Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Citron, Lorenzo (2008) Correlazione genotipo-fenotipo in una famiglia a quattro generazioni con malattia di dent tipo 1 ricorrente. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Background . Dent's disease is an X-linked recessive renal proximal tubular disorder. It is usualy characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis and progressive renal failure. Aminoaciduria, phosphaturia, glycosuria, uricosuria and an acquired impairment of urinary acidification may also occur. At the present time two kinds of Dent's disease are known: Dent's disease-1(OMIN No 300009) and Dent's disease-2 (OMIN No 300555). The first associated with mutations in CLCN5 that encodes the renal chloride channel CIC-5. the progression of the nephropaty into uraemia would occur between the third and fifth decade of life.
Object of the study. The aim of this study is to carry out a metabolic- instrumental survey of the renal calculosis in a family where some members have mutations in the CLCN5 gene.
Material and methods. A patient from clinical pediatrics was admitted to our centre due to a suspected Dent's disease so a molecular analysis was performed and a CLCN5 gene mutation was detected. We created a family tree over four generations, the molecular analysis was performed on 26 out of the generations, the molecular analysis was performed on 26 out of the 52 members of the family. The nephrological clinic followed up a group of 9 patients, from the second and third generation, and carried out a metabolic-instrumental survey of the nephrolitiasis. For each patient we evaluated the creatinine, uric acid, Ca, P, K, Cl, Mg both at the plasmatic level and urinary level, pH hematic (venous).
Furthemore we tested PTH, osteocalcina, vt.D3, bony ALP at the plasmatic level. The 24h urine excretion, oxalate (Ox) and citrate were tested. All patients were studied with renal ultrasonography.
Results. Besides the proband, the mutation was detected also in 7 males out 11 and 11 heterozygotic females out of 15. Six patients out of 9 shoved hyperphosphaturia, hypersodiuria and hyperuricuria was associated with hyperuricemia. In 5/9 patients hypercalciuria and hyperossaluria were detected; in 2/9 hypocitraturia was detected. None of the 9 patients showed hypomagnesiuria or hypomagnesaemia. All patients had a normal level of PTH, osteocalcina and bony ALP, the same was for the clearance of the creatinine. The statistical analysis carried out with t Student's tests between mutaded and non-mutaded patients did not reveal differences as for UCa e UPO4. The linear regression test revealed the following correlations: TmPO4/VFG vs UPO4 (r=-0.82 p=0.006); EFNa/UNa /r=0.77 p=0.013); UNa/UPO4(r=0.73 p=0.023), UCa vs UPO4 (r=0.74 p=0.02), UNa vs UCa (r =0.72 p=0.026). According to the renal ultrasonography 8/9 patients showed bilateral microlithiasis.
Conclusions. None of the members of the 3rd generation had renal failure including the 3 mutated patients. Moreover these patients showed hyperuricemia that didn't seen related to renal involvement. In all the subjects we studied, there was the presence and the bilaterality of the microlithiasis. Although in the 3 subjects there were the distinctive signs of the proximal tubulopathy, from the metabolic survey we detected a picture similar to the typical bilateral relapsing nephrolithiasis.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:D'Angelo, Angela
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEFROLOGIA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:Dent disease - Hypercalciuria - LMW proteinuria - Mutation - Nephrocalcinosis - Voltage-gated chloride channel-chloride/proton antiporter 5 gene (CLCN5)
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/14 Nefrologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Mediche e Chirurgiche
Codice ID:811
Depositato il:13 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Wrong OM, Norden AGW, Feest TG. Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q J Med, 1994; 87: 473-493. Cerca con Google

2. Lloyd SE, Pearce SHS, Fischer SE et al. A common molecular basis for three ineherited kidney stone diseases. Nature, 1996; 379: 445- 449. Cerca con Google

3. Igarashi T, Hayakawa H, Shiraga H, et al. Hypercalciuria and nephrocalcinosis in patients with idiopathic low-molecular-weight proteinuria in Japan: is the disease identical to Dent’s disease in United Kingdom?. Nephron 1995; 69 (3): 242-247. Cerca con Google

4. Lloyd SE, Pearce SHS, Gunther W, et al. Idiopathic low-molecular-weight proteinuria associatid with hypercalciuric nephrocalcinosis in Japaneis children is due to mutations of the renal chloride channel. J Clin Invest 1997; 99: 967-974. Cerca con Google

5. Fisher SE,Black GCM, Lloyd SE, Hatchwell E, Wrong O, Thakker RV, Craig IW. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent’s disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet 1994 3:2053-2059. Cerca con Google

6. Ludwig M, Doroszewicz J, Seyberth HW, Bökenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S. Functional evaluation of Dent’s disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 2005; 117: 228-237. Cerca con Google

7. Fischer SE, van Bakel I, Lloyd SE, Pearce SHS, Thakker RV, Craig IW. Cloning and characterization of ClCN5, the human kidney chloride channel gene implicatedin Dent’s disease. Genomics 1995; 29: 598-606. Cerca con Google

8. Ludwig M, Waldegger S, Nuutinen M, Bokenkamp A, Reissinger A, Steckelbroeck S, Utsch B. Four additional CLCN5 exons encode a widely expressed novel long CLC-5 isoform but fail to explain Dent’s phenotipe in patients without mutation in the short variant. Kidney Blood Press Res 2003; 26: 176-184. Cerca con Google

9. Thakker RV. Molecular pathology of renal chloride channels in Dent’s disease and Bartter’s syndrome. Exp Nephrol 2000; 8: 351-360. Cerca con Google

10. Yamamoto K, Cox JP, Friedrich T, et al. Caracterization of renal chloride channel mutation in Dent’s disease. J Am Soc Nephrol 2000; 11: 1460-1468. Cerca con Google

11. Carballo-Yrujillo I, Garcia-Nieto V, Moya-Angeler FJ, Anton-Gamero M, Loris C, Mendez-Alvarez S, Claverie-Martin F. Novel truncating mutations in the ClC-5 chloride channel gene in patient with Dent’s disease. Nephrol Dial Transplant 2003; 18: 717-723. Cerca con Google

12. Takashi S, Nozu K, Iyengar R et al. OCRL1 mutations in patients with Dent’s disease phenotype in Japan. Pediatr Nephrol 22; 975-980: 2007. Cerca con Google

13. Hoopes RR, Shrimpton AE, Simckes JMA et al. Dent’s disease with mutations in OCRL1. Am J Hum Genet 76; 260-267: 2005. Cerca con Google

14. Hubner CA, Jentsch TJ. Ion channel disease. Hum Mol Genet 2002; 11 (20): 2435-2445. Cerca con Google

15. Lehmann-Horn F, Jurkat-Rott K. Voltage- gated ion channels and hereditary disease. Physiol Rev 1999; 79 (4): 1317-1372. Cerca con Google

16. Jentsch TJ, Friedrich T, Schriever A, Yamada H. The CLC chloride channel family. Pflgers Arch 1999; 457: 783-795. Cerca con Google

17. Estevez R, Jentsch TJ. CLC chloride channels: correlating structure with function. Curr Opin Struct Biol 2002; 12: 531-539. Cerca con Google

18. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 2002; 415: 287-294. Cerca con Google

19. Schmidt-Rose T, Jentsch TJ. Transemembrane topology of a CLC chloride channel. Proc Natl Acad Sci USA 1997; 94: 7633-7638. Cerca con Google

20. Schwanke M, Friedrich T, Jentsch TJ. An internalization signal in ClC-5, an endosomal Cl- channel mutated in Dent’s disease. J Biol Chem 2001; 276 (15): 12049-12054. Cerca con Google

21. Devuyst O, Christe PT, Courtoy PJ, Beawens R, Thakker RV. Intra-renal and subcellular distribution of the human chloride channel, CLC-5 reveals a pathophisyiological basis for Dent’s disease. Hum Mol Genet 1999; 8 (2): 247-257. Cerca con Google

22. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ. ClC-5, the chloride channel mutated in Dent’s, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Sci USA 1998, 95: 8075-8080. Cerca con Google

23. Veizis E, Cotton CA. Role of kidney chloride channels in health and disease. Pediatr Nephrol 2007; 22: 770-777. Cerca con Google

24. Thakker RV. Pathogenesis of Dent’s disease and related syndromes of X-linked neprolithiasis. Kidney Int 2000; 57: 787-793. Cerca con Google

25. Wang SS, Devuyst O, Courtoy PJ, et al. Mice laking renal chloride channel, ClC-5, are a model of Dent’s sisease, a nephrolithiasi disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 2000; 9: 2937-2945. Cerca con Google

26. George AL Jr. Chloride channels and endocytosis: ClC-5 makes a Dent. Proc Natl Acad Sci USA 1998; 95: 7843-7845. Cerca con Google

27. Reinart SC, Norden AGW, Lapsley M, et al. Characterization of carrier females and affected males with X-linked recessive nephrolitiasis. J Am Soc Nephrol 1995; 5: 1451-1461. Cerca con Google

28. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ. ClC-5 Cl-channel distruption impairs endocytosis in a mouse model for Dent’s disease. Nature 2000; 408 (6810): 369-373. Cerca con Google

29. Gunther W, Piwon N, , Jentsch TJ. The ClC-5 chloride channel knock-outmouse an animalmodel for Dent’disease. Pflgers Arch 2003; 445 (6810): 369-373. Cerca con Google

30. Leheste JR, Rolinski B, Vorum H, et al. Megalin knock-out mice an animal model of low molecular weight proteinuria. Am J Pathol 1999; 155: 1361-1370. Cerca con Google

31. Christensen EI, Nielsen S. Structural and functional features of protein handling in the kidney proximale tubule. Semin Nephrol 1991; 11: 414-439. Cerca con Google

32. Christensen EI, Birn H, Verroust P, Moestrup SK. Membrane receptor for endocytosis inrenal proximal tubule. Int Rev Cytol 1998; 180: 237-283. Cerca con Google

33. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocityc receptors. Nat Rev Mol Cell Biol 2002; 3: 258-268. Cerca con Google

34. Hryciw DH, Wang Y, Devuyst O, Pollock CA, Poronnik P, Guggino WB. Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J Biol Chem 2003. Cerca con Google

35. Gekle M, Midenberger S, Freudinger R, Schwerdt G, Silbernagl S. Albumin endocytosis in Ok cells: dependence on actin and microtubules and regulation by protein kinases. Am J Physiol Renal Physiol 1997; 272: F668-677. Cerca con Google

36. Hebert SC, Brown EM, Harris HW. Role of the Ca2+-sensing receptor in divalent minerale homeostasis. J Exp Biol 1997; 200: 295-302. Cerca con Google

37. Silva IV, Blaisdell CJ, Guggino SE, Guggino WB. PTH regulates expression of ClC-5 chloride channel in the kidney. Am J Physiol Renal Physiol 2000; 278: F238-245. Cerca con Google

38. Thakker RV. Chloride channels cough up. Nat Genet 1997; 17: 125-127. Cerca con Google

39. Yamamoto K, Cox JPDT, Friedrich T, et al. Characterization of renal chloride channel (CLCN5) mutations in Dent’s disease. J Am Soc Nephrol 2000; 11: 1460-1468. Cerca con Google

40. Murayama A, Takeyama K, Kitanaka S, et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1-α-hydroxylase gene by parathyroid hormone, calcitonin and 1-α,25(OH)2D3 in intact animals. Endocrinology 1999; 140: 2224-22231. Cerca con Google

41. Sayer JA, Simmons NL. Urinary stone formation: Dent’s disease moves understanding forward. Exp Nephrol 2002; 10: 176-181. Cerca con Google

42. Sayer JA, Carr G, Pearce SHS, Goodship TH, Simmons NL. Disordered calcium crystal handling in antisense ClC-5 treated colecting dut cells. Biochem Biophis Res Commun 2003; 300: 305-310. Cerca con Google

43. Pesce C, Colombo B, Nicolini E, Spata F, Cappellari F. Medullary sponge kidney withsevere renal function impairment: a case report. Pediatria Med Chir 1995; 17: 65-67. Cerca con Google

44. Gambaro G, Favaro S, D’Angelo A. Risk for renal failure in nephrolitiasis. Am J Kidney Dis 2001; 37: 233-243. Cerca con Google

45. Norden A, Lapsley M, Lee PJ, et al. Glomerular protein sieving and implication for renal failure in Fanconi Syndrome. Kidney Int 2001; 60: 1885-1892. Cerca con Google

46. Morigi M, Macconi D, Zoja C, et al. Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. J Am Soc Nephrol 2002; 13: 1179-1189. Cerca con Google

47. Bolino A, Devoto M, Enia G, Zoccali C, Weissenbach J, Romeo G. Genetic mapping in the Xp 11.2 region of a new form of X-linked hypophosphatemic rickets. Eur J Hum Genet 1993; 1: 269-279. Cerca con Google

48. Kelleher CL, Buckalew VM, Frederickson ED, Rhodes DJ, Conner DA, Seidman JG, Seidman CE. CLCN5 mutation Ser244Leu is associated with X-linked renal failure without X-linked recessive hypophosphatemic rickets. Kidney Int 1998; 53: 31-37. Cerca con Google

49. Frymoyer PA, Scheinman SJ, Dunham PB, Jones DB, Hueber P, Schroeder ET. X-linked recessive nephrolithitsis with renal failure. N Engl J Med 1991; 325: 381-386. Cerca con Google

50. Tosetto E, Anglani F, Graziotto R, Citron L, D’Angelo A, Gambaro G. Dent’s disease: hereditary nephrolitiasis related to defective tubular endocytosis processis. Giornale Italiano di Nefrologia 2003; 6: 578-588. Cerca con Google

51. Scheinman SJ, Cox JP, Lloyd SE et al. Isolated idiopathic with mutation in CLCN5: relevance to idiopathic idiopathic. Kidney Int 2000; 57: 232-239. Cerca con Google

52. Iragashi T, Inatomi J, Ohara T, Kuwahara T, Shimadzu M, Thakker RV. Clinical and genetic studies of ClCN-5 mutations in Japanese families with Dent’s disease. Kidney Int 2000; 58: 520-527. Cerca con Google

53. Norden AG, Knohl SJ, Scheinman SJ. Inherited hypercalciuric syndromes: Dent’ disease (ClC-5) and familial hypomagnesemia with hypercalciuria (Paracellin-1). Seminars in Nephrology 2004; 1: 55-60. Cerca con Google

54. Besbas n, Ozaltin J, Jeck N, et al. CLCN5 mutation (R347X) associated with hypokaliemic metabolic alkalosis in turkish child: an unusual presentation of Dent’s disease. Nephrol Dial transplant 2005, 20: 1476 -1479. Cerca con Google

55 . Wang SS, Devuyst O, Courtoy PJ, et al. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolitiasis disorder associated with defective receptor- mediated endocytosis. Hum Mol Genet Cerca con Google

2000, 9: 2937 -2945. Cerca con Google

56. Silva IV, Cebotaru V, Wang H, et al. The ClC-5 knock-out mouse model of Dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res 2002; 18: 615.623. Cerca con Google

57 Christensen El, Devuyst O, Dom G, et al. Loss of chloride channel CLC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 2003; 100: 8427.8477 Cerca con Google

58. Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE. High citrate diet delayes progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int 2005; 68 (2): 642-652 Cerca con Google

59. Raja Ka , Schuman S, D’Mello RG, et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J Am Soc nephrol 2002; 13: 2938-2944. Cerca con Google

60. Klahr S, Morissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 2002; 283: 861-875. Cerca con Google

61. Zeisberg M, Strutz F, muller GA. Renal fibrosis: an update. Curr opin Nephrol Hypertens 2001; 10: 315-320. Cerca con Google

62. Roberts AB, Sporn MB. Trasforming growth factor beta. ADV Cancer Res 1988; 51: 107-145. Cerca con Google

63. Kuncio GS, Neilson EG, Haverty T. Mechanism of tubulointerstitial fibrosis. Kidney Int 1991 ; 39:550-556. Cerca con Google

64. Border WA, Noble Na.Trasforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331: 1286-1292. Cerca con Google

65. Anglani F, Bernich P, Tosetto E, et al. Family history may be misleading in the diagnosis of Dent’s disease. Urol Res 2006; 34: 61-63. Cerca con Google

66 Evan A, Lingeman JE, Coe FL,et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003; 111: 607-16. Cerca con Google

67. Matlaga BR, Coe FL, Evan AP, Lingeman Je. The role of Randall’s plaque in the pathogenesis of calcium stones. The journal of urology 2007; 1: 31-38 Cerca con Google

68. Sha Sha Wang, Devuyst, Coutoy, Wang Xi -Tao, Wang Wua, Wang Y, Thakker, Guggini S, Guggino W.2000 Mice lacking renal chloride channel, clc-5 are a model for dent disease, a nephrolithiasis disorder associated with defective receptor mediate endocytosis. Human molecular genetics, vol 9 2937-2945 Cerca con Google

69 Carr G, Simmons NL, Sayer JA (2006) disruption of clc-5 leads to redistribution of annexin A2 and prometes calcium crystalagglomeration in collecting duct epithelial cells. Cell Mol Life sci 63:367-377 Cerca con Google

70 AndrewP. Evan, Fredric L.Coe,James,E.Lingeman,YouzhiSghao,Andre J.Sommer,Sharon B. Bledsoe,Jennifer C. Anderson, Elaine M. Worcester Mechanism of Formation of Human Calcium Oxalate Renal Stones on Randall’s Plaque The Anatomical Record 290:1315-1323 (2007) Cerca con Google

71Mazess R, Collick B, Tremple J, Barden H, Hanson J. Performance evaluation of a dual-energy X ray bone densitometer: Calcif Tissue Int 1989; 44: 228-32. Cerca con Google

72 Nuti R, Martini G, Righi G, Frediani B, Turchetti V.. Comparison of total body measurements by dual-energy x-ray absorptiometry and dual-photon absorptiometry. J. Bone Min. Res. 1991; 6: 681-687. Cerca con Google

73 Caniggia A, Frediani B. Absorptiometry in metabolic bone disease: basal values and long-time treatment withcalcitriol (osteoporosis vs osteomalacia). Scanning Microscopy, Cells and Materials, Food Structure Meeting.Houston Maggio 1995; 6: 11-14. Cerca con Google

74. Consensus Development conference: diagnosis, prophylaxis and tretment of osteoporosis. Am j Med (1991)90: 107-10. Cerca con Google

75. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis Am J med (1993) Cerca con Google

94: 646-50. Cerca con Google

76. Kanis JA, Melton LJ, Christiansen C et al. The diagnosis of osteoporosis . J Bone Miner Res (1994) 9: 1137-41. Cerca con Google

77. Word Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: WHO Technical Report Series 843 (WHO: Geneva, 1994). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record