Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Musso, Ivano (2008) Plasma heating methods for space propulsion. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
7Mb

Abstract (english)

The future of space explorations will not register a big evolution until new families of engines will be qualified. High specific impulse has been achieved with ion thrusters but significant improvements are still waited such as high thrust, variable impulse and long lifetime. Starting with the analysis of a new phenomenon, the helicon double layer, the thesis investigates new space propulsion techniques, principally testing and developing computer simulations for the analysis of thrusters performances and diagnostic devices for their laboratory tests.

The helicon Double Layer (DL) is a narrow potential jump, recently measured at the open end of a helicon source, able to produce a supersonic ion beam. From an extent bibliographic review the main characteristics of the phenomenon are: constant axial magnetic field into the source tube (>4.5 10-3 T) which diverges in the external chamber, low neutral pressure (<0.4Pa), ion beam velocity which is two times the ions sound speed, potential jump lower then 20V and source walls somehow able to charge with respect the plasma potential.
Utilizing the Object Oriented Particle In-cell (OOPIC) software the experimental behaviour is reproduced in cylindrical geometry and with electrostatic approximation. Suggestions to apply the fluid Boltzmann electrons (hybrid PIC) are found in bibliography, this could simplify and make the simulations faster, but tests of the OOPIC nonlinear Poisson solve have revealed critical problems. It appears that the floating source wall is a key point which permits to increase the plasma potential inside the helicon tube. The potential jump is confirmed around 10-20V. The ion beam is measured with velocities around two times the sound speed, as expected, however the ions trajectories seam to have a higher divergence to respect the experimental data. Utilizing a left source wall with constant biased potential it is possible to increase the plasma potential and, consequently, the DL jump. The exhaust flux performances have then been analyzed.

Another very promising engine concept is the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) which uses a Ion Cyclotron Resonance Heating (ICRH) section to increase the exhaust velocity and thrust. Again OOPIC could be utilized to reproduce some aspects of this new device. Here we have to deal with the full electromagnetic solve and a complex geometry that make the simulations more difficult. The software parallelization has been tested obtaining a gain in the performances but the calculations remain prohibitive in terms of time and memory. Consequently a new method has to be applied and the most interesting and useful is a wave equation solve integrated with a Monte-Carlo particles' trajectories calculator, to have a full self-consistent model. The model is constructed starting from fundamental simplified hypothesis: cold plasma theory, negligible electric field along the magnetic field lines, time and poloidal Fourier expansions. The particle model is not a PIC but a trajectory predictor which propagates the particles from a given starting position and distribution considering the external and antenna fields under steady state hypothesis. From the trajectories the plasma density distribution can be constructed, which is the main input of the partial differences wave solve. The first version of the software has been written and its test and utilization is started.

Following the interesting experiments done by Charles our CISAS Space Propulsion Team is developing a new device to test a micro engine for satellite applying the Double Layer phenomenon. This new experiment utilizes a reduced scale helicon source. The contribution of the thesis is the design and characterization of probes for the plasma discharge diagnostic. After have analyzed the basic physics of Langmuir probes and retarding field energy analyzers, PIC simulations have been performed to verify the particles behaviour for our helicon source geometry. An innovative RFEA model is here proposed. It is composed of successive layers of conducting and dielectric rings inserted in a grounded stainless steel tube. The main parameter of a RFEA is the grid to grid distance which must be of the order of the Debye length and as little as possible and it has been dimensioned here around 0.5 mm.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Angrilli, Francesco
Supervisor:Pavarin, Daniele
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE TECNOLOGIE E MISURE SPAZIALI > MISURE MECCANICHE PER L'INGEGNERIA
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:helicon double layer, plasma numerical simulations, plasma propulsion, retarding field energy analyzer
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/07 Propulsione aerospaziale
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:823
Depositato il:15 Oct 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. M. A. Raadu, “Particle Acceleration Mechanisms in Space Plasmas”, Phys. Chem. Earth (C), Vol. 26, No.1-3, pp. 55-59, 2001 Cerca con Google

2. M. Raadu, “The physics of double layers and their role in astrophysics”, Physics Reports 178, No2, 1989, pp25-97 Cerca con Google

3. F.W. Perkins and Y.C. Sun “Double Layers without current” Phys. Rev. Lett. 46, 115 (1981) Cerca con Google

4. C. Chan, M.H. Cho, N. Hershkowitz, T. Intrator, “ Experimental observation of slow ion acoustic Double Layers” Phys. Rev. Lett. 57, 3050 (1986) Cerca con Google

5. C. Chan, M.H. Cho, N. Hershkowitz, T. Intrator, “Laboratory Evidence for Ion-Acoustic-Type Double Layers” Phys. Rev. Lett. 52, 1782 (1984) Cerca con Google

6. C. CHARLES, R.W. BOSWELL, "Time development of a current-free "helicon" double-layer". Accepted in Phys. Plasmas, (May 2004). Cerca con Google

7. C. CHARLES, R.W. BOSWELL, "Laboratory evidence of a supersonic ion beam generated by a currentfree helicon double-layer". Phys. Plasmas 11, 1706-1714 (2004). Cerca con Google

8. C. CHARLES, "Hydrogen ion beam generated by a current-free double-layer in a helicon plasma". Applied Physics Letters 84, 332-334 (2004). Cerca con Google

9. C. CHARLES and R.W. BOSWELL, "Current-free double-layer formation in a high-density helicon discharge". Applied Physics Letters 82, 1356-1358 (2003). Cerca con Google

10. Temerin, “Observations of double layers and solitary waves in the auroral plasma”, Phys. Rev Lett., 48, 17, 1982, pp1175 Cerca con Google

11. C. Birdsall, Langdon A. “Plasma Physics via computer simulation” Iop, Bristol, 1991 Cerca con Google

12. J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, "An Object-Oriented Electromagnetic PIC Code", Comp. Phys. Comm., 87, May11, 1995, pp199-211 Cerca con Google

13. T. Sato, H. Okuda “Ion-Acustic Double Layers” Phys. Rev. Lett. 44, 740 (1980) Cerca con Google

14. K. Y. Kim, “Weak monotonic Double Layers”, Physics Letters, v 97A, n1, Aug 1983, pp45 Cerca con Google

15. F. Gesto, B. Blackwell, C. Charles, R. Boswell, “Ion Detachment in the Helicon Double-Layer Thruster Exhaust Beam”, Journal Propulsion and Power Vol. 22, No. 1, January–Feb 2006, pp24 Cerca con Google

16. A. Meige, R. W. Boswell, C. Charles "One-dimensional Particle-in-Cell simulation of a current-free doublelayer in an expanding plasma" Physics of plasmas 12, 052317 (2005) Cerca con Google

17. A. Meige, G. Hagelaar, R.W. Boswell, C. Charles, J.P. Boeuf, “Numerical modeling of electronegative electric double-layers”, XXVIIth ICPIG, Eindhoven, the Netherlands, 18-22 July, 2005 Cerca con Google

18. Francis F. Chen, “Physical mechanism of current-free double layers”, report University of California, Los Angeles, California 90095-1594 Cerca con Google

19. G. Hairapetian, R. Stenzel, “Particle dynamics and current-free double layer in an expanding, collisionless, two-electron-population plasma”, Physics of Fluids B: Plasma Physics, 3, 4, p899, (1991) Cerca con Google

20. S. Choen, N. Siefert, S. Stange, “Ion acceleration in plasmas emerging from a helicon-heated magnetic mirror device”, Physics of Plasma, v10, N6, pp2593, (2003) Cerca con Google

21. X. Sun, C. Biloiu, R. Hardin, “Parallel velocity and temperature of Ar ions in a expanding, helicon source driven plasma”, v13, pp359, (2004) Cerca con Google

22. X. Sun, A. Keesee, C. Biloiu, C. Charles, R. Boswell, “Observations of ion-beam formation in a currentfree double layer”, Physical Rev Letters, v95, 025004, (2005) Cerca con Google

23. N. Plihon, C. Corr, P. Chabert, “Double layer formation in the expanding region of an inductively coupled electronegative plasma”, Applied Physics Lett, v86, 091501, (2005) Cerca con Google

24. N. Plihon, C. Corr, P. Chabert, “Periodic formation and propagation of double layers in the expanding chamber of an inductive discharge operating in Ar/SF6 mixture”, Journal of Applied Phys, v98, 023306, (2005) Cerca con Google

25. A. Fruchtman, “Electric Field in a Double Layer and the Imparted Momentum”, Physical Review Letters, 96, 065002 (2006) Cerca con Google

26. J.P. Verboncoeur 1, A.B. Langdon 2, N.T. Gladd 3, “An object-oriented electromagnetic PIC code”, Computer Physics Communications 87 (1995) pp199-211 Cerca con Google

27. G D Conway, A J Perry and R W Boswell, “Evolution of ion and electron energy distributions in pulsed helicon plasma discharges”, Plasma Sources Sci. Technol. 7 (1998) pp337–347 Cerca con Google

28. N. Plihon, C. Chabert, “Helicon Double Layer Thruster Concept for High Power NEP Missions”, ESA Ariadna ID: 04/310 final report Cerca con Google

29. C. Charles, A. W. Degeling, T. E. Sheridan, J. H. Harris, M. A. Lieberman, “Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer”, Physics of Plasmas 7, 12 Cerca con Google

30. M. Tuszewski, S. Gary, “Downstream instability of electronegative plasma discharges”, Phys of Plasmas, v10, N2, pp539, (2003) Cerca con Google

31. K. Cartwright, J. P. Verboncoeur, “Nonlinear hybrid Boltzmann-particle-in-cell acceleration algorithm”, Physics of Plasmas, v 7, n 8, Aug 2000, pp3252 Cerca con Google

32. R. A. Schill, “General Relation for the Vector Magnetic Field of a Circular Current Loop: A Closer Look”, IEEE Transactions on magnetics, Vol 39, n 2, March 2003, pp961. Cerca con Google

33. D. V. Eester, “Numerical modelling of particle heating and diffusion”, Sixth Carolus Magnus Euro- Summer School on Plasma and Fusion Energy Physics, September 1-12 2003, Brussels, Belgium Cerca con Google

34. A. V. Ilin, F. R. Chang Díaz, “Simulations of ICRH plasdma heating in the VASIMR experiment”, AIAA-2004-0151, 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 5-8 January 2004 Cerca con Google

35. A. V. Ilin1, F. R. Chang Díaz, “Modeling of ion cyclotron waves in VASIMR”, Cerca con Google

36. A.V. Ilin, F. R. Chang Diaz,”Radio Frequency Field Calculations for Plasma Heating Simulations in VASIMR”, 53rd International Astronautical Congress The World Space Congress – 2002 10-19 Oct 2002 / Houston, Texas Cerca con Google

37. A. V. Ilin, F. R. Chang Díaz, “Improved simulation of the ICRF waves in the VASIMR plasma”, Computer Physics Communications 164 (2004), pp251–257 Cerca con Google

38. A. V. Ilin, F. R. Chang Diaz, “Plasma Heating Simulation in the VASIMR System“, 43rd AIAA Aerospace Sciences Meeting and Exhibit AIAA-2005-0949 Reno, Nevada, 10-13 January 2005 Cerca con Google

39. A.V. Ilin, F.R. Chang-Diaz, J.P. Squire, M.D. Carter "Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket" Trans. of Fusion Tech. 35, January 99 Cerca con Google

40. T. H. Stix, “Waves in Plasmas”, American Institute of Physics, New York. Cerca con Google

41. E. F. Jaeger, “ICRF wave propagation and absorption in Tokamak and mirror magnetic fields – A full wave calculation”, Computer Physics Comm., 40 (1986), pp33-64 Cerca con Google

42. V. F. Virko, “Geometrical resonances of helicon waves in an axially bounded plasma”, Plasma Sources Sci Technol 11, pp10, (2002) Cerca con Google

43. R W Boswell, “Very efficient plasma generation by whistler waves near the lower hybrid frequency”, Plasma Physics and Control Fusion, 26, 10, pp1147, (1984) Cerca con Google

44. R L Kinder, “Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources”, Journal Vac Sc Technol A, 19, pp76, (2001) Cerca con Google

45. K P Shamrai, “Volume and surface rf power absorption in a helicon plasma source”, Plasma Source Sci Techn, 5, pp474, (1996) Cerca con Google

46. D Bose, “Modeling of a helicon plasma source”, IEEE Trans Plasma Science, 31, 4, pp 464, (2003) Cerca con Google

47. D Bose, “Modeling of magnetic field profile effects in a helicon source”, Plasma Source Sci Tech, 13, pp553, (2004) Cerca con Google

48. R L Kinder, “Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources”, Journal Vac Sc Technol A, 19, pp76, (2001) Cerca con Google

49. R L Kinder, “Noncollisional heating and electron energy distributions in magnetically enhanced inductively and helicon plasma sources”, Journal of Applied Physics, 90, 8, pp3699, (2001) Cerca con Google

50. C. Bohm, J. Perrin, “Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharges”, Rev. Sci. Instrum. 64 (1), pp31 (1993) Cerca con Google

51. Y. Sakay, I. Katsumata, Jpn. J. Appl. Phys. 24, pp337 (1985) Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record