Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Strozi Cilla, Marcelo (2015) Highly porous geopolymers: effect of the processing route on the reached properties. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PhD thesis) - Submitted Version
4Mb

Abstract (english)

The geopolymers (inorganic polymers formed basically of silicates) have attracted increasing attention from academia for several reasons, particularly because it is considered a sustainable material where industrial by-products (fly ash and blast furnace slag) can be used as raw material, and is based on a low energy cost process. Such materials find applications in virtually all industrial sectors, depending on the molar ratio Si:Al, responsible for its properties. Currently the application of large volumes of geopolymers is focused on replacement of Portland cement, a material with an extremely aggressive process of obtaining to the environment. However, due to their similar properties to the ceramic material and increase search for new applications, studies of porous geopolymers are also of great interest. Processing routes currently used to obtain porous geopolymers are based on the civil construction for the production of aerated concrete with closed porosity, limiting their application. Thus, the development of a new processing route to produce porous geopolymers, which permits the formation of a structure with open porosity, enabling the expansion in the applications of such material is essential. Two different routes are proposed based on porous ceramic processing routes with highly porous geopolymers results, with a homogeneous microstructure, and open cell porosity of up to about 85vol%, with physical properties that suggest they may be used as a substitute for low-cost highly porous ceramics for applications such as catalyst supports, filtration of hot gases, adsorption and insulating refractory furnaces.

Abstract (italian)

I geopolimeri (polimeri inorganici formate principalmente da silicati) hanno attirato sempre più attenzione da parte del mondo accademico per diversi motivi, soprattutto perché è considerato un materiale sostenibile dove industriale (ceneri volanti e scorie di altoforno) può essere utilizzato come materia prima, e si basa su un processo a basso costo energetico. Tali materiali trovano applicazione in tutti i settori industriali, in funzione del rapporto molare Si:Al, responsabile delle sue proprietà. Attualmente l'applicazione di grandi volumi di geopolimeri è focalizzata sulla sostituzione del cemento Portland, un materiale con un processo estremamente aggressiva ottenere dell'ambiente. Tuttavia, a causa delle loro proprietà simili al materiale ceramico e aumentando la ricerca di nuove applicazioni, studi di geopolimeri porosi è anche di grande interesse. Percorsi di lavorazione attualmente utilizzate per ottenere geopolimeri porosi sono basate sulla produzione di calcestruzzo aerato con porosità chiusa, limitando la loro applicazione. Pertanto, lo sviluppo di una nuova via di elaborazione per geopolimeri porosi, che consente lo sviluppo di una struttura con porosità aperta, consentendo l'espansione nelle applicazioni di tale materiale è essenziale. Due percorsi differenti sono proposti basato su percorsi utilizzato con ceramici porosi, con risultati di geopolimeri altamente porosi, con una microstruttura omogenea, cellula aperta e porosità fino a circa 85vol%, con proprietà fisiche che suggeriscono che possono essere utilizzati come un sostituto basso costo per ceramica altamente porosi in applicazioni come supporti di catalizzatore, filtrazione di gas caldi, adsorbimento e isolamento refrattario per forni.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Morelli, Márcio Raymundo and Colombo, Paolo
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZA E INGEGNERIA DEI MATERIALI
Data di deposito della tesi:05 February 2015
Anno di Pubblicazione:05 February 2015
Key Words: porous geopolymers; processing route; properties
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:8023
Depositato il:10 Nov 2015 11:21
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] DAVIDOVITS, J. Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, v. 37, p. 1633–1656, doi:10.1007/BF01912193, 1991. Cerca con Google

[2] PRUD’HOMME, E. et al. In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science, v. 51, p. 15–22, doi:10.1016/j.clay.2010.10.016, 2011. Cerca con Google

[3] DAVIDOVITS, J. Geopolymer Chemistry and Applications. [S.l.]: Institut Géopolymère, 2011. p. 632 Cerca con Google

[4] PRUD’HOMME, E. et al. Silica fume as porogent agent in geo-materials at low temperature. Journal of the European Ceramic Society, v. 30, Cerca con Google

p. 1641–1648, doi:10.1016/j.jeurceramsoc.2010.01.014, 2010. Cerca con Google

[5] ABDULLAH, M. M. A. B. et al. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure. International Journal of Molecular Sciences, v. 13, p. 4388–4395, doi:10.3390/ijms13044388, 2012. Cerca con Google

[6] WEERDT KLAARTJE. Geopolymers - State of the art COIN Project Report 37 - 2011. . Oslo: [s.n.]. Disponível em: <http://www.sintef.com/home/Publications/EmployeePublications/?orgunit=1433&year=2011&coarsecategory=Rapport>. Acesso em: 13 ago. 2014, 2011. Vai! Cerca con Google

[7] DUXSON, P. et al. Geopolymer technology: The current state of the art. Journal of Materials Science, v. 42, p. 2917–2933, Cerca con Google

doi:10.1007/s10853-006-0637-z, 2007. Cerca con Google

[8] RAHIER, H. et al. Low-temperature synthesized aluminosilicate glasses .1. Low-temperature reaction stoichiometry and structure of a model compound. Journal of Materials Science, v. 31, p. 71–79, 1996. Cerca con Google

[9] PALOMO, A.; LÓPEZ DELA FUENTE, J. I. Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes. Cement and Concrete Research, v. 33, n. 2, p. 281–288, doi:10.1016/S0008-8846(02)00963-8, 2003. Cerca con Google

[10] SHI, C.; KRIVENKO, P. V.; ROY, D. M. Alkali-Activated Cements and Concretes. In: MATERIALS RESEARCH. Anais... [S.l: s.n.]. Disponível em: <http://books.google.com.co/books?id=h8oO7R98z_kC>, 2006. Vai! Cerca con Google

[11] MALLICOAT, S.; SARIN, P.; KRIVEN, W. M. NOVEL, ALKALI-BONDED, CERAMIC FILTRATION MEMBRANES. Developments in Advanced Ceramics and Composites, v. 26, p. 37–44, 2005. Cerca con Google

[12] SOFI, M. et al. Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, v. 37, n. 2, p. 251–257, doi:10.1016/j.cemconres.2006.10.008, 2007. Cerca con Google

[13] BAO, Y.; GRUTZECK, M. W.; JANTZEN, C. M. Preparation and Properties of Hydroceramic Waste Forms Made with Simulated Hanford Low-Activity Waste. Journal of the American Ceramic Society, v. 88, n. 12, Cerca con Google

p. 3287–3302, doi:10.1111/j.1551-2916.2005.00775.x, 2005. Cerca con Google

[14] DUXSON, P. et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A-Physicochemical and Engineering Aspects, v. 269, Cerca con Google

p. 47–58, doi:10.1016/j.colsurfa.2005.06.060, 2005. Cerca con Google

[15] DUXSON, P. et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 292, Cerca con Google

p. 8–20, doi:10.1016/j.colsurfa.2006.05.044, 2007. Cerca con Google

[16] ROWLES, M.; O’CONNOR, B. Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, v. 13, n. 5, Cerca con Google

p. 1161–1165, doi:10.1039/b212629j, 2003. Cerca con Google

[17] SWADDLE, T. W. Silicate complexes of aluminum(III) in aqueous systems. Coordination Chemistry Reviews, v. 219-221, p. 665–686, doi:10.1016/S0010-8545(01)00362-9, 2001. Cerca con Google

[18] SWADDLE, T. W.; SALERNO, J.; TREGLOAN, P. A. Aqueous aluminates, silicates, and aluminosilicates. Chemical Society Reviews, v. 23, n. 5, Cerca con Google

p. 319–325, doi:10.1039/cs9942300319, 1994. Cerca con Google

[19] CASEY, W. H. Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Reviews of Geophysics, v. 41, n. 2, p. 1008–1028, doi:10.1029/2002RG000118, 2003. Cerca con Google

[20] LASAGA, A. Role of surface speciation in the low-temperature dissolution of minerals. Nature, v. 331, n. 6155, p. 431–433, doi:10.1038/331431a0, 1988. Cerca con Google

[21] BARBOSA, V. F. F.; MACKENZIE, J. D. Synthesis and thermal behaviour of potassium sialate geopolymers. Materials Letters, v. 57, p. 1477–1482, doi:10.1016/S0167-577X(02)01009-1, 2003. Cerca con Google

[22] PERERA, D. S.; TRAUTMAN, R. L. Geopolymers with the Potential for Use as Refractory Castables. Advances in Technology of Materials and Materials Processing, v. 7, n. 4, p. 187–190, doi:10.2240/azojomo0173, 2006. Cerca con Google

[23] LEE, S.-J. et al. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. Journal of Membrane Science, v. 432, p. 97–105, doi:10.1016/j.memsci.2013.01.013, 2013. Cerca con Google

[24] GORGOJO, P.; LA IGLESIA, Ó. DE; CORONAS, J. Inorganic Membranes: Synthesis, Characterization and Applications. [S.l.]: Elsevier, 2008. v. 13p. 135–175 Cerca con Google

[25] OHJI, T. et al. Macro-porous ceramics: processing and properties, International Materials Review 57 (2012) 115-131 Cerca con Google

[26] KIM, H. et al. Control of pore size in ceramic foams: Influence of surfactant concentration. Materials Chemistry and Physics, v. 113, p. 441–444, doi:10.1016/j.matchemphys.2008.07.099, 2009. Cerca con Google

[27] VASANTH, D.; PUGAZHENTHI, G.; UPPALURI, R. Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution. Journal of Membrane Science, v. 379, n. 1-2, p. 154–163, doi:10.1016/j.memsci.2011.05.050, 2011. Cerca con Google

[28] IVANETS, А. I. et al. Preparation and properties of microfiltration membranes based on natural crystalline SiO2. Ceramics International, v. 40, n. 8, p. 12343–12351, doi:10.1016/j.ceramint.2014.04.080, 2014. Cerca con Google

[29] NANDI, B. K.; UPPALURI, R.; PURKAIT, M. K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Applied Clay Science, v. 42, n. 1-2, p. 102–110, doi:10.1016/j.clay.2007.12.001, 2008. Cerca con Google

[30] ZHOU, J. et al. Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separation and Purification Technology, v. 75, n. 3, p. 243–248, doi:10.1016/j.seppur.2010.08.008, 2010. Cerca con Google

[31] LIANGXIONG, L.; WHITWORTH, T. M.; LEE, R. Separation of inorganic solutes from oil-field produced water using a compacted bentonite membrane. Journal of Membrane Science, v. 217, n. 1-2, p. 215–225, doi:10.1016/S0376-7388(03)00138-8, 2003. Cerca con Google

[32] WANG, Z. et al. Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, v. 468, p. 276–307, doi:10.1016/j.memsci.2014.05.060, 2014. Cerca con Google

[33] STUDART, A. R. et al. Processing routes to macroporous ceramics: A review. Journal of the American Ceramic Society, v. 89, p. 1771–1789, doi:10.1111/j.1551-2916.2006.01044.x, 2006. Cerca con Google

[34] ORTEGA, F. S. et al. Alternative gelling agents for the gelcasting of ceramic foams. Journal of the European Ceramic Society, v. 23, Cerca con Google

p. 75–80, doi:10.1016/S0955-2219(02)00075-4, 2003. Cerca con Google

[35] SCHEFFLER, M.; COLOMBO, P. Cellular Ceramics: Structure, Manufacturing, Properties and Applications. [S.l: s.n.], 645 p, 2005. Cerca con Google

[36] GONZENBACH, U. T. et al. Macroporous Ceramics from Particle-Stabilized Wet Foams. Journal of the American Ceramic Society, v. 90, n. 1, p. 16–22, doi:10.1111/j.1551-2916.2006.01328.x, 2007. Cerca con Google

[37] BURSALI, N.; ERTUNC, S.; AKAY, B. Process improvement approach to the saponification reaction by using statistical experimental design. Chemical Engineering and Processing: Process Intensification, v. 45, n. 11, p. 980–989, doi:10.1016/j.cep.2006.02.010, 2006. Cerca con Google

[38] TOSCANO, G. et al. Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass and Bioenergy, Cerca con Google

v. 46, p. 511–516, doi:10.1016/j.biombioe.2012.07.009, 2012. Cerca con Google

[39] GARCÍA-MORENO, P. J. et al. Optimization of biodiesel production from waste fish oil. Renewable Energy, v. 68, p. 618–624, doi:10.1016/j.renene.2014.03.014, 2014. Cerca con Google

[40] TREW, S. W.; GOULD, Z. B., The Complete Idiot's Guide to Making Natural Soaps, Aubrey Durkin, 2010. p. 11-24. Cerca con Google

[41] RICKARD, W. D. A. et al. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Materials Science and Engineering A, v. 528, Cerca con Google

p. 3390–3397, doi:10.1016/j.msea.2011.01.005, 2011. Cerca con Google

[42] CILLA, M. S.; MORELLI, M. R.; COLOMBO, P. Geopolymer foams by gelcasting. Ceramics International, v. 40, n. 4, p. 5723–5730, doi:10.1016/j.ceramint.2013.11.011, 2014. Cerca con Google

[43] HENON, J. et al. Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. Journal of Porous Materials, v. 20, p. 37–46, doi:10.1007/s10934-012-9572-3, 2013. Cerca con Google

[44] BIASETTO, L. et al. Gas permeability of lanthanum oxycarbide targets for the SPES project. Journal of Nuclear Materials, v. 440, n. 1-3, p. 70–80, doi:10.1016/j.jnucmat.2013.04.038, 2013. Cerca con Google

[45] ASTM D3576 - 04(2010) Standard Test Method for Cell Size of Rigid Cellular Plastics. Disponível em: <http://enterprise.astm.org/SUBSCRIPTION/filtrexx40.cgi?REDLINE_PAGES/D3576.htm>. Acesso em: 14 ago. 2014. Vai! Cerca con Google

[46] CILLA, M. S.; MORELLI, M. R.; COLOMBO, P. Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. Journal of the European Ceramic Society, v. 34, p. 3133–3137, doi:10.1016/j.jeurceramsoc.2014.04.001, 2014. Cerca con Google

[47] WANG, X.; RUAN, J.-M.; CHEN, Q.-Y. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering. Materials Research Bulletin, v. 44, n. 6, Cerca con Google

p. 1275–1279, doi:10.1016/j.materresbull.2009.01.004, 2009. Cerca con Google

[48] ENGELSEN, C. et al. AUTEX. Autex Research Journal, v. 2, n. 1, Cerca con Google

p. 14–27, 2002. Cerca con Google

[49] HIRT, D. E. et al. Dynamic surface tension of hydrocarbon and fluorocarbon surfactant solutions using the maximum bubble pressure method. Colloids and Surfaces, v. 44, p. 101–117, Cerca con Google

doi:10.1016/0166-6622(90)80191-6, 1990. Cerca con Google

[50] ORTEGA, F. S. et al. Effect of aeration technique on the macrostructure and permeability of gelcast ceramic foams. Cerâmica, v. 48, n. 306, Cerca con Google

p. 79–85, doi:10.1590/S0366-69132002000200006, 2002. Cerca con Google

[51] RUL, S. et al. Carbon nanotubes prepared in situ in a cellular ceramic by the gelcasting-foam method. Journal of the European Ceramic Society, v. 23, n. 8, p. 1233–1241, doi:10.1016/S0955-2219(02)00286-8, 2003. Cerca con Google

[52] BARG, S. et al. New cellular ceramics from high alkane phase emulsified suspensions (HAPES). Journal of the European Ceramic Society, v. 29, p. 2439–2446, doi:10.1016/j.jeurceramsoc.2009.02.003, 2009. Cerca con Google

[53] JONES, J. R.; HENCH, L. L. Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering. Journal of Materials Science, v. 38, p. 3783–3790, doi:10.1023/A:1025988301542, 2003. Cerca con Google

[54] BARG, S.; KOCH, D.; GRATHWOHL, G. Processing and properties of graded ceramic filters. Journal of the American Ceramic Society, v. 92, p. 2854–2860, doi:10.1111/j.1551-2916.2009.03301.x, 2009. Cerca con Google

[55] GONZENBACH, U. T. et al. Tailoring the microstructure of particle-stabilized wet foams. Langmuir, v. 23, p. 1025–1032, doi:10.1021/la0624844, 2007. Cerca con Google

[56] SEPULVEDA, P. et al. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. Journal of Biomedical Materials Research, v. 50, p. 27–34, doi:10.1002/(SICI)1097-4636(200004)50:1<27::AID-JBM5>3.0.CO;2-6, 2000. Cerca con Google

[57] GANESH, I. et al. An aqueous gelcasting process for sintered silicon carbide ceramics. Journal of the American Ceramic Society, v. 89, Cerca con Google

p. 3056–3064, doi:10.1111/j.1551-2916.2006.01198.x, 2006. Cerca con Google

[58] DEY, A. et al. Investigations on Material and Mechanical Properties, Air-Permeation Behavior and Filtration Performance of Mullite-Bonded Porous SiC Ceramics. International Journal of Applied Ceramic Technology, v. 11, n. 5, p. 804-816, doi: 10.1111/ijac.12090, 2014. Cerca con Google

[59] INNOCENTINI, M. D. M.; PANDOLFELLI, V. C. Issues concerning the evaluation of permeability in refractory concretes with Darcy and Forchheimer equations. Cerâmica, v. 45, n. 292-293, p. 61–67, doi:10.1590/S0366-69131999000200003, 1999. Cerca con Google

[60] HUEC, J. C. LE et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials, v. 16, p. 113–118, doi:10.1016/0142-9612(95)98272-G, 1995. Cerca con Google

[61] KAMSEU, E. et al. Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. Journal of Materials Science, v. 45, n. 7, p. 1715–1724, doi:10.1007/s10853-009-4108-1, 2010. Cerca con Google

[62] HE, P. et al. Thermal evolution and crystallization kinetics of potassium-based geopolymer. Ceramics International, v. 37, p. 59–63, doi:10.1016/j.ceramint.2010.08.008, 2011. Cerca con Google

[63] MEDPELLI, D.; SEO, J.-M.; SEO, D.-K. Geopolymer with Hierarchically Meso-/Macroporous Structures from Reactive Emulsion Templating. Journal of the American Ceramic Society, v. 97, n. 1, p. 70–73, doi:10.1111/jace.12724, 2014. Cerca con Google

[64] HENON, J. et al. Porosity control of cold consolidated geomaterial foam: Temperature effect. Ceramics International, v. 38, p. 77–84, doi:10.1016/j.ceramint.2011.06.040, 2012. Cerca con Google

[65] LLOYD, R. R. et al. Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Microporous and Mesoporous Materials, v. 126, p. 32–39, doi:10.1016/j.micromeso.2009.05.016, 2009. Cerca con Google

[66] CILLA, M. S.; MORELLI, M. R.; COLOMBO, P. Effect of process parameters on the physical properties of porous geopolymers obtained by gelcasting. Ceramics International, v. 40, n. 8, p. 13585–13590, doi:10.1016/j.ceramint.2014.05.074, 2014. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record