Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Brigo, Laura (2008) Water slippage over micro and nano structured surfaces. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

The subject of this research is the systematic study of the dependence of water slippage inside microfluidic channels on the morphology and chemical nature of the solid wall.
A low-cost Micro Particle Imaging Velocimetry (u-PIV) apparatus has been designed and developed to perform the experimental characterization of the microflow dynamics.
The set-up is sufficiently versatile to image a pretty wide range of flow conditions present in microfluidic devices, allowing the determination of fluid velocity fields both in the bulk of the fluid by epifluorescence microscopy and at the interface with a transparent solid surface by the use of total internal reflection fluorescence microscopy (TIRFM).
We initially tested our apparatus against the recent results obtained by leading groups in the application of the u-PIV technique to the study of liquid-solid boundary conditions. In particular, we measured water slip length on flat surfaces as a function of the liquid-solid contact angle.
Then, we investigated the water slip dynamics in microchannels presenting a patterned floor.
Measurements on isotropically patterned surfaces, presenting a regular grid of pillars or dots as to model superficial roughness on the micron scale, generally showed a decrease in the value of the slip length with respect to the flat substrate.
Measurements performed as a function of the orientation of micrometric canals impressed on the floor of a microchannel with respect to the main flux direction, lead to new interesting experimental evidences. A confirmation of a reduction in the value of the slip length due to wall micropattering was obtained and, moreover, the effect that the anisotropy of a pattern on the floor has on the flow direction was investigated. By changing the orientation and the modulation of linear microstructures on a solid wall, it was possible to modify the flow direction even inside planar lithographic-made microchannels with a constant pressure gradient applied at both ends.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mistura, Giampaolo
Correlatore:Bruschi, Lorenzo
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > FISICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):microfluidics, slip length, microfabrication, micro particle imaging velocimetry, PIV
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica "Galileo Galilei"
Codice ID:812
Depositato il:10 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Whitesides G. M., The origins and the future of microfluidics, Nature, 442:368-373, 2006. Cerca con Google

[2] Tabeling P., Introduction to microfluidics, Oxford University Press, 2006. Cerca con Google

[3] Nguyen N. T., Wereley S. T., Fundamentals and applications of microfluidics, Artech House Microelectromechanical Systems Library, 2002. Cerca con Google

[4] Goldstein S., Modern developments in fluid dynamics, Oxford University Press, 1938. Cerca con Google

[5] Goldstein S., Fluid mechanics in the first half of this century, Ann. Rev. Fluid Mech., 1:1-29, 1969. Cerca con Google

[6] Neto C., Evans D. R., Bonaccurso E., Butt H. J. and Craig V. S. J., Boundary slip in Newtonian liquids: a review of experimental studies, Rep. Prog. Phys., 68:2859-2897, 2005. Cerca con Google

[7] Lauga E., Brenner M. P. and Stone H. A., Microfluidics: The no-slip boundary condition, Handbook of Experimental Fluid Dynamics, Tropea C., Yarin A., Foss J. F. (Eds.), Springer, Cerca con Google

2007. Cerca con Google

[8] Brochard F. and de Gennes P. G., Shear-dependent slippage at a polymer/solid interface., Langmuir, 8:3033-3037, 1992. Cerca con Google

[9] Denn M. M., Extrusion instabilities and wall slip, Ann. Rev. Fluid Mech., 33:265-287, 2001. Cerca con Google

[10] Leger L., Raphael E. and Hervet H., Surface-anchored polymer chains: their role in adhesion and friction, Adv. Polymer Sci., 138:185-225, 1999. Cerca con Google

[11] Inn Y. and Wang S. Q., Hydrodynamic slip: polymer adsorption and desorption at melt/solid interfaces, Phys. Rev. Lett., 76:467-470, 1996. Cerca con Google

[12] Kogan M. N., Rarefied gas dynamics, Plenum Press, New York, 1969. Cerca con Google

[13] Muntz E. P., Rarefied-gas dynamics, Ann. Rev. Fluid Mech., 21:387-417, 1989. Cerca con Google

[14] Schnell E., Slippage of water over nonwettable surfaces, J. Appl. Phys., 27:1149-1152, 1956. Cerca con Google

[15] Pit R., Hervet H. and Leger L., Direct experimental evidence of slip in hexadecane: solid interfaces, Phys. Rev. Lett. 85:980-983 ,2000. Cerca con Google

[16] Zhu Y. and Granick S., Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys. Rev. Lett., 87:096105, 2001. Cerca con Google

[17] de Gennes P. G., On fluid/wall slippage, Langmuir, 18:3413-3414, 2002. Cerca con Google

[18] Knudsen M., Ann. d. Physik, 28:75, 1909. Cerca con Google

[19] Patankar N. A., On the modelling of hydrophobic contact angles on rough surfaces, Langmuir, 19:1249-1253, 2003. Cerca con Google

[20] Lafuma A. and Quere D., Superhydrophobic states, Nature Materials, 2:457-460, 2003. Cerca con Google

[21] Wenzel R. N., Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28: 988- 994, 1936. Cerca con Google

[22] Cassie A. B. D. and Baxter S., Wettability of porous surfaces, Trans. Faraday Soc., 40: 546- 551, 1944. Cerca con Google

[23] Bico J., Thiele U. and Quere D., Wetting of textured surfaces, Colloids Surf A, 206:41-46, 2002. Cerca con Google

[24] Craig V. S. J., An historical review of surface force measurement techniques, Colloids Surf A, 129-130:75-94, 1997. Cerca con Google

[25] Vinogradova O. I., Drainage of a thin liquid film confined between hydrophobic surfaces, Langmuir, 11:2213-2220, 1995. Cerca con Google

[26] Hocking L. M., Effect of slip on motion of a sphere close to a wall and of two adjacent spheres, J. Eng. Math., 7:207-221, 1973. Cerca con Google

[27] Tabor D. and Winterton R. H. S., The direct measurement of normal and retarded van der Waals forces, Proc. Roy. Soc. London A, 312:435-450, 1969. Cerca con Google

[28] Israelachvili J. N. and Tabor D., The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm, Proc. Roy. Soc. London A, 331:19-38, 1972. Cerca con Google

[29] Campbell S. E., Luengo G., Srdanov V. I.,Wudi F. and Israelachvili J. N., Very low viscosity at the solid-liquid interface induced by adsorbed C60 monolayers, Nature, 382:520-2, 1996. Cerca con Google

[30] Zhu Y. and Granick S., Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett., 88:106102, 2002. Cerca con Google

[31] Baudry J., Charlaix E., Tonck A. and Mazuyer D., Experimental evidence for a large slip effect at a nonwetting fluid-solid interface, Langmuir, 17:5232-5236, 2001. Cerca con Google

[32] Binnig G., Quate C. F. and Gerber Ch., Atomic force microscope, Phys. Rev. Lett., 56:930- 933, 1986. Cerca con Google

[33] Craig V. S. J., Neto C. and Williams D. R. M., Shear-dependent boundary slip in an aqueous newtonian liquid, Phys. Rev. Lett., 87:054504, 2001. Cerca con Google

[34] Bonaccurso E., Kappl M. and Butt H.-J., Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects, Phys. Rev. Lett. 88:076103, 2002. Cerca con Google

[35] Bonaccurso E., Butt H.-J. and Craig V. S. J., Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system, Phys. Rev. Lett., 90:144501, 2003. Cerca con Google

[36] Vinogradova O. I. and Yakubov G. E., Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope, Langmuir, 19:1227-1234, 2003. Cerca con Google

[37] Vinogradova O. I. and Yakubov G. E., Surface roughness and hydrodynamic boundary conditions, Phys. Rev. E, 73:045302, 2006. Cerca con Google

[38] Henry C. L., Neto C., Evans D. R., Biggs S. and Craig V. S. J., The effect of surfactant adsorption on liquid boundary slippage, Physica A, 339:60-5, 2004. Cerca con Google

[39] Pit R., Hervet H. and Leger L., Friction and slip of a simple liquid at a solid surface, Tribol. Lett., 7:147-152, 1999. Cerca con Google

[40] Hervet H. and Leger L., Flow with slip at the wall: from simple to complex fluids, C.R. Phys., 4:241-249, 2003. Cerca con Google

[41] Leger L., Friction mechanisms and interfacial slip at fluid-solid interfaces, J. Phys.: Condens. Matter ,15:S19-S29, 2003. Cerca con Google

[42] Lumma D., Best A., Gansen A., Feuillebois F., Radler J. O. and Vinogradova O. I., Flow profile near a wall measured by double-focus fluorescence cross-correlation, Phys. Rev. E, 67:056313, 2003. Cerca con Google

[43] Joly L., Ybert C. and Bocquet L., Probing the nano-hydrodynamics at liquid-solid interfaces using thermal motion, Phys. Rev. Lett., 96:046101, 2006. Cerca con Google

[44] Cheng J. T. and Giordano N., Fluid flow through nanometer-scale channels, Phys. Rev. E, 65:031206, 2002. Cerca con Google

[45] Ou J., Perot B. and Rothstein J. P., Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, 16:4635-4643, 2004. Cerca con Google

[46] Choi C.-H., Westin J. A. and Breuer K. S., Apparent slip flows in hydrophilic and hydrophobic microchannels, Phys. Fluids, 15:2897-2902, 2003. Cerca con Google

[47] Westin J. A., Choi C.-H. and Breuer K. S., A novel system for measuring liquid flow rates with nanoliter per minute resolution, Exp. Fluids, 34:635-642, 2003. Cerca con Google

[48] Du B., Goubaidoulline I. and Johannsmann D., Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids, Langmuir, 20:10617-24, 2004. Cerca con Google

[49] McHale G. and Newton M. I., Surface roughness and interfacial slip boundary condition for quartz crystal microbalances, J. Appl. Phys., 95:373-380, 2004. Cerca con Google

[50] Ellis J. S. and Hayward G. L., Interfacial slip on a transverse-shear mode acoustic wave device, J. Appl. Phys., 94:7856-7867, 2003. Cerca con Google

[51] Ellis J. S. and Thompson M., Slip and coupling phenomena at the liquid-solid interface, Phys. Chem. Chem. Phys., 6:4928-4938, 2004. Cerca con Google

[52] Yanagisawa M., Slip effect for thin liquid film on a rotating disk, J. Appl. Phys., 61:1034- 1037, 1987. Cerca con Google

[53] Watanabe K., Takayama T., Ogata S. and Isozaki S., Flow between two coaxial rotating cylinders with a highly water-repellent wall, AIChE J., 49:1956-1963, 2003. Cerca con Google

[54] Gogte S., Vorobieff P., Truesdell R., Mammoli A., van Swol F., Shah P. and Brinker C. J., Effective slip on textured superhydrophobic surfaces, Phys. Fluids, 17:051701, 2005. Cerca con Google

[55] Boehnke U. C., Remmler T., Motschmann H., Wurlitzer S., Hauwede J. and Fischer Th. M., Partial air wetting on solvophobic surfaces in polar liquids, J. Colloid Int. Sci., 211:243-251, 1999. Cerca con Google

[56] Keh H. J. and Kuo J., Effect of adsorbed polymers on the slow motion of an assemblage of spherical particles relative to a fluid, Colloid Polym. Sci., 275:661-671, 1997. Cerca con Google

[57] Letocart P., Radoev B., Schulze H. J. and Tsekov R., Experiments on surface waves in thin wetting films, Colloids Surf. A, 149:151-159, 1999. Cerca con Google

[58] Koplik J. and Banavar J. R., Continuum deductions from molecular hydrodynamics, Ann. Rev. Fluid Mech., 27:257-292, 1995. Cerca con Google

[59] Cieplak M., Koplik J. and Banavar J. R., Boundary conditions at a fluid-solid interface, Phys. Rev. Lett., 86:803-806, 2001. Cerca con Google

[60] Cottin-Bizonne C., Barentin C., Charlaix E., Boequet L. and Barrat J. L., Dynamics of simple liquids at heterogeneous surfaces: molecular dynamics simulations and hydrodynamic description, Eur. Phys. J. E, 15:427-438, 2004. Cerca con Google

[61] Koplik J., Banavar J. R. and Willemsen J. F., Molecular dynamics of Poiseuille flow and moving contact lines, Phys. Rev. Lett., 60:1282-1285, 1988. Cerca con Google

[62] Nagayama G. and Cheng P., Effects of interface wettability on microscale flow by molecular dynamics simulation, Int. J. Heat Mass Transfer, 47:501-513, 2004. Cerca con Google

[63] Sun M. and Ebner C., Molecular dynamics study of flow at a fluid-wall interface, Phys. Rev. Lett., 69:3491-3494, 1992. Cerca con Google

[64] Thompson P. A. and Robbins M. O., Simulations of contact line motion - Slip and the dynamic contact angle, Phys. Rev. Lett., 63:766-769, 1989. Cerca con Google

[65] Thompson P. A. and Robbins M. O., Shear flow near solids - Epitaxial order and flow boundary conditions, Phys. Rev. A, 41:6830-6837, 1990. Cerca con Google

[66] Barrat J. L. and Bocquet L., Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett., 82:4671-4674, 1999. Cerca con Google

[67] Thompson P. A. and Troian S. M., A general boundary condition for liquid flow at solid surfaces, Nature, 389:360-362, 1997. Cerca con Google

[68] Brenner H. and Ganesan V., Molecular wall effects: are conditions at a boundary “boundary conditions”?, Phys. Rev. E, 61:6879-6897, 2000. Cerca con Google

[69] Blake T. D., Slip between a liquid and a solid: D.M. Tolstoi (1952) theory reconsidered, Colloids Surf., 47:135-145, 1990. Cerca con Google

[70] Barrat J. L. and Bocquet L., Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface, Faraday Disc., 112:119-127, 1999. Cerca con Google

[71] Hocking L. M., A moving fluid interface on a rough surface, J. Fluid Mech., 76:801-817, 1976. Cerca con Google

[72] Richardson S., On the no-slip boundary condition, J. Fluid Mech., 59:707-719, 1973. Cerca con Google

[73] Galea T. M. and Attard P., Molecular dynamics study of the effect of solid roughness on the slip length at the fluid-solid boundary during shear flow, Langmuir 20:3477-3482, 2004. Cerca con Google

[74] Bico J., Marzolin C. and Quere D., Pearl drops, Europhys. Lett., 47:220-226, 1999. Cerca con Google

[75] Lauga E. and Brenner M. P., Dynamic mechanisms for apparent slip on hydrophobic surfaces, Phys. Rev. E, 70:026311, 2004. Cerca con Google

[76] Spikes H. and Granick S., Equation for slip of simple liquids at smooth solid surfaces, Langmuir, 19:5065-5071, 2003. Cerca con Google

[77] Lauga E. and Stone H. A., Effective slip in pressure-driven Stokes flow, J. Fluid Mech., 489:55-77, 2003. Cerca con Google

[78] Ruckenstein E. and Rajora P., On the no-slip boundary condition of hydrodynamics, J. Colloid Int. Sci., 96:488-491, 1983. Cerca con Google

[79] Alexeyev A. A. and Vinogradova O. I., Flow of a liquid in a nonuniformly hydrophobized capillary, Colloids Surf. A, 108:173-179, 1996. Cerca con Google

[80] Andrienko D., Dunweg B. and Vinogradova O. I., Boundary slip as a result of prewetting transition, J. Chem. Phys., 119:13106-13112, 2003. Cerca con Google

[81] Lou S. T., Ouyang Z. Q., Zhang Y., Li X. J., Hu J., Li M. Q. and Yang F. J., Nanobubbles on solid surface imaged by atomic force microscopy, J. Vac. Sci. Technol. B, 18:2573-2575, 2000. Cerca con Google

[82] Zhang X. H., Zhang X. D., Lou S. T., Zhang Z. X., Sun J. L. and Hu J., Degassing and temperature effects on the formation of nanobubbles at the mica/water interface, Langmuir, 20:3813-3815, 2004. Cerca con Google

[83] Lichter S., Roxin A. and Mandre S., Mechanisms for liquid slip at solid surfaces, Phys. Rev. Lett., 93:086001, 2004. Cerca con Google

[84] Cho J. H., Law B. M. and Rieutord F., Dipole-dependent slip on Newtonian liquids at smooth solid hydrophobic surfaces, Phys. Rev. Lett., 92:166102, 2004. Cerca con Google

[85] Tretheway D., Stone S. and Meinhart C. D., Effects of absolute pressure and dissolved gases on apparent fluid slip in hydrophobic microchannels, Bull. Am. Phys. Soc., 49:215, 2004. Cerca con Google

[86] Adrian R. J., Bibliography of particle velocimetry using imaging methods: 1917-1995, TAM Report, University of Illinois at Urbana-Champaign, 1996. Cerca con Google

[87] Raffel M., Willert C. and Kompenhans J., Particle Image Velocimetry: A Practical Guide, Springer, 2002. Cerca con Google

[88] Santiago J. G., Wereley S. T., Meinhart C. D., Beebe D. J. and Adrian R. J., A particle image velocimetry system for microfluidics, Exp. Fluids, 25:316-319, 1998. Cerca con Google

[89] Meinhart C. D., Wereley S. T. and Santiago J. G., PIV measurements of a microchannel flow, Exp. Fluids, 27:414-419, 1999. Cerca con Google

[90] Meinhart C. D. and Zhang H., The flow structure inside a microfabricated inkjet printer head, J. Microelectromech. Syst. , 9:67-75, 2000. Cerca con Google

[91] Meinhart C. D., Wereley S. T. and Gray M. H. B., Volume illumination for twodimensional particle image velocimetry, Meas. Sci. Technol., 11:809-814, 2000. Cerca con Google

[92] Wereley S. T., Gui L. and Meinhart C. D., Advanced algorithms for microscale particle image velocimetry, J. AIAA, 40:1047-1055, 2002. Cerca con Google

[93] Wereley S. T. and Meinhart C. D., Adaptive second-order accurate particle image velocimetry, Exp. Fluids, 31:258-268, 2001. Cerca con Google

[94] Cabral J. T., Hudson S. D., Harrison C. and Douglas J. F., Frontal photopolymerization for microfluidic applications, Langmuir, 20:10020-10029, 2004. Cerca con Google

[95] EDPIV is available at http://eo.yifan.net/users/l/lcgui/Edpiv_intro.htm Vai! Cerca con Google

[96] Harrison C., Cabral J. T., Stafford C. M., Karim A. and Amis E. J., A rapid prototyping technique for the fabrication of solvent-resistant structures, J. Micromech. Microeng., 14:153- 158, 2004. Cerca con Google

[97] Warren J. A., Cabral J. T. and Douglas J. F., Solution of a field theory model of frontal photopolymerization, Phys Rev E, 72:021801, 2005. Cerca con Google

[98] Begolo S., Fabrication of microfluidic device resistant to organic solvents, Degree Thesis, University of Padova, 2007. Cerca con Google

[99] Goldman A. J., Cox R. G. and Brenner H., Slow viscous motion of a sphere parallel to a plane wall - II Couette flow, Chem. Eng. Sci., 22:653-660, 1967. Cerca con Google

[100] Lauga E., Apparent slip due to the motion of suspended particles in flows of electrolyte Solutions, Langmuir, 20:8924-8930, 2004. Cerca con Google

[101] Sun M., Luo C., Xu L., Ji H., Ouyang Q., Yu D. and Chen Y., Artificial Lotus leaf by nanocasting, Langmuir, 21:8978-8981, 2005. Cerca con Google

[102] Nguyen Tu T. T., Derenne S., Largeau C., Mariotti A. and Bocherens H., Evolution of the chemical composition of Ginkgo biloba external and internal leaf lipids through senescence and litter formation, Organic Geochemistry, 32:45-55, 2001. Cerca con Google

[103] Joseph P. and Tabeling P., Direct measurement of the apparent slip length, Phys. Rev. E, 71:035303, 2005. Cerca con Google

[104] Tretheway D. C. and Meinhart C. D., Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids, 14:L9-L12, 2002. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record