Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Festanti, Andrea (2015) Measurement of the D0 meson production in Pb-Pb and p-Pb collisions with the ALICE experiment at the LHC. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
12Mb

Abstract (inglese)

This thesis presents the measurement of the charmed D0 meson production relative to the reaction plane in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon collision of sqrt(sNN) = 2.76 TeV, and the measurement of the D0 production in p–Pb collisions at sqrt(sNN) = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider.
The D0 azimuthal anisotropy with respect to the reaction plane is sensitive to the interaction of the charm quarks with the high-density strongly-interacting medium formed in ultra-relativistic heavy-ion collisions and, thus, to the properties of this state of matter. In particular, this observable allows to establish whether low-momentum charm quarks participate in the collective expansion of the system and whether they can reach thermal equilibrium with the medium constituents. The azimuthal anisotropy is quantified in terms of the second coefficient v2 in a Fourier expansion of the D0 azimuthal distribution and in terms of the nuclear modification factor RAA, measured in the direction of the reaction plane and orthogonal to it. The measurement of the D0 production in p–Pb collisions is crucial to disentangle the effects induced by cold nuclear matter from the final state effects induced by the hot medium formed in Pb–Pb collisions.
The D0 production is measured in both systems by reconstructing the two-prong hadronic decay D0 → K−π+ in the central rapidity region, exploiting the separation of the decay vertex from the primary vertex. The raw signal is obtained with an invariant mass analysis, and corrected for selection and reconstruction efficiency.
A positive elliptic flow v2 is observed in Pb–Pb collisions in the centrality class 30–50%, with a mean value of 0.204 + 0.099 - 0.036 in the interval 2 < pT < 6 GeV/c, which decreases towards more central collisions. Consequently, the nuclear modification factor shows a stronger suppression in the direction orthogonal to the reaction plane. The v2 and the RAA measured in two azimuthal regions with respect to the reaction plane are compared to theoretical calculations of charm quark transport and energy loss in high-density strongly-interacting matter. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy.
The D0 nuclear modification factor RpPb in p–Pb collisions is compatible with unity within uncertainties. The measured RpPb is compared to theoretical models including initial state effects, as well as to the nuclear modification factor measured in central Pb–Pb collisions. The D0 RpPb results are consistent with the modification of the nucleon parton distribution functions induced by the nuclear environment, and provide experimental evidence that the modification of the D meson momentum spectrum observed in Pb–Pb with respect to pp collisions is due to strong final state effects induced by the hot medium.

Abstract (italiano)

La tesi presenta la misura della produzione di mesoni D0 rispetto al piano di reazione in collisioni Pb–Pb all’energia nel centro di massa di sqrt(sNN) = 2.76 TeV per coppia di nucleoni e la misura della produzione di D0 in collisioni p–Pb all’energia di sqrt(sNN) = 5.02 TeV con l’esperimento ALICE situato al Large Hadron Collider del CERN.
L’anisotropia azimutale dei mesoni D0 rispetto al piano di reazione è sensibile alle interazioni del quark charm con il mezzo ad alta densità e fortemente interagente prodotto in collisioni tra ioni pesanti ad energia ultra-relativistica e, di conseguenza, alle proprietà di questo stato della materia. In particolare, permette di stabilire se i quark charm partecipano all’espansione collettiva del sistema e se raggiungono l’equilibrio termico con i costituenti del mezzo. L’anisotropia azimutale è quantificata tramite il secondo coefficiente v2 dello sviluppo in serie di Fourier della distribuzione azimutale dei mesoni D0 e tramite la misura del fattore di modifica nucleare RAA nel piano di reazione e nella direzione ortogonale ad esso. La misura della produzione di D0 in collisioni p–Pb permette di studiare gli effetti indotti dalla materia nucleare fredda, in modo da poterli distinguere da quelli indotti dal mezzo denso fortemente interagente prodotto in collisioni Pb–Pb.
La produzione di mesoni D0 è stata misurata attraverso la ricostruzione dei decadimenti adronici a due corpi D0 → K−π+ nella regione centrale di rapidità, sfruttando la separazione dei vertici secondari di decadimento rispetto al vertice primario d’interazione. Il segnale è stato ottenuto attraverso un’analisi della distribuzione di massa invariante e corretto per l’efficienza di ricostruzione e selezione dei decadimenti.
Il coefficiente di flusso ellittico v2 dei mesoni D0 misurato in collisioni Pb–Pb nella
classe di centralià 30–50% è positivo, il valore medio nell’intervallo 2 < pT < 6 GeV/c
è pari a 0.204 + 0.099 - 0.036. Di conseguenza, il fattore di modifica nucleare è minore nella
direzione ortogonale al piano di reazione. Il v2 osservato decresce all’aumentare della centralità delle collisioni. Il v2 e l’RAA misurato in due regioni azimutali ortogonali rispetto al piano di reazione sono stati confrontati con calcoli teorici per il trasporto e la perdita di energia dei quark charm nella materia densa fortemente interagente. L’anisotropia osservata è descritta dai modelli che includono le interazioni elastiche tra i quark all’interno di un mezzo in espansione.
Il fattore di modifica nucleare dei mesoni D0 RpPb è compatibile con l’unità entro le incertezze. RpPb è stato confrontato con predizioni teoriche che descrivono gli effetti di stato iniziale e con il fattore di modifica nucleare misurato in collisioni Pb–Pb centrali. I risultati sono consistenti con effetti dovuti alla modifica delle funzioni di distribuzione partoniche all’interno dei nucleoni legati e dimostrano che la modifica della distribuzione del momento trasverso dei mesoni D osservata in collisioni Pb–Pb rispetto a quella in collisioni pp è dovuta alla perdita di energia dei quark charm nel mezzo denso fortemente interagente.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Dainese, Andrea
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > FISICA
Data di deposito della tesi:02 Febbraio 2015
Anno di Pubblicazione:02 Febbraio 2015
Parole chiave (italiano / inglese):Quark-Gluon Plasma, ALICE, heavy-flavour, energy loss, azimuthal anisotropy, cold nuclear matter effects, Pb-Pb collisions, p-Pb collisions
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:7973
Depositato il:12 Nov 2015 09:23
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1]  T. van Ritbergen, J.A.M. Vermaseren, and S.A. Larin. The Four Loop Beta Function in Quantum Chromodynamics. Phys. Lett. B, 400:379–384, 1997. Cerca con Google

[2]  David J. Gross and Frank Wilczek. Ultraviolet Behavior of Non-Abelian Gauge Theories. Phys. Rev. Lett., 30:1343–1346, Jun 1973. Cerca con Google

[3]  David J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories. I. Phys. Rev. D, 8:3633–3652, Nov 1973. Cerca con Google

[4]  David J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories. II. Phys. Rev. D, 9:980–993, Feb 1974. Cerca con Google

[5]  H. David Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett., 30:1346–1349, Jun 1973. Cerca con Google

[6]  H. David Politzer. Asymptotic Freedom: An Approach to Strong Interactions. Physics Reports, 14(4):129–180, 1974. ISSN 0370-1573. Cerca con Google

[7]  K.A. Olive et al. Review of Particle Physics. Chin. Phys. C, 38:090001, 2014. Cerca con Google

[8]  Kenneth G. Wilson. Confinement of Quarks. Phys. Rev. D, 10:2445–2459, Oct 1974. Cerca con Google

[9]  R. Hagedorn. Statistical Thermodynamics of Strong Interactions at High Energy. Suppl. Nuovo Cimento, 3:147, 1965. Cerca con Google

[10]  N. Cabibbo and G. Parisi. Exponential Hadronic Spectrum and Quark Liberation. Phys. Lett. B, 59(1):67–69, 1975. Cerca con Google

[11]  F. Karsch. Lattice QCD at High Temperature and Density. Lect. Notes Phys., 583:209–249, 2002. Cerca con Google

[12]  Bertrand C. Barrois. Superconducting Quark Matter. Nucl. Phys. B, 129:390, 1977. Cerca con Google

[13]  Kenji Fukushima and Tetsuo Hatsuda. The Phase Diagram of Dense QCD. Reports on Progress in Physics, 74(1):014001, 2011. Cerca con Google

[14]  F. Karsch and E. Laermann. Thermodynamics and In-Medium Hadron Properties from Lattice QCD. [arXiv:hep-lat/0305025]. 2003. Cerca con Google

[15]  Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber Modeling in High-Energy Nuclear Collisions. Ann. Rev. Nucl. Part. Sci., 57:205–243, 2007. Cerca con Google

[16]  B. Abelev et al. Centrality Determination of Pb–Pb Collisions at sqrt(sNN)= 2.76 TeV with ALICE. Phys. Rev. C, 88:044909, Oct 2013. Cerca con Google

[17]  K. Aamodt et al. Charged-Particle Multiplicity Density at Midrapidity in Central Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Rev. Lett., 105:252301, Dec 2010. Cerca con Google

[18]  J. D. Bjorken. Highly Relativistic Nucleus–Nucleus Collisions: The Central Rapidity Region. Phys. Rev. D, 27:140–151, Jan 1983. Cerca con Google

[19]  Krisztian Krajczar on behalf of the CMS Collaboration. Charged Hadron Multiplicity and Transverse Energy Densities in Pb–Pb Collisions from CMS. Journal of Physics G: Nuclear and Particle Physics, 38(12):124041, 2011. Cerca con Google

[20]  Michael Annan Lisa, Scott Pratt, Ron Soltz, and Urs Wiedemann. Femtoscopy in Relativistic Heavy-Ion Collisions. Ann. Rev. Nucl. Part. Sci., 55:357–402, 2005. Cerca con Google

[21]  K. Aamodt et al. Two-pion Bose-Einstein Correlations in Central Pb–Pb Collisions at sqrt(sNN) =2.76 TeV. Phys. Lett. B, 696:328–337, 2011. Cerca con Google

[22]  A. Adare et al. Enhanced Production of Direct Photons in Au–Au Collisions at sqrt(sNN) = 200 GeV and Implications for the Initial Temperature. Phys. Rev. Lett., 104:132301, 2010. Cerca con Google

[23]  T. Matsui and H. Satz. J/ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B, 178(4):416–422, 1986. Cerca con Google

[24]  B. Abelev et al. Centrality, Rapidity and Transverse Momentum Dependence of J/ψ Suppression in Pb–Pb Collisions at sqrt(sNN) =2.76 TeV. Phys. Lett. B, 734: 314–327, 2014. Cerca con Google

[25]  S. Chatrchyan et al. Suppression of Non-Prompt J/ψ, Prompt J/ψ, and Y(1S) in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. JHEP, 1205:063, 2012. Cerca con Google

[26]  S. et al. Chatrchyan. Observation of Sequential Υ Suppression in Pb–Pb Collisions. Phys. Rev. Lett., 109:222301, Nov 2012. Cerca con Google

[27]  B. Abelev et al. Suppression of Υ(1S) at Forward Rapidity in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Lett. B, 738:361–372, 2014. Cerca con Google

[28]  Michelangelo L. Mangano, Paolo Nason, and Giovanni Ridolfi. Heavy-Quark Correlations in Hadron Collisions at Next-to-Leading Order. Nucl. Phys. B, 373: 295–345, 1992. Cerca con Google

[29]  B.A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger. Hadroproduction of D and B Mesons in a Massive VFNS. AIP Conf.Proc., 792:867–870, 2005. Cerca con Google

[30]  B.A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger. Collinear Subtractions in Hadroproduction of Heavy Quarks. Eur. Phys. J. C, 41:199–212, 2005. Cerca con Google

[31]  B.A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger. Inclusive Charmed-Meson Production at the CERN LHC. Eur. Phys. J. C, 72:2082, 2012. Cerca con Google

[32]  Stefano Frixione and Bryan R. Webber. Matching NLO QCD Computations and Parton Shower Simulations. JHEP, 0206:029, 2002. Cerca con Google

[33]  Stefano Frixione, Paolo Nason, and Bryan R. Webber. Matching NLO QCD and Parton Showers in Heavy-Flavor Production. JHEP, 0308:007, 2003. Cerca con Google

[34]  Matteo Cacciari, Mario Greco, and Paolo Nason. The pT Spectrum in Heavy-Flavor Hadroproduction. JHEP, 9805:007, 1998. Cerca con Google

[35]  Matteo Cacciari, Stefano Frixione, and Paolo Nason. The pT Spectrum in Heavy-Flavor Photoproduction. JHEP, 0103:006, 2001. Cerca con Google

[36]  Matteo Cacciari, Stefano Frixione, Nicolas Houdeau, Michelangelo L. Mangano, Paolo Nason, et al. Theoretical Predictions for Charm and Bottom Production at the LHC. JHEP, 1210:137, 2012. Cerca con Google

[37]  S. Alekhin, G. Altarelli, N. Amapane, J. Andersen, V. Andreev, et al. HERA and the LHC: A Workshop on the Implications of HERA for LHC physics. Proceedings, Part B. 2005. Cerca con Google

[38]  B. Abelev et al. Measurement of Charm Production at Central Rapidity in Proton–Proton Collisions at sqrt(s) = 7 TeV. JHEP, 2012(1):128, 2012. Cerca con Google

[39]  B. Abelev et al. Measurement of Charm Production at Central Rapidity in Proton–Proton Collisions at sqrt(s) = 2.76 TeV. JHEP, 2012(7):191, 2012. Cerca con Google

[40]  ATLAS Collaboration. Comparison of D∗ Meson Production Cross Sections with FONLL and GM-VFNS Predictions. ATL-PHYS-PUB-2011-012, ATL-COM- PHYS-2011-912. 2011. Cerca con Google

[41]  ATLAS Collaboration. Measurement of D∗ Meson Production Cross Sections in pp Collisions at sqrt(s) = 7 TeV with the ATLAS Detector. ATLAS-CONF-2011-017, ATLAS-COM-CONF-2011-030. 2011. Cerca con Google

[42]  LHCb Collaboration. Prompt Charm Production in pp Collisions at sqrt(s) = 7 TeV. LHCb-CONF-2010-013. Dec 2010. Cerca con Google

[43]  Pavel M. Nadolsky, Hung-Liang Lai, Qing-Hong Cao, Joey Huston, Jon Pumplin, et al. Implications of CTEQ Global Analysis for Collider Observables. Phys. Rev. D, 78:013004, 2008. Cerca con Google

[44]  A. Adare et al. Heavy Quark Production in pp and Energy Loss and Flow of Heavy Quarks in Au–Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. C, 84:044905, 2011. Cerca con Google

[45]  L. Adamczyk et al. Measurements of D0 and D∗ Production in pp Collisions at sqrt(s) = 200 GeV. Phys. Rev. D, 86:072013, 2012. Cerca con Google

[46]  C. Lourenco and H.K. Wohri. Heavy-Flavour Hadroproduction from Fixed-Target to Collider Energies. Phys. Rept., 433:127–180, 2006. Cerca con Google

[47]  R.J. Fries, Berndt Muller, C. Nonaka, and S.A. Bass. Hadronization in Heavy-Ion Collisions: Recombination and Fragmentation of Partons. Phys. Rev. Lett., 90: 202303, 2003. Cerca con Google

[48]  P. Koch, Berndt Muller, and Johann Rafelski. Strangeness in Relativistic Heavy-Ion Collisions. Phys. Rept., 142:167–262, 1986. Cerca con Google

[49]  Inga Kuznetsova and Johann Rafelski. Heavy-Flavor Hadrons in Statistical Hadronization of Strangeness-Rich QGP. Eur. Phys. J. C, 51:113–133, 2007. Cerca con Google

[50]  Min He, Rainer J. Fries, and Ralf Rapp. Ds-Meson as Quantitative Probe of Diffusion and Hadronization in Nuclear Collisions. Phys. Rev. Lett., 110(11):112301, 2013. Cerca con Google

[51]  Stephane Peigne and Andre Peshier. Collisional Energy Loss of a Fast Heavy Quark in a Quark-Gluon Plasma. Phys. Rev. D, 77:114017, 2008. Cerca con Google

[52]  Ralf Rapp and Hendrik van Hees. Heavy Quarks in the Quark-Gluon Plasma. [arXiv:0903.1096]. 2009. Cerca con Google

[53]  H. van Hees, M. Mannarelli, V. Greco, and R. Rapp. Nonperturbative Heavy-Quark Diffusion in the Quark-Gluon Plasma. Phys. Rev. Lett., 100:192301, 2008. Cerca con Google

[54]  Andre Peshier. Turning on the Charm. Nucl. Phys. A, 888:7–22, 2012. Cerca con Google

[55]  P.B. Gossiaux and J. Aichelin. Towards an Understanding of the RHIC Single Electron Data. Phys. Rev. C, 78:014904, 2008. Cerca con Google

[56]  Steven S. Gubser. Comparing the Drag Force on Heavy Quarks in N=4 Super-Yang-Mills Theory and QCD. Phys. Rev. D, 76:126003, 2007. Cerca con Google

[57]  R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative Energy Loss of High-Energy Quarks and Gluons in a Finite Volume Quark-Gluon Plasma. Nucl. Phys. B, 483:291–320, 1997. Cerca con Google

[58]  R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative Energy Loss and pT-Broadening of High-Energy Partons in Nuclei. Nucl. Phys. B, 484:265–282, 1997. Cerca con Google

[59]  Yuri L. Dokshitzer and D.E. Kharzeev. Heavy-Quark Colorimetry of QCD Matter. Phys. Lett. B, 519:199–206, 2001. Cerca con Google

[60]  G. Aad et al. Observation of a Centrality-Dependent Dijet Asymmetry in Lead–Lead Collisions at sqrt(sNN) = 2.76 TeV with the ATLAS Detector at the LHC. Phys. Rev. Lett., 105:252303, 2010. Cerca con Google

[61]  S. Chatrchyan et al. Observation and Studies of Jet Quenching in Pb–Pb Collisions at Nucleon–Nucleon Center-of-Mass Energy = 2.76 TeV. Phys. Rev. C, 84:024906, 2011. Cerca con Google

[62]  L. Adamczyk et al. Observation of D0 Meson Nuclear Modifications in Au–Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. Lett., 113:142301, 2014. Cerca con Google

[63]  B. Abelev et al. Suppression of High-Transverse Momentum D Mesons in Central Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. JHEP, 1209:112, 2012. Cerca con Google

[64]  J/ψ Results from CMS in Pb–Pb Collisions, with 150μb−1 Data. Technical Report CMS-PAS-HIN-12-014, CERN, Geneva, 2012. Cerca con Google

[65]  Magdalena Djordjevic and Marko Djordjevic. LHC Jet Suppression of Light and Heavy-Flavor Observables. Phys. Lett. B, 734:286–289, 2014. Cerca con Google

[66]  P. Kovtun, Dan T. Son, and Andrei O. Starinets. Viscosity in Strongly-Interacting Quantum Field Theories from Black Hole Physics. Phys. Rev. Lett., 94:111601, 2005. Cerca con Google

[67]  B. Abelev et al. D Meson Elliptic Flow in Non-Central Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Rev. Lett., 111:102301, 2013. Cerca con Google

[68]  G. Aad et al. Measurement of the Azimuthal Anisotropy for Charged Particle Production in sqrt(sNN) = 2.76 TeV Lead–Lead Collisions with the ATLAS Detector. Phys. Rev. C, 86:014907, 2012. Cerca con Google

[69]  S. Chatrchyan et al. Measurement of the Elliptic Anisotropy of Charged Particles Produced in Pb–Pb Collisions at Nucleon–Nucleon Center-of-mass Energy = 2.76 TeV. Phys. Rev. C, 87:014902, 2013. Cerca con Google

[70]  J. Adams et al. Azimuthal Anisotropy in Au–Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. C, 72:014904, Jul 2005. Cerca con Google

[71]  K. Aamodt et al. Higher Harmonic Anisotropic Flow Measurements of Charged Particles in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Rev. Lett., 107:032301, 2011. Cerca con Google

[72]  M. Arneodo. Nuclear Effects in Structure Functions. Phys. Rept., 240:301–393, 1994. Cerca con Google

[73]  K.J. Eskola, H. Paukkunen, and C.A. Salgado. EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions. JHEP, 0904:065, 2009. Cerca con Google

[74]  M. Hirai, S. Kumano, and T.H. Nagai. Determination of Nuclear Parton Distribution Functions and Their Uncertainties in Next-to-Leading Order. Phys. Rev. C, 76:065207, 2007. Cerca con Google

[75]  D. de Florian and R. Sassot. Nuclear Parton Distributions at Next-to-Leading Order. Phys. Rev. D, 69:074028, 2004. Cerca con Google

[76]  ALICE Collaboration. ALICE: Physics Performance Report, Volume II. Journal of Physics G: Nuclear and Particle Physics, 32(10):1295, 2006. Cerca con Google

[77]  Hirotsugu Fujii and Kazuhiro Watanabe. Heavy-Quark Pair Production in High-Energy pA Collisions: Open Heavy Flavors. Nucl. Phys. A, 920:78–93, 2013. Cerca con Google

[78]  P. Tribedy and R. Venugopalan. QCD Saturation at the LHC: Comparisons of Models to pp and AA Data and Predictions for p–Pb Collisions. Phys. Lett. B, 710:125–133, 2012. Cerca con Google

[79]  Javier L. Albacete, Adrian Dumitru, Hirotsugu Fujii, and Yasushi Nara. CGC Predictions for p–Pb Collisions at the LHC. Nucl. Phys. A, 897:1–27, 2013. Cerca con Google

[80]  Amir H. Rezaeian. CGC Predictions for p–A Collisions at the LHC and Signature of QCD Saturation. Phys. Lett. B, 718:1058–1069, 2013. Cerca con Google

[81]  J.W. Cronin, Henry J. Frisch, M.J. Shochet, J.P. Boymond, R. Mermod, et al. Production of Hadrons with Large Transverse Momentum at 200 GeV, 300 GeV, and 400 GeV. Phys. Rev. D, 11:3105, 1975. Cerca con Google

[82]  B.Z. Kopeliovich, J. Nemchik, A. Schafer, and A.V. Tarasov. Cronin Effect in Hadron Production Off Nuclei. Phys. Rev. Lett., 88:232303, 2002. Cerca con Google

[83]  Xin-Nian Wang. Systematic Study of High-pT Hadron Spectra in pp, pA and AA Collisions from SPS to RHIC Energies. Phys. Rev. C, 61:064910, 2000. Cerca con Google

[84]  M. Lev and B. Petersson. Nuclear Effects at Large Transverse Momentum in a QCD Parton Model. Z. Phys. C, 21:155, 1983. Cerca con Google

[85]  I. Vitev. Non-Abelian Energy Loss in Cold Nuclear Matter. Phys. Rev. C, 75:064906, 2007. Cerca con Google

[86]  S. Chatrchyan et al. Observation of Long-Range Near-Side Angular Correlations in Proton–Lead Collisions at the LHC. Phys. Lett. B, 718:795–814, 2013. Cerca con Google

[87]  B. Abelev et al. Long-Range Angular Correlations on the Near and Away Side in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Lett. B, 719:29–41, 2013. Cerca con Google

[88]  B. Abelev et al. Long-Range Angular Correlations of π, K and p in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Lett. B, 726:164–177, 2013. Cerca con Google

[89]  G. Aad et al. Observation of Associated Near-Side and Away-Side Long-Range Correlations in sqrt(sNN) = 5.02 TeV Proton-Lead Collisions with the ATLAS Detector. Phys. Rev. Lett., 110(18):182302, 2013. Cerca con Google

[90]  S.S. Adler et al. Nuclear Effects on Hadron Production in d–Au and pp Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. C, 74:024904, 2006. Cerca con Google

[91]  A. Adare et al. Nuclear Modification of ψ‘, χc, and J/ψ Production in d–Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. Lett., 111(20):202301, 2013. Cerca con Google

[92]  B. Abelev et al. Suppression of ψ(2S) Production in p—Pb Collisions at sqrt(sNN) = 5.02 TeV. JHEP, 1412:073, 2014. Cerca con Google

[93]  Anne M. Sickles. Possible Evidence for Radial Flow of Heavy Mesons in d–Au Collisions. Phys. Lett. B, 731:51–56, 2014. Cerca con Google

[94]  B. Abelev et al. Systematic Measurements of Identified Particle Spectra in pp, d–Au and Au–Au Collisions from STAR. Phys. Rev. C, 79:034909, 2009. Cerca con Google

[95]  B. Abelev et al. Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Lett. B, 728:25–38, 2014. Cerca con Google

[96]  A. Adare et al. Cold-Nuclear-Matter Effects on Heavy-Quark Production in d–Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. Lett., 109(24):242301, 2012. Cerca con Google

[97]  G. Aad et al. Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC. Phys. Lett. B, 716:1–29, 2012. Cerca con Google

[98]  S. Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. Cerca con Google

[99]  Lyndon Evans and Philip Bryant. LHC Machine. Journal of Instrumentation, 3(08):S08001, 2008. Cerca con Google

[100]  LHC Physics Centre at CERN. http://lpcc.web.cern.ch/LPCC/. Vai! Cerca con Google

[101]  Aamodt, K. and The ALICE Collaboration. The ALICE Experiment at the CERN LHC. Journal of Instrumentation, 3(08):S08002, 2008. Cerca con Google

[102]  R. Fruhwirth. Application of Kalman Filtering to Track and Vertex Fitting. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 262(2–3):444–450, 1987. Cerca con Google

[103]  B. Abelev et al. Performance of the ALICE Experiment at the CERN LHC. Int. J. Mod. Phys. A, 29:1430044, 2014. Cerca con Google

[104]  Sergei A. Voloshin, Arthur M. Poskanzer, and Raimond Snellings. Collective Phenomena in Non-Central Nuclear Collisions. [arXiv:0809.2949]. 2008. Cerca con Google

[105]  K. Aamodt et al. Harmonic Decomposition of Two-Particle Angular Correlations in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Lett. B, 708:249–264, 2012. Cerca con Google

[106]  David G. d’Enterria. Hard Scattering Cross-Sections at LHC in the Glauber Ap- proach: From pp to pA and AA Collisions. [arXiv:nucl-ex/0302016]. 2003. Cerca con Google

[107]  B. Abelev et al. Measurement of Visible Cross Sections in Proton–Lead Collisions at sqrt(sNN) = 5.02 TeV in van der Meer Scans with the ALICE Detector. JINST, 9 (11):P11003, 2014. Cerca con Google

[108]  J. Adam et al. Centrality Dependence of Particle Production in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. [arXiv:1412.6828]. 2014. Cerca con Google

[109]  B. Abelev et al. Pseudorapidity Density of Charged Particles in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Rev. Lett., 110:032301, Jan 2013. Cerca con Google

[110]  B. Abelev et al. Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Rev. Lett., 110:082302, 2013. Cerca con Google

[111]  B. Abelev et al. Azimuthal Anisotropy of D Meson Production in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Rev. C, 90:034904, 2014. Cerca con Google

[112]  A. Dainese. Charm Production and In-Medium QCD Energy Loss in Nucleus–Nucleus Collisions with ALICE: A Performance Study. [arXiv:nucl-ex/0311004]. 2003. Cerca con Google

[113]  F. James and M. Winkler. Minuit User’s Guide. http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf. Vai! Cerca con Google

[114]  Rene Brun, Federico Carminati, and Simone Giani. GEANT Detector Description and Simulation Tool. CERN-W5013, CERN-W-5013. 1994. Cerca con Google

[115]  Xin-Nian Wang and Miklos Gyulassy. HIJING: A Monte Carlo Model for Multiple Jet Production in pp, pA and AA Collisions. Phys. Rev. D, 44:3501–3516, 1991. Cerca con Google

[116]  Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 0605:026, 2006. Cerca con Google

[117]  Peter Zeiler Skands. Tuning Monte Carlo Generators: The Perugia Tunes. Phys. Rev. D, 82:074018, 2010. Cerca con Google

[118]  D.J. Lange. The EvtGen Particle Decay Simulation Package. Nucl. Instrum. Meth. A, 462:152–155, 2001. Cerca con Google

[119]  O. Fochler, J. Uphoff, Z. Xu, and C. Greiner. Jet Quenching and Elliptic Flow at RHIC and LHC within a pQCD-Based Partonic Transport Model. J. Phys. G, 38: 124152, 2011. Cerca con Google

[120]  Jan Uphoff, Oliver Fochler, Zhe Xu, and Carsten Greiner. Elliptic Flow and Energy Loss of Heavy Quarks in Ultra-Relativistic Heavy-Ion Collisions. Phys. Rev. C, 84:024908, 2011. Cerca con Google

[121]  Jan Uphoff, Oliver Fochler, Zhe Xu, and Carsten Greiner. Open Heavy Flavor in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV within a Transport Model. Phys. Lett. B, 717:430–435, 2012. Cerca con Google

[122]  B. Abelev et al. Anisotropic Flow of Charged Hadrons, Pions and (Anti-)Protons Measured at High Transverse Momentum in Pb–Pb Collisions at sqrt(sNN) = 2.76 TeV. Phys. Lett. B, 719:18–28, 2013. Cerca con Google

[123]  C. Adler et al. Elliptic flow from two and four particle correlations in Au+Au collisions at sqrt(sNN) = 130 GeV. Phys. Rev. C, 66:034904, 2002. Cerca con Google

[124]  Ante Bilandzic, Raimond Snellings, and Sergei Voloshin. Flow Analysis with Cumulants: Direct Calculations. Phys. Rev. C, 83:044913, 2011. Cerca con Google

[125]  Simon Wicks, William Horowitz, Magdalena Djordjevic, and Miklos Gyulassy. Elastic, Inelastic, and Path Length Fluctuations in Jet Tomography. Nucl. Phys. A, 784:426–442, 2007. Cerca con Google

[126]  W.A. Horowitz and Miklos Gyulassy. The Surprising Transparency of the sQGP at LHC. Nucl. Phys. A, 872:265–285, 2011. Cerca con Google

[127]  W.A. Horowitz. Testing pQCD and AdS/CFT Energy Loss at RHIC and LHC. AIP Conf. Proc., 1441:889–891, 2012. Cerca con Google

[128]  Magdalena Djordjevic and Miklos Gyulassy. Heavy-Quark Radiative Energy Loss in QCD Matter. Nucl. Phys. A, 733:265–298, 2004. Cerca con Google

[129]  Marlene Nahrgang, Joerg Aichelin, Pol Bernard Gossiaux, and Klaus Werner. Influence of Hadronic Bound States Above Tc on Heavy-Quark Observables in Pb–Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 89(1):014905, 2014. Cerca con Google

[130]  R. Baier, D. Schiff, and B.G. Zakharov. Energy Loss in Perturbative QCD. Ann. Rev. Nucl. Part. Sci., 50:37–69, 2000. Cerca con Google

[131]  K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and K. Mikhailov. Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultra-Relativistic Heavy-Ion Collisions. Phys. Rev. C, 82:044904, 2010. Cerca con Google

[132]  K. Werner, Iu. Karpenko, M. Bleicher, T. Pierog, and S. Porteboeuf-Houssais. Jets, Bulk Matter, and their Interaction in Heavy-Ion Collisions at Several TeV. Phys. Rev. C, 85:064907, 2012. Cerca con Google

[133]  Min He, Rainer J. Fries, and Ralf Rapp. Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach. Phys. Lett. B, 735:445–450, 2014. Cerca con Google

[134]  W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M. Monteno, et al. Heavy-Flavour Spectra in High Energy Nucleus–Nucleus Collisions. Eur. Phys. J. C, 71: 1666, 2011. Cerca con Google

[135]  M. Monteno, W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, et al. Heavy-Flavor Dynamics in Nucleus–Nucleus Collisions: from RHIC to LHC. J. Phys. G, 38:124144, 2011. Cerca con Google

[136]  Thomas Lang, Hendrik van Hees, Jan Steinheimer, and Marcus Bleicher. Heavy-Quark Transport in Heavy-Ion Collisions at RHIC and LHC within the UrQMD Transport Model. [arXiv:1211.6912]. 2012. Cerca con Google

[137]  Thomas Lang, Hendrik van Hees, Jan Steinheimer, Yu-Peng Yan, and Marcus Bleicher. Heavy-Quark Transport at RHIC and LHC. J.Phys.Conf.Ser., 426: 012032, 2013. Cerca con Google

[138]  S.A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, et al. Microscopic Models for Ultra-Relativistic Heavy-Ion Collisions. Prog. Part. Nucl. Phys., 41:255–369, 1998. Cerca con Google

[139]  M. Bleicher, E. Zabrodin, C. Spieles, S.A. Bass, C. Ernst, et al. Relativistic Hadron–Hadron Collisions in the Ultra-Relativistic Quantum Molecular Dynamics Model. J. Phys. G, 25:1859–1896, 1999. Cerca con Google

[140]  Shanshan Cao, Guang-You Qin, and Steffen A. Bass. Heavy-Quark Dynamics and Hadronization in Ultra-Relativistic Heavy-Ion Collisions: Collisional Versus Radiative Energy Loss. Phys. Rev. C, 88(4):044907, 2013. Cerca con Google

[141]  B. Abelev et al. Measurement of Prompt D-Meson Production in p–Pb Collisions at sqrt(sNN) = 5.02 TeV. Phys. Rev. Lett., 113:232301, Dec 2014. Cerca con Google

[142]  Daniel Stump, Joey Huston, Jon Pumplin, Wu-Ki Tung, H.L. Lai, et al. Inclusive Jet Production, Parton Distributions, and the Search for New Physics. JHEP, 0310:046, 2003. Cerca con Google

[143]  Rishi Sharma, Ivan Vitev, and Ben-Wei Zhang. Light-Cone Wave Function Approach to Open Heavy Flavor Dynamics in QCD Matter. Phys. Rev. C, 80:054902, 2009. Cerca con Google

[144]  R. Russo. Measurement of Heavy-Flavour Production as a Function of Multiplicity in pp and p–Pb Collisions with ALICE. Nucl. Phys. A, 931:552–557, 2014. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record