Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pierobon, Francesca (2015) Evaluation of the environmental impacts of wood products for bio-energy through Life Cycle Assessment (LCA). [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 01 Febbraio 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

3832Kb

Abstract (inglese)

The use of wood for energy has grown in the last years as an alternative to fossil fuels. National and international laws promote the use of wood in the policies for the mitigation of climate change, based on the assumption that wood has a neutral carbon balance because the combustion emissions are offset by the absorption in forest (assumption of carbon neutrality). However, this assumption does not take into account the emissions associated with the life cycle of the product, e.g. related to processing and transporting biomass. In addition there is a time lag between the release of CO2 during combustion and its absorption in forest and this could have an impact on global warming.
The objectives of this research project are: 1) to assess the environmental impacts of wood products through Life Cycle Assessment (LCA); 2) to include the dynamics of forest carbon sequestration and natural decomposition of woody biomass in LCA. The research is conducted by means of two case studies: the first is the LCA of firewood in the Northern East Italy; the second concerns the production of wood chips in the Pacific Northwest in the United States. This dissertation consists in eight chapters. Chapter 1 describes the legislative framework and the state of the art of the international experiences and research projects on the subject. A review of literature studies was conducted highlighting the main limitations and defining the research objectives. Chapters 2 and 3 analyze the supply chain of wood products for bioenergy, providing reference data for the biomass extraction and production processes, the physico-chemical properties of wood and the LCA methodology, in terms of standards, databases, softwares and methodologies. Chapters 4 and 5 present the results of the two case studies which identify the transportation to be the critical phase of LCA, in the case of firewood related to the importation of raw materials from abroad, in the case of chips related to the transportation on forest road. Chapter 6 deals with the assessment of carbon sinks and stocks in the study areas previously analyzed. In Chapter 7 we face the problem of how to include forest carbon sequestration within the LCA. This led to the development of a methodology to perform a "dynamic LCA", which, in Chapter 8, is applied to a case study in the Pacific Northwest. The methodology is based on the use of radiative forcing to evaluate the impact of emissions and absorption sources on climate change. The results show that, in the case study considered, a "Radiative Forcing Turning Point" exists, i.e. a point located approximately in the middle of the forest rotation period (from 17 to 21 years old), where the life cycle impacts are compensated by carbon dioxide absorption and beyond which the biomass produces a net benefit in the carbon balance. The development of a dynamic LCA is very innovative in the context of LCA and allowed to discuss the veracity of the assumption of carbon neutrality.

Abstract (italiano)

L’uso di prodotti legnosi per fini energetici è cresciuto negli ultimi anni come alternativa ai combustibili fossili. Leggi nazionali e internazionali promuovono l’uso del legno nell’ambito delle politiche di mitigazione dei cambiamenti climatici, basandosi sull’assunzione che il legno abbia un bilancio di carbonio nullo, in quanto le emissioni rilasciate dalla sua combustione vengono compensate dagli assorbimenti in foresta (assunzione di carbon neutrality).Tuttavia, questa assunzione non tiene in considerazione le emissioni associate al ciclo di vita del prodotto, e.g, alla lavorazione e al trasporto della biomassa. Inoltre c’è uno sfasamento temporale tra il rilascio di CO2 nella combustione e il suo assorbimento in foresta e questo potrebbe avere conseguenze sul global warming. Gli obiettivi di questo progetto di ricerca sono: 1) valutare degli impatti ambientali dei prodotti legnosi attraverso Life Cycle Assessment (LCA); 2) includere le dinamiche forestali di assorbimento di anidride carbonica e decomposizione naturale della biomassa legnosa nell’LCA.
La ricerca è condotta per mezzo di due casi studio: il primo è costituito dall’LCA della legna da ardere nel Nord-Est Italia; il secondo riguarda la produzione di cippato nell’area del Pacific Northwest negli Stati Uniti. La tesi è costituita da otto capitoli. Nel Capitolo 1 si descrivono il quadro legislativo e lo stato dell'arte delle esperienze internazionali e dei progetti di ricerca sull’argomento. Viene inoltre effettuata una review di studi di letteratura mettendone in luce le principali limitazioni e definendo gli obiettivi di ricerca. I Capitoli 2 e 3 analizzano la catena di fornitura dei prodotti legnosi per fini energetici, fornendo dati di riferimento per i processi di estrazione e produzione della biomassa e per le caratteristiche fisico-chimiche del legno e la metodologia LCA, in termini di standard, banche dati, software e metodologie disponibili. I Capitoli 4 e 5 presentano i risultati dei due casi studio che identificano nel trasporto la fase critica dell’LCA, nel caso della legna da ardere legato all’importazione della materia prima dall’estero, nel caso del cippato legato al trasporto su strada forestale. Il Capitolo 6 riguarda la valutazione dei carbon sinks e stocks nelle aree di studio precedentemente analizzate. Nel capitolo 7 si affronta il problema di come includere il sequestro di carbonio in foresta nell'ambito dell’LCA. Questo ha portato allo sviluppo di una metodologia per effettuare un "LCA dinamico", che, nel Capitolo 8, viene applicata ad un caso studio nel Pacific Northwest. La metodologia si base sull’utilizzo del forzante radiativo per valutare l’impatto delle diverse fonti di emissioni ed assorbimento sul cambiamento climatico. I risultati mostrano che, nel caso studio considerato, esiste un “Radiative Forcing Turning Point”, ovvero un punto, situato circa a metà del periodo di rotazione della foresta (tra 17 e 21 anni), dove gli impatti del ciclo di vita vengono compensati dagli assorbimenti di anidride carbonica e oltre il quale la biomassa produce un beneficio netto in termini di bilancio del carbonio. Lo sviluppo di un LCA dinamico è molto innovativo nel quadro dell’LCA e ha permesso discutere la veridicità dell'assunto della carbon neutralità.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Anfodillo, Tommaso
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:03 Febbraio 2015
Anno di Pubblicazione:2015
Parole chiave (italiano / inglese):carbon footprint, dynamic life cycle assessment, forest management, radiative forcing, carbon neutrality
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/06 Tecnologia del legno e utilizzazioni forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:8011
Depositato il:25 Nov 2015 14:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AEBIOM, 2009. Wood Fuels Handbook.http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HAN Vai! Cerca con Google

DBOOK_BTC_EN.pdf. Cerca con Google

Agostini, A., Giuntoli, J., Boulamanti, A., 2013. European Commission - Joint Research Centre. Institute for Energy and Transport. Petten (NL). Proceeding of the Expert consultation on “Developing a binding sustainability scheme for solid biomass for electricity and heat under the RED”, July 1st-2nd, 2013, Arona, Italy. http://iet.jrc.ec.europa.eu/bf-ca/sites/bf-ca/files/files/documents/events/agostini-forest_bioenergy_carbon_accouting-final.pdf. Vai! Cerca con Google

Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., Wennberg, P.O., 2010. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chem. Phys. Discuss. 10, 27523–27602. doi:10.5194/acpd-10-27523-2010 Cerca con Google

Alam, A., Kilpeläinen, A., Kellomäki, S., 2010. Potential Energy Wood Production with Implications to Timber Recovery and Carbon Stocks Under Varying Thinning and Climate Scenarios in Finland. BioEnergy Res. 3, 362–372. doi:10.1007/s12155-010-9095-1 Cerca con Google

Amiro, B.D., Stocks, B.J., Alexander, M.E., Flannigan, M.D., Wotton, B.M., 2001. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10, 405–413. Cerca con Google

APAT, ARPA, 2008. Stima dei consumi di legna da ardere per riscaldamento ed uso domestico in Italia. Agenzia Nazionale per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT) e Agenzia Regionale per la Protezione dell’Ambiente (ARPA) della Lombardia. Rapporto finale. Cerca con Google

Battye, W., Battye, R., 2002. Development of emissions inventory methods for wildland fire. Final Report for Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No 68-D-98-046. Feb. Cerca con Google

Bentley, R.W., Mannan, S.A., Wheeler, S.J., 2007. Assessing the date of the global oil peak: The need to use 2P reserves. Energy Policy 35, 6364–6382. doi:10.1016/j.enpol.2007.08.001 Cerca con Google

Bergman, R.D., Bowe, S.A., 2010. Environmental impact of manufacturing softwood lumber in northeastern and north central United States. Wood Fiber Sci. 42, 67–78. Cerca con Google

Berg, S., 1997. Some aspects of LCA in the analysis of forestry operations. J. Clean. Prod. 5, 211–217. Cerca con Google

Bowyer, J., Lippke, B., Briggs, D., Perez-Garcia, J., Wilson, J., 2004. Life cycle environmental performance of renewable materials in the context of residential building construction. Research Report No. Phase I. 43 p. Consortium for Research on Renewable Industrial Materials, Seattle, WA. Available at http://www.corrim.org/pubs/reports/ 2013/phase1_updates/index.asp. Vai! Cerca con Google

Bracmort, K.S., Gorte, R.W., 2009. Biomass: Comparison of definitions in legislation. Congressional Research Service, Library of Congress. Cerca con Google

Brandão, M., Levasseur, A., Kirschbaum, M.U.F., Weidema, B.P., Cowie, A.L., Jørgensen, S.V., Hauschild, M.Z., Pennington, D.W., Chomkhamsri, K., 2013. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 18, 230–240. doi:10.1007/s11367-012-0451-6 Cerca con Google

BSI, 2008. PAS 2050:2008 – Specification for the assessment of the life cycle greenhouse gas emission of goods and services. British Standard. Carbon Trust. Department for Environment Food and Rural Affairs. Cerca con Google

BSI, 2011. PAS 2050:2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standard Institute. London. Cerca con Google

Cavalli, R., Grigolato, S., Pellegrini, M., 2011. Determination of the forest road network influence on the supply chain for firewood production by discrete event simulation. J. Agric. Eng. 42, 41–48. Cerca con Google

Cavalli, R., Grigolato, S., Sgarbossa, A., 2014. Productivity and quality performance of an innovative firewood processor. J. Agric. Eng. 45, 32. doi:10.4081/jae.2014.228 Cerca con Google

Cespi, D., Passarini, F., Ciacci, L., Vassura, I., Castellani, V., Collina, E., Piazzalunga, A., Morselli, L., 2014. Heating systems LCA: comparison of biomass-based appliances. Int. J. Life Cycle Assess. 19, 89–99. doi:10.1007/s11367-013-0611-3 Cerca con Google

Cherubini, F., 2010. GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns. Renew. Energy 35, 1565–1573. doi:10.1016/j.renene.2009.11.035 Cerca con Google

Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S., 2009. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 53, 434–447. doi:10.1016/j.resconrec.2009.03.013 Cerca con Google

Cherubini, F., Guest, G., Strømman, A.H., 2012. Application of probability distributions to the modeling of biogenic CO 2 fluxes in life cycle assessment. GCB Bioenergy 4, 784–798. doi:10.1111/j.1757-1707.2011.01156.x Cerca con Google

Cherubini, F., Peters, G.P., Berntsen, T., StrøMman, A.H., Hertwich, E., 2011a. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming: Global Warming Potential of CO2 from bioenergy. GCB Bioenergy 3, 413–426. doi:10.1111/j.1757-1707.2011.01102.x Cerca con Google

Cherubini, F., Strømman, A.H., 2011. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 102, 437–451. doi:10.1016/j.biortech.2010.08.010 Cerca con Google

Cherubini, F., Strømman, A.H., Hertwich, E., 2011b. Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol. Model. 223, 59–66. doi:10.1016/j.ecolmodel.2011.06.021 Cerca con Google

CIPE, 2002. Delibera del 19/12/2002. Revisione delle linee guida per le politiche e misure nazionali di riduzione delle emissioni dei gas serra - Piano Nazionale Riduzione delle Emissioni. 2002. Cerca con Google

Consiglio dei Ministri, 1999. D. Lgs. 79/1999. Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell’energia elettrica. Gazzetta Ufficiale n. 75 del 31-03-1999. Cerca con Google

Consiglio dei Ministri, 2011a. D. Lgs 28/2011. Attuazione della direttiva 2009/28/CE sulla promozione dell’uso dell’energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE. Cerca con Google

Consiglio dei Ministri, 2011b. D. Lgs. 55/2011. Attuazione della direttiva 2009/30/CE, che modifica la direttiva 98/70/CE, per quanto riguarda le specifiche relative a benzina, combustibile diesel e gasolio, nonche’ l’introduzione di un meccanismo inteso a controllare e ridurre le emissioni di gas a effetto serra, modifica la direttiva 1999/32/CE per quanto concerne le specifiche relative al combustibile utilizzato dalle navi adibite alla navigazione interna e abroga la direttiva 93/12/CEE. (11G0098) (GU n.97 del 28-4-2011 ). Cerca con Google

Cooper, J., 2014. Lectures from Life Cycle Assessment class, cod. ME515, Department of Mechanical Engineering, University of Washington, Seattle. Cerca con Google

CORRIM, 2001. Research guidelines for life cycle inventories. Consortium for Research on Renewable Industrial Materials. CORRIM, Inc. Univ. Washington, Seattle, WA. 2 Apr. Cerca con Google

Courchesne, A., Bécaert, V., Rosenbaum, R.K., Deschênes, L., Samson, R., 2010. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects With Life Cycle Assessment: Ethanol Biofuel as a Case Study. J. Ind. Ecol. 14, 309–321. doi:10.1111/j.1530-9290.2010.00228.x Cerca con Google

Demirbas, A., 2009. Fuels from biomass. Biohydrogen Future Engine Fuel Demands 43–59. Cerca con Google

Dias, A.C., Arroja, L., Capela, I., 2012. Carbon storage in harvested wood products: implications of different methodological procedures and input data—a case study for Portugal. Eur. J. For. Res. 131, 109–117. doi:10.1007/s10342-011-0515-3 Cerca con Google

Dias, A.C., Louro, M., Arroja, L., Capela, I., 2009. Comparison of methods for estimating carbon in harvested wood products. Biomass Bioenergy 33, 213–222. doi:10.1016/j.biombioe.2008.07.004 Cerca con Google

Dwivedi, P., Bailis, R., Alavalapati, J., Nesbit, T., 2012. Global Warming Impact of E85 Fuel Derived from Forest Biomass: A Case Study from Southern USA. BioEnergy Res. 5, 470–480. doi:10.1007/s12155-012-9179-1 Cerca con Google

EIA, 2006. Technical Guidelines for Voluntary Reporting of Greenhouse Gas Program. US Energy Information Administration. http://www.eia.gov/survey/form/eia_1605/gdlins.html. Vai! Cerca con Google

Ekvall, T., 2000. A market-based approach to allocation at open-loop recycling. Resour. Conserv. Recycl. 29, 91–109. Cerca con Google

Ekvall, T., Weidema, B.P., 2004. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 9, 161–171. Cerca con Google

EPA, 2003. Wood waste combustion in boilers. 20 pp. In AP42 Fifth Ed. Vol. I, Chapter I: External combustion sources. US Environmental Protection Agency. Cerca con Google

EPA, 2011. Accounting framework for biogenic CO2 emissions from stationary sources. U.S. Environmental Protection Agency. Cerca con Google

European Commission, 2008. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 20 20 by 2020. Europe’s climate change opportunity. Cerca con Google

European Commission, 2010. ILCD Handbook. International Reference Life Cycle Data System. General guide for Life Cycle Assessment. Detailed guidance. Joint Research Centre. Cerca con Google

European Commission, 2014. Environmental Footprint Pilot Guidance document - Guidance for the implementation of the EU Product Environmental Footprint (PEF) during the Environmental Footprint (EF) pilot phase, v. 4.0, May 2014. Cerca con Google

European Council, 2002. Council Decision of 25 April 2002 concerning the approval, on behalf of the European Community, of the Kyoto Protocol to the United Nations Framework Convention on Climate Change and the joint fulfilment of commitments thereunder (2002/358/CE). Cerca con Google

European Parliament and Council, 2003a. Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC. Cerca con Google

European Parliament and Council, 2003b. Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in electricity and repealing Directive 96/92/EC. Cerca con Google

European Parliament and Council, 2003c. Directive 2003/55/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in natural gas and repealing Directive 98/30/EC. Cerca con Google

European Parliament and Council, 2009a. Decision n. 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020. Cerca con Google

European Parliament and Council, 2009b. Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the greenhouse gas emission allowance trading scheme of the Community. Cerca con Google

European Parliament and Council, 2009c. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Cerca con Google

European Parliament and Council, 2009d. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC. Cerca con Google

Faostat, 2013. Forestry trade flows. http://faostat.fao.org/. Vai! Cerca con Google

FIA, 2014. USDA Forest Service Forest Inventory and Analysis. 2014. Forest Inventory Data Online (FIDO) [online]. National Office, U.S. Forest Service, 1601 North Kent Street, Suite 400, Arlington, VA. Available at http://www.fia.fs.fed.us/tools-data/default.asp. Vai! Cerca con Google

Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., Spielmann, M., 2005. The ecoinvent Database: Overview and Methodological Framework (7 pp). Int. J. Life Cycle Assess. 10, 3–9. doi:10.1065/lca2004.10.181.1 Cerca con Google

Ganguly, I., Eastin, I., Pierobon, F., Bowers, T., 2014. Environmental assessments of woody biomass based jet-fuel. CINTRAFOR Newsletter Winter Issue, University of Washington. Seattle, WA. Cerca con Google

GBEP, 2007. Global Bioenergy Partnership, A review of the current state of bioenergy development in G8+ 5 countries, GBEP Secretariat, Food and Agriculture Organization of the United Nations (FAO), Rome 2007; ftp://ftp.fao.org/docrep/fao/010/a1348e/a1348e00.pdf. Vai! Cerca con Google

Giordano, G., 1988. Tecnologia del legno. UTET, Milano. Cerca con Google

Gloria, T.P., Lippiatt, B.C., Cooper, J., 2007. Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environ. Sci. Technol. 41, 7551–7557. Cerca con Google

Haase, M., Skott, S., Frohling, M., 2009. Ecological evaluation of selected 1st and 2nd generation biofuels—Ft fuel from wood and ethanol from sugar beets. Challenges for Sustainable Biomass Utilisation: Proceedings of the Chilean-German Biociclo Workshop (Karlsruhe, 26.03.2009). Cerca con Google

Hanlon, P., McCartney, G., 2008. Peak oil: Will it be public health’s greatest challenge? Public Health 122, 647–652. doi:10.1016/j.puhe.2008.03.020 Cerca con Google

Harrill, H., 2010. Costs and productivity of woody biomass harvesting in integrated stand conversion and residue recovery operations. Diss. Humboldt State University, Arcata, California. Cerca con Google

Hashimoto, S., Nose, M., Obara, T., Moriguchi, Y., 2002. Wood products: potential carbon sequestration and impact on net carbon emissions of industrialized countries. Environ. Sci. Policy 5, 183–193. Cerca con Google

Heijungs, R., Guinee, J.B., Huppes, G., Lankreijer, R.M., Udo de Haes, H.A., 1992. R. Heijungs et al, Environmental life cycle assessment of products, Guide and backgrounds. October 1992 Centre for Environmental Science, CML, Leiden, The Netherlands. Cerca con Google

Heijungs, R., Suh, S., 2002. The Computational Structure of LCA, Chapter 2. Kluwer Academic Publishers. Cerca con Google

Heinimann, H.R., 2012. Life Cycle Assessment (LCA) in Forestry - State and perspectives. Croat. J. For. Eng. 33, 357–372. Cerca con Google

Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., Pajula, T., 2013. Approaches for inclusion of forest carbon cycle in life cycle assessment - a review. GCB Bioenergy 5, 475–486. doi:10.1111/gcbb.12016 Cerca con Google

Hennigar, C.R., MacLean, D.A., Amos-Binks, L.J., 2008. A novel approach to optimize management strategies for carbon stored in both forests and wood products. For. Ecol. Manag. 256, 786–797. doi:10.1016/j.foreco.2008.05.037 Cerca con Google

Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., Turkenburg, W., 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25, 119–133. doi:10.1016/S0961-9534(02)00191-5 Cerca con Google

Hubbard, S.S., Bowe, S.A., 2010. A gate-to-gate life cycle inventory of solid hardwood flooring in the eastern US. Wood Fiber Sci, 42 CORRIM Special Issue “Second Report”. Cerca con Google

Hurteau, M.D., Brooks, M.L., 2011. Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems. BioScience 61, 139–146. doi:10.1525/bio.2011.61.2.9 Cerca con Google

IEA, 2013. CO2 emissions from fuel combustion. 2013 Edition. International Energy Agency. Cerca con Google

IEO, 2009. International Energy Outlook, Energy Information Administration, Office of Integrated Analysis and Forecasting, US Department of Energy, Washington, DC, p. 284. Cerca con Google

IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. International Panel on Climate Change. Cerca con Google

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cerca con Google

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. Cerca con Google

ISO, 2006a. ISO 14040:2006. Environmental management. Life cycle assessment. Principles and framework. International Organization for Standardization. Geneva. Cerca con Google

ISO, 2006b. ISO 14044:2006. Environmental management. Life cycle assessment. Requirements and guidelines. International Organization for Standardization. Geneva. Cerca con Google

ISO, 2006c. ISO 14064. Greenhouse gases. Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardisation. Geneva. Cerca con Google

ISO, 2006d. ISO 14025. Environmental labels and declarations – Type III environmental declarations – Principles and procedures. International Organization for Standardisation. Geneva. Cerca con Google

ISO, 2013a. ISO/TS 14067:2013. Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification and communication. International Organization for Standardization. Geneva. Cerca con Google

ISO, 2013b. ISO/TS 14069:2013. Greenhouse gases - Quantification and reporting of greenhouse gas emissions for organizations - Guidance for the application of ISO 14064-1. International Organization for Standardization. Geneva. Cerca con Google

Johnson, L., Lippke, B., Oneil, E., 2012. Modeling biomass collection and woods processing life-cycle analysis. For. Prod. J. 63, 258–272. Cerca con Google

Karjalainen, T., Asikainen, A., 1996. Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69, 215–228. Cerca con Google

Katers, J.F., Snippen, A.J., Puettmann, M.E., 2012. Life-Cycle Inventory of Wood Pellet Manufacturing and Utilization in Wisconsin. For. Prod. J. 62. Cerca con Google

Kayo, C., Aramaki, T., Hanaki, K., 2011. Effect of Change of Forest Carbon Storage on Net Carbon Dioxide Balance of Wood Use for Energy in Japan. J. Ind. Ecol. 15, 122–136. doi:10.1111/j.1530-9290.2010.00308.x Cerca con Google

Kendall, A., Chang, B., Sharpe, B., 2009. Accounting for Time-Dependent Effects in Biofuel Life Cycle Greenhouse Gas Emissions Calculations. Environ. Sci. Technol. 43, 7142–7147. doi:10.1021/es900529u Cerca con Google

Kirkinen, J., Palosuo, T., Holmgren, K., Savolainen, I., 2008. Greenhouse Impact Due to the Use of Combustible Fuels: Life Cycle Viewpoint and Relative Radiative Forcing Commitment. Environ. Manage. 42, 458–469. doi:10.1007/s00267-008-9145-z Cerca con Google

Kloepffer, W., 2008. Life cycle sustainability assessment of products: (with Comments by Helias A. Udo de Haes, p. 95). Int. J. Life Cycle Assess. 13, 89–95. doi:10.1065/lca2008.02.376 Cerca con Google

Levasseur, A., Lesage, P., Margni, M., Brandão, M., Samson, R., 2012. Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Clim. Change 115, 759–776. doi:10.1007/s10584-012-0473-x Cerca con Google

Levasseur, A., Lesage, P., Margni, M., Deschênes, L., Samson, R., 2010. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 44, 3169–3174. Cerca con Google

Lippiatt, B.C., 2007. BEES 4.0: Building for Environmental and Economic Sustainability. Technical Manual and User Guide. NISTIR 7423. National Institute of Standards and Technology. Cerca con Google

Lippke, B., Gustafson, R., Venditti, R., Steele, P., Volk, T.A., Oneil, E., Johnson, L., Puettmann, M.E., Skog, K., others, 2012. Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. For. Prod. J. 62, 247. Cerca con Google

Lippke, B., Johnson, L., Wilson, J., Puettmann, M.E., 2011a. Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction. Research Report No. Phase II. Consortium for Research on Renewable Industrial Materials, Seattle, WA; http://www.corrim.org/pubs/reports/2010/phase2/Ph2_Main_Report.pdf. Vai! Cerca con Google

Lippke, B., Oneil, E., Harrison, R., Skog, K., Gustavsson, L., Sathre, R., 2011b. Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns. Carbon Manag. 2, 303–333. doi:10.4155/cmt.11.24 Cerca con Google

Lippke, B., Wilson, J., Meil, J., Taylor, A., 2010. Characterizing the importance of carbon stored in wood products. Wood Fiber Sci. 42, 5–14. Cerca con Google

Marland, E.S., Stellar, K., Marland, G.H., 2010. A distributed approach to accounting for carbon in wood products. Mitig. Adapt. Strateg. Glob. Change 15, 71–91. doi:10.1007/s11027-009-9205-6 Cerca con Google

McKechnie, J., Colombo, S., Chen, J., Mabee, W., MacLean, H.L., 2011. Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels. Environ. Sci. Technol. 45, 789–795. doi:10.1021/es1024004 Cerca con Google

McManus, M.C., 2010. Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems. Energy 35, 4064–4070. doi:10.1016/j.energy.2010.06.014 Cerca con Google

Merra, A., Europäische Kommission, Generaldirektion Forschung, Life cycle assessment on forestry and forest products, Seminar: COST E9, 2001. Life cycle assessment on forestry and forest products: COST Action E9. Off. for Off. Publ. of the Europ. Communities, Luxembourg. Cerca con Google

Michelsen, O., Solli, C., Strømman, A.H., 2008. Environmental Impact and Added Value in Forestry Operations in Norway. J. Ind. Ecol. 12, 69–81. doi:10.1111/j.1530-9290.2008.00008.x Cerca con Google

Ministero dello Sviluppo Economico, 2008. Decreto 18 dicembre 2008. Incentivazione della produzione di energia elettrica da fonti rinnovabili, ai sensi dell’articolo 2, comma 150, della legge 24 dicembre 2007, n. 244. Cerca con Google

Ministero dello Sviluppo Economico, 2010. Piano di azione nazionale per le energie rinnovabili dell’Italia. Cerca con Google

Müller-Wenk, R., Brandão, M., 2010. Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int. J. Life Cycle Assess. 15, 172–182. doi:10.1007/s11367-009-0144-y Cerca con Google

Myhre, G., Samset, B.H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T.K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R.C., Feichter, J., Ghan, S.J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M.T., Luo, G., Ma, X., van Noije, T., Penner, J.E., Rasch, P.J., Ruiz, A., Seland, ø., Skeie, R.B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., Zhou, C., 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chem. Phys. 13, 1853–1877. doi:10.5194/acp-13-1853-2013 Cerca con Google

NETL, 2013. NETL Life Cycle Inventory Data – Unit Process: Burning Crowns in Slash Piles. U.S. Department of Energy, National Energy Technology Laboratory. Last Updated: March 2013 (version 01). Available at www.netl.doe.gov/ LCA. Vai! Cerca con Google

Nilsson, U., Fahlvik, N., Johansson, U., Lundström, A., Rosvall, O., 2011. Simulation of the Effect of Intensive Forest Management on Forest Production in Sweden. Forests 2, 373–393. doi:10.3390/f2010373 Cerca con Google

Nocentini, S., 2009. Structure and management of beech (Fagus sylvatica L.) forests in Italy. IForest - Biogeosciences For. 2, 105–113. doi:10.3832/ifor0499-002 Cerca con Google

O’Hare, M., Plevin, R.J., Martin, J.I., Jones, A.D., Kendall, A., Hopson, E., 2009. Proper accounting for time increases crop-based biofuels’ greenhouse gas deficit versus petroleum. Environ. Res. Lett. 4, 024001. doi:10.1088/1748-9326/4/2/024001 Cerca con Google

Oneil, E.E., Johnson, L.R., Lippke, B.R., McCarter, J.B., McDill, M.E., Roth, P.A., Finley, J.C., 2010. Life-cycle impacts of inland northwest and northeast/north central forest resources. Wood Fiber Sci. 42, 29–51. Cerca con Google

Oneil, E.E., Lippke, B.R., 2010. Integrating products, emission offsets, and wildfire into carbon assessments of Inland Northwest forests. Wood Fiber Sci. 42 (CORRIM Special Issue), 144–164. Cerca con Google

Parlamento Italiano, 2002. Legge 1 giugno 2002, n. 120. Ratifica ed esecuzione del Protocollo di Kyoto alla Convenzione quadro delle Nazioni Unite sui cambiamenti climatici, fatto a Kyoto l’11 dicembre 1997. (GU n.142 del 19-6-2002 - Suppl. Ordinario n. 129 ). Cerca con Google

Perez-Garcia, J., Lippke, B., Comnick, J., Manriquez, C., 2005. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 37, 140–148. Cerca con Google

Pettenella, D., Favero, M., Andrighetto, N., 2013. Biomasse forestali ad uso energetico. AGI Energia Newsletter, 23.10.2013. Cerca con Google

Pingoud, K., Lehtilä, A., 2002. Fossil carbon emissions associated with carbon flowsof wood products. Mitig. Adapt. Strateg. Glob. Change 7, 63–83. Cerca con Google

Pingoud, K., Perälä, A.-L., Pussinen, A., 2001. Carbon dynamics in wood products. Mitig. Adapt. Strateg. Glob. Change 6, 91–111. Cerca con Google

Pingoud, K., Pohjola, J., Valsta, L., others, 2010. Assessing the integrated climatic impacts of forestry and wood products. Silva Fenn. 44, 155–175. Cerca con Google

PRé Consultants, 2014. SimaPro Database Manual. Methods Library. Cerca con Google

Prichard, S.J., Ottmar, R.D., Anderson, G.K., 2006. Consume 3.0 user’s guide. Pac. Northwest Res. Stn. Corvallis Or. USA. Cerca con Google

Progetto Carbomark, 2011. Sviluppo di politiche per la realizzazione di mercati volontari locali del carbonio per la mitigazione dei cambiamenti climatici. Manuale di Gestione dei Mercati Locali del Carbonio. Parte Generale. Cerca con Google

Puettmann, M.E., Bergman, R., Hubbard, S., Johnson, L., Lippke, B., Oneil, E., Wagner, F.G., 2010a. Cradle-to-gate life-cycle inventory of US wood products production: CORRIM Phase I and Phase II products. Wood Fiber Sci. 42, 15–28. Cerca con Google

Puettmann, M.E., Lippke, B., 2012. Woody Biomass Substitution for Thermal Energy at Softwood Lumber Mills in the US Inland Northwest. For. Prod. J. 62. Cerca con Google

Puettmann, M.E., Wagner, F.G., Johnson, L., 2010b. Life cycle inventory of softwood lumber from the inland northwest US. Wood Fiber Sci. 42, 52–66. Cerca con Google

Regione del Veneto, 2002. Direzione Regionale Foreste, Piano di Assestamento Forestale cod.054_3 (2003-2013). Cerca con Google

Regione Liguria, 2005. Filiera del legno, prodotti e ambiente. Regione Liguria, Dipartimento Ambiente - Settore Politiche dello Sviluppo Sostenibile. Cerca con Google

Routa, J., Kellomäki, S., Peltola, H., 2012a. Impacts of Intensive Management and Landscape Structure on Timber and Energy Wood Production and net CO2 Emissions from Energy Wood Use of Norway Spruce. BioEnergy Res. 5, 106–123. doi:10.1007/s12155-011-9115-9 Cerca con Google

Routa, J., Kellomäki, S., Strandman, H., 2012b. Effects of Forest Management on Total Biomass Production and CO2 Emissions from use of Energy Biomass of Norway Spruce and Scots Pine. BioEnergy Res. 5, 733–747. doi:10.1007/s12155-012-9183-5 Cerca con Google

Sathre, R., Gustavsson, L., 2012. Time-dependent radiative forcing effects of forest fertilization and biomass substitution. Biogeochemistry 109, 203–218. doi:10.1007/s10533-011-9620-0 Cerca con Google

Sathre, R., O’Connor, J., 2010. A synthesis of Research on Wood Products and Greenhouse Gas Impacts, 2nd Edition. Vancouver, B.c. FPInnovations. 117p. (Technical report TR-19R). Cerca con Google

Schlamadinger, B., Marland, G., 1996. The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 10, 275–300. Cerca con Google

Shine, K.P., Fuglestvedt, J.S., Hailemariam, K., Stuber, N., 2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68, 281–302. Cerca con Google

Skog, K.E., Nicholson, G.A., 1998. Carbon cycling through wood products: the role of wood and paper products in carbon sequestration. For. Prod. J. 48. Cerca con Google

Sleeswijk, A.W., van Oers, L.F.C.M., Guinée, J.B., Struijs, J., Huijbregts, M.A.J., 2008. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 390, 227–240. doi:10.1016/j.scitotenv.2007.09.040 Cerca con Google

Solli, C., Reenaas, M., Strømman, A.H., Hertwich, E.G., 2009. Life cycle assessment of wood-based heating in Norway. Int. J. Life Cycle Assess. 14, 517–528. doi:10.1007/s11367-009-0086-4 Cerca con Google

Trenberth, K.E., Smith, L., 2005. The mass of the atmosphere: A constraint on global analyses. J. Clim. 18, 864–875. Cerca con Google

United Nations, 1992a. United Nations Conference on Environment and Development. Cerca con Google

United Nations, 1992b. United Nations Framework Convention on Climate Change (UNFCCC). Cerca con Google

United Nations, 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Cerca con Google

United Nations, W.C. on E. and D. (WCED), 1987. Our common future. Brundtland Report. U.S. Government, 2007. Energy Independence and Security Act. Cerca con Google

Valente, C., Spinelli, R., Hillring, B.G., 2011. LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). J. Clean. Prod. 19, 1931–1938. doi:10.1016/j.jclepro.2011.06.026 Cerca con Google

Werner, F., Taverna, R., Hofer, P., Thürig, E., Kaufmann, E., 2010. National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ. Sci. Policy 13, 72–85. doi:10.1016/j.envsci.2009.10.004 Cerca con Google

Whittaker, C., Mortimer, N., Murphy, R., Matthews, R., 2011. Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenergy 35, 4581–4594. doi:10.1016/j.biombioe.2011.07.001 Cerca con Google

Wiedinmyer, C., Neff, J.C., 2007. Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manag. 2, 10. doi:10.1186/1750-0680-2-10 Cerca con Google

Wilson, J.B., 2010a. Life-cycle inventory of formaldehyde-based resins used in wood composites in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 42, 125–143. Cerca con Google

Wilson, J.B., 2010b. Life-cycle inventory of medium density fiberboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 42, 107–124. Cerca con Google

Wilson, J.B., 2010c. Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 42, 90–106. Cerca con Google

Winjum, J.K., Brown, S., Schlamadinger, B., 1998. Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide. For. Sci. 44. Cerca con Google

WRI, WBCSD, 2013. The Greenhouse Gas Protocol Initiative. A Corporate Accounting and Reporting Standard. Revised Edition. World Resources Institute e World Business Council for Sustainable Development. Cerca con Google

Zanchi, G., Pena, N., Bird, N., 2010. The upfront carbon debt of bioenergy. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record