Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Mattevi, Cecilia (2008) Carbon Nanotubes grown by chemical vapour deposition: a catalyst activation study. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Nowadays the main challenge to fully exploit carbon nanotubes (CNTs) for potential applications consists of achieving complete control over their synthesis.
Synthesis control means to be able to selectively obtain isolated CNTs as well as bundles, different types of CNTs (SWNT/MWNT/CNF), different chiralities and diameters, their location and orientation. Other aims are decreasing defect and impurity concentrations, and increasing yields.
These goals can be reached only by a complete understanding of the role of the catalyst during its interaction with the environment (substrate and feed stock).
In this thesis, we have investigated the effects of the substrate-catalyst interaction on the growth and the chemical decomposition of the carbon precursor gas on the catalyst clusters and the consequent formation of carbon structures during the growth process itself.
We have mainly concentrated on studying the growth by surface bound chemical vapour deposition method using Fe and/or Ni as catalysts, Al2O3 and SiO2 as the support substrate, and C2H2 as the precursor gas. We have identified how different catalyst-substrate interactions between Fe-Al2O3 and Fe-SiO2, determine the difference in density, direction and type of carbon nanotubes obtained by using the same pretreatment and growth conditions. Different experimental conditions and apparatus were employed to study the catalyst-substrate interactions effects. We monitored the chemical state of the catalyst and the substrate in situ by X-ray photoemission spectroscopy and, in parallel, the morphology of the surface at each intermediate state of the catalyst preparation (by ex situ atomic force microscopy (AFM)). Further we confirmed the results by post-growth characterization by transmission electron microscope (TEM).
Studying the catalyst-hydrocarbon interaction in situ via both environmental TEM (ETEM) and XPS techniques has allowed us to make progress towards an atomistic model of CNT growth. By in situ time-resolved ETEM we have found that structural selectivity is determined by the dynamic interplay between carbon network formation and catalyst crystalline particle deformation. Our in situ time-resolved XPS study shows the selective acetylene chemisorption on metallic Fe catalyst, which is rapidly followed by the formation of a carbon-rich phase (iron carbide), to finally the formation of a sp2 carbon network characteristic of graphite. Carbidic carbon has also been detected, even if gradually attenuated from the graphitic peak, up to the intensity saturation of the sp2 C peak.
Summarizing, we have observed selective acetylene chemisorption at the nucleation stage and we have demonstrated that the formation of a carbon-rich (sub)surface layer on crystalline transition metal nanoparticles is an integral part of catalyst dynamics during CNT growth.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Granozzi, Gaetano
Supervisor:Cepek, Cinzia
Ph.D. course:Ciclo 19 > Corsi per il 19simo ciclo > SCIENZA DEI MATERIALI
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:CNT, XPS, TEM, Growth, catalyst
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:809
Depositato il:12 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Campbell C. T., Surf. Sci. Rep. 27, 1 (1997). Cerca con Google

[2] Parker S. C., Grant A. W., Bondzie A.V. and Campbell C. T., Surf. Sci. 441, 10 (1999). Cerca con Google

[3] Wallace W.T, Min B.K., and Goodman D.W., Topics in Catalysis 34, 17 (2005). Cerca con Google

[4] Pretorius R., Harris J. M. and Nicolet M. A., Solid State Electron. 21, 667 (1978). Cerca con Google

[5] Wen J. M., Evans J. W., Bartelt M. C., Burnett J. W. and Thiel P. A. , Phys. Rev. Lett. 76, 652 (1996). Cerca con Google

[6] Jiran E. and Thompson C. V., J. Electron. Mater. 19, 1153 (1990). Cerca con Google

[7] Bartelt N. C., Theis W. and Tromp R. M., Phys. Rev. B 54, 11741 (1996). Cerca con Google

[8] Gadkari P. R., Warren A. P., Todi R. M., Petrova R. V. and Coffey K. R., J Vac. Sci. Technol. A 23, 1152 (2005). Cerca con Google

[9] Venables J. A., Surf. Sci. 300, 798 (1994). Cerca con Google

[10] Moulijn J. A., van Diepen A. E. and Kapteijn F., Appl. Catal. A 212, 3 (2001). Cerca con Google

[11] Qi Y., Cagin T., Johnson W. L. and Goddard W. A., J. Chem. Phys. 115, 385 (2001). Cerca con Google

[12] Harutyunyan A. R., Mora E., Tokune T. , Bolton K., Rosén A., Jiang A., Awasthi N., and Curtarolo S., Appl.Phys.Lett 90, 163120 (2007). Cerca con Google

[13] De los Arcos T., Garnier M. G., Seo J. W., Oelhafen P., Thommen V. and Mathys D., J. Phys. Chem. B 108, 7728 (2004). Cerca con Google

[14] Arranz A., Perez- Dieste V., Palacio C., Surf. Sci. 521, 77 (2002). Cerca con Google

[15] M.G. Barth, Rolland A., Thin Solid Films 76, 45 (1981). Cerca con Google

[16] Myers C.E ., Franzen H.F., Anderegg J.W. , Inorg. Chem. 24, 1822 (1985). Cerca con Google

[17] Allen G.C ., Curtis M.T., Hooper A.J., Tucker P.M. , J. Chem. Soc. Dalton Trans. 1525 (1974). Cerca con Google

[18] Mills P., Sullivan J.L., J. Phys. D. 16, 723 (1983) . Cerca con Google

[19] Konno H., Nagayama M. J. , Electron Spectrosc. Relat. Phenom. 18, 341 (1980). Cerca con Google

[20] Domen K., Chuang T.J., J. Chem. Phys. 90, 3318 (1989). Cerca con Google

[21] Brainard W.A., Wheeler D.R., J. Vac. Sci. Technol. 15, 1801 (1978). Cerca con Google

[22] Strohmeier B.R., Hercules D.M., J. Phys. Chem. 88, 4922 (1984) Cerca con Google

[23] Colaianni M.L., Chen P.J., Yates J.T., Surf. Sci. 238, 13 (1990). Cerca con Google

[24] Johnson K.H., Pepper S.V., J. Appl. Phys. 53, 634 (1982). Cerca con Google

[24] Fujimora T., Tanaka S.I., J. of Mater. Sci. 34, 425 (1999) . Cerca con Google

[25] I. Okamoto, Naka M., Asami K.and Hashimoto K., Trans. JWRI 11, 131 (1982). Cerca con Google

[26] Sakata K., Honma K., Ogawa K., Watanabe O.and Nii K., J. Mater. Sci. 21, 4463 (1986). Cerca con Google

[27] Naka M., Okamoto I., Quart. J. Jpn. Welding Soc. 3, 702 (1985). Cerca con Google

[28] van Campen D.G., Pouliot R.J., Klebanoff L.E., Phys.Rev.B, 48, 17533 , (1993). Cerca con Google

[29] Simmons J. M., Nichols B.M, Marcus M.S., Castellini O. M., Hamers R. J., and Eriksson M.A., Small 2,902 (2006). Cerca con Google

[30] Chase M.W., J. Phys. Chem. Ref. Data 9, (1998) Cerca con Google

[31] Wang C. M., Baer D. R., Thomas L. E., Amonette J. E., Antony J., Qiang Y., Duscher G.,J. Appl. Phys. 98, 94308 (2005). Cerca con Google

[32] Gan L., Gomez R.D., Powell C.J., McMichael R.D., Chen P.J., Egelhoff W.F., J. Appl. Phys. 93, 8731 (2003). Cerca con Google

[33] Pisana S., Cantoro M., Parvez A., Hofmann S., Ferrari A.C., Robertson J., J. Phys. E 37, 1 (2006). Cerca con Google

[34] Liehr M., Lefakis H., Legoues F.K., Rubloff G.W., Phys. Rev. B 33, 5517 (1986). Cerca con Google

[35] Cantoro M., Hofmann S., Pisana S., Ducati C., Parvez A., Ferrari A. C., and Robertson J., Diamond Relat. Mater. 15, 1029 (2006). Cerca con Google

[36] Panzner G., and Egert B., Surf. Sci. 144, 651 (1984). Cerca con Google

[37] Nemoshalenko V.V., Didyk V.V., Krivitskii V.P., Senekevich A.I., Zh. Neorg. Khimii 28, 2182 (1983). Cerca con Google

[38] Shabanova I.N., Trapeznikov V.A., J. Electron Spectrosc. Relat. Phenom. 6, 297 (1975). Cerca con Google

[39] Colomer J. F., Stephan C., and Lefrant S., Chem. Phys. Lett. 317, 83 (2000). Cerca con Google

[40] Wei Y. Y., Eres G., Merkulov V. I., and Lowndes D. H., Appl. Phys. Lett. 78, 1394 (2001). Cerca con Google

[41] Vajtai R., Wei B. Q., and Ajayan P. M., Philos. Trans. R. Soc. London A 362, 2143 (2004). Cerca con Google

[42] Hofmann S., Cantoro M., Kleinsorge B., Casiraghi C., Parvez A., Ducati C., and Robertson J., J. Appl. Phys. 98, 34308 (2005). Cerca con Google

[43] Hofmann S., Ducati C., Kleinsorge B., and Robertson J., Appl. Phys. Lett. 83, 135 (2003). Cerca con Google

[44] Garnier M. G., de los Arcos T., Boudaden J., and Oelhafen P., Surf. Sci. 536, 138 (2003). Cerca con Google

[45] Paal Z., and Menon P. G., Hydrogen Effects in Catalysis, Dekker (New York) (1988). Cerca con Google

[46] Lewis L.J., Jensen P., Combe N., Barrat J.L., Phys. Rev. B 61, 16084 (2000). Cerca con Google

[47] Bardotti L., Jensen P., Hoareau A., Treilleux M., Cabaud B., Phys. Rev. Lett. 74, 4694 (1995). Cerca con Google

[48] Atashbar M., Banerji D., Singamaneni S., Bliznyuk V., Nanotechnology 15, 374 (2004). Cerca con Google

[49] Walter E., Murray B., Favier F., Kaltenpoth G., Grunze M., Penner R., J. Phys. Chem. B 106 11407 (2002). Cerca con Google

[50] Binns C., Baker S.H., Demangeat C., Parlebas J.C., Surf. Sci. Rep. 34, 105 (1999). Cerca con Google

[51] Lopez-Salido I, Lim D.C., Kim Y.D., Surf. Sci. 588, 6 (2005). Cerca con Google

[52] Lopez-Salido I., Lim D.C., Dietsche R., Bertram N., Kim Y.D., J.Phys. Chem. B 110, 1128 (2006). Cerca con Google

[53] Buttner M., Oelhafen P., Surf. Sci. 600, 1170 (2006). Cerca con Google

[54] Bansmann J.et al., Surf. Sci. Rep. 56, 189 (2005). Cerca con Google

[55] Marton D., Boyd K.J., Lytle T., Rabalais J.W., Phys. Rev. B 48, 6757 (1993). Cerca con Google

[56] Hahn J.R., Kang H., Phys. Rev. B 60, 6007 (1999). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record