Cerca con Google

Wopenka, B., Pasteris, J.D., 2005. A mineralogical perspective on the apatite in bone Materials Science and Engineering, 25 (2), 131-143. Cerca con Google

Wright P., 2007. Calcrete. In: Nash D.J., McLaren S.J. (Eds), Geochemical Sediments and Landscapes, Wiley-Blackwell, 10-45. Cerca con Google

Young, A., 1993. The Rietveld Method. IUCr, Oxford Science Publications. Cerca con Google

Zazzo A., Saliège J.F., 2011. Radiocarbon dating of biological apatites: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 52-61. Cerca con Google

Zazzo A., 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 168-178. Cerca con Google

Cherkinsky A., 2009. Can We Get a Good Radiocarbon Age from "Bad Bone"? Determining the Reliability of Radiocarbon Age from Bioapatite. Radiocarbon, 51, 647-655. Cerca con Google

Zerboni, A., 2011. Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in Central Sudan. Geoarchaeology: An International Journal, 26, 365-391. Cerca con Google

Zerboni, A., 2013. Early Holocene palaeoclimate in North Africa: an overview, in: Shirai, N. (eds.), Neolithisation of Northeastern Africa, Studies in Early Near Eastern Production, Subsistence, and Environment, Berlin, ex oriente, 16, 65-82. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record