Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Muraro, Daniele (2014) THREE-DIMENSIONAL COUPLED FEM MODELLING AND PROGRAMMING OF PARTIALLY SATURATED POROUS MEDIA. [Tesi di dottorato]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

[img]
Anteprima
Documento PDF (Ph.D. Thesis Daniele Muraro) - Versione sottomessa
Available under License Creative Commons Attribution Non-commercial No Derivatives.

47Mb

Abstract (inglese)

The purpose of the work presented in this thesis is to investigate the fully and partially saturated behaviour of soils, behaviour that can be extended also to geomaterials like concrete.
The physical - mathematical approach proposed within this manuscript is a coupled thermo-hydro-mechanical model, suitable for consolidation / subsidence analyses of unsaturated soils. This coupled formulation, can therefore be qualified as u – pw – pg – (T), by the introduction of basic state variables involved in the processes, that here are: the displacements field u, the liquid (water) pressure field pw, the gas (dry air and water vapour) pressure field pg, and eventually the temperature T that is involved on the modelling of non – isothermal process. Due to the coexistence of two different fluid phases, liquid and gaseous one, this model can be regarded as a multiphase approach to a deforming porous medium as proposed by Lewis and Schrefler in the framework of the hybrid mixture theory for porous media firstly presented by Hassanizadeh and Gray and Zienkiewicz et al.
The evolution at macroscopic scale of the state variables above mentioned, in particular of pressures of both liquid and gas, is basically influenced by the microstructure of the material that characterizes the behaviour of a soil with relation on capillary effects and deformability. The physical approach proposed here is based on averaging techniques applied to the physical quantities that can be estimated in a representative elementary volume (REV) . With the addition of water retention functions that provide a description of the relation that exists among capillary pressure and the degree of water saturation, a complete set of fluid balance equations and mechanical and thermodynamic equilibrium equations can be obtained for the medium in a macroscopic scale.
A coupled (thermo)-hydro-mechanical formulation u – p – (T) that deals with a fully saturated porous medium has been implemented with success in the past in the F.E. two-dimensional program PLASCON and its further extensions to three- dimensionality with PLASCON3D.
The present work focused on the extension and upgrading of the relative simple single phase theory along with its numerical implementations, towards a more realistic multiphase description of the porous material, where voids may be filled up with both liquid and gas that interacts each other by mean of the concept of capillary pressure. An improved code PLASCON3D_PS based on the fully coupled u – pw – pg – (T) formulation and developed from previous versions has been realized. Due to the lack in literature of three-dimensional coupled numerical and experimental tests, some numerical results of benchmark tests and real case problems, that derive from two-dimensional domains, will be presented.

Abstract (italiano)

Lo scopo del lavoro presentato con questa tesi è di studiare il comportamento dei terreni in stato di totale e parziale saturazione, comportamento che può essere anche esteso ad altri geomateriali come il calcestruzzo.
Il modello fisico - matematico proposto in questo lavoro è denominato termo- idro- meccanico in formulazione accoppiata, adatto ad analisi di consolidazione / subsidenza per suoli non saturi. La formulazione accoppiata può essere quindi qualificata come u – pw – pg – (T), attraverso l’introduzione delle variabili di stato, che qui sono: il campo degli spostamenti u, il campo di pressione liquida (acqua) pw e quello di pressione del gas (aria secca e vapore acqueo) pg ed eventualmente la temperatura T coinvolta nella modellazione di processi non isotermi. Data la coesistenza di due differenti fasi fluide, liquida e gassosa, il modello può essere visto come un approccio multifase al mezzo poroso deformabile, come già proposto da Lewis and Schrefler nel contesto della teoria delle miscele ibride per mezzo poroso, inizialmente presentata da Hassanizadeh and Gray e Zienkiewicz et al.
L’evoluzione a scala macroscopica delle variabili di stato menzionate sopra, in particolare delle pressioni del liquido e del gas, sono fondamentalmente influenzate dalla microstruttura del materiale che caratterizza il comportamento del suolo in relazione agli effetti capillari e alla deformabilità. L’approccio fisico proposto qui è basato sull’uso di tecniche di media applicate alle grandezze fisiche stimate su un volume rappresentativo elementare (REV). Con l’aggiunta di funzioni di ritenzione dell’acqua che forniscono una descrizione della relazione che esiste tra pressione capillare e grado di saturazione dell’acqua, si può ottenere un set completo di equazioni di bilancio di massa per i fluidi e di equilibrio meccanico e termodinamico per il mezzo a scala macroscopica.
Una formulazione accoppiata termo-idro-meccanica u – p – (T) che tratta mezzi porosi completamente saturi è stata implementata con successo in passato nel codice bidimensionale a elementi finiti PLASCON e le successive estensioni alla tridimensionalità con PLASCON3D.
Il presente lavoro si focalizza sull’estensione e aggiornamento della relativamente semplice teoria a singola fase, con relative implementazioni numeriche, verso una più realistica descrizione multifase del materiale poroso, dove i vuoti possono essere riempiti da liquido e gas che interagiscono tra loro attraverso il concetto di pressione capillare. Sulla base delle versioni precedenti è stato realizzato un codice chiamato PLASCON3D_PS che implementa la formulazione accoppiata u – pw – pg – (T). Data la mancanza in letteratura di test sperimentali e numerici su domini tridimensionali, verranno presentati alcuni risultati numerici di benchmark test e casi reali derivanti da domini bidimensionali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Majorana, Carmelo - Salomoni, Valentina
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):FEM, coupled problems, partially saturated soils, porous media, hybrid mixture theory, three-dimensional domains
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/08 Scienza delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:8056
Depositato il:04 Mar 2015 12:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. ASME 2010, Boiler and Pressure Vessel Code, section VIII, div. 2. Cerca con Google

2. Ahuja, L. and D. Swartzendruber, An improved form of soil-water diffusivity function. Soil Science Society of America Journal, 1972. 36(1): p. 9-14. Cerca con Google

3. America, S.S.S.O., Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Series, no. 5, 2002. Cerca con Google

4. Anderson, E., LAPACK Users' guide. Vol. 9. 1999: Siam. Cerca con Google

5. Anderson, E., et al., LAPACK Users' guide. 1995: Society for Industrial and Applied Mathematics Philadelphia. Cerca con Google

6. Bachmat, Y. and J. Bear, On the concept and size of a representative elementary volume (REV), in Advances in transport phenomena in porous media. 1987, Springer. p. 3-20. Cerca con Google

7. Baggio, P., C. Bonacina, and M. Strada, Trasporto di calore e massa nel calcestruzzo cellulare. Termotecnica, 1993. 47(12): p. 53-59. Cerca con Google

8. Biot, M., General solutions of the equations of elasticity and consolidation for a porous material. J. appl. Mech, 1956. 23(1): p. 91-96. Cerca con Google

9. Biot, M., Theory of stability and consolidation of a porous medium under initial stress. 1963. Cerca con Google

10. Biot, M.A., General theory of three‐dimensional consolidation. Journal of applied physics, 1941. 12(2): p. 155-164. Cerca con Google

11. Biot, M.A., Consolidation settlement under a rectangular load distribution. Journal of Applied Physics, 1941. 12(5): p. 426-430. Cerca con Google

12. Biot, M.A., Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955. 26(2): p. 182-185. Cerca con Google

13. Biot, M.A., Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 1956. 27(3): p. 240-253. Cerca con Google

14. Biot, M.A. and P.G. Willis, The elastic coefficients of the theory of consolidation. J. Appl. Mech., 1957. 24: p. 594 - 601. Cerca con Google

15. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport phenomena. 2007: Wiley. com. Cerca con Google

16. Bolzon, G., B. Schrefler, and O. Zienkiewicz, Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique, 1996. 46(2): p. 279-289. Cerca con Google

17. Bomberg, M. and C. Shirtliffe, Influence of moisture and moisture gradients on heat transfer through porous building materials. ASTM STP, 1978. 660: p. 211-233. Cerca con Google

18. Brooks, R. and A. Corey, Hydraulic properties of porous media. Hydrology Papers, Colorado State University, Fort Collins, 1964. 3. Cerca con Google

19. Brooks, R. and A. Corey, Hydraulic Properties of Porous Media, of Colorado State University Hydrology Paper, 3. Colorado State University, 1964. Cerca con Google

20. Brooks, R.H. and A.T. Corey. Properties of porous media affecting fluid flow. in Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers. 1966. Cerca con Google

21. Brutsaert, W., Probability laws for pore-size distributions. Soil Science, 1966. 101(2): p. 85-92. Cerca con Google

22. Burdine, N., Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 1953. 5(3): p. 71-78. Cerca con Google

23. Campbell, G.S., A simple method for determining unsaturated conductivity from moisture retention data. Soil Science, 1974. 117(6): p. 311-314. Cerca con Google

24. Carsel, R.F. and R.S. Parrish, Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 1988. 24(5): p. 755-769. Cerca con Google

25. Císlerová, M., J. Šimůnek, and T. Vogel, Changes of steady-state infiltration rates in recurrent ponding infiltration experiments. Journal of Hydrology, 1988. 104(1): p. 1-16. Cerca con Google

26. ASME 2010, Rules for Construction of Pressure Vessels. Section VIII, divisions 2, 1992. 1. Cerca con Google

27. Soilmoisture equipment Corp., The Use of Porous Materials in Devices for Sampling Moisture in the Vadose Zone. Engineering details, 2001. 05/2001. Cerca con Google

28. Intel Corporation, Intel® Math Kernel Library 11.0.3 Reference Manual, 2011 Cerca con Google

29. de Boer, R., Porous Media: A Survey of Differential Approaches. 1991: Universität-Gesamthochschule-Essen, Fachbereich Bauwesen. Cerca con Google

30. E. Anderson, Z.B., C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, Linear Algebra PACKage (LAPACK). 1991, 1992 and 1998. Cerca con Google

31. Fernandez, R. and V. Schrock. Natural convection from cylinders buried in a liquid-saturated porous medium. Proceedings of the 7th International Heat Transfer Conference. 1982. Cerca con Google

32. Fernandez, R.T., Natural convection from cylinders buried in porous media, 1972, University of California, Berkeley Cerca con Google

33. Fincato, R., 3D nonlinear coupled modelling of geomaterials using the unconventional Subloading Surface approach, 2013.http://paduaresearch.cab.unipd.it/5567/ Vai! Cerca con Google

34. Fleureau, J. and S. Taibi. Water-air permeabilities of unsaturated soils. Proceedings of the first international conference on unsaturated soils (UNSAT'95), Paris (France), 6-8 september 1995. Volume 2. 1995. Cerca con Google

35. Gabriele, G., Modellazione numerica di problemi idro- termo- meccanici nei mezzi porosi parzialmente saturi. Department of Civil, Environmental and Architectural Engineering, DICEA, Padua, 2010-2011. Cerca con Google

36. Galerkin, B.G., Series solution of some problems of elastic equilibrium of rods and plates. Vestn. Inzh. Tekh, 1915. 19: p. 897-908. Cerca con Google

37. Gawin, D., P. Baggio, and B.A. Schrefler, Coupled heat, water and gas flow in deformable porous media. International Journal for numerical methods in fluids, 1995. 20(8‐9): p. 969-987. Cerca con Google

38. Gawin, D. and B.A. Schrefler, Modelling of saturated-unsaturated transition in porous media. Proceedings of the GIMC-AMC Conference, Padua, 1996. Cerca con Google

39. Gawin, D., B.A. Schrefler, and M. Galindo, Thermo-hydro-mechanical analysis of partially saturated porous materials. Engineering Computations, 1996. 13(7): p. 113-143. Cerca con Google

40. Gawin, D., B.A. Schrefler, and M. Galindo, Thermo-hydro-mechanical analysis of partially saturated porous materials. Engineering Computations, 1996. 13(7): p. 113-143. Cerca con Google

41. Ghaboussi, J., E.L. Wilson, and J. Isenberg, Finite element for rock joints and interfaces. Journal of the soil mechanics and foundations division, 1973. 99(10): p. 849-862. Cerca con Google

42. Hassanizadeh, M. and W.G. Gray, General conservation equations for multi-phase systems: 1. Averaging procedure. Advances in Water Resources, 1979. 2: p. 131-144. Cerca con Google

43. Hassanizadeh, M. and W.G. Gray, General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Advances in Water Resources, 1979. 2: p. 191-203. Cerca con Google

44. Hassanizadeh, M. and W.G. Gray, General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Advances in Water Resources, 1980. 3(1): p. 25-40. Cerca con Google

45. Hassanizadeh, S.M., Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws. Adv. Water Resour, 1986. 9: p. 196-206. Cerca con Google

46. Hassanizadeh, S.M., Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's law and Fick's law. Adv. Water Resources, 1986. 9: p. 207-222. Cerca con Google

47. Haverkamp, R., et al., A comparison of numerical simulation models for one-dimensional infiltration. Soil Science Society of America Journal, 1977. 41(2): p. 285-294. Cerca con Google

48. Hemsworth, R., et al., Status of the ITER heating neutral beam system. Nuclear Fusion, 2009. 49(4): p. 045006. Cerca con Google

49. Ho, C.K. and S.W. Webb, Gas transport in porous media. Vol. 20. 2006: Springer. Cerca con Google

50. Hwang, C., N. Morgenstern, and D. Murray, On solutions of plane strain consolidation problems by finite element methods. Canadian Geotechnical Journal, 1971. 8(1): p. 109-118. Cerca con Google

51. Incropera, F.P. and D.P. DeWitt, Fundamentals of heat and mass transfer, 1990, Wiley (New York) Cerca con Google

52. Ministero delle Infrastrutture, Decreto Ministeriale 14 gennaio 2008 - Approvazione delle nuove norme tecniche per le costruzioni 2008 (N.T.C. 2008). Cerca con Google

53. Jennings, A., A compact storage scheme for the solution of symmetric linear simultaneous equations. The Computer Journal, 1966. 9(3): p. 281-285. Cerca con Google

54. Terzaghi K., Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Ak. der Wissenschaften in Wien, Sitzungsberichte mathematisch-naturwissenschaftliche Klasse, part IIa, 1923. 132 (3/4): p. 125 - 138. Cerca con Google

55. Katz, D.L.V. and E.R. Lady, Compressed air storage for electric power generation. 1976: May be ordered from Ulrich's Books. Cerca con Google

56. Kosugi, K.J., Three-parameter lognormal distribution model for soil water retention. Water Resources Research, 1994. 30(4): p. 891-901. Cerca con Google

57. Laloui, L., G. Klubertanz, and L. Vulliet, Solid–liquid–air coupling in multiphase porous media. International journal for numerical and analytical methods in geomechanics, 2003. 27(3): p. 183-206. Cerca con Google

58. Leij, F.J., UNSODA unsaturated soil hydraulic database. 1996. Cerca con Google

59. Lewis, R.W. and B.A. Schrefler, The finite element method in the deformation and consolidation of porous media. 1987. Cerca con Google

60. Lewis, R.W. and B.A. Schrefler, The finite element method in the deformation and consolidation of porous media. 1998. Cerca con Google

61. Lewis, R.W., B.A. Schrefler, and N.A. Rahman, A finite element analysis of multiphase immiscible flow in deforming porous media for subsurface systems. Communications in numerical methods in engineering, 1998. 14(2): p. 135-149. Cerca con Google

62. Liakopoulos, A.C., Transient flow through unsaturated porous media, 1964, University of California, Berkeley Cerca con Google

63. Liakopoulos, A.C., Transient flow through unsaturated porous media, 1964, University of California, Berkeley Cerca con Google

64. Liu, J.W., A compact row storage scheme for Cholesky factors using elimination trees. ACM Transactions on Mathematical Software (TOMS), 1986. 12(2): p. 127-148. Cerca con Google

65. Lloret, A. and E.E. Alonso, State surfaces for partially saturated soils. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 12-16 august 1985. Publication of Balkema, 1985. Cerca con Google

66. Lloret, A., et al. Flow and deformation analysis of partially saturated soils. in European conference on soil mechanics and foundation engineering. 9. 1987. Cerca con Google

67. Luckner, L., M.T. Van Genuchten, and D. Nielsen, A consistent set of parametric models for the two‐phase flow of immiscible fluids in the subsurface. Water Resources Research, 1989. 25(10): p. 2187-2193. Cerca con Google

68. Befi M., Modelli tridimensionali per l’analisi termomeccanica di geomateriali Department of Civil, Environmental and Architectural Engineering, 1993: p. 271. Cerca con Google

69. MAJORANA, C., Modelli tridimensionali per l'analisi termomeccanica di geomateriali. Tecnica Italiana, 1994. 59(4): p. 265-290. Cerca con Google

70. Majorana, C., R. Lewis, and B. Schrefler, Two-dimensional non-linear thermo-elastoplastic consolidation program Plascon. The Finite Element Method in the Deformation and Consolidation of Porous Media, Lewis RW, Schrefler BA (eds), 1987. Cerca con Google

71. Masiello, A., et al., The European contribution to the development of the ITER NB injector. Fusion Engineering and Design, 2011. 86(6): p. 860-863. Cerca con Google

72. Mazzucco, G., et al., Structural analyses and integrated design of the MITICA Injector assembly. Fusion Engineering and Design, 2013. Cerca con Google

73. McWhorter, D.B. and D.K. Sunada, Exact integral solutions for two‐phase flow. Water Resources Research, 1990. 26(3): p. 399-413. Cerca con Google

74. Meiri, D., Analysis of compressed air aquifer storage by finite element method, 1979, University of Wisconsin-Milwaukee. Cerca con Google

75. Meiri, D., Two‐phase flow simulation of air storage in an aquifer. Water Resources Research, 1981. 17(5): p. 1360-1366. Cerca con Google

76. Meiri, D. and G.M. Karadi, Simulation of air storage aquifer by finite element model. International Journal for Numerical and Analytical Methods in Geomechanics, 1982. 6(3): p. 339-351. Cerca con Google

77. Milly, P., Estimation of Brooks-Corey parameters from water retention data. Water Resources Research, 1987. 23(6): p. 1085-1089. Cerca con Google

78. Moran, M.J., et al., Fundamentals of engineering thermodynamics. 2010: Wiley. com. Cerca con Google

79. Morris, J.L., Computational methods in elementary numerical analysis. 1983: Wiley New York. Cerca con Google

80. Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 1976. 12(3): p. 513-522. Cerca con Google

81. Mualem, Y., catalogue of the hydraulic properties of unsaturated soils. 1976. Cerca con Google

82. Narasimhan, T. and P. Witherspoon, Numerical model for saturated‐unsaturated flow in deformable porous media: 3. Applications. Water Resources Research, 1978. 14(6): p. 1017-1034. Cerca con Google

83. Nozad, I., R. Carbonell, and S. Whitaker, Heat conduction in multiphase systems—I: theory and experiment for two-phase systems. Chemical Engineering Science, 1985. 40(5): p. 843-855. Cerca con Google

84. Parker, J. and R. Lenhard, A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation‐pressure relations. Water Resources Research, 1987. 23(12): p. 2187-2196. Cerca con Google

85. Parker, J., R. Lenhard, and T. Kuppusamy, A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 1987. 23(4): p. 618-624. Cerca con Google

86. Pastor, M., O. Zienkiewicz, and A. Chan, Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1990. 14(3): p. 151-190. Cerca con Google

87. Richtmyer, R. and K. Morton, Difference methods for initial-value problems. New York: Interscience, 1967. Cerca con Google

88. Rigato, W., et al., Vessel design and interfaces development for the 1MV ITER Neutral Beam Injector and Test Facility. Fusion Engineering and Design, 2009. 84(7): p. 1606-1610. Cerca con Google

89. Roscoe, K.H. and J. Burland, On the generalized stress-strain behaviour of wet clay. 1968. Cerca con Google

90. Salomoni, V.A. and R. Fincato. 3D modelling of geomaterials accounting for an unconventional plasticity approach. 2011. Cerca con Google

91. Salomoni, V.A. and R. Fincato, Subloading surface plasticity model algorithm for 3D subsidence analyses above gas reservoirs. International Journal of Geomechanics, 2012. 12(4): p. 414-427. Cerca con Google

92. Salomoni, V.A. and R. Fincato, 3D subsidence analyses above gas reservoirs accounting for an unconventional plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 2012. 36(8): p. 959-976. Cerca con Google

93. Salomoni, V.A. and R.L. Fincato. Subloading surface plasticity model algorithm for 3D subsidence analyses above gas reservoirs. 2011. Cerca con Google

94. Sandhu, R.S., Fluid flow in saturated porous elastic media. 1968: University Microfilms. Cerca con Google

95. Schenk, O. and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 2004. 20(3): p. 475-487. Cerca con Google

96. Schenk, O., et al., PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Generation Computer Systems, 2001. 18(1): p. 69-78. Cerca con Google

97. Schrefler, B., et al., Pollutant transport in deforming porous media. European journal of mechanics. A. Solids, 1994. 13: p. 175-194. Cerca con Google

98. Schrefler, B. and L. Simoni, A unified approach to the analysis of saturated-unsaturated elastoplastic porous media. Numerical Methods in Geomechanics, 1988: p. 205-212. Cerca con Google

99. Schrefler, B. and Z. Xiaoyong, A fully coupled model for water flow and airflow in deformable porous media. Water Resources Research, 1993. 29(1): p. 155-167. Cerca con Google

100. Schrefler, B.A., X. Zhan, and L. Simoni, A coupled model for water flow, airflow and heat flow in deformable porous media. International Journal of Numerical Methods for Heat & Fluid Flow, 1995. 5(6): p. 531-547. Cerca con Google

101. Šimůnek, J., et al., Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil and Tillage Research, 1998. 47(1): p. 27-36. Cerca con Google

102. Stephens, D.B., Vadose zone hydrology. 1996: CRC press. Cerca con Google

103. Stephens, D.B., K. Lambert, and D. Watson, Regression models for hydraulic conductivity and field test of the borehole permeameter. Water Resources Research, 1987. 23(12): p. 2207-2214. Cerca con Google

104. Strassen, V., Gaussian elimination is not optimal. Numerische Mathematik, 1969. 13(4): p. 354-356. Cerca con Google

105. Tyler, S.W. and S.W. Wheatcraft, Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989. 53(4): p. 987-996. Cerca con Google

106. Tyler, S.W. and S.W. Wheatcraft, Fractal processes in soil water retention. Water Resources Research, 1990. 26(5): p. 1047-1054. Cerca con Google

107. van Genuchten, M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980. 44(5): p. 892-898. Cerca con Google

108. van Genuchten, M.T., F. Leij, and S. Yates, The RETC code for quantifying the hydraulic functions of unsaturated soils. 1991. Cerca con Google

109. van Genuchten, M.T. and D. Nielsen, On describing and predicting the hydraulic properties of unsaturated soils. Ann. Geophys, 1985. 3(5): p. 615-628. Cerca con Google

110. van Genuchten, R., Calculating the unsaturated hydraulic conductivity with a new closed-form analytical model. 1978: International Ground Water Modeling Center. Cerca con Google

111. Webb, S.W., Steady-state saturation profiles for linear immiscible fluid displacement in porous media, 1991, Sandia National Labs., Albuquerque, NM (United States) Cerca con Google

112. Withaker, S., Simultaneous heat, mass and momentum transfer in porous media. A theory of drying porous media. Adv. Heat Transfer, 1977. 13: p. 119-200. Cerca con Google

113. Zanetti, S., Analisi tridimensionale di problemi di subsidenza per estrazione di fluidi. Master Thesis, Departement of Civili, Environmental and Architectural Engineering, Padua, 1995-1996: p. 133. Cerca con Google

114. Zienkiewicz, O.C., The Finite Element Method. 1989. Cerca con Google

115. Zienkiewicz, O.C., et al., Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990. 429(1877): p. 285-309. Cerca con Google

116. Zienkiewicz, O.C., C. Humpheson, and R. Lewis, A unified approach to soil mechanics problems (including plasticity and viscoplasticity), 1977, Wiley: New York. p. 151-179 Cerca con Google

117. Zienkiewicz, O.C. and T. Shiomi, Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International journal for numerical and analytical methods in geomechanics, 1984. 8(1): p. 71-96. Cerca con Google

118. Zienkiewicz, O.C., et al., Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990. 429(1877): p. 311-321. Cerca con Google

119. Zienkiewicz, O.C., et al., Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990. 429(1877): p. 311-321. Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record