Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Giocoli, Carlo (2008) Hierarchical Clustering: Structure Formation in the Universe. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

In order to understand galaxy formation models it is necessary to have a reasonably clear idea of dark matter clustering. This because, in the standard cosmological scenario, galaxies are thought to reside in larger dark matter haloes, extending beyond the galaxy observable radius. Haloes form as consequence of gravitational instability of dark matter density perturbations, and collapse at a density about two hundred times that of the surrounding environment. Clustering
happens at allmasses at any time.
Until now no direct observations of the existence of these darkmatter haloes have been done; however, their presence may be indirectly tested by their gravitational influence. For example, galaxies in groups have a velocity dispersion much higher than that caused only by visiblematter. Astronomers thus assumed the existence of large amounts of dark matter, an hypothesis later found consistent with other independent observations like gravitational lensing, galaxy clustering on very large scales and anisotropies in the cosmic microwave background radiation.
In particle physics, supersymmetry predicts the existence of a particle named neutralino (Jungman et al., 1996; Bertone et al., 2005), today regarded as the most likely candidate for the darkmatter. This particle is heavy and slow-moving (mass ? 100 Gev), so that dark matter density fluctuations can collapse for any mass larger than 10?6M? (Hofmann et al., 2001; Green et al., 2004, 2005). This places amass cut-off on the smallest darkmatter haloes that can collapse. Neutralino
can also annihilatewith its anti-particle, generating ?-ray photons (Bergström, 2000; Bertone et al., 2005), with annihilation rates growing as the square of the density. Due to this process, it is expected that future ?-ray telescopes (like
GLAST, Morselli (1997)) should be able to detect some excess in the ?-ray background signal from the center of theMilky-Way halo and from its satellites. This would be the first time of an in-”direct” detection of dark matter.
In this PhD dissertation we study the evolution of dark matter haloes, using two complementary approaches: numerical simulations and analytical modeling (through the extended Press & Schechter formalism). The work is organized as follows. In the first three chapters we describe and review some properties of the early universe and the theory underlying models of dark matter clustering. We discuss how density perturbations evolve and formdarkmatter haloes inside
which baryons can shock and cool, eventually form stars and galaxies. We also show how the number density of haloes can be estimated at any redshift using the excursion set approach, both for the spherical and ellipsoidal collapsemodels. These model mass functions are compared with those from numerical simulations in Chapter 4. We show that the ellipsoidal collapse model (Sheth et al., 2001; Sheth and Tormen, 2002) perfectly reproduces the global mass function in N-Body simulations, while, on the other hand, the spherical collapse model (Press and Schechter, 1974; Lacey and Cole, 1993; Bond et al., 1991) overpredicts the aboundace of smallmasses and underpredicts that of large ones.
Dark matter clustering is hierarchical, i.e. small systems collapse first (at higher redshift), and subsequentlymerge together forming larger haloes. In this scenario, if we define a formation time as the earliest redshift when an halo assembles
half of its present-daymass, small haloes formfirst and large ones form later. The top of the hierarchical pyramid is occupied by galaxy clusters, which represent the largest virialized structures in the universe.
Another important quantity describing dark matter clustering is any conditional mass function. One example is the probability that an halo observed at redshift z1, will be part of a larger halo at z0 < z1. This distribution is also called progenitor mass function; theoretical predictions and N-Body simulations are
compared at the end of Chapter 4. There we show that, also in this case, the ellipsoidal collapse prediction well reproduces the distribution found in numerical simulations atmost redshifts.
In Chapter 5 we will discuss how it is possible to estimate the formation time distribution from the conditional mass function, and present a new formula, based on the ellipsoidal collapse, that better fits the formation redshift distributionmeasured
in N-Body simulations.
The progenitors accreted along themerging history tree of a halo can survive today in their host system, and constitute the so-called substructure population (Ghigna et al., 1998; Tormen et al., 2004; Gao et al., 2004; De Lucia et al., 2004; van den Bosch et al., 2005). In Chapter 6 we discuss how it is possible to analytically estimate this population using the conditionalmass function, assuming no tidal stripping andmerging among substructures. By extrapolating the power
spectrumof density perturbations down to the typical neutralino Jeansmass, we estimate the substructure population in aMilky-Way size halo, both for a spherical and ellipsoidal collapse model. Modeling the neutralino annihilation rate, we then estimate the ?-ray emission from this population and its detectability with a GLAST-like telescope.
In Chapter 7 we study the growth of the main progenitor halo, and the mass it accretes along itsmerging history tree using numerical simulations. Themass function of accreted haloes, called “unevolved subhalomass function”, turns out to be independent of the final host halo mass, both before and after its formation redshift. The accreted haloes, called satellites, are then followed snapshot by snapshot in order to compute their mass loss rate. This allow us to interpret the present-day subhalo population in term of the mass loss from the accreted
satellites. Since smaller hosts form earlier than larger ones, the former will accrete satellites at earlier times; these satellites will therefore spend a longer time inside the host halo and lose a larger fraction of their initialmass. This translates the (mass-independent) unevolved subhalo population in a present-day subhalo distribution that depends on the host halo mass: at fixed subhalo-to-host halo mass: msb/M0, more massive hosts contain more subhaloes than smaller hosts do.
Subhaloes defined in this way may contain other subhaloes within themselves (Diemand et al., 2007b; Li and Helmi, 2007), which were accreted when they were still isolated systems. In Chapter 8 we show how subhaloes within subhaloes can be identified following all branches of themerging history tree of
an host halo. We also compare our definition of substructures with that of other authors (Gao et al., 2004), finding very good agreement.
In the last chapter of this dissertation, we show how the merging history tree of a halo can be followed using Monte Carlo realizations. The partition code, on which the tree is based, is very fast, time step independent, and provides results
in excellent agreement with the spherical collapse conditional mass function down to any required mass resolution (Sheth and Lemson, 1999). The tree has been run following the main branch and resolving all satellites down to the typical neutralino Jeans mass, in order to study the Milky-Way subhalo population.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Tormen, Giuseppe and Sheth, Ravi, K.
Ph.D. course:Ciclo 20 > Corsi per il 20simo ciclo > ASTRONOMIA
Data di deposito della tesi:30 January 2008
Anno di Pubblicazione:30 January 2008
Key Words:Cosmology - N-Body simulations - Monte Carlo - Hierarchical Clustering - Galaxies - Haloes - Subhaloes - Substructures
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Astronomia
Codice ID:850
Depositato il:19 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abell, G. O. 1958. The Distribution of Rich Clusters of Galaxies. ApJS 3, 211–+. Cerca con Google

2. Abell, G. O., H. G. Corwin, Jr., and R. P. Olowin 1989. A catalog of rich clusters of galaxies. ApJS 70, 1–138. Cerca con Google

3. Aharonian, F. A., W. Hofmann, A. K. Konopelko, and H. J. Völk 1997. The potential of ground based arrays of imaging atmospheric Cherenkov telescopes. I. Determination of shower parameters. Astroparticle Physics 6, 343–368. Cerca con Google

4. Appelquist, T., H.-C. Cheng, and B. A. Dobrescu 2001. Bounds on universal extra dimensions. Physical Review D 64(3), 035002–+. Cerca con Google

5. Applegate, J. H., C. J. Hogan, and R. J. Scherrer 1987. Cosmological baryon diffusion and nucleosynthesis. Physical Review D 35, 1151–1160. Cerca con Google

6. Armandroff, T. E., E. W. Olszewski, and C. Pryor 1995. The Mass-To-Light Ratios of theDraco andUrsaMinorDwarf SpheroidalGalaxies.I. Radial Velocities fromMultifiber Spectroscopy. Aj 110, 2131–+. Cerca con Google

7. Astier, P., J. Guy, N. Regnault, R. Pain, E. Aubourg, D. Balam, S. Basa, R. G. Carlberg, S. Fabbro, D. Fouchez, I. M. Hook, D. A. Howell, H. Lafoux, J. D. Neill, N. Palanque-Delabrouille, K. Perrett, C. J. Pritchet, J. Rich, M. Sullivan, R. Taillet, G. Aldering, P. Antilogus, V. Arsenijevic, C. Balland, S. Baumont, J. Bronder, H. Courtois, R. S. Ellis, M. Filiol, A. C. Gonçalves, A. Goobar, D. Guide, Cerca con Google

8. D. Hardin, V. Lusset, C. Lidman, R.McMahon,M.Mouchet, A.Mourao, S. Perlmutter, P. Ripoche, C. Tao, and N.Walton 2006. The Supernova Legacy Survey: measurement of ­M, ­? and w fromthe first year data set. A&A 447, 31–48. Cerca con Google

9. Avila-Reese, V., P. Colín, O. Valenzuela, E. D’Onghia, and C. Firmani 2001. Formation and Structure of Halos in a Warm Dark Matter Cosmology. ApJ 559, 516–530. Cerca con Google

10. Baer, H., and M. Brhlik 1998. Neutralino dark matter in minimal supergravity: Direct detection versus collider searches. Physical Review D 57, 567–577. Cerca con Google

11. Baixeras, C. 2003. The MAGIC telescope. Nuclear Physics B Proceedings Supplements 114, 247–252. Cerca con Google

12. Barrow, J. D., and J. Silk 1981. The growth of anisotropic structures in a Friedmann universe. ApJ 250, 432–449. Cerca con Google

13. Bartelmann, M., A. Huss, J. M. Colberg, A. Jenkins, and F. R. Pearce 1998. Arc statistics with realistic cluster potentials. IV. Clusters in different cosmologies. A&A 330, 1–9. Cerca con Google

14. Becciani, U.,M. Comparato, A. Costa, C.Gheller, and B. Larsson 2006. VisiVO: an interoperable visualisation tool for VO data. The Virtual Observatory in Action: New Science, New Technology, and Next Generation Facilities, 26th meeting of the IAU, Special Session 3, 17-18, 21-22 August, 2006 in Prague, Czech Republic, SPS3, #53 3, –. Cerca con Google

15. Bennett, C. L., A. J. Banday, K. M. Gorski, G. Hinshaw, P. Jackson, P. Keegstra, A. Kogut, G. F. Smoot, D. T. Wilkinson, and E. L. Wright 1996. Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results. ApJL 464, L1+. Cerca con Google

16. Bennett, C. L., M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L. Wright, C. Barnes, M. R. Greason, R. S. Hill, E. Komatsu, M. R. Nolta, N. Odegard, H. V. Peiris, L. Verde, and J. L. Weiland 2003. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: PreliminaryMaps and Basic Results. ApJS 148, 1–27. Cerca con Google

17. Benson, A. J., C. G. Lacey, C.M. Baugh, S. Cole, and C. S. Frenk 2002. The effects of photoionization on galaxy formation - I. Model and results at z=0. MN- RAS 333, 156–176. Cerca con Google

18. Benson, A. J., C. G. Lacey, C. S. Frenk, C.M. Baugh, and S. Cole 2004. Heating of galactic discs by infalling satellites. MNRAS 351, 1215–1236. Cerca con Google

19. Berezinsky, V., A. Bottino, J. Ellis, N. Fornengo, G. Mignola, and S. Scopel 1996. Neutralino dark matter in supersymmetric models with non-universal scalar mass terms. Astroparticle Physics 5, 1–26. Cerca con Google

20. Berezinsky, V., V. Dokuchaev, and Y. Eroshenko 2003. Small-scale clumps in the galactic halo and darkmatter annihilation. Physical Review D 68(10), 103003– +. Cerca con Google

21. Bergström, L. 2000. Non-baryonic dark matter: observational evidence and detectionmethods. Reports of Progress in Physics 63, 793–841. Cerca con Google

22. Bergström, L., P. Ullio, and J. H. Buckley 1998. Observability of gamma rays from dark matter neutralino annihilations in the Milky Way halo. Astroparticle Physics 9, 137–162. Cerca con Google

23. Bertone,G. 2006. Prospects for detecting darkmatterwith neutrino telescopes in intermediatemass black hole scenarios. Physical Review D 73(10), 103519–+. Cerca con Google

24. Bertone, G., D. Hooper, and J. Silk 2005. Particle dark matter: evidence, candidates and constraints. Physical Report 405, 279–390. Cerca con Google

25. Bertone, G., and D.Merritt 2005. Time-dependentmodels for darkmatter at the galactic center. Physical Review D 72(10), 103502–+. Cerca con Google

26. Blasi, P., and R. K. Sheth 2000. Halo dark matter and ultra-high energy cosmic rays. Physics Letters B 486, 233–238. Cerca con Google

27. Bond, J. R., S. Cole, G. Efstathiou, and N. Kaiser 1991. Excursion set mass functions for hierarchical Gaussian fluctuations. ApJ 379, 440–460. Cerca con Google

28. Bond, J. R., and S. T. Myers 1996. The Peak-Patch Picture of Cosmic Catalogs. I. Algorithms. ApJS 103, 1–+. Cerca con Google

29. Bower, R. G. 1991. The evolution of groups of galaxies in the Press-Schechter formalism. MNRAS 248, 332–352. Cerca con Google

30. Bower, R. G., A. J. Benson, R.Malbon, J. C.Helly, C. S. Frenk, C.M. Baugh, S. Cole, and C. G. Lacey 2006. Breaking the hierarchy of galaxy formation. MNRAS 370, 645–655. Cerca con Google

31. Bullock, J. S., T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, A. A. Klypin, J. R. Primack, and A. Dekel 2001. Profiles of dark haloes: evolution, scatter and environment. MNRAS 321, 559–575. Cerca con Google

32. Bullock, J. S., A. V. Kravtsov, and D. H. Weinberg 2000. Reionization and the Abundance of Galactic Satellites. ApJ 539, 517–521. Cerca con Google

33. Bullock, J. S., A. V. Kravtsov, and D. H. Weinberg 2001. Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo. ApJ 548, 33–46. Cerca con Google

34. Carroll, S. M., W. H. Press, and E. L. Turner 1992. The cosmological constant. ARA&A 30, 499–542. Cerca con Google

35. Chandrasekhar, S. 1943. Stochastic Problems in Physics and Astronomy. Reviews ofModern Physics 15, 1–89. Cerca con Google

36. Choi, J.-H., M. D. Weinberg, and N. Katz 2007. The dynamics of tidal tails from massive satellites. MNRAS 381, 987–1000. Cerca con Google

37. Cole, S. 1991. Modeling galaxy formation in evolving darkmatter halos. ApJ 367, 45–53. Cerca con Google

38. Cole, S., J. Helly, C. S. Frenk, and H. Parkinson 2008. The statistical properties of ? cold darkmatter halo formation. MNRAS 383, 546–556. Cerca con Google

39. Cole, S., and N. Kaiser 1988. Sunyaev-Zel’dovich fluctuations in the cold dark matter scenario. MNRAS 233, 637–648. Cerca con Google

40. Colín, P., V. Avila-Reese, and O. Valenzuela 2000. Substructure and Halo Density Profiles in aWarmDarkMatter Cosmology. ApJ 542, 622–630. Cerca con Google

41. Conroy, C., R. H.Wechsler, and A. V. Kravtsov 2007. The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1. ApJ 668, 826–838. Cerca con Google

42. Copi, C. J., D. N. Schramm, and M. S. Turner 1995. Big-Bang Nucleosynthesis and the Baryon Density of the Universe. Science 267, 192–+. Cerca con Google

43. Couchman,H.M. P. 1991. Mesh-refined P3M- A fast adaptiveN-body algorithm. ApJL 368, L23–L26. Cerca con Google

44. Couchman, H. M. P., P. A. Thomas, and F. R. Pearce 1995. Hydra: an Adaptive- Mesh Implementation of P 3M-SPH. ApJ 452, 797–+. Cerca con Google

45. Croton, D. J., V. Springel, S. D.M.White, G. De Lucia, C. S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J. F. Navarro, and N. Yoshida 2006. Themany lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 365, 11–28. Cerca con Google

46. Dalal, N., and C. S. Kochanek 2002. Direct Detection of Cold Dark Matter Substructure. ApJ 572, 25–33. Cerca con Google

47. Davis, M., G. Efstathiou, C. S. Frenk, and S. D. M. White 1985. The evolution of large-scale structure in a universe dominated by cold dark matter. ApJ 292, 371–394. Cerca con Google

48. De Lucia, G., G. Kauffmann, V. Springel, S. D. M. White, B. Lanzoni, F. Stoehr, G. Tormen, and N. Yoshida 2004. Substructures in cold dark matter haloes. MNRAS 348, 333–344. Cerca con Google

49. De Lucia, G., V. Springel, S. D.M.White, D. Croton, and G. Kauffmann 2006. The formation history of elliptical galaxies. MNRAS 366, 499–509. Cerca con Google

50. Diemand, J., M. Kuhlen, and P. Madau 2006. Early Supersymmetric Cold Dark Matter Substructure. ApJ 649, 1–13. Cerca con Google

51. Diemand, J., M. Kuhlen, and P. Madau 2007a. Dark Matter Substructure and Gamma-Ray Annihilation in theMilkyWay Halo. ApJ 657, 262–270. Cerca con Google

52. Diemand, J.,M. Kuhlen, and P.Madau 2007b. Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure. ApJ 667, 859–877. Cerca con Google

53. Diemand, J., P. Madau, and B. Moore 2005. The distribution and kinematics of early high-? peaks in present-day haloes: implications for rare objects and old stellar populations. MNRAS 364, 367–383. Cerca con Google

54. Diemand, J., B. Moore, and J. Stadel 2004. Convergence and scatter of cluster density profiles. MNRAS 353, 624–632. Cerca con Google

55. Diemand, J., B. Moore, and J. Stadel 2005. Earth-mass dark-matter haloes as the first structures in the early Universe. Nature 433, 389–391. Cerca con Google

56. Dimopoulos, S. 1990. LHC, SSC and the universe. Physics Letters B 246, 347–352. Cerca con Google

57. Dressler, A. 1980. Galaxy morphology in rich clusters - Implications for the formation and evolution of galaxies. ApJ 236, 351–365. Cerca con Google

58. Efstathiou, G., M. Davis, S. D. M. White, and C. S. Frenk 1985. Numerical techniques for large cosmological N-body simulations. ApJS 57, 241–260. Cerca con Google

59. Efstathiou, G., C. S. Frenk, S. D.M.White, andM. Davis 1988. Gravitational clustering from scale-free initial conditions. MNRAS 235, 715–748. Cerca con Google

60. Eisenstein, D. J., and P. Hut 1998. HOP: A New Group-Finding Algorithm for Nbody Simulations. ApJ 498, 137–+. Cerca con Google

61. Eisenstein, D. J., and A. Loeb 1995. An analytical model for the triaxial collapse of cosmological perturbations. ApJ 439, 520–541. Cerca con Google

62. Eke, V. R., S. Cole, and C. S. Frenk 1996. Cluster evolution as a diagnostic for Omega. MNRAS 282, 263–280. Cerca con Google

63. Epstein, R. I. 1983. Proto-galactic perturbations. MNRAS 205, 207–229. Cerca con Google

64. Fornengo, N., L. Pieri, and S. Scopel 2004. Neutralino annihilation into ? rays in theMilkyWay and in external galaxies. Physical Review D 70(10), 103529–+. Cerca con Google

65. Frenk, C. S., A. E. Evrard, S. D.M.White, and F. J. Summers 1996. Galaxy Dynamics in Clusters. ApJ 472, 460–+. Cerca con Google

66. Frenk, C. S., S. D. M. White, M. Davis, and G. Efstathiou 1988. The formation of dark halos in a universe dominated by cold darkmatter. ApJ 327, 507–525. Cerca con Google

67. Gao, L., V. Springel, and S. D. M. White 2005. The age dependence of halo clustering. MNRAS 363, L66–L70. Cerca con Google

68. Gao, L., S. D. M. White, A. Jenkins, F. Stoehr, and V. Springel 2004. The subhalo populations of ?CDMdark haloes. MNRAS 355, 819–834. Cerca con Google

69. Gelb, J.M., and E. Bertschinger 1994. Cold darkmatter. 1: The formation of dark halos. ApJ 436, 467–490. Cerca con Google

70. Ghigna, S., B. Moore, F. Governato, G. Lake, T. Quinn, and J. Stadel 1998. Dark matter haloes within clusters. MNRAS 300, 146–162. Cerca con Google

71. Ghigna, S., B.Moore, F. Governato, G. Lake, T. Quinn, and J. Stadel 2000. Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution. ApJ 544, 616–628. Cerca con Google

72. Giocoli, C., J. Moreno, R. K. Sheth, and G. Tormen 2007. An improved model for the formation times of darkmatter haloes. MNRAS 376, 977–983. Cerca con Google

73. Goerdt, T., O. Y. Gnedin, B. Moore, J. Diemand, and J. Stadel 2007. The survival and disruption of cold dark matter microhaloes: implications for direct and indirect detection experiments. MNRAS 375, 191–198. Cerca con Google

74. Gottlöber, S., A. Klypin, and A. V. Kravtsov 1999. Merging Rate of Dark Matter Halos: Evolution and Dependence on Environment. Astrophysics and Space Science 269, 345–348. Cerca con Google

75. Götz,M., and J. Sommer-Larsen 2002. WarmDarkMatter and theMissing Satellites Problem. Astrophysics and Space Science 281, 415–416. Cerca con Google

76. Grebel, E. K., and J. S. Gallagher, III 2004. The Impact of Reionization on the Stellar Populations of Nearby Dwarf Galaxies. ApJL 610, L89–L92. Cerca con Google

77. Green, A.M., S.Hofmann, andD. J. Schwarz 2005. The firstWIMPy halos. Journal of Cosmology and Astro-Particle Physics 8, 3–+. Cerca con Google

78. Green, D. A., R. J. Tuffs, and C. C. Popescu 2004. Far-infrared and submillimetre observations of the Crab nebula. MNRAS 355, 1315–1326. Cerca con Google

79. Gunn, J. E., and J. R. I. Gott 1972. On the Infall ofMatter Into Clusters of Galaxies and Some Effects on Their Evolution. ApJ 176, 1–+. Cerca con Google

80. Hahn, O., C. M. Carollo, C. Porciani, and A. Dekel 2007. The evolution of dark matter halo properties in clusters, filaments, sheets and voids. MNRAS 381, 41–51. Cerca con Google

81. Harker, G., S. Cole, J. Helly, C. Frenk, and A. Jenkins 2006. A marked correlation function analysis of halo formation times in the Millennium Simulation. MNRAS 367, 1039–1049. Cerca con Google

82. Hayashi, E., J. F. Navarro, J. E. Taylor, J. Stadel, and T. Quinn 2003. The Structural Evolution of Substructure. ApJ 584, 541–558. Cerca con Google

83. Hofmann, S., D. J. Schwarz, and H. Stöcker 2001. Damping scales of neutralino cold darkmatter. Physical Review D 64(8), 083507–+. Cerca con Google

84. Icke, V. 1973. Formation of Galaxies inside Clusters. A&A 27, 1–+. Cerca con Google

85. Jenkins, A., C. S. Frenk, S. D.M.White, J.M. Colberg, S. Cole, A. E. Evrard,H.M. P. Couchman, and N. Yoshida 2001. The mass function of dark matter haloes. MNRAS 321, 372–384. Cerca con Google

86. Jungman, G., M. Kamionkowski, and K. Griest 1996. Supersymmetric dark matter. Physical Report 267, 195–373. Cerca con Google

87. Kauffmann, G., J. M. Colberg, and S. D. M. Diaferio, A. White 1999. Clustering of galaxies in a hierarchical universe - I.Methods and results at z=0. MNRAS 303, 188–206. Cerca con Google

88. Kauffmann, G., and S. D. M. White 1993. The merging history of dark matter haloes in a hierarchical universe. MNRAS 261, 921–928. Cerca con Google

89. King, I. R. 1966. The structure of star clusters. III. Some simple dynamical models. Aj 71, 64–+. Cerca con Google

90. Klypin, A., A. V. Kravtsov, O. Valenzuela, and F. Prada 1999.Where Are theMissing Galactic Satellites? ApJ 522, 82–92. Cerca con Google

91. Koushiappas, S. M. 2006. Proper Motion of Gamma Rays from Microhalo Sources. Physical Review Letters 97(19), 191301–+. Cerca con Google

92. Kravtsov, A. V., A. A. Berlind, R.H.Wechsler, A. A. Klypin, S. Gottlöber, B. Allgood, and J. R. Primack 2004. The Dark Side of the Halo Occupation Distribution. ApJ 609, 35–49. Cerca con Google

93. Kravtsov, A. V., O. Y. Gnedin, and A. A. Klypin 2004. The Tumultuous Lives of Galactic Dwarfs and theMissing Satellites Problem. ApJ 609, 482–497. Cerca con Google

94. Krick, J. E., R. A. Bernstein, and K. A. Pimbblet 2006. Diffuse Optical Light in Galaxy Clusters. I. Abell 3888. Aj 131, 168–184. Cerca con Google

95. Lacey, C., and S. Cole 1993. Merger rates in hierarchicalmodels of galaxy formation. MNRAS 262, 627–649. Cerca con Google

96. Lacey, C., and S. Cole 1994. Merger Rates in Hierarchical Models of Galaxy Formation - Part Two - ComparisonwithN-Body Simulations.MNRAS 271, 676–+. Cerca con Google

97. Lemson, G. 1993. Dynamical Effects of the Cosmological Constant - the Evolution of Aspherical Structures. MNRAS 263, 913–+. Cerca con Google

98. Li, Y.-S., and A. Helmi 2007. Infall of Substructures onto a Milky Way-like Dark Halo. ArXiv e-prints 711, –. Cerca con Google

99. Lin, W. P., Y. P. Jing, and L. Lin 2003. Formation time-distribution of dark matter haloes: theories versus N-body simulations. MNRAS 344, 1327–1333. Cerca con Google

100. ?okas, E. L., G. A. Mamon, and F. Prada 2005. Dark matter distribution in the Draco dwarf fromvelocitymoments. MNRAS 363, 918–928. Cerca con Google

101. Mahmood, A., and R. Rajesh 2005. Cosmological mass functions and moving barriermodels. ArXiv Astrophysics e-prints 0, –. Cerca con Google

102. McKay, T. A., B. Koester, R. Wechsler, J. Annis, A. Evrard, E. Sheldon, D. Johnston, S. Hansen, R. Scranton, and SDSS Collaboration 2005. AMaxBCG Galaxy Cluster Catalog Selected from SDSS Imaging Data. In Bulletin of the American Astronomical Society, Volume 37 of Bulletin of the American Astronomical Society, pp. 445–+. Cerca con Google

103. Merritt, D., M. Milosavljevi´c, L. Verde, and R. Jimenez 2002. Dark Matter Spikes and Annihilation Radiation from the Galactic Center. Physical Review Letters 88(19), 191301–+. Cerca con Google

104. Metcalf, R. B., and P. Madau 2001. Compound Gravitational Lensing as a Probe of DarkMatter Substructurewithin Galaxy Halos. MNRAS 563, 9–20. Cerca con Google

105. Miller, C. J., R. C. Nichol, D. Reichart, R. H. Wechsler, A. E. Evrard, J. Annis, T. A. McKay, N. A. Bahcall,M. Bernardi, H. Boehringer, A. J. Connolly, T. Goto, A. Kniazev, D. Lamb, M. Postman, D. P. Schneider, R. K. Sheth, and W. Voges 2005. The C4 Clustering Algorithm: Clusters of Galaxies in the Sloan Digital Sky Survey. Aj 130, 968–1001. Cerca con Google

106. Moore, B., S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi 1999. Dark Matter Substructure within Galactic Halos. ApJL 524, L19–L22. Cerca con Google

107. Mori,M.,M.M. Nojiri, K. S. Hirata, K. Kihara, Y. Oyama, A. Suzuki, K. Takahashi, M. Yamada, H. Takei, M. Koga, K. Miyano, H. Miyata, Y. Fukuda, T. Hayakawa, K. Inoue, T. Ishida, T. Kajita, Y. Koshio, M. Nakahata, K. Nakamura, A. Sakai, N. Sato, M. Shiozawa, J. Suzuki, Y. Suzuki, Y. Totsuka, M. Koshiba, K. Nishijima, T. Kajimura, T. Suda, A. T. Suzuki, T. Hara, Y. Nagashima, M. Takita, H. Yokoyama, A. Yoshimoto, K. Kaneyuki, Y. Takeuchi, T. Tanimori, S. Tasaka, and K. Nishikawa 1993. Search for neutralino dark matter heavier than the W boson at Kamiokande. Physical Review D 48, 5505–5518. Cerca con Google

108. Morselli, A. 1997. The Gamma-Ray Large Area Space Telescope (glast). In Y. Giraud-Heraud and J. Tran Thanh van (Eds.), Very High Energy Phenomena in the Universe;MoriondWorkshop, pp. 123–+. Cerca con Google

109. Murante, G., M. Giovalli, O. Gerhard, M. Arnaboldi, S. Borgani, and K. Dolag 2007. The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters. MNRAS 377, 2–16. Cerca con Google

110. Navarro, J. F., C. S. Frenk, and S. D. M. White 1996. The Structure of Cold Dark Matter Halos. ApJ 462, 563–+. Cerca con Google

111. Navarro, J. F., C. S. Frenk, and S. D. M. White 1997. A Universal Density Profile fromHierarchical Clustering. ApJ 490, 493–+. Cerca con Google

112. Navarro, J. F., E. Hayashi, C. Power, A. R. Jenkins, C. S. Frenk, S. D. M. White, V. Springel, J. Stadel, and T. R.Quinn 2004. The inner structure of?CDMhaloes - III. Universality and asymptotic slopes. MNRAS 349, 1039–1051. Cerca con Google

113. Navarro, J. F., and M. Steinmetz 2000. Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes. ApJ 538, 477–488. Cerca con Google

114. Neto, A. F., L. Gao, P. Bett, S. Cole, J. F. Navarro, C. S. Frenk, S. D. M. White, V. Springel, and A. Jenkins 2007. The statistics of ? CDM halo concentrations. MNRAS 381, 1450–1462. Cerca con Google

115. Netterfield, C. B., P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, C. R. Contaldi, B. P. Crill, P. de Bernardis, P. Farese, K. Ganga, M. Giacometti, E.Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe,W. C. Jones, A. E. Lange, L.Martinis, S. Masi, P. Mason, P. D. Mauskopf, A. Melchiorri, T. Montroy, E. Pascale, F. Piacentini, D. Pogosyan, F. Pongetti, S. Prunet, G. Romeo, J. E. Ruhl, and Cerca con Google

116. F. Scaramuzzi 2002. A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrumof the CosmicMicrowave Background. ApJ 571, 604–614. Cerca con Google

117. Newman, J. A., andM. Davis 2002. Measuring the Cosmic Equation of State with Counts of Galaxies. II. Error Budget for the DEEP2 Redshift Survey. ApJ 564, 567–575. Cerca con Google

118. Odenkirchen,M., E. K. Grebel, D. Harbeck,W. Dehnen, H.-W. Rix, H. J. Newberg, B. Yanny, J. Holtzman, J. Brinkmann, B. Chen, I. Csabai, J. J. E. Hayes, G. Hennessy, R. B. Hindsley, Ž. Ivezi´c, E. K. Kinney, S. J. Kleinman, D. Long, R. H. Lupton, E.H.Neilsen, A.Nitta, S. A. Snedden, andD. G. York 2001. New Insights on theDraco Dwarf SpheroidalGalaxy fromthe SloanDigital Sky Survey: A Larger Radius and No Tidal Tails. Aj 122, 2538–2553. Cerca con Google

119. Pearce, F. R., and H. M. P. Couchman 1997. Hydra: a parallel adaptive grid code. New Astronomy 2, 411–427. Cerca con Google

120. Percival, W., and L. Miller 1999. Cosmological evolution and hierarchical galaxy formation. MNRAS 309, 823–832. Cerca con Google

121. Pieri, L., G. Bertone, and E. Branchini 2007. Dark Matter Annihilation in Substructures Revised. ArXiv e-prints 706, –. Cerca con Google

122. Press,W. H., and P. Schechter 1974. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. ApJ 187, 425–438. Cerca con Google

123. Quinn, P. J., andW. H. Zurek 1988. The angularmomentumdistribution in galactic halos. ApJ 331, 1–18. Cerca con Google

124. Refregier, A., J. Rhodes, and E. J. Groth 2002. Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope. ApJL 572, L131–L134. Cerca con Google

125. Scoccimarro, R., R. K. Sheth, L. Hui, and B. Jain 2001. How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering. ApJ 546, 20–34. Cerca con Google

126. Seljak,U., andM. Zaldarriaga 1996. A Line-of-Sight IntegrationApproach to CosmicMicrowave Background Anisotropies. ApJ 469, 437–+. Cerca con Google

127. Servant, G., and T. M. P. Tait 2003. Is the lightest Kaluza-Klein particle a viable darkmatter candidate? Nuclear Physics B 650, 391–419. Cerca con Google

128. Shen, J., T. Abel, H. J. Mo, and R. K. Sheth 2006. An Excursion Set Model of the Cosmic Web: The Abundance of Sheets, Filaments, and Halos. ApJ 645, 783– 791. Cerca con Google

129. Sheth, R. K. 1995. Merging and Hierarchical Clustering from an Initially Poisson Distribution. MNRAS 276, 796–+. Cerca con Google

130. Sheth, R. K. 1996. Galton-Watson branching processes and the growth of gravitational clustering. MNRAS 281, 1277–+. Cerca con Google

131. Sheth, R. K. 1998. An excursion setmodel for the distribution of darkmatter and darkmatter haloes. MNRAS 300, 1057–1070. Cerca con Google

132. Sheth, R. K. 2003. Substructure in dark matter haloes: towards a model of the abundance and spatial distribution of subclumps. MNRAS 345, 1200–1204. Cerca con Google

133. Sheth, R. K., M. Bernardi, P. L. Schechter, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, J. Frieman, R. H. Lupton, D. J. Schlegel, M. Subbarao, K. Shimasaku, N. A. Bahcall, J. Brinkmann, and Ž Ivezi? 2003. The Velocity Dispersion Function of Early-Type Galaxies. ApJ 594, 225–231. Cerca con Google

134. Sheth, R. K., and A. Diaferio 2001. Peculiar velocities of galaxies and clusters. MNRAS 322, 901–917. Cerca con Google

135. Sheth, R. K., and G. Lemson 1999. The forest of merger history trees associated with the formation of darkmatter haloes. MNRAS 305, 946–956. Cerca con Google

136. Sheth, R. K., H. J.Mo, and G. Tormen 2001. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. MN- RAS 323, 1–12. Cerca con Google

137. Sheth, R. K., and J. Pitman 1997. Coagulation and branching process models of gravitational clustering. MNRAS 289, 66–82. Cerca con Google

138. Sheth, R. K., and G. Tormen 1999. Large-scale bias and the peak background split. MNRAS 308, 119–126. Cerca con Google

139. Sheth, R. K., and G. Tormen 2002. An excursion set model of hierarchical clustering: ellipsoidal collapse and themoving barrier. MNRAS 329, 61–75. Cerca con Google

140. Sheth, R. K., and G. Tormen 2004. Formation times and masses of dark matter haloes. MNRAS 349, 1464–1468. Cerca con Google

141. Smoluchowski, M. V. 1916. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift fur Physik 17, 557–585. Cerca con Google

142. Smoot, G. F., C. L. Bennett, A. Kogut, E. L. Wright, J. Aymon, N. W. Boggess, E. S. Cheng, G. de Amici, S. Gulkis, M. G. Hauser, G. Hinshaw, P. D. Jackson, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstein, P. Lubin, J. Mather, S. S. Meyer, S. H. Moseley, T. Murdock, L. Rokke, R. F. Silverberg, L. Tenorio, R. Weiss, and D. T. Wilkinson 1992. Structure in the COBE differential microwave radiometer first-yearmaps. ApJL 396, L1–L5. Cerca con Google

143. Somerville, R. S. 2002. Can Photoionization Squelching Resolve the Substructure Crisis? ApJL 572, L23–L26. Cerca con Google

144. Somerville, R. S., and T. S. Kolatt 1999. How to plant a merger tree. MNRAS 305, 1–14. Cerca con Google

145. Somerville, R. S., G. Lemson, T. S. Kolatt, and A. Dekel 2000. Evaluating approximations for halomerging histories. MNRAS 316, 479–490. Cerca con Google

146. Songaila, A., L. L. Cowie, C. J.Hogan, andM. Rugers 1994.DeuteriumAbundance and Background Radiation Temperature in High Redshift Primordial Clouds. Nature 368, 599–+. Cerca con Google

147. Spergel, D. N., R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E.Wollack, and E. L.Wright 2007. Three-YearWilkinsonMicrowave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. ApJS 170, 377–408. Cerca con Google

148. Spergel, D. N., L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L.Weiland, E.Wollack, and E. L.Wright 2003. First-YearWilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. ApJS 148, 175–194. Cerca con Google

149. Springel, V. 2005. The cosmological simulation code GADGET-2. MNRAS 364, 1105–1134. Cerca con Google

150. Springel, V., S. D.M.White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce 2005. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636. Cerca con Google

151. Springel, V., S. D. M. White, G. Tormen, and G. Kauffmann 2001. Populating a cluster of galaxies - I. Results at [formmu2]z=0. MNRAS 328, 726–750. Cerca con Google

152. Springel, V., N. Yoshida, and S. D. M. White 2001. GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astronomy 6, 79–117. Cerca con Google

153. Sreekumar, P., D. L. Bertsch, B. L. Dingus, J. A. Esposito, C. E. Fichtel, R. C. Hartman, S. D. Hunter, G. Kanbach, D. A. Kniffen, Y. C. Lin, H. A. Mayer- Hasselwander, P. F.Michelson, C. vonMontigny, A.Muecke, R.Mukherjee, P. L. Nolan, M. Pohl, O. Reimer, E. Schneid, J. G. Stacy, F. W. Stecker, D. J. Thompson, and T. D. Willis 1998. EGRET Observations of the Extragalactic Gamma-Ray Emission. ApJ 494, 523–+. Cerca con Google

154. Stewart, K. R., J. S. Bullock, R. H. Wechsler, A. H. Maller, and A. R. Zentner 2007. Merger Histories of Galaxy Halos and Implications for Disk Survival. ArXiv e- prints 711, –. Cerca con Google

155. Stoehr, F., S. D. M. White, V. Springel, G. Tormen, and N. Yoshida 2003. Dark matter annihilation in the halo of theMilkyWay. MNRAS 345, 1313–1322. Cerca con Google

156. Stoehr, F., S. D. M. White, G. Tormen, and V. Springel 2002. The satellite population of theMilkyWay in a ?CDMuniverse. MNRAS 335, L84–L88. Cerca con Google

157. Taruya, A., and Y. Suto 2000. Nonlinear Stochastic Biasing from the Formation Epoch Distribution of Dark Halos. ApJ 542, 559–577. Cerca con Google

158. Taylor, J. E., and A. Babul 2004. The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics. MNRAS 348, 811–830. Cerca con Google

159. Tegmark, M., D. J. Eisenstein, M. A. Strauss, D. H. Weinberg, M. R. Blanton, J. A. Frieman, M. Fukugita, J. E. Gunn, A. J. S. Hamilton, G. R. Knapp, R. C. Nichol, J. P. Ostriker, N. Padmanabhan, W. J. Percival, D. J. Schlegel, D. P. Schneider, R. Scoccimarro, U. Seljak, H.-J. Seo, M. Swanson, A. S. Szalay, M. S. Vogeley, J. Yoo, I. Zehavi, K. Abazajian, S. F. Anderson, J. Annis, N. A. Bahcall, Cerca con Google

160. B. Bassett, A. Berlind, J. Brinkmann, T. Budavari, F. Castander, A. Connolly, I. Csabai,M. Doi, D. P. Finkbeiner, B. Gillespie, K. Glazebrook, G. S. Hennessy, D. W. Hogg, Ž Ivezi?, B. Jain, D. Johnston, S. Kent, D. Q. Lamb, B. C. Lee, H. Lin, J. Loveday, R. H. Lupton, J. A. Munn, K. Pan, C. Park, J. Peoples, J. R. Pier, A. Pope, M. Richmond, C. Rockosi, R. Scranton, R. K. Sheth, A. Stebbins, Cerca con Google

161. C. Stoughton, I. Szapudi, D. L. Tucker, D. E. V. Berk, B. Yanny, and D. G. York 2006. Cosmological constraints fromthe SDSS luminous red galaxies. Physical Review D 74(12), 123507–+. Cerca con Google

162. Tormen, G. 1997. The rise and fall of satellites in galaxy clusters. MNRAS 290, 411–421. Cerca con Google

163. Tormen, G. 1998. The assembly of matter in galaxy clusters. MNRAS 297, 648– 656. Cerca con Google

164. Tormen, G., F. R. Bouchet, and S. D.M.White 1997. The structure and dynamical evolution of darkmatter haloes. MNRAS 286, 865–884. Cerca con Google

165. Tormen, G., A. Diaferio, and D. Syer 1998. Survival of substructure within dark matter haloes. MNRAS 299, 728–742. Cerca con Google

166. Tormen, G., L. Moscardini, and N. Yoshida 2004. Properties of cluster satellites in hydrodynamical simulations. MNRAS 350, 1397–1408. Cerca con Google

167. Toth, G., and J. P. Ostriker 1992. Galactic disks, infall, and the global value of Omega. ApJ 389, 5–26. Cerca con Google

168. Ullio, P., H. Zhao, and M. Kamionkowski 2001. Dark-matter spike at the galactic center? Physical Review D 64(4), 043504–+. Cerca con Google

169. Vale, A., and J. P. Ostriker 2006. The non-parametric model for linking galaxy luminosity with halo/subhalomass. MNRAS 371, 1173–1187. Cerca con Google

170. van den Bosch, F. C. 2002. The universal mass accretion history of cold dark matter haloes. MNRAS 331, 98–110. Cerca con Google

171. van den Bosch, F. C., G. Tormen, and C. Giocoli 2005. The mass function and averagemass-loss rate of darkmatter subhaloes. MNRAS 359, 1029–1040. Cerca con Google

172. Van Waerbeke, L., Y. Mellier, M. Radovich, E. Bertin, M. Dantel-Fort, H. J. Mc-Cracken, O. Le Fèvre, S. Foucaud, J.-C. Cuillandre, T. Erben, B. Jain, P. Schneider, F. Bernardeau, and B. Fort 2001. Cosmic shear statistics and cosmology. A&A 374, 757–769. Cerca con Google

173. Verde, L., M. Kamionkowski, J. J. Mohr, and A. J. Benson 2001. On galaxy cluster sizes and temperatures. MNRAS 321, L7–L13. Cerca con Google

174. Viel, M., J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto 2005. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-? forest. Physical Review D 71(6), 063534–+. Cerca con Google

175. Wang, J., G. De Lucia, M. G. Kitzbichler, and S. D. M. White 2007. The Dependence of Galaxy Formation on Cosmological Parameters: Can we distinguish theWMAP1 andWMAP3 Parameter Sets? ArXiv e-prints 706, –. Cerca con Google

176. Wechsler, R. H., J. S. Bullock, J. R. Primack, A. V. Kravtsov, and A. Dekel 2002. Concentrations of Dark Halos fromTheir Assembly Histories. ApJ 568, 52–70. Cerca con Google

177. Wechsler, R. H., A. R. Zentner, J. S. Bullock, A. V. Kravtsov, and B. Allgood 2006. The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation. ApJ 652, 71–84. Cerca con Google

178. Weekes, T. C., C. Akerlof, S. Biller, A. C. Breslin, M. Catanese, D. A. Carter-Lewis, M. F. Cawley, B.Dingus, G.G. Fazio, D. J. Fegan, J. Finley, G. Fishman, J.Gaidos, G. H. Gillanders, P. Gorham, J. E. Grindlay, A. M. Hillas, J. Huchra, P. Kaaret, M. Kertzman, D. Kieda, F. Krennrich, R. C. Lamb, M. J. Lang, A. P. Marscher, S.Matz, T. McKay, D. Muller, R. Ong,W. Purcell, H. J. Rose, G. Sembroski, F. D. Seward, P. Slane, S. Swordy, T. Tumer,M.Ulmer,M.Urban, and B.Wilkes 1997. VERITAS: The Very Energetic Radiation Imaging Telescope Array System. In International Cosmic Ray Conference, Volume 25 of International Cosmic Ray Conference, pp. 173–+. Cerca con Google

179. White, S. D. M. 1993. Large-scale structure. In R. J. Gleiser, C. N. Kozameh, and O.M.Moreschi (Eds.), General Relativity and Gravitation 1992, pp. 331–+. Cerca con Google

180. White, S. D. M., and M. J. Rees 1978. Core condensation in heavy halos - A twostage theory for galaxy formation and clustering. MNRAS 183, 341–358. Cerca con Google

181. White, S. D. M., and J. Silk 1979. The growth of aspherical structure in the universe - Is the Local Supercluster an unusual system. ApJ 231, 1–9. Cerca con Google

182. Wilkinson, M. I., J. T. Kleyna, N. W. Evans, G. F. Gilmore, M. J. Irwin, and E. K. Grebel 2004. Kinematically Cold Populations at Large Radii in the Draco and UrsaMinor Dwarf Spheroidal Galaxies. ApJl 611, L21–L24. Cerca con Google

183. Willman, B., F. Governato, J.Wadsley, and T. Quinn 2004. The origin and properties of intracluster stars in a rich cluster. MNRAS 355, 159–168. Cerca con Google

184. Yoshida, N., R. K. Sheth, and A. Diaferio 2001. Non-Gaussian cosmicmicrowave background temperature fluctuations frompeculiar velocities of clusters.MN- RAS 328, 669–677. Cerca con Google

185. Zaroubi, S., A. Naim, and Y. Hoffman 1996. Secondary Infall: Theory versus Simulations. ApJ 457, 50–+. Cerca con Google

186. Zel’Dovich, Y. B. 1970. Gravitational instability: An approximate theory for large density perturbations. A&A 5, 84–89. Cerca con Google

187. Zentner, A. R., and J. S. Bullock 2003. Halo Substructure and the Power Spectrum. ApJ 598, 49–72. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record