Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Frasson, Martina (2007) Tirosin-chinasi Src: studi di regolazione/deregolazione in cellule normali e patologiche. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The Src family of protein kinases (SFKs), plays an important role in regulating the signal transduction by cell surface receptors to the cytoplasmic machinery. SFK enzymes are involved in cell grown, differentiation, migration and survival. SFK activity is regulated in the cell by the phosphorylation state of two tyrosine residues and by the binding of protein-partners, that stabilize the kinases in their active or inactive conformation. In normal cells, the SFK activity is tightly regulated and aberration in its mechanisms of regulation can lead to the constitutive activation, which contributes to several pathologies, including cancer.
The aim of this work was to gain deeper insight into the molecular mechanisms, which give rise to the aberrant regulation of SFK activity in two hematopoietic malignancies. Moreover, we analyzed the signaling of Src-kinase Fyn during muscle differentiation.
B cell chronic lymphocytic leukemia is a pathology caused by the accumulation of slowly proliferating cells with defective apoptosis. Our results indicate that, in these leukemics cells,the Src-kinase Lyn is present in its hyperactive conformation as an integral component of an aberrant cytosolic multiprotein complex of 600 kDa. In this complex, the kinase is physically associated with several proteins, such as Hsp90 through its catalytic domain, and HS1 and SHP-1L through its SH3 domain. Treatment of B-CLL cells with geldanamycin, an Hsp90 inhibitor, abrogates cytosolic Lyn activity, induces the kinase degradation and promotes cellular apoptosis.
In platelets of Philadelphia negative myeloproliferative diseases, that are clonal hematopoietc disordes, our data demonstrate that, at variance with normal cells, Src kinase is not phosphorylated at the C-terminus inactivating tyrosine Y527.
This pre-activated conformation of Src is responsible for the basal hypersensitivity of the pathological platelets, which are greatly activated by low thrombin concentrations, which are ineffective towards normal platelets.
In C2C12 murine muscle cells, we demostrated that, in the early phase of the differentiation process, the Src-kinase Fyn phosphorylates the chaperone Grp94 in the lumen of the endoplasmic reticulum. This event is associated with the release of Tyr-phosphorylated Grp94 from the endoplasmic reticulum chaperone protein Grp94 and the chaperone traslocation to the Golgi apparatus and plasma membrane, where Grp94 has been demonstrated to be required for myotube formation.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Donella, Arianna
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:2007
Anno di Pubblicazione:2007
Parole chiave (italiano / inglese):tirosin-chinasi, Src, regolazione, deregolazione
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Chimica Biologica
Codice ID:841
Depositato il:10 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Manning, G., White, D.B., Martinez, R., Hunter, T., Sudarsanam, S. 2002. The protein kinase complement of the human genome. Science. 298: 1912- 1934. Cerca con Google

2. Cowan-Jacob, S.W. 2005. Structural biology of protein tyrosine kinases. Cell. Mol. Life Sci. 63: 2608-2626. Cerca con Google

3. Rous. P.A. 1911. A sarcoma of the fowl transmissible by an agent separable from the tumour cells. J. Exp. Med. 13: 397-411. Cerca con Google

4. Brugge, J.S., Erikson, R.L. 1977. Identification of a transformationspecific antigen induced by an avian sarcoma virus. Nature. 269: 346-348. Cerca con Google

5. Stehelin, D., Varmus, H.E., Bishop, J.M., Vogt, P.K. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 260: 170-173. Cerca con Google

6. Brown, M.,Cooper, J.A. 1996. Regulation, substrates and function of Src. Biochim. Bioph. Acta. 1287: 121-149. Cerca con Google

7. Boggon, T.J., Eck, M.J. 2004. Structure and regulation of Src family kinases. Oncogene. 23: 7918-7927. Cerca con Google

8. Roskoski, R.J. 2004. Src protein tyrosine kinase structure and regulation. Biochem. Biophys. Res. Comm. 324: 1155-1164. Cerca con Google

9. Kaplan, K.B., Bibbins, K.B., Swedlow, J.R., Arnaud, M., Morgan, D.O., Varmus, H.E. 1994. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and its regulated by phosphorylation of tyrosine 527. EMBO J. 13: 4745-4756. Cerca con Google

10. Mohn, H., LeCabec, V., Fischer, S., Maridonneau-Parini, I. 1995. The Src family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and traslocates towards the phagosomes during cell activation. Biochem. J. 309: 657-665. Cerca con Google

11. Matsuda, D., Nakayama, Y., Horimoto, S., Kuga, T., Ikeda, K., Kasahara, K., Yamaguchi, N. 2006. Involvement of Golgi-associated Lyn tyrosine kinase in the traslocation of annexin II to the endoplasmic reticulum under oxidative stress. Exp. Cell Res. 312: 1205-1217. Cerca con Google

12. Salvi, M., Brunati, A.M., Bordin, L., La Rocca, N., Clari, G. Toninello, A. 2002. Characterization and location of Src-dependent tyrosine phosphorilation in rat brain mitochondria. Biochim. Bioph. Acta. 1589: 181-195. Cerca con Google

13. David-Pfeuty, T., Nouvian-Dooghe, Y. 1990. Immunolocalization of the cellular Src protein in interphase and mitotic NIH c-Src overexpresser cells. J. Cell Biol. 111: 3097-3116. Cerca con Google

14. Sigal, C.T., Zhou, W., Buser, C.A., McLaughlin, S., Resh. M.D. 1994. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc. Natl. Acad. Sci. U.S.A. 91: 12253-12257. Cerca con Google

15. Chong, Y.P., Mulhern, T.D., Cheng, H.C. 2005. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) - endogenous negative regulators of Src-family protein kinases. Growth Factors. 23: 233-244. Cerca con Google

16. Kmiecik, T.E., Shalloway, D., 1987. Activation and suppression of pp60csrc transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49: 65-73. Cerca con Google

17. Xu, W., Harrison, S.C., Eck, M.J. 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 385: 595-602. Cerca con Google

18. Sicheri, F., Moarefi, I., Kuriyan, J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature. 385: 602-9. Cerca con Google

19. Roskoski, R. 2005. Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Comm. 331: 1-14. Cerca con Google

20. Bjorge, J.D., Pang, A., Fujita, D.J. 2000. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275: 41439-41446. Cerca con Google

21. Huntington, N.D., Tarlinton, D.M., 2004. CD45: direct and indirect government of immune regulation. Immunol. Lett. 94: 167-174. Cerca con Google

22. Wang, D., Esselman, W.J., and Cole, P.A. 2002. Substrate conformational restriction and CD45-catalyzed dephosphorylation of tail tyrosinephosphorylated Src protein. J. Biol. Chem. 277: 40428-33. Cerca con Google

23. Poole, A.W., and Jones, M.L. 2005. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell. Signal. 17: 1323-32. Cerca con Google

24. Somani, A.K., Bignon, J.S., Mills, G.B., Siminovitch, K.A., Branch, D.R. 1997. Src kinase activity is regulated by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem. 272: 21113-21119. Cerca con Google

25. Zhang, S.Q., Yang, E., Kontaridis, M.I., Bivona, T.G., Wen, G., Araki, T., luo, J., Thompson, J.A., Schraven, B.L., Philips, M.R., Neel, B.G. Shp2 regulates Src family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell. 13: 341-355. Cerca con Google

26. Moarefi, I., LaFevre-Bernt, M., Sicheri, F., Huse, M., Lee, C.H., Kuriyan, J., Miller, W.T. 1997. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385: 650-3. Cerca con Google

27. Briggs, S.D., Sharkey, M., Stevenson, M., Smithgall, T.E. 1997. SH3- mediated Hck tyrosine kinase activation and fibroblast transformation by the Nef protein of HIV-1. J. Biol. Chem. 272: 17899-17902. Cerca con Google

28. Lerner, E.C., Smithgall, T.E. 2002. SH3-dependent stimulation of Srcfamily kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat. Struct. Biol. 9: 365-369. Cerca con Google

29. Porter, M., Schindler, T., Kuriyan, J., Miller, W.T. 2000. Reciprocal regulation of Hck activity by phosphorylation of Tyr(527) and Tyr(416). Effect of introducing a high affinity intramolecular SH2 ligand. J. Biol. Chem. 275: 2721-2726. Cerca con Google

30. Lerner, E.C., Trible, R.P., Schiavone, A.P., Hochrein, J.M., Engen, J.R., Smithgall, T.E. 2005. Activation of the Src family kinase Hck without SH3-linker release. J. Biol. Chem. 280: 40832-40837. Cerca con Google

31. Gonfloni, S., Williams, J.C., Hattula, K., Weijland, A., Wierenga, R.K., Superti-Furga, G. 1997. The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. EMBO J. 16: 7261-7271. Cerca con Google

32. Young, M.A., Gonfloni, S., Superfi-Furga, G., Roux, B., Kuriyan, J. 2001. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell. 105: 115-126. Cerca con Google

33. Caplan, A.J., Mandal, A.K., Theodoraki, M.A. 2007. Molecular chaperones and protein kinase quality control. Trends Cell Biol. 17: 87-92. Cerca con Google

34. Citri, A., Harari, D., Shohat, G., Ramakrishnan, P., Gan, J., Lavi, S., Eisenstein, M., Kimchi, A., Wallach, D., Pietrokovski, S., Yarden, Y. 2006. Hsp90 recognizes a common surface on client kinases. J. Biol. Chem. 281: 14361-14369. Cerca con Google

35. Xu, Y., Lindquist, S. 1993. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl. Acad. Sci. U.S.A. 90: 7074-7078. Cerca con Google

36. Scholz, G.M., Hartson, S.D., Cartledge, K., Volk, L., Matts, R.L., Dunn, A.R. 2001. The molecular chaperone Hsp90 is required for signal transduction by wild-type Hck and maintenance of its constitutively active counterpart. Cell. Growth Differ. 12:409-17. Cerca con Google

37. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., Burrows, F.J. 2003. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 425: 407-410. Cerca con Google

38. Chong, Y.P., Ia, K.K., Mulhern, T.D., and Cheng, H.C. 2005. Endogenous and synthetic inhibitors of the Src-family protein tyrosine kinases. Biochim. Bioph. Acta 1754: 210-20. Cerca con Google

39. Mustelin, T., Tasken, K., 2003. Positive and negative regulation of T-cell activation through kinases and phosphatises. Biochem. J. 371: 15-27. Cerca con Google

40. Baker, M., Gamble, J., Tooze, R., Higgins, D., Yang, F.T., O'Brien, P.C., Coleman, N., Pingel, S., Turner, M., Alexander, D.R. 2000. Developement of T-leukaemias in CD45 tyrosine phosphatise-deficient mutant Lck mice. EMBO J. 19: 4644-4654. Cerca con Google

41. Chiang, G.G., Sefton, B.M., 2001. Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatise. J. Biol. Chem. 19: 23173-23178. Cerca con Google

42. Chown, L.M., Jarvis, C., Hu, Q., Nye, S.H., Gervais, F.G., Veillette, A., Matis, L.A. 1994. Ntk: A Csk-related protein-tyrosine kinase expressed in brain and T-lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 91: 4975-4979. Cerca con Google

43. Klages, S., Adam, D., Class, K., Fargnoli, J., Bolen, J.B., Penhallow, R.C. 1994. Ctk: A protein-tyrosine kinase related to Csk that defines an enzyme family. Proc. Natl. Acad. Sci. U.S.A. 91: 2597-2601. Cerca con Google

44. Chong, Y.P., Mulhern, T.D., Zhu, H.J., Fujita, D.J., Biorge, J.D., Tantiongco, J.P., Sotirellis, N., Lio, D.S., Scholz, G. 2004. A novel noncatalytic mechanism employed by the C-terminal Src-homologous kinase to inibit Src-family kinase activity. J. Biol. Chem. 279: 20752-20766. Cerca con Google

45. Chong, Y.P.,Chan, A.S., Chan, K.C., Williamson, N.A., Lerner, E.C., Smithgall, T.E., Biorge, J.D., Fujita, D.J.,Purcell, A.W., Scholz, G., Mulhern, T.D., Cheng, H.C. 2006. C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J. Biol. Chem. 281: 32988-32999. Cerca con Google

46. Ingley, E. 2008. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim. Biophys. Acta. 1784: 56-65. Cerca con Google

47. Hanke, J.H., Gardner, J.P., Dow, R.L., Changelian, P.S., Brissette, W.H., Weringer, E.J., Pollock, B.A., Connelly, P.A. 1996. Discovery of a novel,potent, and Src family selective tyrosine kinase inhibitor. Study of Lck and Fyn T-dependent cell activation. J.Biol.Chem. 271: 695-701. Cerca con Google

48. Geahlen, R.L., Handley, M.D., Harrison, M.L. 2004. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene. 23: 8024-8032. Cerca con Google

49. Liu, Y., Bishop, A., Witucki, L., Kraybill, B., Shimizu, E., Tsien, J., ubersax, J., blethrow, J., Morgan, D.O., Shokat, K.M. 1999. Chem. Biol. 6: 671-678. Cerca con Google

50. Schindler, T., Sicheri, F., Pico, A., Gazit, A., Levitzki, A., Kuriyan, J. 1999. Crystal structure of Hck in complex with a Src family selective tyrosine kinase inhibitor. Mol. Cell. 3: 639-648. Cerca con Google

51. Zhu, X., Kim, J.L., Newcomb, J.R., Rose, P.E., Stover, D.R., Toledo, L.M., Zhao, H., Morgenstern, K.A. 1999. Structural analysis of the lymphocyte- specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Struct. Fold. Des. 7: 651-661. Cerca con Google

52. Blake, R.A., Broome, M.A., Liu, X., Wu, J., Gishizky, M., Sun, L., Courtneidge, S.A. 2000. SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20: 9018-9027. Cerca con Google

53. Bain, J., McLauchlan, H., Elliott, M., Cohen, P. 2003. Biochem. J. 371: 199-204. Cerca con Google

54. Machida, K., Mayer, B.J. 2005. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta. 1747: 1-25. Cerca con Google

55. Lawrence, D. S. 2005. Signaling protein inhibitors via the combinatorial modification of peptide scaffolds. Biochim. Biophys. Acta. 1754: 50-57. Cerca con Google

56. Kwiatkowska, K., Frey, J., Sobota, A. 2003. Phosphorylation of Fc gammaRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J. Cell Sci. 116: 537-550. Cerca con Google

57. Webb, Y., Hermida-Matsumoto, L., Resh, M.D. 2000. Inhibition of protein palmitoylation, raft localization and T-cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 270: 261-270. Cerca con Google

58. Liang, X., Lu, Y., Wilkes, M., Neubert, T.A.. Resh, M.D. 2004. The Nterminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion and spreading. J. Biol. Chem. 279: 8133-8139. Cerca con Google

59. Ruzzene, M., Brunati, A.M., Sarno, S., Marin, O., Donella-Deana, A., Pinna, L.A. 2000. Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1): implication of protein kinase CK2. Eur. J. Biochem. 267: 3065-3072. Cerca con Google

60. Gorza, L., Vitadello, M. 2000. Reduced amount of the glucose-regulated protein GRP94 in skeletal myoblasts results in loss of fusion competence. FASEB J. 14: 461-475. Cerca con Google

61. Rai, K.R, Sawitsky, A., Cronkite, E.P., Chanana, A.D., Levy, R.N., Pasternack, B.S. 1975. Clinical staging of chronic lymphocytic leukemia. Blood 46: 219-234. Cerca con Google

62. Tibaldi, E., Arrigoni, G., Brunati, A.M., James, P., Pinna, L.A. 2006. Analysis of a sub-proteome which co-purifies with and is phosphorylated by the Golgi casein kinase. Cell. Mol. Life Sci. 63: 378-389. Cerca con Google

63. Weng, Z., Thomas, S.M., Rickles, R.J., Taylor, J.A., Brauer, A.W., Seidel- Dugan, C., Michael, W.M., Dreyfuss, G., Brugge, J.S. 1994. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a fuction of SH3 domains. Mol. Cell. Biol. 14: 4509-4521. Cerca con Google

64. Brunati, A.M., Bordin, L., Clari, G., James, P., Quadroni, M., Baritono, E., Pinna, L.A., Donella-Deana, A. 2000. Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood 96: 1550-1557. Cerca con Google

65. Miyzaki, T., Neff, L., Tananka, S., Horne, W.C., Baron, R. 2003. Regulation of cytocrome c oxidase activity by c-Src in osteoclasts. J. Cell. Biol. 160: 709-718. Cerca con Google

66. Caligaris-Cappio, F., and Hamblin, T.J. 1999. B-cell chronic lymphocytic leukemia: a bird of a different feather. J. Clin. Oncol. 17: 399-408. Cerca con Google

67. Cheson B.D., Bennett J.M., Grever M. 1996. National Cancer Institutesponsored working group guidelines for CLL: revised guidelines for diagnosis and treatment. Blood 87: 4990-4997. Cerca con Google

68. Chiorazzi, N., Rai, R., Ferrarini, M. 2005. Chronic lymphocytic leukemia. N.Engl. J. Med. 8: 804-815. Cerca con Google

69. Guipaud, O., Deriano, L., Salin, H., Vallat, L., Sabatier, L., Merle-Béral, H., Delic, J. 2003. B-cell chronic lymphocytic leukaemia: a polymorphic family unified by genomic features. Lancet. 4: 506-14. Cerca con Google

70. Damle, R.N., Wasil, T., Fais, F., Ghiotto, F., Valetto, A., Allen, S.L., Buchbinder, A., Budman, D., Dittmar, K., Kolitz, J., Lichtman, S.M., Schulman, P., Vinciguerra, V.P., Rai, K.R., Ferrarini, M., Chiorazzi, N. 1999. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: 1840-7. Cerca con Google

71. Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. and Stevenson, F.K. 1999. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 15:1848-1854. Cerca con Google

72. Hamblin, T.J. 2007. Prognostic markers in chronic lymphocytic leukemia. Best Pract. Res. Clin. Haematol. 20: 455-468. Cerca con Google

73. Qian, D., Weiss A.T. 1997. T cell receptor signal transduction. Curr. Opin. Cell Biol. 9: 205-212. Cerca con Google

74. Wiestner, A., Rosenwald, A., Barry, T.S., Wright, G., Davis, R.E., Henrickson, S.E., Zhao, H., Ibbotson, R.E., Orchard, J.A., Davis, Z., Stetler- Stevenson, M., Raffeld, M., Arthur, D.C., Marti, G.E., Wilson, W.H., Hamblin, T.J., Oscier, D.G., Staudt, L.M. 2003. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 101: 4944-51. Cerca con Google

75. Crespo, M., Bosch, F., Villamor, N., Bellosillo, B., Colomer, D., Rozman, M., Marce, S., Lopez-Guillermo, A., Campo, E., Montserrat, E. 2003. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 348: 1764-75. Cerca con Google

76. Dameshek, W. 1967. Chronic lymphocytic leukemia - an accumulative disease of immunologically incompetent lymphocytes. Blood 29: 566-584. Cerca con Google

77. Chiorazzi, N. 2007. Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best Pract. Res. Clin. Haematol. 20: 399-413. Cerca con Google

78. Damle, R.N., Ghiotto, F., Valetto, A., Albesiano, E., Fais, F., Yan, X.J, Sison, C.P., Allen, S.L., Kolitz, J., Schulman, P., Vinciguerra, V.P., Budde, P., Frey, J., Rai, K.R., Ferrarini, M., Chiorazzi, N. 2002. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99: 4087-4093. Cerca con Google

79. Rosenwald, A., Alizadeh, A.A., Widhopf, G., Simon, R., Davis, R.E., Yu, X., Yang, L., Pickeral, O.K., Rassenti, L.Z., Powell, J., Botstein, D., Byrd, J.C., Grever, M.R., Cheson, B.D., Chiorazzi, N., Wilson, W.H., Kipps, T.J., Brown, P.O., Staudt, L.M. 2001. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194: 1639-1647. Cerca con Google

80. Schmid, C., Isaacson, P.G. 1994. Proliferation centres in B-cell malignant lymphoma, lymphocytic (CLL): an immunophenotypic study. Histopathology. 24: 455-451. Cerca con Google

81. Caligaris-Cappio, F. 2003. Role of the microenvironment in chronic lymphocytic leukemia. Br. J. Haematol. 123: 380-388. Cerca con Google

82. Pierce, S.K. 2002. Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2: 96-105. Cerca con Google

83. Wang, L.D, Clark, M.R. 2003. B-cell antigen-receptor signaling in lymphocyte development. Immunology. 110: 411-420. Cerca con Google

84. Kipps, T.J. 2007. The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Pract. Res. Clin. Haematol. 20: 415-424. Cerca con Google

85. Semichon, M., Merle-Béral, H., Lang, V., Bismuth, G. 1997. Normal Syk protein level but abnormal tyrosine phosphorylation in B-CLL. Leukemia. 100: 1921-1928. Cerca con Google

86. Gobessi, S., Laurenti, L., Longo, P.G., Sica, S., Leone, G., Efremov, D.G. 2007. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood. 109: 2032-2039. Cerca con Google

87. Contri, A., Brunati, A.M., Trentin, L., Cabrelle, A., Miorin, M., Cesaro, L., Pinna, L.A., Zambello, R., Semenzato, G., Donella-Deana, A. 2005. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J. Clin. Invest. 115: 369-378. Cerca con Google

88. Hunter, S., Burton, E.A., Wu, S.C., Anderson, S.M. 1999. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 2097-106. Cerca con Google

89. Takemoto, Y., Sato, M., Furuta, M., Hashimoto, Y. 1996. Distinct binding patterns of HS1 to the Src SH2 and SH3 domains reflect possible mechanisms of recruitment and activation of downstream molecules. Int. Immunol. 8: 1699-1705. Cerca con Google

90. Jiang, T., Qiu, Y. 2003. Interaction between Src and a C-terminal prolinerich motif of Akt is required for Akt activation. J. Biol. Chem. 278:15789- 15793. Cerca con Google

91. Jin, Y.J., Yu, C.L., Burakoff, S.J. 1999. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J. Biol. Chem. 274: 28301-28307. Cerca con Google

92. Schreiner, S.J., Schiavone, A.P., Smithgall, T.E. 2002. Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J. Biol. Chem. 277: 45680-45687. Cerca con Google

93. Ruzzene, M., Brunati, A.M., Sarno, S., Donella-Deana, A., and Pinna, L.A. 1999. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett. 461: 32-6. Cerca con Google

94. Brunati, A.M., Deana, R., Folda, A., Massimino, M. L., Marin, O., Ledro, S., Pinna, L.A., Donella-Deana, A. 2005. Thrombin-induced tyrosine phosphorylation of HS1 in human platelets is sequentially catalyzed by Syk and Lyn tyrosine kinases and associated with the cellular migration of the protein. J. Biol. Chem. 280: 21029-21035. Cerca con Google

95. Hao, J.J., Carey, G.B., Zhan, X. 2004. Syk-mediated Tyrosine Phosphorylation Is Required for the Association of Hematopoietic Lineage Cellspecific Protein 1 with Lipid Rafts and B Cell Antigen Receptor Signalosome Complex. J Biol Chem. 279: 33413-33420 Cerca con Google

96. Yamanashi, Y., Fukuda, T., Nishizumi, H., Inazu, T., Higashi, K., Kitamura, D., Ishida, T., Yamamura, H., Watanabe, T., Yamamoto, T. 1997. Role of tyrosine phosphorylation of HS1 in B cell antigen receptormediated apoptosis. J. Exp. Med. 185: 1387-92. Cerca con Google

97. Scielzo, C., Ghia, P., Conti, A., Bachi, A., Guida, G., Geuna, M., Alessio, M., Caligaris-Cappio, F. 2005. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses. J. Clin. Invest. 115: 1644-1650. Cerca con Google

98. Kamal, A., Boehm, M.F., Burrows, F.J. 2004. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10: 283-290. Cerca con Google

99. Fenteany, G., Schreiber, S.L. 1998. Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273: 8545-8548. Cerca con Google

100. Jones, D.T., Addison, E., North, J.M., Lowdell, M.W., Hoffbrand, A.V., Mehta, A.B., Ganeshaguru, K., Folarin, N.I., Wickremasinghe, R.G. 2004. Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs. Blood. 103: 1855-1861. Cerca con Google

101. Giannini, A., Bijlmarkers, M.J. 2004. Ragulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol. Cell. Biol. 24: 5667-5676. Cerca con Google

102. Koga, F., Xu, W., Karpova, T.S., McNally, J.G., Baron, R., Neckers, L. 2006. Hsp90 inhibition transiently activates Src kinase and promotes Srcdependent Akt and Erk activation. Proc. Natl. Acad. Sci. U.S.A. 103: 11318-11322. Cerca con Google

103. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., Burrows, F.J. 2003. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 425: 407-410. Cerca con Google

104. Castro, J.E., Prada, C.E., Loria, O., Kamal, A., Chen, L., Burrows, F.J., Kipps, T.J. 2005. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood. 106: 2506-2512. Cerca con Google

105. Delhommeau, F., Pisani, D.F., James, C., Casadevall, N., Constantinescu, S., Vainchenker, W. 2006. Cell. Mol. Life Sci. 63: 2939-2953. Cerca con Google

106. Levine, R.L., Pardanani, A., Tefferi, A., Gilliland, D.G. 2007. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disordes. Nature 7: 673-683. Cerca con Google

107. Vardiman, J.W., Harris, N.L., Brunning, R.D. 2002. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292-2302. Cerca con Google

108. Spivak, J.L. 2004. The chronic myeloproliferative disordes: clonality and clinical heterogeneity. Semin. Hematol. 41: 1-5. Cerca con Google

109. Adamson, J.W., Fialkow, P.J., Murphy, S., Prchal, J.F., Steinmann, L. 1976. Polycythemia vera: stemm-cell and probable clonal origin of the disease. N. Engl. J. Med. 295:913-916. Cerca con Google

110. Ferraris, A.M., Mangerini, R., Racchi, O., Rapezzi, D., Rolfo, M., Casiaro, S. et al. 1999. Heterogeneity of clonal developement in chronic myeloproliferative disordes. Am. J. Hematol. 60: 158-160. Cerca con Google

111. El Kasser, N., Hetet, G., Briere, J., Grandchamp, B. 1997. Clonality analysis of hematopoiesis in essential thrombocytemia: Advantages of studying T lymphocytes and platelets. Blood 89: 128-134. Cerca con Google

112. Nowell, P.C., Hungerfoed, D.A. 1960. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 25: 85-109. Cerca con Google

113. Bartram, C.R., de Klein, A., Hagemeijer, A., van Agthoven, T., Geurts van Kesser, A., Bootsma, D., Grosveld, G., Fergunson-Smith, M.A., Davies, T., Stone, M. et al 1983. Translocation of c-Abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature 306: 277-280. Cerca con Google

114. Prchal, J.F., Axelrad, A.A. 1974. Letter: bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290: 1382 Cerca con Google

115. Mittelman, M., Gardyn, J., Carmel, M., Malovani, H., Barak, Y., Nir, U. 1996. Analysis of the erythropoietin receptor gene in patients withmyeloproliferative and myelodysplastic syndromes. Leuk. Res. 20: 459-466. Cerca con Google

116. Dai, C.H., Krantz, S.B., Dessypris, E.N., Means, R.T. Jr, Horn, S.T., Gilbert, H.S. 1992. Polycythemia vera, II: hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryiocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80: 891-899. Cerca con Google

117. Correa, P.N., Eskinazi, D., Axelrad, A.A., 1994. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-freemedium. Blood 83: 99- 112. Cerca con Google

118. Ihle, J.N., 1995. Cytokine receptor signaling. Nature 377: 591-594. Cerca con Google

119. Rane, S.G., Premkumar Reddy, E. 2002. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21: 3334-3358. Cerca con Google

120. Lucet, I.S., Fantino, E., Styles, M., Bamert, R., Patel, O., Broughton, S.E., Walter, M., Burns, C.J., Treutlein, H., Wilks, A.F., Rossjohn, J. 2006. The structural basis of Janus kinase 2 inhibition by a potent and specific pan- Janus kinase inhibitor. Blood 107: 176-183. Cerca con Google

121. Berchtold, S., Moriggl, R., Gouilleux, F., Silvennoinen, O., Beisenherz, C., Pfitzner, E., Wissler, M., Stocklin, E., Groner B. 1997. Cytokine receptorindependent, constitutively active variants of STAT5. J. Biol. Chem. 272: 30237-30243. Cerca con Google

122. Saharinen, P., Vihinen, M., Silvennoinen, O. 2003. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell. 14: 1448-1459. Cerca con Google

123. Luo, H., Rose, P., Barber, D., Hanratty, W.P., Lee, S., Roberts, T.M., D'Andrea, A.D., Dearolf, C.R. 1997. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell. Biol. 17: 1562-1571. Cerca con Google

124. Argetsinger, L.S., Kouadio, J.L., Steen, H., Stensballe, A., Jensen, O.N., Carter-Su, C. 2004. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell. Biol. 24: 4955-4967. Cerca con Google

125. Wormald, S., Hilton, D.J. 2004. Inhibitors of cytokine signal transduction. J. Biol. Chem. 279: 821-824. Cerca con Google

126. Velazquez, L., Fellous, M., Stark, G.R., Pellegrini, S. 1992. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70: 313-322. Cerca con Google

127. Levine, R.L., Wadleigh, M., Cools, J., Ebert, B.L., Wernig, G., Huntly, B.J., Boggon, T.J., Wlodarska, I., Clark, J.J., Moore, S., Adelsperger, J., Koo, S., Lee, J.C., Gabriel, S., Mercher, T., D'Andrea, A., Frohling, S., Dohner, K., Marynen, P., Vandenberghe, P., Mesa, R.A., Tefferi, A., Griffin, J.D., Eck. M.J., Sellers, W.R., Meyerson, M., Golub, T.R., Lee, S.J., Gilliland, D.G. 2005. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387-397. Cerca con Google

128. James, C., Ugo, V., Le Couedic, J.P., Staerk, J., Delhommeau, F., Lacout, C., Garcon, L., Raslova, H., Berger, R., Bennaceur-Griscelli, A., Villeval, J.L., Constantinescu, S.N., Casadevall, N., Vainchenker, W. 2005. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144-1148. Cerca con Google

129. Baxter, E.J., Scott, L.M., Campbell, P.J., East, C., Fourouclas, N., Swanton, S., Vassiliou, G.S., Bench, A.J., Boyd, E.M., Curtin, N., Scott M.A., Erber, W.N., Green, A.R. 2005. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054-1061. Cerca con Google

130. Kralovics, R., Passamonti, F., Buser, A.S., Teo, S.S., Tiedt, R., Passweg, J.R., Tichelli, A., Cazzola, M., Skoda, R.C. 2005. A gain of function mutation of Jak2 in patients with myeloproliferative disorders. N. Engl. J. Med. 352: 1779-1790. Cerca con Google

131. Zhao, R., Xing, S., Li, Z., Fu, X., Li, Q., Krantz, S.B., Zhao, Z.J. 2005. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem. 280: 22788-22792. Cerca con Google

132. Jamieson, C.H., Gotlib, J., Durocher, J.A., Chao, M.P., Mariappan, M.R., Lay, M., Jones, C., Zehnder, J.L., Lilleberg, S.L., Weissman, I.L. 2006. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycitemia vera and predisposes toward erytroid differentiation. Proc. Natl. Acad. Sci. U.S.A. 103: 6224-6229. Cerca con Google

133. Huntly, B.J., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I.R., Akashi, K., Gilliland, D.G. 2004. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6: 587-596. Cerca con Google

134. Kralovics, R., Guan, Y., Prchal, J.T. 2002. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycytemia vera. Exp. Hematol. 30: 229-236. Cerca con Google

135. Scott, L.M., Scott, M.A., Campbell, P.J., Green, A.R. 2006. Progenitors homozygous for the V617F JAK2 mutation occur in most patients with polycytemia vera, but not essential thrombocythemia. Blood 108: 2435- 2437. Cerca con Google

136. Levine, R.L., Loriaux, M., Huntly, B.J., Loh, M.L., Beran, M., Stoffregen, E., Berger, R., Clark, J.J., Willis, S.G., Nguyen, K.T., Flores, N.J., Estey, E., Gattermann, N., Armstrong, S., Look, A.T., Griffin, J.D., Bernard, O.A., Heinrich, M.C., Gilliland, D.G., Druker, B., Deininger, M.W. 2005. The JAK2V617F activating mutation occur in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 106: 3377-3379. Cerca con Google

137. Lu, X., Levine, R., Tong, W., Wernig, G., Pikman, Y., Zarnegar, S., Gilliland, D.G., Lodish, H. 2005. Expression of a homodimeric type I cytokine receptor in required for JAK2V617F-mediated transformation. Proc. Natl. Acad. Sci.U.S.A. 102: 18962-18967. Cerca con Google

138. Levine, R.L., Belisle, C., Wadleigh, M., Zahrieh, D., Lee, S., Chagnon, P., Gilliland, D.G., Busque, L. 2006. X-inactivation based clonality analysis and quantitative JAK2V617F assessment reveals a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F negative ET and MMM patients with clonal hematopoiesis. Blood 107: 4039-4041. Cerca con Google

139. Scott, L.M., Tong, W., Levine, R.L., Scott, M.A., Beer, P.A., Stratton, M.R., Futreal, P.A., Erber, W.N., McMullin, M.F., Harrison, C.N., Warren, A.J., Gilliland, D.G., Lodish, H.F., Green, A.R. 2007. JAK2 exon 12 mutations in polycytemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356: 459-468. Cerca con Google

140. Pikman, Y., Lee, B.H., Mercher, T., McDowell, E., Ebert, B.L., Gozo, M., Cuker, A., Wernig, G., Moore, S., Galinsky, I., DeAngelo, D.J., Clark, J.J., Lee, S.J., Golub, T.R., Wadleigh, M., Gilliland, D.G., Levine, R.L. 2006. MPLW515L is a novel activating mutation in myelofibrosis with myeloid metaplasia. Plos Med. 3: 270. Cerca con Google

141. Ding, J., Komatsu, H., Wakita, A., Kato-Uranishi, M., Ito, M., Satoh, A., Tsuboi, K., Nitta, M., Miyazaki, H., Iida, S., Ueda, R. 2004. Familial essential thrombocytemia associated with a dominant-positive activanting mutation of the c-MPL gene, wich encodes for the receptor for thrombopoietin. Blood 103: 4198-4200. Cerca con Google

142. Lages, B., Weiss, H.J., 1999. Secreted dense granule adenine nucleotides promote calcium influx and the maintenance of elevated cytosolic calcium levels in stimulated human platelets. Thromb. Haemost. 81: 286-292. Cerca con Google

143. Weyrich, A.S., Zimmerman, G.A. 2004. Platelets: signaling cells in the immune continuum. Trends Immunol. 25: 489-495. Cerca con Google

144. Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T.A., Hollenberg, M.D. 2005. Proteinase- Activated Receptors: Transducers of Proteinase-Mediated Signaling in Inflammation and Immune Response. Endocr. Rev. 26: 1-43. Cerca con Google

145. Daub, H., Weiss, F.U., Wallasch, C., Ullrich, A. 1996. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557-560. Cerca con Google

146. Kessler, C.M. 2004. Propensity for hemorrhage and thrombosis in chronic myeloproliferative disordes. Sem. Hematol. 41: 10-14. Cerca con Google

147. Harrison, C.N. 2005. Platelets and Thrombosis in Myeloproliferative Diseases. Hematology Am Soc Hematol Educ Program. 409-415. Cerca con Google

148. Michielis, J.J., Berneman, Z., Schroyens, W., Finazzi, G., Buddle, U., van Vliet, H. 2006. The paradox of platelets activation and impaired function: platelets - von Willebrand factor interactions, and the etiology of thrombotic and hemorrhagic manifestations in essential thrombocytemia and polycytemia vera. Semin. Thromb. Hemost. 32: 589-604. Cerca con Google

149. Kaywin, P., McDonough, M., Insel, P.A., Shattil, S.J. 1978. Platelet function in essential thrombocythemia. Decreased epinephrine responsiveness associated with a deficiency of platelet alpha-adrenergic receptors. N. Engl. J. Med. 299: 505-509. Cerca con Google

150. Ushikubi, F., Ishibashi, T., Narumiya, S., Okuma, M. 1992. Analysis of the defective signal transduction mechanism through the platelet thromboxane A2 receptor in a patient with polycythemia vera. Thromb. Haemost. 67: 144-146. Cerca con Google

151. Moliterno, A.R., Hankins, W.D., Spivak, J.L. 1998. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med. 338: 572-580. Cerca con Google

152. Buday, L., Downward, J. 2007. Roles of cortactin in tumor pathogenesis. Biochim. Bioph. Acta 1775: 263-273. Cerca con Google

153. Xu, M.J., Sui, X., Zhao, R., Dai, C., Krantz, S.B., Zhao, Z.J. 2003. PTPMEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood 102: 4354- 4360. Cerca con Google

154. Tsui, H.W., Siminovitch, K.A., De Souza, L., Tsui, F.W. 1993. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4: 124-129. Cerca con Google

155. Asimakopoulos, F.A., Hinshelwood, S., Gilbert, J.G., Delibrias, C.C., Gottgens, B., Fearon, D.T., Green, A.R. 1997. The gene encoding hematopoietic cell phosphatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene 14: 1215-1222. Cerca con Google

156. Wickrema, A., Chen, F., Namin, F., Yi, T., Ahmad, S., Uddin, S., Chen, Y.H., Feldman, L., Stock, W., Hoffman, R., Platanias, L.C. 1999. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol. 27: 1124-1132. Cerca con Google

157. Heller, P.G., Lev, P.R., Salim, J.P., Kornblihtt, L.I., Goette, N.P., Chazarreta, C.D., Glembotsky, A.C., Vassallu, P.S., Marta, R.F., molinas, F.C. 2006. JAK2V617F mutation in platelets from essential thrombocytemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status. Eur. J. Haematol. 77: 210-216. Cerca con Google

158. Walsh, K., Perlman, H. 1997. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7: 597-602. Cerca con Google

159. Olson, E.N., Klein, W.H. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes & Dev. 8: 1-8. Cerca con Google

160. Davis, R.L., Cheng, P., Lassar, A.B., Weintraub, H. 1990. The MyoD DNA binding domain contains a recognition code for muscle specific gene activation. Cell 60: 733-746. Cerca con Google

161. Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks and thresholds. Cell 75: 1241-1244. Cerca con Google

162. Buckingham, M. 1994. Molecular biology of muscle. Cell 78: 15-21. Cerca con Google

163. Kitzmann, M., Fernandez, A. 2001. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell. Mol. Life Sci. 58: 571-579. Cerca con Google

164. Olson, E.N., Perry, M., Schulz, R.A. 1995. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev. Biol. 172: 2-14. Cerca con Google

165. Black, B.L., Molkentin, J.D., Olson, E.N. 1998. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol. Cell. Biol. 18:69-77. Cerca con Google

166. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L., Weintraub, H. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49-59. Cerca con Google

167. Norton, J.D., Deed, R.W., Craggs, G., Sablitzky, F.1998. Id helix-loophelix proteins in cell growth and differentiation. Trends Cell Biol. 8: 58- 65. Cerca con Google

168. Taya, Y. 1997. RB kinases and RB-binding proteins: new points of view. Trends Biochem. Sci. 22: 14-17. Cerca con Google

169. Chelappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M., Nevins, J.R. 1991. The E2F transcription factor is a cellular target of the RB protein. Cell 65: 1053-1061. Cerca con Google

170. Helin, K. 1998. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8: 28-35. Cerca con Google

171. Mittnacht, S. 1998. Control of pRb phosphorylation. Curr. Opin. Genet. Dev. 8: 21-27. Cerca con Google

172. Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell 79: 551-555. Cerca con Google

173. Quelle, D., Ashmun, R., Shirtleff, S., Kato, J. 1993. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7: 1559-1571. Cerca con Google

174. Guo, K., Wang, J., Andres, V., Smith, R.C., Walsh, K. 1995. MyoDinduced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol. Cell. Biol. 15: 3823-3829. Cerca con Google

175. Zhang, H., Hannon, G.J., Beach, D. 1994. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 8: 1750-1758. Cerca con Google

176. Reynaud, E.G., Guiller, M., Leibovitch, M.P., Leibovitch, S.A. 2000. Dimerization of the amino-terminal domain of p57kip2 inhibits cyclin D1- cdk4 kinase activity. Oncogene 19: 1147-1152. Cerca con Google

177. Pavlath, G.K., Horsley, V. 2003. Cell fusion in skeletal muscle. Central role of NFATC2 in regulating muscle cell size. Cell Cycle 2: 420-423. Cerca con Google

178. Abmayr, S.M., Balagopalan, L., Galletta, B.J., Hong, S.J. 2003. Cell and molecular biology of myoblast fusion. Int. Rev. Cytol. 225: 33-89. Cerca con Google

179. Yun, B.G., Matts, R.L. 2005. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp. Cell. Res. 307: 212-223. Cerca con Google

180. Rosoff, W.J., Swope, S.L. 2002. Role for cellular Src kinase in myoblast proliferation. J. Cell. Physiol. 193: 328-339. Cerca con Google

181. Laprise, P., Poirier, E.M., Vezina, A., Rivard, N., Vachon, P.H. 2002. Merosin-integrin promotion of skeletal myofiber cell survival: differentiation state-distinct involvement of p60Fyn tyrosine kinase and p38alfa¡ stressactivated MAP kinase. J. Cell. Physiol. 191: 69-81. Cerca con Google

182. Ni, M., Lee, A.S., 2007. ER chaperones in mammalian development and human diseases. FEBS Lett. 581: 3641-3651. Cerca con Google

183. Lee, A.S., 2001. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26: 504-510. Cerca con Google

184. Asquith, K.L., Baleato, R.M., McLaughlin, E.A., Nixon, B., Aitken, R.J. 2004. Tyrosine phosphorylation activates surface cheperones facilitating sperm-zona recognition. J. Cell Sci. 117: 3645-3657. Cerca con Google

185. Knowlton, A.A., Grenier, M., Kirchhoff, S.R., Salfity, M. 2000. Phosphorylation at tyrosine-524 influences nuclear accumulation of HSP72 with heat stress. Am. J. Physiol. Heart Circ. Physiol. 278: H2143-H2149. Cerca con Google

186. Kang, H.S,. Welch, W.J., 1991. Characterization and purification of the 94-kDa glucose-regulated protein. J. Biol. Chem. 266: 5643-5649. Cerca con Google

187. Reddy, R.K., Lu, J., Lee, A.S., 1999. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274: 28476-28483. Cerca con Google

188. Meunier, L., Usherwood, Y.K., Chung, K.T., Hendershot, L.M. 2002. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell. 13: 4456- 4469. Cerca con Google

189. Srivastava, P., 2002. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20: 395-425. Cerca con Google

190. Altmeyer, A., Maki, R.G., Feldweg, A.M., Heike, M., Protopopov, V.P., Masur, S.K., Srivastava, P.K. 1996. Tumor-specific cell surface expression of the -KDEL containing endoplasmic reticular heat shock protein gp96. Int. J. Cancer 6: 9340-9349. Cerca con Google

191. Lambert, C., Prange, R. 2003. Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc. Natl. Acad. Sci. U.S.A. 100: 5199-5204. Cerca con Google

192. Itoh, S., Lemay, S., Osawa, M., Che, W., Duan, Y., Tompkins, A., Brookes, P.S., Sheu, S.S., Abe, J. 2005. Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells. J. Biol. Chem. 280: 26383-26396. Cerca con Google

193. Wiest, D.L., Bhandoola, A., Punt, J., Kreibich, G., McKean, D., Singer, A. 1997. Incomplete endoplasmic reticulum (ER) retention in immature thymocyte as revealed by surface expression of "ER-resident" molecular chaperones. Proc. Natl. Acad. Sci. U.S.A. 94: 1884-1889. Cerca con Google

194. Wiest, D.L., Burgess, W.H., Punt, J., McKean, D.,Kearse, K.P., Singer, A. 1995. The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-indipendent CD3 complexes. EMBO J. 14: 3425-3433. Cerca con Google

195. White, T.K., Zhu, Q., Tanzer, M.L. 1995. Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J. Biol. Chem. 270: 15926-15929. Cerca con Google

196. Essex, D.W., Chen, K., Swiatkowska, M. 1995. Localization of protein disulfide isomerase to the external surface of the platelets plasma membrane. Blood 86: 2168-2173. Cerca con Google

197. Goicoechea, S., Orr, A.W., Pallero, M.A., Eggleton, P., Murphy-Ullrich, J.E. 2000. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J. Biol. Chem. 275: 36358- 36368. Cerca con Google

198. Okazaki, Y., Ohno, H., Takase, K., Ochiai, T., Saito, T. 2000. Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J. Biol. Chem. 275: 35751-35758. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record