Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

RAIS, Bilel (2015) Wall conditioning studies and plasma-facing materials qualification for magnetically confined fusion experiments. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (PhD thesis RAIS Bilel) - Versione sottomessa
53Mb

Abstract (inglese)

In the framework of magnetically confined fusion plasmas, achieving a comprehensive understanding of Plasma-Wall Interaction (PWI) is fundamental to attain the improved confinement regimes, needed to produce fusion energy. A major issue is the lack of plasma density control observed in devices equipped with a carbon first wall. Carbon Plasma First Components (PFCs) offer the advantage of withstanding high power loads that can reach tens of MW/m2, but present the drawback of high retention of hydrogenic fuel particles. Fuel recycling, that is the churning action of these retained fuel particles between the hotter fusion plasma edge and the colder plasma facing first wall surfaces, presents often a factor exceeding 1 and makes the task of density control extremely difficult.

Wall conditioning techniques have proven to be a great tool to overcome the carbon limiting performance factor. In the DIII-D tokamak [1] very high confinement regimes (VH-modes) were attained by solely applying a thin boron film on the plasma facing surfaces; earlier in the Tokamak Fusion Test Reactor (TFTR) [2] significant improvements in ‘supershot’ performances leading to a near doubling of the fusion power output were observed for the first time by injecting as small as a few milligrams of lithium during plasma discharges. The implementation and the optimization of wall conditioning techniques, together with the study of new Plasma Facing Materials (PFMs) is therefore clearly fundamental.

As many other fusion devices, RFX-mod is equipped with a polycrystalline graphite first wall. Improved confinement regimes were found during high current operation, the so called Single Helical-Axis states (SHAx) [3], characterized by a helical deformation of the plasma column and the formation of an internal transport barrier. However, the full attainment of such improved confinement regimes is hindered by a lack of density control. To address this issue, a set of wall conditioning techniques has been implemented, including Helium Glow Discharge Cleaning (HeGDC), boron wall conditioning by B2H6 + He glow discharge and recently lithium wall-coating by means of pellet injection and lithium evaporation. However the beneficial effects of these techniques on RFX-mod plasmas are limited due to a lack of optimization and understanding of the fundamental mechanisms that govern the enhanced PWI observed upon the conditioning of the first wall surfaces.

In this thesis, the optimization and further implementation of the wall conditioning techniques has been undertaken. First, HeGDC has been characterized in terms of the glow discharge experimental parameters. Next, its efficiency combined with He plasma power discharges is examined in terms of H wall-depleting. On the other hand, a set of surface science techniques including SIMS, XPS, AES, EDS/X, SEM and RBS has been set up to investigate by ex-situ post-mortem analyses the underlining physical and chemical properties of boron and lithium thin film deposition after boron and lithium wall conditioning. Regarding the GDC optimization the main result is that a strong toroidal asymmetry was found and confirmed by measurements of the ion flux to the wall. Moreover, the preliminary analysis of intershot HeGDC wall cleaning strategy was found promising. With respect to the boronization optimization, evidence of a two-step boron growth with increasing glow discharge power was found. As for lithium wall conditioning, a correlation among the injected lithium dose and the chemical fraction of lithium carbonate was found.

Ultimately, a transition towards a metallic first wall in RFX-mod offering a low recycling surface has been recently considered as an alternative solution-path to overcome the graphite first wall drawbacks. Tungsten (W) coatings on graphite samples have been elaborated using two different Physical Vapor Deposition (PVD) techniques: High Power Impulse Magnetron Sputtering (HiPIMS) technique developed at the CNR-IENI laboratory in Padova, Italy, and Combined Magnetron Sputtering and Ion Implantation (CMSII) technology developed at MEdC-Romanian Euratom Association. The W-coatings were preliminary characterized by Scanning Electron Microscopy (SEM) and tested with adherence tests before exposing them to RFX-mod plasmas. Plasma exposure was made in experimental sessions of about 15 discharges, during which the interaction with the plasma has been locally enhanced by the active control system of the magnetic boundary in order to simulate the conditions of the PWI events. The CMSII technique, that gave the minor faults at the first stage, was then tested on full scale dimension by replacing 4 actual RFX-mod carbon tiles with W-coated ones. The tiles have been exposed to three months of normal RFX-mod operation over a large range of operational conditions, after which large damaged areas have been observed. The size of these damages and particularly the removal of the coating in some areas and its melting may discard this solution-path towards such a metallic PFC transition in RFX-mod. Thicker 100-200 µm W-coatings, that are still compatible with wall weight tolerance of RFX-mod mechanical structure, may offer a better solution for the machine upgrade.

Abstract (italiano)

Nell’ambito dei plasmi da fusione a confinamento magnetico, conseguire una comprensione globale dell’interazione plasma-parete è fondamentale per raggiungere regimi di confinamento migliorati, necessari per la produzione di energia da fusione. Un’aspetto problematico è la mancanza di controllo della densità di plasma, osservata in macchine con la prima parete in carbonio. Componenti in carbonio di fronte al plasma hanno il vantaggio di sopportare elevati carichi di energia, che possono raggiungere decine di MW/m2, ma presentano lo svantaggio di un’alta ritenzione delle particelle di idrogeno presenti nel combustibile. Il riciclaggio di combustibile, cio´e l’azione di scambio di queste particelle di combustibile tra la parte esterna e calda del plasma e la prima parete, presenta spesso un fattore superiore a 1 e rende il compito del controllo della densità estremamente difficile.

Le tecniche di condizionamento della prima parete hanno dimostrato gran successo come strumento per superare tale fattore limitante del carbonio. Nel tokamak DIII-D [1] sono stati raggiunti dei regimi di confinamento molto elevati (VH-mod) applicando solamente una pellicola sottile di boro sulla superficie della parete. Inoltre nel tokamak TFTR [2] sono stati osservati dei miglioramenti significativi nelle prestazioni ‘SuperShot’ che iniettando pochi milligrammi di litio durante scariche di plasma portano a un quasi raddoppio della potenza di fusione. E’ fondamentale quindi l’implementazione e l’ottimizzazione delle tecniche di condizionamento della prima parete, insieme con lo studio di nuovi materiali.

RFX-mod come molte altre macchine da fusione, è dotato di una prima parete in grafite policristallina. Regimi di confinamento migliorati sono stati raggiunti ad alta corrente di plasma, i cosiddetti stati SHAx [3], caratterizzati da una deformazione elicoidale della colonna di plasma e dalla formazione di barriere di trasporto interno. Tuttavia, il pieno raggiungimento di tali regimi è stato ostacolato da una mancanza di controllo della densità. Per risolvere questo problema, è stato attuato un’insieme di tecniche di condizionamento della parete, tra cui scariche di plasma a basso livello di ionizzazione in elio (HeGDC), parete condizionata in boro utilizzando, B2H6 in scariche glow di elio e recentamente trattamento della parete con litio mediante iniezione pellet ed evaporazione di litio. Tuttavia gli effetti benefici di queste tecniche sui plasmi RFX-mod sono limitate a causa della mancanza di ottimizzazione e di comprensione dei meccanismi fondamentali che governano la maggiore interazione plasma-parete.

In questa tesi è stata studiata l’ottimizzazione e l’ulteriore attuazione delle tecniche di condizionamento. HeGDC è stata caratterizzata in termini di parametri sperimentali, quindi la sua efficienza è stata esaminata in termini di H emesso dalla parete, in combinazione con scariche di plasma in He. D’altra parte, un insieme di tecniche di scienza delle superfici, tra cui SIMS, XPS, AES, EDS/X, SEM e RBS sono state utilizzate per indagare, attraverso ex-situ analisi post mortem, le proprietà fisiche e chimiche dei film sottili di boro e litio dopo il condizionamento della parete. Per quanto riguarda l’ottimizzazione della GDC il risultato principale è che una forte asimmetria toroidale è stata osservata e confermata dalle misure spettroscopiche. L’analisi preliminare di HeGDC tra scariche sperimentali come stategia per la pulizia della parete è promettente. Per quanto riguarda l’ottimizzazione della boronizzazione, è stata trovata evidenza di una crescita di deposizione di boro aumentando la potenza della scarica glow. Per quanto riguarda il condizionamento della parete con il litio, una correlazione tra la dose di litio utilizzata e la frazione di carbonato di litio è stata trovata.

Infine è stata recentemente considerata una transizione verso una prima parete metallica in RFX-mod, come una soluzione alternativa per superare gli inconvenienti della prima parete in grafite, in quanto offre un minor riciclaggio. Rivestimenti in tungsteno su campioni di grafite sono state elaborati utilizzando due diverse tecniche Physical Vapor Deposition (PVD): High Power Impulse Magnetron Sputtering (HiPIMS) è una tecnica sviluppata a livello locale presso il laboratorio CNR-IENI e Combined Magnetron Sputtering and Ion Implantation (CMSII), sviluppata presso il laboratorio MEdC-Rumeno Euratom Association. I rivestimenti di tungsteno sono stati preliminarmente caratterizzati da SEM e testati con prove di aderenza prima di esporli al plasma. L’esposizione al plasma è stata fatta in sessioni sperimentali che comprendono circa 15 scariche, durante le quali l’interazione con il plasma è stata migliorata localmente dal sistema di controllo attivo del limite magnetica per simulare le condizioni degli eventi di interazione plasma-parete. La tecnica CMSII, che ha dato i difetti minori nella prima fase, è stata poi testata sulle dimensioni di macchina sostituendo 4 attuali tegole di carbonio in RFX-mod con quelle rivestite in tungsteno. Le tegole sono state esposte a tre mesi di normale funzionamento in RFX-mod, e sottoposte ad una vasta gamma di condizioni operative; dopo tale esposizione sono state osservate grandi aree danneggiate. La dimensione di questi danni e in particolare la rimozione del rivestimento in alcune aree e la sua fusione potrebbero scartare questa soluzione verso una prima parete metallica in RFX-mod. Rivestimenti in W più spessi, dell’ordine di 100-200 µm, che siano compatibili con la tolleranza sul peso della parete nella struttura meccanica di RFX-mod possono offrire una migliore soluzione per l’upgrade della macchina.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Giudicotti, Leonardo
Dottorato (corsi e scuole):Ciclo 27 > corsi 27 > Fusion Science and Engineering
Data di deposito della tesi:02 Febbraio 2015
Anno di Pubblicazione:01 Febbraio 2015
Parole chiave (italiano / inglese):wall conditioning, high-Z PFCs qualification, fusion, boron, lithium, tungsten, plasma-wall interaction, XPS, HR-XPS, SIMS, SEM/EDS, RBS, RFX-mod
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Struttura di riferimento:Centri > Centro Interdipartimentale "Centro Ricerche Fusione"
Codice ID:8006
Depositato il:23 Nov 2015 14:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G.L. Jackson, J. Winter, K.H. Burrell, J.C. DeBoo, C.M. Greenfield, R.J. Groebner, T. Hodapp, K. Holtrop, A.G. Kellman, R. Lee, S.I. Lippmann, R. Moyer, J. Phillips, T.S. Taylor, J. Watkins, and W.P. West. Boronization in diii-d. Journal of Nuclear Materials, 196-198(0): Cerca con Google

236 – 240, 1992. ISSN 0022-3115. doi:10.1016/S0022-3115(06)80038-3. Cerca con Google

[2] J.D. Strachan, M. Bell, A. Janos, S. Kaye, S. Kilpatrick, D. Manos, D. Mansfield, D. Mueller, K. Owens, C.S. Pitcher, J. Snipes, and J. Timberlake. Experiments on TFTR supershot plasmas. Journal of Nuclear Materials, 196-198(0):28–34, 1992. ISSN 0022-3115. doi:10.1016/S0022-3115(06)80008-5. Cerca con Google

[3] R. Lorenzini, E. Martines, P. Piovesan, D. Terranova, P. Zanca, M. Zuin, A. Alfier, D. Bonfiglio, F. Bonomo, A. Canton, S. Cappello, L. Carraro, R. Cavazzana, D. F. Escande, A. Fassina, P. Franz, M. Gobbin, P. Innocente, L. Marrelli, R. Pasqualotto, M. E. Puiatti, M. Spolaore, M. Valisa, N. Vianello, and P. Martin. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas. Nature Physics, 5(8):570–574, June 2009. doi:10.1038/nphys1308. Cerca con Google

[4] UN. World population prospects: The 2012 revision, 2012. Cerca con Google

[5] Michael L. Ross. Blood Barrels, Why Oil Wealth Fuels Conflict, May/June 2008. URL http://www.foreignaffairs.com/articles/ Vai! Cerca con Google

63396/michael-l-ross/blood-barrels. Cerca con Google

[6] J. Ongena and G. Van Oost. Energy for future centuries. Prospects for fusion power as a future energy source. In ANS, editor, Transactions of fusion science and technology, volume 57, 2T, page 3, February 2010. URL http://epubs.ans.org/?a=9391. Vai! Cerca con Google

[7] D.J.C. MacKay. Sustainable Energy: Without the Hot Air. Without the Hot Air Series. UIT, 2009. ISBN 9780954452933. URL http:// books.google.it/books?id=IsgiPQAACAAJ. Cerca con Google

[8] A. I. Miller. In Canadian Nuclear Society Bulletin, editor, Heavy water: a manufacturers’ guide for the hydrogen century, volume 22, page 1, 213 Cerca con Google

2001. URL http://media.cns-snc.ca/Bulletin/A_Miller_Heavy_ Water.pdf. Vai! Cerca con Google

[9] M. Ni, Y. Wang, B. Yuan, J. Jiang, and Y. Wu. Tritium supply assessment for ITER and DEMOnstration power plant. Fusion Engineering and Design, 88(9 - 10):2422 – 2426, 2013. ISSN 0920 - Cerca con Google

3796. doi:10.1016/j.fusengdes.2013.05.043. Cerca con Google

[10] J. Wesson and D.J. Campbell. Tokamaks. International Series of Monographs on Physics. OUP Oxford, 2011. ISBN 9780199592234. URL http://books.google.it/books?id=BH9vx-iDI74C. Vai! Cerca con Google

[11] Allen H Boozer. Stellarators and the path from ITER to DEMO. Plasma Cerca con Google

Physics and Controlled Fusion, 50(12):124005, 2008. doi:10.1088/0741- Cerca con Google

3335/50/12/124005. Cerca con Google

[12] H.A.B. Bodin and A.A. Newton. Reversed-field-pinch research. Nuclear Cerca con Google

Fusion, 20(10):1255, 1980. doi:10.1088/0029-5515/20/10/006. Cerca con Google

[13] H.A.B. Bodin. The reversed field pinch. Nuclear Fusion, 30(9):1717, Cerca con Google

1990. doi:10.1088/0029-5515/30/9/005. Cerca con Google

[14] G. Rostagni. RFX: an expected step in RFP research. Fusion Engineering and Design, 25(4):301 – 313, 1995. ISSN 0920-3796. doi:10.1016/0920-3796(94)00362-B. Cerca con Google

[15] P. Sonato, G. Chitarin, P. Zaccaria, F. Gnesotto, S. Ortolani, A. Buffa, M. Bagatin, W.R. Baker, S. Dal Bello, P. Fiorentin, L. Grando, G. Marchiori, D. Marcuzzi, A. Masiello, S. Peruzzo, N. Pomaro, and G. Serianni. Machine modification for active MHD control in RFX. Fusion Engineering and Design, 66 - 68(0):161 – 168, 2003. ISSN 0920- Cerca con Google

379. doi:10.1016/S0920-3796(03)00177-7. Cerca con Google

[16] Lyman Spitzer. Technical Report NYO-993 (PM-S-1, U.S. Atomic Cerca con Google

Energy Comission, 1951. Cerca con Google

[17] Scott Robertson. Sheaths in laboratory and space plasmas. Plasma Cerca con Google

Physics and Controlled Fusion, 55(9):093001, 2013. doi:10.1088/0741- Cerca con Google

3335/55/9/093001. Cerca con Google

[18] G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Cerca con Google

Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, and D.G. Whyte. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nuclear Fusion, 41(12): Cerca con Google

1967, 2001. doi:10.1088/0029-5515/41/12/218. Cerca con Google

[19] A. Loarte, B. Lipschultz, A.S. Kukushkin, G.F. Matthews, P.C. Cerca con Google

Stangeby, N. Asakura, G.F. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, D. Whyte, R. Doerner, T. Eich, W. Fundamenski, A. Herrmann, Cerca con Google

M. Fenstermacher, P. Ghendrih, M. Groth, A. Kirschner, S. Konoshima, B. LaBombard, P. Lang, A.W. Leonard, P. Monier-Garbet, R. Neu, H. Pacher, B. Pegourie, R.A. Pitts, S. Takamura, J. Terry, E. Tsitrone, the ITPA Scrape-off Layer, and Divertor Physics Topical Group. Chapter 4: Power and particle control. Nuclear Fusion, 47(6):S203, Cerca con Google

2007. doi:10.1088/0029-5515/47/6/S04. Cerca con Google

[20] ITER. The project. URL http://www.iter.org/proj#itersite. Vai! Cerca con Google

[21] H. Zohm, C. Angioni, E. Fable, G. Federici, G. Gantenbein, T. Hartmann, K. Lackner, E. Poli, L. Porte, O. Sauter, G. Tardini, D. Ward, and M. Wischmeier. On the physics guidelines for a tokamak demo. Nuclear Fusion, 53(7):073019, 2013. doi:10.1088/0029- Cerca con Google

5515/53/7/073019. Cerca con Google

[22] B.D. Wirth, K. Nordlund, D.G. Whyte, and D. Xu. Fusion materials modeling: Challenges and opportunities. MRS Bulletin, 36:216–222, 3 Cerca con Google

2011. ISSN 1938-1425. doi:10.1557/mrs.2011.37. Cerca con Google

[23] J Winter. Wall conditioning in fusion devices and its influence on plasma performance. Plasma Physics and Controlled Fusion, 38(9):1503, 1996. doi:10.1088/0741-3335/38/9/001. Cerca con Google

[24] J. Winter. Wall conditioning of fusion devices by reactive plasmas. Cerca con Google

Journal of Nuclear Materials, 161(3):265 – 330, 1989. ISSN 0022-3115. doi:10.1016/0022-3115(89)90466-2. Cerca con Google

[25] J. Winter. Control of plasma-surface-interactions by thin films. In J. Fagerberg, D.C. Mowery, and R.R. Nelson, editors, Physical processes of the interaction of fusion plasmas with solids. Academic Press, 2004. URL http://books.google.it/books?id=t8DvAAAAMAAJ. Vai! Cerca con Google

[26] Michiya Shimada and Richard A. Pitts. Wall conditioning on ITER. Cerca con Google

Journal of Nuclear Materials, 415(1, Supplement):S1013 – S1016, 2011. ISSN 0022-3115. doi:10.1016/j.jnucmat.2010.11.085. Proceedings of the 19th International Conference on Plasma-Surface Interactions in Controlled Fusion. Cerca con Google

[27] H.F. Dylla. Glow discharge techniques for conditioning high vacuum systems. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 6(3):1276–1287, May 1988. doi:10.1116/1.575689. Cerca con Google

[28] V. Philipps, G. Sergienko, A. Lyssoivan, H.G. Esser, M. Freisinger, A. Kreter, and U. Samm. Removal of carbon layers by oxygen glow discharges in TEXTOR. Journal of Nuclear Materials, 363-365(0):929– Cerca con Google

932, 2007. ISSN 0022-3115. doi:10.1016/j.jnucmat.2007.01.241. Cerca con Google

[29] J. Winter. Carbonization in tokamaks. Journal of Nuclear Materials, Cerca con Google

145-147(0):131–144, 1987. ISSN 0022-3115. doi:10.1016/0022- Cerca con Google

3115(87)90318-7. Cerca con Google

[30] J. Winter, H.G. Esser, L. Konen, V. Philipps, H. Reimer, J.v. Cerca con Google

Seggern, J. Schluter, E. Vietzke, F. Waelbroeck, P. Wienhold, T. Banno, D. Ringer, and S. Veprek. Boronization in textor. Journal of Nuclear Materials, 162-164(0):713–723, 1989. ISSN 0022-3115. doi:10.1016/0022-3115(89)90352-8. Cerca con Google

[31] The ASDEX Team, The ICRH Team, The LH Team, The NI Team, U. Schneider, W. Poschenrieder, M. Bessenrodt-Weberpals, J. Hofmann, A. Kallenbach, K. Krieger, E. Muller, H. Niedermeyer, F. Ryter, J. Roth, F. Soldner, A. Stabler, K.H. Steuer, O. Vollmer, and F. Wagner. Boronization of ASDEX. Journal of Nuclear Materials, Cerca con Google

176-177(0):350–356, 1990. ISSN 0022-3115. doi:10.1016/0022- Cerca con Google

3115(90)90071-T. Cerca con Google

[32] J. Winter, H.G. Esser, H. Reimer, L. Grobusch, J. Von Seggern, and P. Wienhold. Borontrimethyl b(ch3)3 - a less hazardous substance for boronization. Journal of Nuclear Materials, 176-177(0):486–489, 1990. ISSN 0022-3115. doi:10.1016/0022-3115(90)90094-4. Cerca con Google

[33] M. Saidoh, N. Ogiwara, M. Shimada, T. Arai, H. Hiratsuka, T. Koike, M. Shimizu, H. Ninomiya, H. Nakamura, R. Jimbou, J. Yagyu, T. Sugie, A. Sakasai, N. Asakura, M. Yamage, H. Sugai, and G. L. Jackson. Initial boronization of jt-60u tokamak using decaborane. Japanese Journal of Applied Physics, 32(7R):3276, 1993. doi:10.1143/JJAP.32.3276. Cerca con Google

[34] W Baker, S Dal Bello, D Marcuzzi, P Sonato, and P Zaccaria. Cerca con Google

Design of a new toroidal shell and support structure for rfx. Fusion Engineering and Design, 63 - 64(0):461 – 466, 2002. ISSN 0920 - 3796. doi:10.1016/S0920-3796(02)00194-1. Cerca con Google

[35] M. Valisa, T. Bolzonella, L. Carraro, E. Casarotto, S. Costa, L. Garzotti, P. Innocente, S. Martini, R. Pasqualotto, M.E. Puiatti, R. Pugno, and P. Scarin. Locked modes induced plasma-wall interactions in RFX. Journal of Nuclear Materials, 241-243(0):988 – Cerca con Google

992, 1997. ISSN 0022-3115. doi:10.1016/S0022-3115(97)80179-1. Cerca con Google

[36] M. E. Puiatti and the RFX-mod Team. Interaction between magnetic boundary and first wall recycling in the reversed field pinch. Plasma Physics and Controlled Fusion, 55(12):124013, 2013. doi:10.1088/0741- Cerca con Google

3335/55/12/124013. Cerca con Google

[37] S. Komatsu and Y. Moriyoshi. Simultaneous growth of rhombohedral and amorphous boron films in a low pressure B2H6+H2+He plasma. Journal of Crystal Growth, 89(4):560 – 570, 1988. ISSN 0022-0248. doi:10.1016/0022-0248(88)90219-9. Cerca con Google

[38] S. Komatsu and Y. Moriyoshi. Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B2H6+He+H2 plasma. Journal of Applied Physics, 64(4):1878–1884, Cerca con Google

1988. doi:10.1063/1.341738. Cerca con Google

[39] S. Komatsu and Y. Moriyoshi. Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B2H6+He. Journal of Applied Physics, 66(1):466–469, 1989. doi:10.1063/1.343853. Cerca con Google

[40] S. Komatsu and Y. Moriyoshi. Transition from thermal- to electron- impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B2H6+He. Journal of Applied Physics, Cerca con Google

66(3):1180–1184, 1989. doi:10.1063/1.343459. Cerca con Google

[41] http://www.igi.pd.cnr.it/. [42] www.cnr.it/. Vai! Cerca con Google

[43] http://www.enea.it/. [44] http://www.unipd.it/. Vai! Cerca con Google

[45] www.acciaierievenete.com/. [46] http://www.infn.it/. Vai! Cerca con Google

[47] P. Martin et al. Overview of the RFX fusion science program. Nuclear Cerca con Google

Fusion, 51, 2011. doi:10.1088/0029-5515/51/9/094023. Cerca con Google

[48] P. Martin et al. Overview of RFX-mod results. Nuclear Fusion, 49(10): Cerca con Google

104019, 2009. doi:10.1088/0029-5515/49/10/104019. Cerca con Google

[49] A. Lucchetta et al. Recent Results from Real-Time Active Control of MHD Modes in RFX-mod. 2006. URL http://www-naweb.iaea.org/ napc/physics/FEC/FEC2006/html/node285.htm#56897. Proc. 21st Int. Conf. on Fusion Energy. Vai! Cerca con Google

[50] S. Martini et al. Active MHD control at high currents in RFX-mod. Cerca con Google

Nuclear Fusion, 47(8):783, 2007. doi:10.1088/0029-5515/47/8/008. Cerca con Google

[51] P. Zanca, L. Marrelli, G. Manduchi, and G. Marchiori. Beyond the intelligent shell concept: the clean-mode-control. Nuclear Fusion, 47 (11):1425, 2007. doi:10.1088/0029-5515/47/11/004. Cerca con Google

[52] L. Marrelli et al. Active control of resistive kink-tearing modes in RFX-mod. 2008. URL http://www-pub.iaea.org/MTCD/Meetings/ PDFplus/2008/cn165/cn165_BookOfAbstracts.pdf. Proc. of the IAEA conference. Vai! Cerca con Google

[53] P. Zaccaria, S. Dal Bello, and D. Marcuzzi. Tests and analyses for the mechanical and thermal qualification of the new RFX first wall tiles. Fusion Engineering and Design, 66-68:289 – 293, 2003. ISSN 0920-3796. doi:10.1016/S0920-3796(03)00158-3. Cerca con Google

[54] S.Ortolani and D.D. Schnack. Magnetohydrodynamics of Plasma Relaxation. World Scientific, 1993. ISBN 9789810208608. URL http://books.google.it/books?id=WJoySA3lxe0C. Vai! Cerca con Google

[55] H. Ji and S. C. Prager. The α dynamo effects in laboratory plasmas. Cerca con Google

Magnetohydrodynamics, 18:191–210, 2002. URL http://arxiv.org/ Vai! Cerca con Google

pdf/astro-ph/0110352v1.pdf. Cerca con Google

[56] H. Ji, A. F. Almagri, S. C. Prager, and J. S.Sarff. Time-Resolved Observation of Discrete and Continuous Magnetohydrodynamic Dynamo in the Reversed-Field Pinch Edge. Phys. Rev. Lett., 73:668– Cerca con Google

671, Aug 1994. doi:10.1103/PhysRevLett.73.668. Cerca con Google

[57] F. D’Angelo and R. Paccagnella. The stochastic diffusion process in reversed-field pinch. Physics of Plasmas (1994-present), 3(6):2353– Cerca con Google

2364, 1996. doi:10.1063/1.871919. Cerca con Google

[58] M.E. Puiatti et al. High density physics in reversed field pinches: Cerca con Google

comparison with tokamaks and stellarators. Nuclear Fusion, 49(4): Cerca con Google

045012, 2009. doi:10.1088/0029-5515/49/4/045012. Cerca con Google

[59] P. Scarin et al. Magnetic structures and pressure profiles in the plasma boundary of RFX-mod: high current and density limit in helical regimes . 2010. URL http://www-naweb.iaea.org/napc/ physics/fec/fec2010/papers/exd_p3-29.pdf. Proc. of the 23th IAEA conference, EXD/P3-29. Vai! Cerca con Google

[60] M.E. Puiatti et al. Wall conditioning and density control in the reversed field pinch RFX-mod. Nuclear Fusion, 53(7):073001, 2013. doi:10.1088/0029-5515/53/7/073001. Cerca con Google

[61] F Gnesotto, P Sonato, W.R Baker, A Doria, F Elio, M Fauri, P Fiorentin, G Marchiori, and G Zollino. The plasma system of RFX. Fusion Engineering and Design, 25(4):335 – 372, 1995. ISSN 0920-3796. doi:10.1016/0920-3796(94)00280-K. Cerca con Google

[62] D. K. Mansfield et al. Enhancement of Tokamak Fusion Test Reactor performance by lithium conditioning. Physics of Plasmas (1994- present), 3(5):1892–1897, 1996. doi:10.1063/1.871984. Cerca con Google

[63] P. R. Brunsell, H. Bergsa˙ ker, M. Cecconello, J. R. Drake, R. M. Cerca con Google

Gravestijn, A. Hedqvist, and J-A. Malmberg. Initial results from the rebuilt EXTRAP T2R RFP device. Plasma Physics and Controlled Fusion, 43(11):1457, 2001. doi:10.1088/0741-3335/43/11/303. Cerca con Google

[64] S. V. Mirnov, E. A. Azizov, V. A. Evtikhin, V. B. Lazarev, I. E. Cerca con Google

Lyublinski, A V. Vertkov, and D. Yu Prokhorov. Experiments with lithium limiter on T-11M tokamak and applications of the lithium capillary-pore system in future fusion reactor devices. Plasma Physics and Controlled Fusion, 48(6):821, 2006. doi:10.1088/0741-3335/48/6/009. Cerca con Google

[65] M.L. Apicella, G. Mazzitelli, V. Pericoli Ridolfini, V. Lazarev, A. Alekseyev, A. Vertkov, and R. Zag´orski. First experiments with lithium limiter on FTU. Journal of Nuclear Materials, 363-365(0): Cerca con Google

1346 – 1351, 2007. doi:10.1016/j.jnucmat.2007.01.237. Plasma-Surface Cerca con Google

Interactions-17. Cerca con Google

[66] J. Sànchez, F.L. Tabar´es, D. Tafalla, J.A. Ferreira, I. Garc´ıa-Cort´es, C. Hidalgo, F. Medina, M.A. Ochando, and M.A. Pedrosa. Impact of lithium-coated walls on plasma performance in the TJ-II stellarator. Journal of Nuclear Materials, 390-391(0):852 – 857, 2009. ISSN 0022- Cerca con Google

3115. doi:10.1016/j.jnucmat.2009.01.224. Cerca con Google

[67] K.V Khlopenkov, V.Yu Sergeev, S Sudo, K Kondo, F Sano, H Zushi, H Okada, K Nagasaki, B.V Kuteev, and T Obiki. Recent experiments on Li pellet injection into Heliotron E. Fusion Engineering and Design, 34-35(0):337 – 341, 1997. ISSN 0920-3796. doi:10.1016/S0920- Cerca con Google

3796(96)00654-0. Fusion Plasma Diagnostics. Cerca con Google

[68] S. Munaretto et al. RFX-mod wall conditioning by lithium pellet injection. Nuclear Fusion, 52(2):023012, 2012. doi:10.1088/0029- Cerca con Google

5515/52/2/023012. Cerca con Google

[69] V.A Evtikhin, I.E Lyublinski, A.V Vertkov, S.V Mirnov, and V.B Lazarev. Technological aspects of lithium capillary-pore systems application in tokamak device. Fusion Engineering and Design, 56 - 57 (0):363 – 367, 2001. ISSN 0920-3796. doi:10.1016/S0920-3796(01)00323- Cerca con Google

[70] A. Alfier et al. Liquid Lithium Limiter on the RFX-mod experiment. Cerca con Google

Journal of Nuclear Materials, 415(1, Supplement):S413 – S416, 2011. ISSN 0022 - 3115. doi:10.1016/j.jnucmat.2011.01.120. Proceedings of the 19th International Conference on Plasma-Surface Interactions in Controlled Fusion. Cerca con Google

[71] D.K. Mansfield, A.L. Roquemore, T. Carroll, Z. Sun, J.S. Hu, L. Zhang, Y.F. Liang, X.Z. Gong, J.G. Li, H.Y.Guo, G.Z. Zuo, P. Parks, W. Wu, and R. Maingi. First observations of ELM triggering by injected lithium granules in EAST. Nuclear Fusion, 53(11):113023, 2013. doi:10.1088/0029-5515/53/11/113023. Cerca con Google

[72] L. Fellin, P. Kusstatscher, and G. Rostagni. Overall plant design, layout and commissioning. Fusion Engineering and Design, 25(4):315 – 333, Cerca con Google

1995. ISSN 0920-3796. doi:10.1016/0920-3796(94)00279-G. Cerca con Google

[73] G. Serianni, W. Baker, and S. Dal Bello. High-spatial resolution edge electrostatic probe system for RFX. Review of Scientific Instruments, Cerca con Google

74(3):1558–1562, 2003. doi:10.1063/1.1538358. Cerca con Google

[74] F. Bonomo, D. Bonfiglio, P. Piovesan, L. Piron, B. Zaniol, S. Cappello, L. Carraro, R. Cavazzana, M. Gobbin, L. Marrelli, E. Martines, B. Momo, M.E. Puiatti, and M. Valisa. Flow measurements and modelling in helical RFX-mod equilibria. Nuclear Fusion, 51(12): Cerca con Google

123007, 2011. doi:10.1088/0029-5515/51/12/123007. Cerca con Google

[75] M Mattioli, K B Fournier, M E Puiatti, M Valisa, L Carraro, I Coffey, M O’Mullane, F Sattin, and P Scarin. Experimental and simulated VUV spectra from the JET tokamak and the reversed field pinch RFX. Plasma Physics and Controlled Fusion, 44(1):33, 2002. doi:10.1088/0741-3335/44/1/304. Cerca con Google

[76] A. Canton, S. Dal Bello, R. Cavazzana, P. Innocente, P. Sonato, C. Taliercio, and M. Breda. Density control in RFX-mod Reversed Field Pinch device. volume 32F, pages D–1.002, June 2008. URL http://epsppd.epfl.ch/Hersonissos/pdf/D1_002.pdf. 35th EPS Conference on Plasma Physics. Vai! Cerca con Google

[77] http://www.mdsplus.org. Vai! Cerca con Google

[78] R. Castaing and G. Slodzian. Microanalyse par ´emission ionique secondaire. Journal de Microscopie, 1:395–414, 1962. Cerca con Google

[79] H. Hertz. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik, 267(8):983–1000, 1887. ISSN 1521-3889. doi:10.1002/andp.18872670827. Cerca con Google

[80] A. Einstein. U¨ ber einen die Erzeugung und Verwandlung des Lichtes Cerca con Google

betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6): Cerca con Google

132–148, 1905. ISSN 1521-3889. doi:10.1002/andp.19053220607. Cerca con Google

[81] Friedrich Reinert and Stefan Hu¨fner. Photoemission spectroscopy-from early days to recent applications. New Journal of Physics, 7(1):97, 2005. doi:10.1088/1367-2630/7/1/097. Cerca con Google

[82] J.F. Moulder and J. Chastain. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin- Elmer Corporation, 1992. ISBN 9780962702624. URL http://books. google.it/books?id=A_XGQgAACAAJ. Vai! Cerca con Google

[83] J.R. Bird and J.S. Williams. 12 - General Methods. In Ion Beams for Materials Analysis, pages 104–106. Academic Press, San Diego, 1989. ISBN 978-0-12-099740-4. doi:10.1016/B978-0-08-091689-7.50017-3. Cerca con Google

[84] Yang Leng. Materials Characterization introduction to Microscopic and Spectroscopic Methods. John Wiley, Singapore, 2008. URL http://eu. wiley.com/WileyCDA/WileyTitle/productCd-3527334637.html. Vai! Cerca con Google

[85] V. Petrava Y. Wang. Focused Ion Beams, pages 195– Cerca con Google

214. Wiley-Blackwell, 2012. ISBN 9781118229347. doi:10.1002/9781118229347.ch11. Cerca con Google

[86] Anjam Khursheed. Scanning electron microscope optics and spectrometers. World Scientific, Singapore, 2011. URL https://books. google.it/books?id=pLO1gT9owEIC. Vai! Cerca con Google

[87] D.B. Graves and K.F. Jensen. A Continuum Model of DC and RF Discharges. Plasma Science, IEEE Transactions on, 14(2):78–91, April Cerca con Google

1986. doi:10.1109/TPS.1986.4316510. Cerca con Google

[88] Z. Donk´o, K. R´ozsa, R. C. Tobin, and K. A. Peard. Modeling and measurements on an obstructed glow discharge in helium. Phys. Rev. E, 49:3283–3289, Apr 1994. doi:10.1103/PhysRevE.49.3283. Cerca con Google

[89] A. von Engel. Ionized Gases. Oxford: Clarendon press, 1965. URL Cerca con Google

http://lib.ugent.be/catalog/rug01:000738415. Vai! Cerca con Google

[90] S. Barison, A. Canton, S. Dal Bello, S. Fiameni, P. Innocente, A. Alfier, S. Munaretto, and F. Rossetto. Analysis of the interaction between plasmas and the graphite first wall in RFX-mod. Journal of Nuclear Materials, 415(1, Supplement):S274 – S277, 2011. ISSN 0022-3115. doi:10.1016/j.jnucmat.2010.12.311. Cerca con Google

[91] S. Fiameni et al. Sims analysis of the interaction between plasmas and the graphite first wall in rfx-mod. Surface and Interface Analysis, 45 (1):423–426, 2013. ISSN 1096-9918. doi:10.1002/sia.5063. Cerca con Google

[92] J. Winter, F. Waelbroeck, B. Brandt, K.J. Dietz, I. Ali-Khan, and P. Wienhold. On the cleaning of first wall materials by glow discharges in hydrogen. Journal of Nuclear Materials, 93-94, Part 2(0):812 – 819, Cerca con Google

1980. ISSN 0022-3115. doi:10.1016/0022-3115(80)90212-3. Cerca con Google

[93] F. Waelbroeck, J. Winter, and P. Wienhold. Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen. Journal of Vacuum Science & Technology A, 2(4):1521–1536, 1984. doi:10.1116/1.572465. Cerca con Google

[94] Institut fu¨r Plasmaphysik (Ju¨lich) and Kernforschungsanlage. Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen. Berichte der Kernforschungsanlage Ju¨lich. Zentralbibliothek d. Kernforschungsanlage Ju¨lich, 1980. URL http://books.google.it/ books?id=PJ_inQEACAAJ. Vai! Cerca con Google

[95] R.J.H Pearce, P Andrew, S Bryan, R Claesen, J Harling, J How, H Jensen, H McBryan, J Orchard, G Saibene, and A Vadgama. The experience with JET’s combined dc/RF glow discharge cleaning (GDC) system. Vacuum, 47(6-8):665 – 670, 1996. ISSN 0042-207X. doi:10.1016/0042-207X(96)00042-5. Cerca con Google

[96] J.R. Roth. Industrial Plasma Engineering: Volume 1: Principles. Cerca con Google

Industrial Plasma Engineering. Taylor & Francis, 1995. ISBN Cerca con Google

9781420050868. URL http://books.google.it/books?id= Vai! Cerca con Google

woaMsQyfUDEC. Cerca con Google

[97] A. Canton, S. Dal Bello, M. Agostini, L. Carraro, R. Cavazzana, S. Fiameni, L. Grando, B. Rais, M. Spolaore, and M. Zuin. Studies of spatial uniformity of glow discharge cleaning plasmas on the RFX- mod device . Journal of Nuclear Materials, 438, Supplement(0):S1164 Cerca con Google

– S1167, 2013. ISSN 0022-3115. doi:10.1016/j.jnucmat.2013.01.257. Cerca con Google

[98] W.R. Wampler and S.M. Myers. Ion-induced release of deuterium from carbon. Journal of Nuclear Materials, 111-112:616 – 621, 1982. ISSN Cerca con Google

0022-3115. doi:10.1016/0022-3115(82)90275-6. Cerca con Google

[99] R. A. Langley. Initial results for ion-induced release of hydrogen and deuterium from AXF-5Q graphite by hydrogen and deuterium. Journal of Vacuum Science & Technology A, 7(3):1060–1064, 1989. doi:10.1116/1.576230. Cerca con Google

[100] J. Roth, B.M.U. Scherzer, R.S. Blewer, D.K. Brice, S.T. Picraux, and W.R. Wampler. Trapping, detrapping and replacement of keV hydrogen implanted into graphite. Journal of Nuclear Materials, 93694, Part 2: Cerca con Google

601 6 607, 1980. ISSN 0022-3115. doi:10.1016/0022-3115(80)90181-6. Cerca con Google

[101] R. A. Langley. Retention of hydrogen in graphite. Journal of Vacuum Cerca con Google

Science & Technology A, 5(4):2205–2209, 1987. doi:10.1116/1.574956. Cerca con Google

[102] R.A. Langley. Helium-ion-induced release of hydrogen from graphite. Cerca con Google

Journal of Nuclear Materials, 162-164:1030 – 1034, 1989. ISSN 0022- Cerca con Google

3115. doi:10.1016/0022-3115(89)90404-2. Cerca con Google

[103] G. L. Jackson, T. S. Taylor, P. I. Petersen, and P. L. Taylor. Cerca con Google

Helium glow wall conditioning of the DIII-D tokamak with large area graphite coverage. AIP Conference Proceedings., 199(1):39–49, 1990. doi:10.1063/1.39065. Cerca con Google

[104] S Menmuir, L Carraro, A Alfier, F Bonomo, A Fassina, G Spizzo, and N Vianello. Impurity transport studies in RFX-mod multiple helicity and enhanced confinement QSH regimes. Plasma Physics and Controlled Fusion, 52(9):095001, 2010. doi:10.1088/0741- Cerca con Google

3335/52/9/095001. Cerca con Google

[105] A. Tolstogouzov, S. Daolio, C. Pagura, and C.L. Greenwood. Cerca con Google

Energy distributions of secondary ions sputtered from aluminium and magnesium by Ne+, Ar+ and O+: a comprehensive study. International Journal of Mass Spectrometry, 214(3):327 – 337, 2002. ISSN 1387-3806. doi:10.1016/S1387-3806(02)00523-7. Cerca con Google

[106] L. Tramontin, V. Antoni, M. Bagatin, D. Boscarino, E. Cattaruzza, V. Rigato, and S. Zandolin. Erosion, redeposition and boronization lifetime in RFX. Journal of Nuclear Materials, 266-269(0):709 – 713, Cerca con Google

1999. ISSN 0022-3115. doi:10.1016/S0022-3115(98)00837-X. Cerca con Google

[107] M. Mayer. SIMNRA User’s Guide Version 6.04, 2008. URL www2.if. usp.br/~lamfi/guia-simnra.pdf. Vai! Cerca con Google

[108] R. Zehringer, H. Ku¨nzli, P. Oelhafen, and C. Hollenstein. Oxidation behaviour of boron carbide. Journal of Nuclear Materials, 176-177(0): Cerca con Google

370 – 374, 1990. ISSN 0022-3115. doi:10.1016/0022-3115(90)90074-W. Cerca con Google

[109] C.D. Wagner and G.E. Muilenberg. Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy. Physical Electronics Division, Perkin- Elmer Corp., 1979. URL http://books.google.it/books?id= oY5TAAAAYAAJ. Vai! Cerca con Google

[110] Ch. Hollenstein, B.P. Duval, T. Dudok de Wit, B. Joye, H.J. Ku¨nzli, P. Oelhafen, R. Zehringer, R. Hauert, and E.M. Moser. Cold boronisation in TCA. Journal of Nuclear Materials, 176-177(0):343 Cerca con Google

– 349, 1990. ISSN 0022-3115. doi:10.1016/0022-3115(90)90070-4. Cerca con Google

[111] H.W. Kugel, V. Soukhanovskii, M. Bell, W. Blanchard, D. Gates, B. LeBlanc, R. Maingi, D. Mueller, H.K. Na, S. Paul, C.H. Skinner, D. Stutman, and W.R. Wampler. Impact of the wall conditioning program on plasma performance in NSTX. Journal of Nuclear Materials, 313-316(0):187 – 193, 2003. ISSN 0022-3115. doi:10.1016/S0022-3115(02)01433-2. Plasma-Surface Interactions in Controlled Fusion Devices 15. Cerca con Google

[112] Fairley N and Carrick A. The Casa Cookbook-Part I: Recipes for XPS Cerca con Google

data Processing. Knutsford, UK: Acolyte Science, 2005. URL http: Cerca con Google

//library.wur.nl/WebQuery/clc/1848500. Cerca con Google

[113] H. Ku¨nzli, P. Gantenbein, R. Steiner, and P. Oelhafen. Deposition and characterization of thin boron-carbide coatings. Fresenius’ Journal of Analytical Chemistry, 346(1-3):41–44, 1993. ISSN 0937-0633. doi:10.1007/BF00321379. Cerca con Google

[114] Akira Yoshikawa, Yohei Kikuchi, Taichi Suda, Naoko Ashikawa, Kiyohiko Nishimura, Akio Sagara, Nobuaki Noda, Yasuhisa Oya, and Kenji Okuno. Chemical behavior of hydrogen isotopes into boronized film in LHD. Journal of Nuclear Materials, 386-388(0):367 – 370, 2009. ISSN 0022-3115. doi:10.1016/j.jnucmat.2008.12.126. Fusion Reactor Materials Proceedings of the Thirteenth International Conference on Fusion Reactor Materials. Cerca con Google

[115] Zhongshi Yang, Wanjing Wang, Qiang Li, Jing Wu, Kenji Okuno, Yasuhisa Oya, and Guang-Nan Luo. Surface analysis of VPS- W coatings boronized by an ICRF discharge in HT-7. Journal of Nuclear Materials, 417(1-3):520 – 523, 2011. ISSN 0022-3115. doi:10.1016/j.jnucmat.2010.12.110. Proceedings of ICFRM-14. Cerca con Google

[116] N. Ashikawa, K. Kizu, J. Yagyu, T. Nakahata, Y. Nobuta, K. Nishimura, A. Yoshikawa, Y. Ishimoto, Y. Oya, K. Okuno, N. Miya, T. Hino, S. Masuzaki, A. Sagara, and N. Ohyabu. Comparison of boronized wall in LHD and JT-60U. Journal of Nuclear Materials, 363-365(0):1352 – 1357, 2007. ISSN 0022-3115. doi:10.1016/j.jnucmat.2007.01.271. Plasma-Surface Interactions-17. Cerca con Google

[117] Dadong Shao, Jiaxing Li, Xiaoli Tan, Zhongshi Yang, Kenji Okuno, and Yasuhisa Oya. XPS investigation of impurities containing boron films affected by energetic deuterium implantation and thermal desorption. Journal of Nuclear Materials, 457(0):118 – 123, 2015. ISSN 0022-3115. doi:10.1016/j.jnucmat.2014.10.097. Cerca con Google

[118] L.G. Jacobsohn, R.K. Schulze, M.E.H. Maia da Costa, and M. Nastasi. Cerca con Google

X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. Surface Science, 572(2-3):418 – 424, 2004. ISSN 0039-6028. doi:10.1016/j.susc.2004.09.020. Cerca con Google

[119] S.C. Lyu, J.H. Han, K.W. Shin, and J.H. Sok. Synthesis of boron- doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon, 49(5):1532 – 1541, Cerca con Google

2011. ISSN 0008-6223. doi:10.1016/j.carbon.2010.12.012. Cerca con Google

[120] J.I. Onate, A. Garc´ıa, V. Bellido, and J.L. Viviente. Deposition of hydrogenated B-C thin films and their mechanical and chemical characterization. Surface and Coatings Technology, 49(1-3):548 – 553, Cerca con Google

1991. ISSN 0257-8972. doi:10.1016/0257-8972(91)90115-D. Cerca con Google

[121] O Postel and J Heberlein. Deposition of boron carbide thin film by supersonic plasma jet CVD with secondary discharge. Surface and Coatings Technology, 108-109(0):247 –252, 1998. ISSN 0257-8972. doi:10.1016/S0257-8972(98)00661-6. Cerca con Google

[122] H. Ku¨nzli, P. Gantenbein, R. Steiner, and P. Oelhafen. Influence of B2H6/CH4 and B(CH3)3 as process gas on boron carbide coatings: an in situ photoelectron spectroscopy study. Journal of Nuclear Materials, Cerca con Google

196-198(0):622 – 626, 1992. ISSN 0022-3115. doi:10.1016/S0022- Cerca con Google

3115(06)80111-X. Plasma-Surface Interactions in Controlled Fusion Devices Proceedings of the Tenth International Conference on Plasma- Surface Interactions in Controlled Fusion Devices. Cerca con Google

[123] C Ronning, D Schwen, S Eyhusen, U Vetter, and H Hofs¨ass. Ion beam synthesis of boron carbide thin films. Surface and Coatings Technology, Cerca con Google

158-159(0):382 – 387, 2002. ISSN 0257-8972. doi:10.1016/S0257- Cerca con Google

8972(02)00248-7. Proceedings of the 12th International Conference on Cerca con Google

SMMIB. Cerca con Google

[124] S. Jacques, A. Guette, X. Bourrat, F. Langlais, C. Guimon, and C. Labrugere. LPCVD and characterization of boron-containing pyrocarbon materials. Carbon, 34(9):1135 – 1143, 1996. ISSN 0008- Cerca con Google

6223. doi:10.1016/0008-6223(96)00075-9. Cerca con Google

[125] William Cermignani, Thomas E. Paulson, Carina Onneby, and Carlo G. Cerca con Google

Pantano. Synthesis and characterization of boron-doped carbons. Cerca con Google

Carbon, 33(4):367 – 374, 1995. ISSN 0008-6223. doi:10.1016/0008- Cerca con Google

6223(94)00160-2. Oxidation Protection of Carbon Composites. Cerca con Google

[126] I. Jim´enez, D. Sutherland, T. van Buuren, J. Carlisle, L. Terminello, and F. Himpsel. Photoemission and x-ray-absorption study of boron carbide and its surface thermal stability. Phys. Rev. B, 57:13167–13174, May 1998. doi:10.1103/PhysRevB.57.13167. Cerca con Google

[127] Sachiko Suzuki, Yu Yang, Akira Yoshikawa, Yohei Kikuchi, Akio Sagara, Yasuhisa Oya, and Kenji Okuno. Influence of carbon concentration on chemical behavior of energetic deuterium implanted into carbon-contained boron film. Journal of Nuclear Materials, 390-391(0):200 – 202, 2009. ISSN 0022- Cerca con Google

3115. doi:10.1016/j.jnucmat.2009.01.167. Proceedings of the 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Device Proceedings of the 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Device. Cerca con Google

[128] G. Mazzitelli, M.L. Apicella, D. Frigione, G. Maddaluno, M. Marinucci, C. Mazzotta, V. Pericoli Ridolfini, M. Romanelli, G. Szepesi, O. Tudisco, and FTU Team. FTU results with a liquid lithium limiter. Nuclear Fusion, 51(7):073006, 2011. doi:10.1088/0029- Cerca con Google

5515/51/7/073006. Cerca con Google

[129] F L Tabar´es, M A Ochando, F Medina, D Tafalla, J A Ferreira, E Ascasibar, R Balb´ın, T Estrada, C Fuentes, I Garc´ıa-Cort´es, J Guasp, M Liniers, I Pastor, M A Pedrosa, and the TJ-II Team. Plasma performance and confinement in the TJ-II stellarator with lithium- coated walls. Plasma Physics and Controlled Fusion, 50(12):124051, Cerca con Google

2008. doi:10.1088/0741-3335/50/12/124051. Cerca con Google

[130] Kugel et al. The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment. Physics of Plasmas (1994-present), 15(5):056118, 2008. doi:10.1063/1.2906260. Cerca con Google

[131] G Z Zuo et al. Comparison of various wall conditionings on the reduction of H content and particle recycling in EAST. Plasma Physics and Controlled Fusion, 54(1):015014, 2012. doi:10.1088/0741- Cerca con Google

3335/54/1/015014. Cerca con Google

[132] R. Maingi et al. The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment. Nuclear Fusion, Cerca con Google

52(8):083001, 2012. doi:10.1088/0029-5515/52/8/083001. Cerca con Google

[133] J. Li. High power and long pulse operation on the superconducting tokamak EAST. July 2012. URL http://epsicpp2012.spp.ee.kth. se/. 39th EPS Conference on Plasma Physics (Invited paper). Vai! Cerca con Google

[134] Masayuki Ono. Lithium As Plasma Facing Component for Magnetic Cerca con Google

Fusion Research. Sep 2012. doi:10.2172/1056493. Cerca con Google

[135] C. N. Taylor, B. Heim, and J. P. Allain. Chemical response of lithiated graphite with deuterium irradiation. Journal of Applied Physics, 109 (5):053306, 2011. doi:10.1063/1.3555097. Cerca con Google

[136] H Estrade-Szwarckopf and B Rousseau. U.P.S. and X.P.S. studies of alkali-graphite intercalation compounds. Synthetic Metals, 23(1- Cerca con Google

4):191–198, 1988. ISSN 0379-6779. doi:10.1016/0379-6779(88)90482- Cerca con Google

1. Proceedings of the Fourth International Symposium on Graphite Cerca con Google

Intercalation Compounds. Cerca con Google

[137] N. Itou, H. Toyoda, K. Morita, and H. Sugai. Rapid diffusion of lithium into bulk graphite in lithium conditioning. Journal of Nuclear Materials, Cerca con Google

290-293(0):281–285, 2001. ISSN 0022-3115. doi:10.1016/S0022- Cerca con Google

3115(00)00630-9. 14th Int. Conf. on Plasma-Surface Interactions in Cerca con Google

Controlled Fusion D evices. Cerca con Google

[138] S. Kato, M. Watanabe, H. Toyoda, and H. Sugai. Laboratory experiment on lithium chemistry and its application to effective wall conditioning. Journal of Nuclear Materials, 266-269(0):406 – 411, 1999. ISSN 0022-3115. doi:10.1016/S0022-3115(98)00889-7. Cerca con Google

[139] P. Krstic, J. Allain, C. Taylor, J. Dadras, S. Maeda, K. Morokuma, J. Jakowski, A. Allouche, and C. Skinner. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls. Physical Review Letters, 110:105001, Mar 2013. doi:10.1103/PhysRevLett.110.105001. Cerca con Google

[140] C. N. Taylor, J. Dadras, K. E. Luitjohan, J. P. Allain, P. S. Krstic, and C. H. Skinner. The role of oxygen in the uptake of deuterium in lithiated graphite. Journal of Applied Physics, 114(22):223301, 2013. doi:10.1063/1.4841115. Cerca con Google

[141] P. Innocente, D.K. Mansfield, A.L. Roquemore, M. Agostini, S. Barison, A. Canton, L. Carraro, R. Cavazzana, G. De Masi, A. Fassina, S. Fiameni, L. Grando, B. Rais, F. Rossetto, and P. Scarin. Lithium wall conditioning by high frequency pellet injection in RFX-mod. Journal of Nuclear Materials, 2014. ISSN 0022-3115. doi:10.1016/j.jnucmat.2014.11.088. Cerca con Google

[142] S.Menmuir, L.Carraro, M.Agostini, P.Innocente andS.Munaretto, M.E.Puiatti, and P.Scarin. Edge spectroscopic characterization of RFX- mod after Li wall conditioning. June 2010. URL http://ocs.ciemat. es/EPS2010PAP/pdf/P2.149.pdf. 37th EPS Conference on Plasma Physics. Vai! Cerca con Google

[143] N. Vianello et al. 3D effects on the RFX-mod boundary. Nuclear Fusion, Cerca con Google

53(7):073025, 2013. doi:10.1088/0029-5515/53/7/073025. Cerca con Google

[144] M. Valisa et al. High current regimes in RFX-mod. Plasma Cerca con Google

Physics and Controlled Fusion, 50(12):124031, 2008. doi:10.1088/0741- Cerca con Google

3335/50/12/124031. Cerca con Google

[145] H.W. Kugel. NSTX plasma response to lithium coated divertor. Journal of Nuclear Materials, 415(1, Supplement):S400 – S404, 2011. ISSN 0022- Cerca con Google

3115. doi:10.1016/j.jnucmat.2010.12.016. Cerca con Google

[146] Nist standard reference database. URL http://www.nist.gov. Vai! Cerca con Google

[147] S.S. Harilal, J.P. Allain, A. Hassanein, M.R. Hendricks, and M. Nieto- Perez. Reactivity of lithium exposed graphite surface. Applied Surface Science, 255(20):8539 – 8543, 2009. ISSN 0169-4332. doi:10.1016/j.apsusc.2009.06.009. Cerca con Google

[148] C.N. Taylor, K.E. Luitjohan, B. Heim, L. Kollar, J.P. Allain, C.H. Skinner, H.W. Kugel, R. Kaita, A.L. Roquemore, and R. Maingi. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance. Fusion Engineering and Design, 88(12):3157 – 3164, 2013. ISSN 0920-3796. doi:10.1016/j.fusengdes.2013.09.007. Cerca con Google

[149] B Rousseau, M Vayer-Besancon, and H Estrade-Szwarckopf. XPS and UPS study of the oxidation of a stage 1 Cs-graphite intercalation compound: Comparison with alkali films deposited on substrates. Solid State Communications, 99(3):143 – 147, 1996. ISSN 0038-1098. doi:10.1016/0038-1098(96)00220-7. Cerca con Google

[150] M. T¨owe, P. Reinke, and P. Oelhafen. Reactivity of lithium-containing amorphous carbon (a-C) films. Journal of Nuclear Materials, 290-293 (0):153 – 157, 2001. ISSN 0022-3115. doi:10.1016/S0022-3115(00)00432- Cerca con Google

3. 14th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Cerca con Google

Devices. Cerca con Google

[151] M.E. Puiatti et al. High density physics in reversed field pinches: Cerca con Google

comparison with tokamaks and stellarators. Nuclear Fusion, 49(4): Cerca con Google

045012, 2009. doi:10.1088/0029-5515/49/4/045012. Cerca con Google

[152] R. Neu et al. Overview on plasma operation with a full tungsten wall in ASDEX Upgrade. Journal of Nuclear Materials, 438, Supplement: S34 – S41, 2013. ISSN 0022-3115. doi:10.1016/j.jnucmat.2013.01.006. Cerca con Google

[153] S. Brezinsek et al. Overview of experimental preparation for the ITER- Like Wall at JET. Journal of Nuclear Materials, 415(1, Supplement): S936 – S942, 2011. ISSN 0022-3115. doi:10.1016/j.jnucmat.2010.10.037. Cerca con Google

[154] B. Lipschultz, D.A. Pappas, B. Labombard, J.E. Rice, D. Smith, and S.J. Wukitch. A study of molybdenum influxes and transport in alcator C-Mod. Nuclear Fusion, 41(5):585–596, 2001. doi:10.1088/0029- Cerca con Google

5515/41/5/311. Cerca con Google

[155] F. Alladio. Results from the Frascati tokamak FT. Nuclear Fusion, 25 (9):1069–1072, 1985. doi:10.1088/0029-5515/25/9/012. Cerca con Google

[156] Kallenbach et al. Tokamak operation with high-Z plasma facing components. Plasma Physics and Controlled Fusion, 47(12 B):B207– B222, 2005. doi:10.1088/0741-3335/47/12B/S16. Cerca con Google

[157] V. Philipps, Ph. Mertens, G.F. Matthews, and H. Maier. Overview of the JET ITER-like wall project. Fusion Engineering and Design, 85 (7-9):1581–1586, 2010. doi:10.1016/j.fusengdes.2010.04.048. Cerca con Google

[158] K. Shimada, T. Tanabe, R. Causey, T. Venhaus, and K. Okuno. Cerca con Google

Hydrogen recycling study by Balmer lines emissions in linear plasma machine TPE. Journal of Nuclear Materials, 290-293:478 – 481, 2001. doi:10.1016/S0022-3115(00)00515-8. Cerca con Google

[159] A. Huber et al. Comparison of impurity production, recycling and power deposition on carbon and tungsten limiters in TEXTOR-94. Journal of Nuclear Materials, 290-293:276 – 280, 2001. ISSN 0022-3115. doi:10.1016/S0022-3115(00)00629-2. Cerca con Google

[160] P.C. Stangeby. The Plasma Boundary of Magnetic Fusion Devices. Cerca con Google

Series in Plasma Physics. Taylor & Francis, 2000. ISBN 9780750305594. URL http://books.google.it/books?id=qOliQgAACAAJ. Vai! Cerca con Google

[161] W. Eckstein. Reflection. Technical report, Max-Planck-Institut fu¨r Cerca con Google

Plasmaphysik, August 2009. Cerca con Google

[162] H. Maier, J. Luthin, M. Balden, J. Linke, F. Koch, and H. Bolt. Cerca con Google

Properties of tungsten coatings deposited onto fine grain graphite by different methods. Surface and Coatings Technology, 142-144:733 – 737, Cerca con Google

2001. ISSN 0257-8972. doi:10.1016/S0257-8972(01)01177-X. Cerca con Google

[163] ASTM C1624-05. Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, Refractories, Activated Carbon; Advanced Ceramics, volume 15.01. ASTM International: West Conshohocken, PA, USA, Marcht 2010. Cerca con Google

[164] The relationship between hardness and scratch adhesion: P J Burnett and D S Rickerby, Thin Solid Films, 154, 1987, 403-416. Vacuum, 39 (5):500, 1989. ISSN 0042-207X. doi:10.1016/0042-207X(89)90364-3. Cerca con Google

[165] C Ruset, E Grigore, H Maier, R Neu, X Li, H Dong, R Mitteau, and X Courtois. Tungsten coatings deposited on CFC tiles by the combined magnetron sputtering and ion implantation technique. Physica Scripta, Cerca con Google

2007(T128):171, 2007. doi:10.1088/0031-8949/2007/T128/033. Cerca con Google

[166] Andr´e Anders. From plasma immersion ion implantation to deposition: a historical perspective on principles and trends. Surface and Coatings Technology, 156(1-3):3 – 12, 2002. ISSN 0257-8972. doi:10.1016/S0257- Cerca con Google

8972(02)00066-X. Cerca con Google

[167] H Bolt et al. Materials for the plasma-facing components of fusion reactors. Journal of Nuclear Materials, 329-333, Part A:66 – 73, 2004. ISSN 0022-3115. doi:10.1016/j.jnucmat.2004.04.005. Cerca con Google

[168] C. Garc´ıa-Rosales et al. High-heat-flux loading of tungsten coatings on graphite deposited by plasma spray and physical vapor deposition. Fusion Technology (1997), 32(2), 32-2:263–276, 1997. URL http:// www.ans.org/pubs/journals/fst/a_19896. Vai! Cerca con Google

[169] C. Ruset, E. Grigore, I. Munteanu, H. Maier, H. Greuner, C. Hopf, V. Phylipps, and G. Matthews. Industrial scale 10 µm W coating of CFC tiles for ITER-like Wall Project at JET. Fusion Engineering and Design, 84(7-11):1662 – 1665, 2009. ISSN 0920-3796. doi:10.1016/j.fusengdes.2008.11.053. Cerca con Google

[170] C. Ruset et al. The impact of thermal fatigue and carbidization on the W coatings deposited on CFC tiles for the ITER-like Wall project at JET. Fusion Engineering and Design, 88(9-10):1690 – 1693, 2013. ISSN Cerca con Google

0920-3796. doi:10.1016/j.fusengdes.2013.02.017. Cerca con Google

[171] H. Maier, J. Luthin, M. Balden, S. Lindig, J. Linke, V. Rohde, and H. Bolt. Development of tungsten coated first wall and high heat flux components for application in ASDEX Upgrade. Journal of Nuclear Materials, 307-311, Part 1(0):116 – 120, 2002. ISSN 0022-3115. doi:10.1016/S0022-3115(02)00941-8. Cerca con Google

[172] C. Garc´ıa-Rosales, P. Franzen, H. Plank, J. Roth, and E. Gauthier. Cerca con Google

Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade. Journal of Nuclear Materials, 233-237, Part 1:803 – 808, 1996. ISSN 0022-3115. doi:10.1016/S0022-3115(96)00185-7. Cerca con Google

[173] P. Zaccaria, S. Dal Bello, and D. Marcuzzi. Tests and analyses for the mechanical and thermal qualification of the new RFX first wall tiles. Fusion Engineering and Design, 66-68:289 – 293, 2003. ISSN 0920-3796. doi:10.1016/S0920-3796(03)00158-3. Cerca con Google

[174] H. Greuner et al. Design, performance and construction of a 2 MW ion beam test facility for plasma facing components. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record