Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Chinellato, Simonetta (2008) Formation and Evolution of Early-Type Galaxies: Spectro-Photometry from Cosmo-Chemo-Dynamical Simulations. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

One of the major challenges in modern astrophysiscs is to understand the origin and the evolution of galaxies, the bright Early-Type Galaxies (ETGs) in particular, in the context of a Universe dominated by Cold Dark Matter (CDM), with some kind of Dark Energy in form of the Cosmological Constant ?.

These spheroidal systems are of interest in their own right as they contain more than half of the total stellar mass in the local Universe (Fukugita et al 1998). Giant elliptical galaxies are the most massive stellar systems and they appear to define a homogeneous class of objects which predominantly consist of uniformly old and red populations, which implies that they must have formed at high redshift, have negligible amounts of gas and very little star formation (Bressan et al. 1993). There is strong observational evidence that ellipticals are already in place at z ~ 2-3 and that formed most of their stars well before a redshift z=1 (Searle et al. 1973; Brinchmann &
Ellis 2000; Treu et al. 2005; van der Wel et al. 2005). These galaxies are therefore likely to be good probes of galaxy evolution, star formation and metal enrichment in the early Universe.

The main goal of this PhD thesis is the derivation of a tool that combines the results derived from the cosmo-chemo-dynamical models of elliptical galaxies obtained from N-body simulations, together with the spectro-photometric models computed from the stellar Evolutionary Population Synthesis (EPS) technique. The aim is to reproduce the observational integrated properties of early-type galaxies in any photometric bandpass, and in particular in the systems used by the modern imaging surveys of observational cosmology, that cover any spectral range.

The EPS technique is based on Simple Stellar Populations (SSPs) due to their characteristics, these are suitable for purposes of population synthesis of more complex systems of stellar populations, such as simulated ETGs derived from numerical simulations, and so are suitable for the modelling of the integrated properties (light), and allow easy testing for different input prescriptions in the description of a galaxy (different masses, star formation, initial mass functions, physical processes, etc.) and reproduction of basic observational constraints.

In the present work, the approach allows the computation of spectroscopic and photometric quantities by combining the EPS technique to three-dimensional self-consistent cosmo-chemo-dynamical Tree-SPH numerical simulations, carried on in the last years by the Padova group (Merlin & Chiosi 2006, 2007), that follow the evolution of ETGs from the epoch of their complex formation to the present. The method has been tested so far on three simulated galaxies: these models have different cosmological metrics, both cold dark matter (CDM) scenarios, one in the SCDM and two in the ?CDM cosmologies.

In the first part of the thesis we consider the template galaxies, which have been dynamically simulated with a detailed chemical evolution, and recover their spectro-photometric evolution in the rest-frame and the integrated properties, such as magnitudes and colors, at the different epochs through the entire history of the Universe up to the formation of present-day ellipticals. This is done in particluar for two inportant photometric systems, the Bessell-Brett passbands and the Sloan Digital Sky Survey (SDSS).

The advent of the modern giant telescope facilities has opened a new era in observational cosmology and galaxy evolution can be traced back to its early stages. In this sense, deep multicolor imaging surveys are established as a powerful tool to access the population of faint galaxies with
relatively high efficiency. These surveys sample the whole spectral range from the UV to the near-IR bands, enabling galaxy evolution to be followed on a wider range of redshifts.

Starting from the evolutionary synthesis results we compute the evolutionary and cosmological corrections, along with magnitudes and colors and their evolution at different redshifts for the simulated galaxies at our disposal. We consider the COSMOS (Giavalisco et al. 2004) and the GOODS (Scoville et al 2007) databases, which allow us to select a sample of galaxies that are catalogued as early-type and to make a qualitative and quantitative comparison between the theoretical results obtained from our model galaxies and the observational data. For the COSMOS database we find that the models follow the general trend for all data at high redshift
and, in particular, are in good agreement with those galaxies selected as ellipticals. For the galaxies selected from the GOODS database, theoretical colors seem to match better with data than what
found for the COSMOS data. Having a better morphological classificator, the selection is done by eye and by correlating a catalog of photometric and spectroscopic redshifts with a morphological one for GOODS in contrast to the selection derived from the automated pipelines used for COSMOS, is certainly discriminating in favour of the GOODS database.

For both datasets our findings show that simulated colors for the different cosmological scenarios follow the general trend at lower redshifts and are in good agreement with the data up to z ~ 1, where the number of early-type galaxies observed falls abruptly. In conclusion, within the redshift range considered, all the simulated colors reproduce quite well the observational data.

The dynamical and geometrical informations, derived from the numerical simulations, and the spectro-photometric properties, recovered from our tool, combined together, allow to tackle in some detail important physical issues that deal with the scaling relations governing the photometric and structural parameters of ETGs, and in particluar with the Kormendy relation that allows a comparison with observables in the luminosity-radius plane.

The method we introduced for the derivation of the parameters that enter the scaling laws deals with the construction of artificial images in a bi-dimensional plane, starting from the three-dimensional structure of the simulated galaxies. By matching the population synthesis models with the three-dimensional geometric information of the galaxy's structure along with the chemical details, both provided by the N-body simulations, we create synthetic images of a galaxy in a given photometric system, from which we derive the structural and morphological parameters, such as the galaxy's effective radius and the luminosity within this, the shape indices through Fourier and Sersic analysis, color profiles, and radial profiles of most of the parameters that define the structure of galaxies.

The most interesting aspect of these results is that the investigation of the simulated galaxies, via the photometric analysis of the artificial images, led us to recover properties that resemble those of observed galaxies. The results obtained in this way are studied and compared within the scaling laws, the Kormendy relation in particular, as it is the only one we can construct so far, due to the limited resolution of our simulations. The observational data with which we compare our simulated results have been selected form the SDSS database. We separate a subsample of elliptical galaxies, and our findings show that the values of luminosities and effective radii, the two parameters that compare in the Kormendy relation, measured for our model galaxies are consistent with the archivial data from the SDSS.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Chiosi, Cesare - Tantalo, Rosaria
Dottorato (corsi e scuole):Ciclo 19 > Corsi per il 19simo ciclo > ASTRONOMIA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Early-type galaxies - spectro-photometry - evolution
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > Dipartimento di Astronomia
Codice ID:851
Depositato il:18 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abazajian, K., J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, K. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, I. K. Baldry, S. Bastian, A. Berlind, M. Bernardi, M. R. Blanton, J. J. Bochanski, Jr., W. N. Boroski, J.W. Briggs, J. Brinkmann, R. J. Brunner, T. Budav´ari, L. N. Carey, S. Carliles, F. J. Castander, A. J. Connolly, I. Csabai,M. Doi, F. Dong, D. J. Eisenstein,M. L. Evans, X. Fan, D. P. Finkbeiner, S. D. Friedman, J. A. Frieman, M. Fukugita, R. R. Gal, B. Gillespie, K. Glazebrook, J. Gray, E. K. Grebel, J. E. Gunn, V. K. Gurbani, P. B. Hall, M. Hamabe, F. H. Harris, H. C. Harris, M. Harvanek, T. M. Heckman, J. S. Hendry, G. S. Hennessy, R. B. Hindsley, C. J. Hogan, D. W. Hogg, D. J. Holmgren, S.-i. Ichikawa, T. Ichikawa, Ž Ivezi?, S. Jester, D. E. Johnston, A.M. Jorgensen, S.M. Kent, S. J. Kleinman, G. R. Knapp, A. Y. Kniazev, R. G. Kron, J. Krzesinski, P. Z. Kunszt, N. Kuropatkin, D. Q. Lamb, H. Lampeitl, B. C. Lee, R. F. Leger, N. Li, H. Lin, Y.-S. Loh, D. C. Long, J. Loveday, R. H. Lupton, T. Malik, B. Margon, T. Matsubara, P. M. McGehee, T. A. McKay, A. Meiksin, J. A. Munn, R. Nakajima, T. Nash, E. H. Neilsen, Jr., H. J. Newberg, P. R. Newman, R. C. Nichol, T. Nicinski, M. Nieto-Santisteban, A. Nitta, S. Okamura, W. O’Mullane, J. P. Ostriker, R. Owen, N. Padmanabhan, J. Peoples, J. R. Pier, A. C. Pope, T. R. Quinn, G. T. Richards, M. W. Richmond, H.-W. Rix, C. M. Rockosi, D. J. Schlegel, D. P. Schneider, R. Scranton, M. Sekiguchi, U. Seljak, G. Sergey, B. Sesar, E. Sheldon, K. Shimasaku, W. A. Siegmund, N. M. Silvestri, J. A. Smith, V. Smol?i?, S. A. Snedden, A. Stebbins, C. Stoughton, M. A. Strauss, M. SubbaRao, A. S. Szalay, I. Szapudi, P. Szkody, G. P. Szokoly, M. Tegmark, L. Teodoro, A. R. Thakar, C. Tremonti, D. L. Tucker, A. Uomoto, D. E. Vanden Berk, J. Vandenberg, M. S. Vogeley, W. Voges, N. P. Vogt, L. M. Walkowicz, S.-i. Wang, D. H. Weinberg, A. A. West, S. D. M. White, B. C. Wilhite, Y. Xu, B. Yanny, N. Yasuda, C.-W. Yip, D. R. Yocum, D. G. York, I. Zehavi, S. Zibetti, & D. B. Zucker (2004, July). The Second Data Release of the Sloan Digital Sky Survey. AJ 128, 502–512. Cerca con Google

2. Alexander, D. R. & J. W. Ferguson (1994, December). Low-temperature Rosseland opacities. ApJ 437, 879–891. Cerca con Google

3. Allard, F., P. H. Hauschildt, D. R. Alexander, J. W. Ferguson, & A. Tamanai (2000). Model Atmospheres and Spectra of Brown Dwarfs to Giant Planets. In C. A. Griffith & M. S. Marley (Eds.), From Giant Planets to Cool Stars, Volume 212 of Astronomical Society of the Pacific Conference Series, pp. 127–+. Cerca con Google

4. Alongi, M., G. Bertelli, A. Bressan, & C. Chiosi (1991, April). Effects of envelope overshoot on stellar models. A&A 244, 95–106. Cerca con Google

5. Alongi, M., G. Bertelli, A. Bressan, C. Chiosi, F. Fagotto, L. Greggio, & E. Nasi (1993, March). Evolutionary sequences of stellar models with semiconvection and convective overshoot. I - Z = 0.008. A&AS 97, 851–871. Cerca con Google

6. Aragon-Salamanca, A., R. S. Ellis, W. J. Couch, & D. Carter (1993, June). Evidence for systematic evolution in the properties of galaxies in distant clusters. MNRAS 262, 764–794. Cerca con Google

7. Arimoto, N. & Y. Yoshii (1987, February). Chemical and photometric properties of a galactic wind model for elliptical galaxies. A&A 173, 23–38. Cerca con Google

8. Aune, S., O. Boulade, X. Charlot, P. Abbon, P. Borgeaud, P.-H. Carton, M. Carty, J. Da Costa, D. Desforge, H. Deschamps, D. Eppell´e, P. Gallais, L. Gosset, R. Granelli, M. Gros, J. de Kat, D. Loiseau, J. L. Ritou, J. Y. Rouss´e, P. Starzynski, N. Vignal, & L. G. Vigroux (2003, March). The CFHT MegaCam 40 CCDs camera: cryogenic design and CCD integration. In M. Iye & A. F. M. Moorwood (Eds.), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 513-524 (2003)., Volume 4841 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 513–524. Cerca con Google

9. Bahcall, J. N., M. H. Pinsonneault, & G. J. Wasserburg (1995, October). Solar models with helium and heavyelement diffusion. Reviews of Modern Physics 67, 781–808. Cerca con Google

10. Barger, A. J., L. L. Cowie, I. Smail, R. J. Ivison, A. W. Blain, & J.-P. Kneib (1999, June). Redshift Distribution of the Faint Submillimeter Galaxy Population. AJ 117, 2656–2665. Cerca con Google

11. Barnes, J. & P. Hut (1986, December). A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature 324, 446– 449. Cerca con Google

12. Barnes, J. E. & L. Hernquist (1996, November). Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies. ApJ 471, 115–+. Cerca con Google

13. Bekki, K., W. J. Couch, Y. Shioya, & A. Vazdekis (2005, May). Origin of E+A galaxies - I. Physical properties of E+A galaxies formed from galaxy merging and interaction. MNRAS 359, 949–965. Cerca con Google

14. Bell, E. F., C. Wolf, K. Meisenheimer, H.-W. Rix, A. Borch, S. Dye, M. Kleinheinrich, L. Wisotzki, & D. H. McIntosh (2004, June). Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z˜1. ApJ 608, 752–767. Cerca con Google

15. Bender, R. (1988, March). Velocity anisotropies and isophote shapes in elliptical galaxies. A&A 193, L7–L10. Cerca con Google

16. Bender, R. (1997). Structure; Formation and Ages of Elliptical Galaxies. In M. Arnaboldi, G. S. Da Costa, & P. Saha (Eds.), The Nature of Elliptical Galaxies; 2nd Stromlo Symposium, Volume 116 of Astronomical Society of the Pacific Conference Series, pp. 11–+. Cerca con Google

17. Bender, R. & J.-L. Nieto (1990, November). Internal kinematics of low-luminosity ellipsoidal galaxies. A&A 239, 97–112. Cerca con Google

18. Bender, R., R. P. Saglia, B. Ziegler, P. Belloni, L. Greggio, U. Hopp, & G. Bruzual (1998, January). Exploring Cluster Elliptical Galaxies as Cosmological Standard Rods. ApJ 493, 529–+. Cerca con Google

19. Bender, R., B. Ziegler, & G. Bruzual (1996, June). The Redshift Evolution of the Stellar Populations in Elliptical Galaxies. ApJ 463, L51–L54. Cerca con Google

20. Benítez, N. (2000, June). Bayesian Photometric Redshift Estimation. ApJ 536, 571–583. Cerca con Google

21. Benz, W. (1990). Smooth Particle Hydrodynamics - a Review. In J. R. Buchler (Ed.), Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, pp. 269–+. Cerca con Google

22. Bernardi, M., R. K. Sheth, J. Annis, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, D. W. Hogg, R. H. Lupton, D. J. Schlegel, M. SubbaRao, N. A. Bahcall, J. P. Blakeslee, J. Brinkmann, F. J. Castander, A. J. Connolly, I. Csabai,M. Doi,M. Fukugita, J. Frieman, T. Heckman, G. S. Hennessy, Ž. Ivezi?, G. R. Knapp, D. Q. Lamb, T. McKay, J. A. Munn, R. Nichol, S. Okamura, D. P. Schneider, A. R. Thakar, & D. G. York (2003a, April). Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane. AJ 125, 1866–1881. Cerca con Google

23. Bernardi, M., R. K. Sheth, J. Annis, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, D. W. Hogg, R. H. Lupton, D. J. Schlegel, M. SubbaRao, N. A. Bahcall, J. P. Blakeslee, J. Brinkmann, F. J. Castander, A. J. Connolly, I. Csabai, M. Doi, M. Fukugita, J. Frieman, T. Heckman, G. S. Hennessy, Ž. Ivezi?, G. R. Knapp, D. Q. Lamb, T. McKay, J. A. Munn, R. Nichol, S. Okamura, D. P. Schneider, A. R. Thakar, & D. G. York (2003b, April). Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables. AJ 125, 1849–1865. Cerca con Google

24. Bernardi, M., R. K. Sheth, J. Annis, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, D. W. Hogg, R. H. Lupton, D. J. Schlegel, M. SubbaRao, N. A. Bahcall, J. P. Blakeslee, J. Brinkmann, F. J. Castander, A. J. Connolly, I. Csabai, M. Doi, M. Fukugita, J. Frieman, T. Heckman, G. S. Hennessy, Ž. Ivezi?, G. R. Knapp, D. Q. Lamb, T. McKay, J. A. Munn, R. Nichol, S. Okamura, D. P. Schneider, A. R. Thakar, & D. G. York (2003c, April). Early-Type Galaxies in the Sloan Digital Sky Survey. I. The Sample. AJ 125, 1817–1848. Cerca con Google

25. Bernardi, M., R. K. Sheth, J. Annis, S. Burles, D. P. Finkbeiner, R. H. Lupton, D. J. Schlegel, M. SubbaRao, N. A. Bahcall, J. P. Blakeslee, J. Brinkmann, F. J. Castander, A. J. Connolly, I. Csabai, M. Doi, M. Fukugita, J. Frieman, T. Heckman, G. S. Hennessy, ?Z. Ivezi´c, G. R. Knapp, D. Q. Lamb, T. McKay, J. A. Munn, R. Nichol, S. Okamura, D. P. Schneider, A. R. Thakar, & D. G. York (2003, April). Early-Type Galaxies in the Sloan Digital Sky Survey. IV. Colors and Chemical Evolution. AJ 125, 1882–1896. Cerca con Google

26. Bertelli, G., A. Bressan, C. Chiosi, F. Fagotto, & E. Nasi (1994, August). Theoretical isochrones from models with new radiative opacities. A&AS 106, 275–302. Cerca con Google

27. Bertin, E. & S. Arnouts (1996, June). SExtractor: Software for source extraction. A&AS 117, 393–404. Cerca con Google

28. Bessell, M. S. (1990, October). UBVRI passbands. PASP 102, 1181–1199. Cerca con Google

29. Bessell, M. S. & J. M. Brett (1988, September). JHKLM photometry - Standard systems, passbands, and intrinsic colors. PASP 100, 1134–1151. Cerca con Google

30. Bessell, M. S., F. Castelli, & B. Plez (1998, May). Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars. A&A 333, 231–250. Cerca con Google

31. Böhm-Vitense, E. (1958). ¨Uber die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkr¨afte. Mit 5 Textabbildungen. Zeitschrift fur Astrophysik 46, 108–+. Cerca con Google

32. Boulade, O., X. Charlot, P. Abbon, S. Aune, P. Borgeaud, P.-H. Carton, M. Carty, J. Da Costa, H. Deschamps, D. Desforge, D. Eppell´e, P. Gallais, L. Gosset, R. Granelli, M. Gros, J. de Kat, D. Loiseau, J.-. Ritou, J. Y. Rouss´e, P. Starzynski, N. Vignal, & L. G. Vigroux (2003, March). MegaCam: the new Canada-France- Hawaii Telescope wide-field imaging camera. In M. Iye & A. F. M. Moorwood (Eds.), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 72-81 (2003)., Volume 4841 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 72–81. Cerca con Google

33. Bower, R. G., J. R. Lucey, & R. S. Ellis (1992, February). Precision photometry of early-type galaxies in the Coma and Virgo clusters: A test of the universality of the colour-magnitude relation. I - The data. II. Analysis. MNRAS 254, 589–613. Cerca con Google

34. Bressan, A., C. Chiosi, & F. Fagotto (1994, August). Spectrophotometric evolution of elliptical galaxies. 1: Ultraviolet excess and color-magnitude-redshift relations. ApJS 94, 63–115. Cerca con Google

35. Bressan, A., C. Chiosi, & R. Tantalo (1996, July). Probing the age of elliptical galaxies. A&A 311, 425–445. Cerca con Google

36. Bressan, A., F. Fagotto, G. Bertelli, & C. Chiosi (1993, September). Evolutionary sequences of stellar models with new radiative opacities. II - Z = 0.02. A&AS 100, 647–664. Cerca con Google

37. Bressan, A. G., C. Chiosi, & G. Bertelli (1981, September). Mass loss and overshooting in massive stars. A&A 102, 25–30. Cerca con Google

38. Brinchmann, J. & R. S. Ellis (2000, June). The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology. ApJ 536, L77–L80. Cerca con Google

39. Bruzual, G. & S. Charlot (1993, March). Spectral evolution of stellar populations using isochrone synthesis. ApJ 405, 538–553. Cerca con Google

40. Bruzual, G. & S. Charlot (2003, October). Stellar population synthesis at the resolution of 2003. MNRAS 344, 1000–1028. Cerca con Google

41. Bruzual A., G. (1983, October). Spectral evolution of galaxies. I - Early-type systems. ApJ 273, 105–127. Cerca con Google

42. Bruzual A., G. (1992). Evolutionary Population Synthesis. In B. Barbuy & A. Renzini (Eds.), The Stellar Populations of Galaxies, Volume 149 of IAU Symposium, pp. 311–+. Cerca con Google

43. Bundy, K., R. S. Ellis, & C. J. Conselice (2005, June). The Mass Assembly Histories of Galaxies of Various Morphologies in the GOODS Fields. ApJ 625, 621–632. Cerca con Google

44. Butcher, H. & A. Oemler, Jr. (1978, January). The evolution of galaxies in clusters. I - ISIT photometry of C1 0024+1654 and 3C 295. ApJ 219, 18–30. Cerca con Google

45. Capak, P., H. Aussel, M. Ajiki, H. J.McCracken, B.Mobasher, N. Scoville, P. Shopbell, Y. Taniguchi, D. Thompson, S. Tribiano, S. Sasaki, A. W. Blain, M. Brusa, C. Carilli, A. Comastri, C. M. Carollo, P. Cassata, J. Colbert, R. S. Ellis, M. Elvis, M. Giavalisco, W. Green, L. Guzzo, G. Hasinger, O. Ilbert, C. Impey, K. Jahnke, J. Kartaltepe, J.-P. Kneib, J. Koda, A. Koekemoer, Y. Komiyama, A. Leauthaud, O. Lefevre, S. Lilly, C. Liu, R. Massey, S. Miyazaki, T. Murayama, T. Nagao, J. A. Peacock, A. Pickles, C. Porciani, A. Renzini, J. Rhodes, M. Rich, M. Salvato, D. B. Sanders, C. Scarlata, D. Schiminovich, E. Schinnerer, M. Scodeggio, K. Sheth, Y. Shioya, L. A. M. Tasca, J. E. Taylor, L. Yan, & G. Zamorani (2007, September). The First Release COSMOS Optical and Near-IR Data and Catalog. ApJS 172, 99–116. Cerca con Google

46. Cardelli, J. A., G. C. Clayton, & J. S. Mathis (1989, October). The relationship between infrared, optical, and ultraviolet extinction. ApJ 345, 245–256. Cerca con Google

47. Carraro, G., C. Lia, & C. Chiosi (1998, July). Galaxy formation and evolution - I. The Padua tree-sph code (pd-sph). MNRAS 297, 1021–1040. Cerca con Google

48. Castelli, F. (1999, June). Synthetic photometry from ATLAS9 models in the UBV Johnson system. A&A 346, 564–585. Cerca con Google

49. Castelli, F., R. G. Gratton, & R. L. Kurucz (1997, February). Notes on the convection in the ATLAS9 model atmospheres. A&A 318, 841–869. Cerca con Google

50. Castelli, F. & R. L. Kurucz (1994, January). Model atmospheres for VEGA. A&A 281, 817–832. Cerca con Google

51. Caughlan, G. R. & W. A. Fowler (1988). Thermonuclear Reaction Rates V. Atomic Data and Nuclear Data Tables 40, 283–+. Cerca con Google

52. Chabrier, G. (2001, June). The Galactic Disk Mass Budget. I. Stellar Mass Function and Density. ApJ 554, 1274–1281. Cerca con Google

53. Charlot, S., G.Worthey, & A. Bressan (1996, February). Uncertainties in theModeling of Old Stellar Populations. ApJ 457, 625–+. Cerca con Google

54. Chiosi, C. (2000, December). Gas and iron content of galaxy clusters. A&A 364, 423–442. Cerca con Google

55. Chiosi, C., G. Bertelli, & A. Bressan (1992). New developments in understanding the HR diagram. ARA&A 30, 235–285. Cerca con Google

56. Chiosi, C.& G. Carraro (2002, September). Formation and evolution of elliptical galaxies.MNRAS 335, 335–357. Cerca con Google

57. Davies, R. L., G. Efstathiou, S.M. Fall, G. Illingworth, & P. L. Schechter (1983,March). The kinematic properties of faint elliptical galaxies. ApJ 266, 41–57. Cerca con Google

58. de Jager, C., H. Nieuwenhuijzen, & K. A. van der Hucht (1988, February). Mass loss rates in the Hertzsprung- Russell diagram. A&AS 72, 259–289. Cerca con Google

59. de Vaucouleurs, G. (1948, January). Recherches sur les Nebuleuses Extragalactiques. Annales d’Astrophysique 11, 247–+. Cerca con Google

60. Djorgovski, S. & M. Davis (1987, February). Fundamental properties of elliptical galaxies. ApJ 313, 59–68. Cerca con Google

61. Draine, B. T. & H.M. Lee (1984, October). Optical properties of interstellar graphite and silicate grains. ApJ 285, 89–108. Cerca con Google

62. Dressler, A. (1980, March). Galaxy morphology in rich clusters - Implications for the formation and evolution of galaxies. ApJ 236, 351–365. Cerca con Google

63. Dressler, A., D. Lynden-Bell, D. Burstein, R. L. Davies, S.M. Faber, R. Terlevich, & G.Wegner (1987, February). Spectroscopy and photometry of elliptical galaxies. I - A new distance estimator. ApJ 313, 42–58. Cerca con Google

64. Eggen, O. J., D. Lynden-Bell, & A. R. Sandage (1962, November). Evidence from the motions of old stars that the Galaxy collapsed. ApJ 136, 748–+. Cerca con Google

65. Ellis, R. S., I. Smail, A. Dressler, W. J. Couch, A. J. Oemler, H. Butcher, & R. M. Sharples (1997, July). The Homogeneity of Spheroidal Populations in Distant Clusters. ApJ 483, 582–+. Cerca con Google

66. Elston, R. (1998, August). FLAMINGOS: a multiobject near-IR spectrometer. In A. M. Fowler (Ed.), Proc. SPIE Vol. 3354, p. 404-413, Infrared Astronomical Instrumentation, Albert M. Fowler; Ed., Volume 3354 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 404–413. Cerca con Google

67. Faber, S. M. (1972, September). Quadratic programming applied to the problem of galaxy population synthesis. A&A 20, 361–374. Cerca con Google

68. Faber, S. M., A. Dressler, R. L. Davies, D. Burstein, & D. Lynden-Bell (1987). Global scaling relations for elliptical galaxies and implications for formation. In S. M. Faber (Ed.), Nearly Normal Galaxies. From the Planck Time to the Present, pp. 175–183. Cerca con Google

69. Faber, S. M. & R. E. Jackson (1976, March). Velocity dispersions and mass-to-light ratios for elliptical galaxies. ApJ 204, 668–683. Cerca con Google

70. Fagotto, F., A. Bressan, G. Bertelli, & C. Chiosi (1994a, April). Evolutionary sequences of stellar models with new radiative opacities. III. Z=0.0004 and Z=0.05. A&AS 104, 365–376. Cerca con Google

71. Fagotto, F., A. Bressan, G. Bertelli, & C. Chiosi (1994b, May). Evolutionary sequences of stellar models with new radiative opacities. IV. Z=0.004 and Z=0.008. A&AS 105, 29–38. Cerca con Google

72. Fagotto, F., A. Bressan, G. Bertelli, & C. Chiosi (1994c, May). Evolutionary sequences of stellar models with very high metallicity. V. Z=0.1. A&AS 105, 39–45. Cerca con Google

73. Fanelli, M. N., R. W. O’Connell, & T. X. Thuan (1987, October). Spectral synthesis in the ultraviolet. I - Farultraviolet stellar library. ApJ 321, 768–779. Cerca con Google

74. Fanelli, M. N., R. W. O’Connell, & T. X. Thuan (1988, November). Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies. ApJ 334, 665–687. Cerca con Google

75. Ferrini, F. & B. M. Poggianti (1993, June). Evolution of elliptical galaxies. I - The multiphase model. ApJ 410, 44–55. Cerca con Google

76. Fluks, M. A., B. Plez, P. S. The, D. de Winter, B. E. Westerlund, & H. C. Steenman (1994, June). On the spectra and photometry of M-giant stars. A&AS 105, 311–336. Cerca con Google

77. Franx, M. (1995). Measuring the Evolution of the M/L Ratio from the Fundamental Plane. In P. C. van der Kruit & G. Gilmore (Eds.), Stellar Populations, Volume 164 of IAU Symposium, pp. 269–+. Cerca con Google

78. Fukugita, M., C. J. Hogan, & P. J. E. Peebles (1998, August). The Cosmic Baryon Budget. ApJ 503, 518–+. Cerca con Google

79. Fukugita, M., T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku, & D. P. Schneider (1996, April). The Sloan Digital Sky Survey Photometric System. AJ 111, 1748–+. Cerca con Google

80. Giavalisco, M., H. C. Ferguson, A. M. Koekemoer, M. Dickinson, D. M. Alexander, F. E. Bauer, J. Bergeron, C. Biagetti, W. N. Brandt, S. Casertano, C. Cesarsky, E. Chatzichristou, C. Conselice, S. Cristiani, L. Da Costa, T. Dahlen, D. de Mello, P. Eisenhardt, T. Erben, S.M. Fall, C. Fassnacht, R. Fosbury, A. Fruchter, J. P. Gardner, N. Grogin, R. N. Hook, A. E. Hornschemeier, R. Idzi, S. Jogee, C. Kretchmer, V. Laidler, K. S. Lee, M. Livio, R. Lucas, P.Madau, B. Mobasher, L. A.Moustakas, M. Nonino, P. Padovani, C. Papovich, Y. Park, S. Ravindranath, A. Renzini, M. Richardson, A. Riess, P. Rosati, M. Schirmer, E. Schreier, R. S. Somerville, H. Spinrad, D. Stern, M. Stiavelli, L. Strolger, C. M. Urry, B. Vandame, R. Williams, & C. Wolf (2004, January). The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging. ApJ 600, L93–L98. Cerca con Google

81. Gibson, B. K. & F. Matteucci (1997, January). On Dwarf Galaxies as the Source of Intracluster Gas. ApJ 475, 47–+. Cerca con Google

82. Girardi, L., G. Bertelli, A. Bressan, C. Chiosi, M. A. T. Groenewegen, P.Marigo, B. Salasnich, & A.Weiss (2002, August). Theoretical isochrones in several photometric systems. I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS,Washington, and ESO Imaging Survey filter sets. A&A 391, 195–212. Cerca con Google

83. Girardi, L., A. Bressan, G. Bertelli, & C. Chiosi (2000, February). Evolutionary tracks and isochrones for lowand intermediate-mass stars: From 0.15 to 7 Msun, and from Z=0.0004 to 0.03. A&AS 141, 371–383. Cerca con Google

84. Girardi, L., E. K. Grebel, M. Odenkirchen, & C. Chiosi (2004, July). Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system. A&A 422, 205–215. Cerca con Google

85. Grazian, A., A. Fontana, C. de Santis, M. Nonino, S. Salimbeni, E. Giallongo, S. Cristiani, S. Gallozzi, & E. Vanzella (2006, April). The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field. A&A 449, 951–968. Cerca con Google

86. Grevesse, N. & A. Noels (1993). Atomic data and the spectrum of the solar photosphere. Physica Scripta Volume T 47, 133–138. Cerca con Google

87. Guiderdoni, B. & B. Rocca-Volmerange (1987, November). A model of spectrophotometric evolution for highredshift galaxies. A&A 186, 1–2. Cerca con Google

88. Guiderdoni, B. & B. Rocca-Volmerange (1990, January). Constraints on the evolution of high-redshift galaxies and on q(0) from faint galaxy counts. A&A 227, 362–378. Cerca con Google

89. Guiderdoni, B. & B. Rocca-Volmerange (1991, December). The faint galaxy counts revisited in an W0 = 1 universe. A&A 252, 435–448. Cerca con Google

90. Halliday, C., R. L. Davies, H. Kuntschner, M. Birkinshaw, R. Bender, R. P. Saglia, & G. Baggley (2001, September). Line-of-sight velocity distributions of low-luminosity elliptical galaxies. MNRAS 326, 473–489. Cerca con Google

91. Iglesias, C. A. & F. J. Rogers (1993, August). Radiative opacities for carbon- and oxygen-rich mixtures. ApJ 412, 752–760. Cerca con Google

92. Im, M., R. E. Griffiths, K. U. Ratnatunga, & V. L. Sarajedini (1996, April). Luminosity Functions of Elliptical Galaxies at Z < 1.2. ApJ 461, L79+. Cerca con Google

93. Itoh, N. & Y. Kohyama (1983, December). Neutrino-pair bremsstrahlung in dense stars. I - Liquid metal case. ApJ 275, 858–866. Cerca con Google

94. Jedrzejewski, R. I. (1987, June). CCD surface photometry of elliptical galaxies. I - Observations, reduction and results. MNRAS 226, 747–768. Cerca con Google

95. Jorgensen, I., M. Franx, & P. Kjaergaard (1996, May). The Fundamental Plane for cluster E and S0 galaxies. MNRAS 280, 167–185. Cerca con Google

96. Jorgensen, I. & J. Hjorth (1997). The Fundamental Plane at Z = 0.18. In L. N. da Costa & A. Renzini (Eds.), Galaxy Scaling Relations: Origins, Evolution and Applications, pp. 175–+. Cerca con Google

97. Kauffmann, G., S. D. M. White, & B. Guiderdoni (1993, September). The Formation and Evolution of Galaxies Within Merging Dark Matter Haloes. MNRAS 264, 201–+. Cerca con Google

98. Kawata, D. & B. K. Gibson (2003, November). Multiwavelength cosmological simulations of elliptical galaxies. MNRAS 346, 135–152. Cerca con Google

99. Kennicutt, Jr., R. C. (1983, September). The rate of star formation in normal disk galaxies. ApJ 272, 54–67. Cerca con Google

100. Kippenhahn, R., H. C. Thomas, & A. Weigert (1965). Sternentwicklung IV. Zentrales Wasserstoff- und Heliumbrennen bei einem Stern von 5 Sonnenmassen. Mit 4 Textabbildungen. Zeitschrift fur Astrophysik 61, 241–+. Cerca con Google

101. Kodama, T. & N. Arimoto (1997, April). Origin of the colour-magnitude relation of elliptical galaxies. A&A 320, 41–53. Cerca con Google

102. Komiyama, Y., S. Miyazaki, M. Yagi, N. Yasuda, S. Okamura, M. Sekiguchi, M. Doi, K. Shimasaku, F. Nakata, H. Furusawa, M. Kimura, M. Ouchi, M. Hamabe, & H. Nakaya (2003, March). Suprime-Cam: Subaru prime focus camera. In M. Iye & A. F. M. Moorwood (Eds.), Instrument Design and Performance for Optical/ Infrared Ground-based Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 152-159 (2003)., Volume 4841 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 152–159. Cerca con Google

103. Kormendy, J. (1977, June). Brightness distributions in compact and normal galaxies. I - Surface photometry of red compact galaxies. ApJ 214, 359–361. Cerca con Google

104. Kroupa, P. (1998, July). On the binary properties and the spatial and kinematical distribution of young stars. MNRAS 298, 231–242. Cerca con Google

105. Kroupa, P. (2001, April). On the variation of the initial mass function. MNRAS 322, 231–246. Cerca con Google

106. Kurucz, R. L. (1992). Model Atmospheres for Population Synthesis. In B. Barbuy & A. Renzini (Eds.), The Stellar Populations of Galaxies, Volume 149 of IAU Symposium, pp. 225–+. Cerca con Google

107. La Barbera, F., G. Busarello, P. Merluzzi, M. Massarotti, & M. Capaccioli (2003, September). On the Invariant Distribution of Galaxies in the re-¡?¿e Plane out to z=0.64. ApJ 595, 127–136. Cerca con Google

108. Landre, V., N. Prantzos, P. Aguer, G. Bogaert, A. Lefebvre, & J. P. Thibaud (1990, December). Revised reaction rates for the H-burning of O-17 and the oxygen isotopic abundances in red giants. A&A 240, 85–92. Cerca con Google

109. Larson, R. B. (1974, March). Dynamical models for the formation and evolution of spherical galaxies. MNRAS 166, 585–616. Cerca con Google

110. Larson, R. B. (1975, December). Models for the formation of elliptical galaxies. MNRAS 173, 671–699. Cerca con Google

111. Larson, R. B. (1986, February). Bimodal star formation and remnant-dominated galactic models. MNRAS 218, 409–428. Cerca con Google

112. Larson, R. B. (1998, December). Early star formation and the evolution of the stellar initial mass function in galaxies. MNRAS 301, 569–581. Cerca con Google

113. Levinson, F. H. & W. W. Roberts, Jr. (1981, April). A cloud/particle model of the interstellar medium – Galactic spiral structure. ApJ 245, 465–481. Cerca con Google

114. Lia, C., L. Portinari, & G. Carraro (2002, March). Star formation and chemical evolution in smoothed particle hydrodynamics simulations: a statistical approach. MNRAS 330, 821–836. Cerca con Google

115. Lucy, L. B. (1977, December). A numerical approach to the testing of the fission hypothesis. AJ 82, 1013–1024. Cerca con Google

116. Lupton, R. H., J. E. Gunn, & A. S. Szalay (1999, September). A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements. AJ 118, 1406–1410. Cerca con Google

117. Marri, S. & S. D.M.White (2003, October). Smoothed particle hydrodynamics for galaxy-formation simulations: improved treatments of multiphase gas, of star formation and of supernovae feedback. MNRAS 345, 561–574. Cerca con Google

118. McClure, R. D. & S. van den Bergh (1968, June). Five-color intermediate-band photometry of stars, clusters, and galaxies. AJ 73, 313–+. Cerca con Google

119. Merlin, E. & C. Chiosi (2006, October). Formation and evolution of early-type galaxies. II. Models with quasicosmological initial conditions. A&A 457, 437–453. Cerca con Google

120. Merlin, E. & C. Chiosi (2007, June). Simulating the formation and evolution of galaxies: Multi-phase description of the interstellar medium, star formation, and energy feedback. ArXiv e-prints 706. Cerca con Google

121. Meza, A., J. F. Navarro, M. Steinmetz, & V. R. Eke (2003, June). Simulations of Galaxy Formation in a LCDM Universe. III. The Dissipative Formation of an Elliptical Galaxy. ApJ 590, 619–635. Cerca con Google

122. Mihalas, D., D. G. Hummer, B. W. Mihalas, & W. Daeppen (1990, February). The equation of state for stellar envelopes. IV - Thermodynamic quantities and selected ionization fractions for six elemental mixes. ApJ 350, 300–308. Cerca con Google

123. Mobasher, B., P. Capak, N. Z. Scoville, T. Dahlen,M. Salvato, H. Aussel, D. J. Thompson, R. Feldmann, L. Tasca, O. Lefevre, S. Lilly, C. M. Carollo, J. S. Kartaltepe, H. McCracken, J. Mould, A. Renzini, D. B. Sanders, P. L. Shopbell, Y. Taniguchi, M. Ajiki, Y. Shioya, T. Contini, M. Giavalisco, O. Ilbert, A. Iovino, V. Le Brun, V. Mainieri, M. Mignoli, & M. Scodeggio (2007, September). Photometric Redshifts of Galaxies in COSMOS. ApJS 172, 117–131. Cerca con Google

124. Munakata, H., Y. Kohyama, & N. Itoh (1985, September). Neutrino energy loss in stellar interiors. ApJ 296, 197–203. Cerca con Google

125. O’Connell, R.W. (1980, March). Galaxy spectral synthesis. II - M32 and the ages of galaxies. ApJ 236, 430–440. Cerca con Google

126. O’Connell, R. W. (1986). Analysis of stellar populations at large lookbacks. In Spectral evolution of galaxies, p. 321 - 343, pp. 321–343. Cerca con Google

127. Oke, J. B. (1964, August). Photoelectric Spectrophotometry of Stars Suitable for Standards. ApJ 140, 689–+. Cerca con Google

128. Oke, J. B. & J. E. Gunn (1983, March). Secondary standard stars for absolute spectrophotometry. ApJ 266, 713–717. Cerca con Google

129. Patton, D. R., C. J. Pritchet, H. K. C. Yee, E. Ellingson, & R. G. Carlberg (1997, January). Close Pairs of Field Galaxies in the CNOC1 Redshift Survey. ApJ 475, 29–+. Cerca con Google

130. Peebles, P. J. E. (2002). When did the Large Elliptical Galaxies Form? In N. Metcalfe & T. Shanks (Eds.), A New Era in Cosmology, Volume 283 of Astronomical Society of the Pacific Conference Series, pp. 351–+. Cerca con Google

131. Pickles, A. J. (1985, September). Differential population synthesis of early-type galaxies. III - Synthesis results. ApJ 296, 340–369. Cerca con Google

132. Piovan, L., R. Tantalo, & C. Chiosi (2003, September). Shells of dust around AGB stars: Effects on the integrated spectrum of Single Stellar Populations. A&A 408, 559–579. Cerca con Google

133. Piovan, L., R. Tantalo, & C. Chiosi (2006a, March). Modelling galaxy spectra in presence of interstellar dust - I. The model of interstellar medium and the library of dusty single stellar populations. MNRAS 366, 923–944. Cerca con Google

134. Piovan, L., R. Tantalo, & C. Chiosi (2006b, August). Modelling galaxy spectra in presence of interstellar dust - II. From the ultraviolet to the far-infrared. MNRAS 370, 1454–1478. Cerca con Google

135. Probst, R. G., A. Montane, M. Warner, M. Boccas, M. Bonati, R. Galvez, R. Tighe, M. C. Ashe, N. S. van der Bliek, & R. D. Blum (2003, March). ISPI: the infared side port imager for the CITO 4-m telescope. In M. Iye & A. F. M. Moorwood (Eds.), Instrument Design and Performance for Optical/Infrared Groundbased Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 411-419 (2003)., Volume 4841 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 411–419. Cerca con Google

136. Reimers, D. (1975). Circumstellar absorption lines and mass loss from red giants. Memoires of the Societe Royale des Sciences de Liege 8, 369–382. Cerca con Google

137. Renzini, A. & A. Buzzoni (1983). Theoretical foundations of evolutionary population synthesis A progress report. Memorie della Societa Astronomica Italiana 54, 739–745. Cerca con Google

138. Renzini, A. & A. Buzzoni (1986a). Global properties of stellar populations and the spectral evolution of galaxies. In C. Chiosi & A. Renzini (Eds.), Spectral Evolution of Galaxies, Volume 122 of Astrophysics and Space Science Library, pp. 195–231. Cerca con Google

139. Renzini, A. & A. Buzzoni (1986b). Global properties of stellar populations and the spectral evolution of galaxies. In Spectral evolution of galaxies, p. 195 - 235, pp. 195–235. Cerca con Google

140. Ridgway, S. T., R. R. Joyce, N. M.White, & R. F.Wing (1980, January). Effective temperatures of late-type stars - The field giants from K0 to M6. ApJ 235, 126–137. Cerca con Google

141. Rocca-Volmerange, B. (1989, January). An evolutionary model of star formation for elliptical galaxies. MNRAS 236, 47–56. Cerca con Google

142. Rocca-Volmerange, B. & B. Guiderdoni (1987, March). Star formation in nuclei of S0/E galaxies. A&A 175, 15–22. Cerca con Google

143. Rocca-Volmerange, B. & B. Guiderdoni (1988, October). An atlas of synthetic spectra of galaxies. A&AS 75, 93–106. Cerca con Google

144. Rocca-Volmerange, B. & B. Guiderdoni (1990, November). Merging Driven Evolution of High Redshift Galaxies in a Universe with OMEGA/0=1. MNRAS 247, 166–+. Cerca con Google

145. Rogers, F. J. & C. A. Iglesias (1992, April). Radiative atomic Rosseland mean opacity tables. ApJS 79, 507–568. Cerca con Google

146. Salasnich, B., L. Girardi, A. Weiss, & C. Chiosi (2000, September). Evolutionary tracks and isochrones for alpha-enhanced stars. A&A 361, 1023–1035. Cerca con Google

147. Salpeter, E. E. (1955, January). The Luminosity Function and Stellar Evolution. ApJ 121, 161–+. Cerca con Google

148. Schade, D., S. J. Lilly, D. Crampton, R. S. Ellis, O. Le F`evre, F. Hammer, J. Brinchmann, R. Abraham,M. Colless, K. Glazebrook, L. Tresse, & T. Broadhurst (1999, November). Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. III. Field Elliptical Galaxies at 0.2 < z < 1.0. ApJ 525, 31–46. Cerca con Google

149. Schlegel, D. J., D. P. Finkbeiner, & M. Davis (1998, June). Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. ApJ 500, 525–+. Cerca con Google

150. Schmidt, M. (1959, March). The Rate of Star Formation. ApJ 129, 243–+. Cerca con Google

151. Scoville, N., H. Aussel, M. Brusa, P. Capak, C. M. Carollo, M. Elvis, M. Giavalisco, L. Guzzo, G. Hasinger, C. Impey, J.-P. Kneib, O. LeFevre, S. J. Lilly, B. Mobasher, A. Renzini, R. M. Rich, D. B. Sanders, E. Schinnerer, D. Schminovich, P. Shopbell, Y. Taniguchi, & N. D. Tyson (2007, September). The Cosmic Evolution Survey (COSMOS): Overview. ApJS 172, 1–8. Cerca con Google

152. Searle, L., W. L. W. Sargent, & W. G. Bagnuolo (1973, January). The History of Star Formation and the Colors of Late-Type Galaxies. ApJ 179, 427–438. Cerca con Google

153. Spergel, D. N., L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, & E. L. Wright (2003, September). First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. ApJS 148, 175–194. Cerca con Google

154. Tantalo, R. (2005, January). New database of SSPs with different IMFs. In E. Corbelli, F. Palla, & H. Zinnecker (Eds.), The Initial Mass Function 50 Years Later, Volume 327 of Astrophysics and Space Science Library, pp. 235–+. Cerca con Google

155. Tantalo, R., A. Bressan, & C. Chiosi (1997, October). To what Extent are Mg2 and <Fe> indicators of Mg and Fe Abundances? ArXiv Astrophysics e-prints. Cerca con Google

156. Tantalo, R. & C. Chiosi (2004, September). Measuring age, metallicity and abundance ratios from absorption-line indices. MNRAS 353, 917–940. Cerca con Google

157. Tantalo, R., C. Chiosi, & A. Bressan (1998, May). Ages and metallicities in elliptical galaxies from the H beta, <Fe>, and Mg2 diagnostics. A&A 333, 419–432. Cerca con Google

158. Tantalo, R., C. Chiosi, A. Bressan, & F. Fagotto (1996, July). Spectro-photometric evolution of elliptical galaxies. II. Models with infall. A&A 311, 361–383. Cerca con Google

159. Tantalo, R., C. Chiosi, A. Bressan, P. Marigo, & L. Portinari (1998, July). Spectro-photometric evolution of elliptical galaxies. III. Infall models with gradients in mass density and star formation. A&A 335, 823–846. Cerca con Google

160. Tinsley, B. M. (1968, February). Evolution of the Stars and Gas in Galaxies. ApJ 151, 547–+. Cerca con Google

161. Tinsley, B. M. (1980a). Evolution of the Stars and Gas in Galaxies. Fundamentals of Cosmic Physics 5, 287–388. Cerca con Google

162. Tinsley, B. M. (1980b, October). On the interpretation of galaxy counts. ApJ 241, 41–53. Cerca con Google

163. Treu, T., R. S. Ellis, T. X. Liao, P. G. van Dokkum, P. Tozzi, A. Coil, J. Newman,M. C. Cooper, &M. Davis (2005, November). The Assembly History of Field Spheroidals: Evolution of Mass-to-Light Ratios and Signatures of Recent Star Formation. ApJ 633, 174–197. Cerca con Google

164. Turnrose, B. E. (1976, November). The stellar content of the nuclear regions of SC galaxies. ApJ 210, 33–37. Cerca con Google

165. van der Wel, A., M. Franx, P. G. van Dokkum, H.-W. Rix, G. D. Illingworth, & P. Rosati (2005, September). Cerca con Google

166. Mass-to-Light Ratios of Field Early-Type Galaxies at z ˜ 1 from Ultradeep Spectroscopy: Evidence for Mass-dependent Evolution. ApJ 631, 145–162. Cerca con Google

167. van Dokkum, P. G. & M. Franx (1996, August). The Fundamental Plane in CL 0024 at z = 0.4: implications for the evolution of the mass-to-light ratio. MNRAS 281, 985–1000. Cerca con Google

168. van Dokkum, P. G., M. Franx, D. Fabricant, G. D. Illingworth, & D. D. Kelson (2000, September). Hubble Space Telescope Photometry and Keck Spectroscopy of the Rich Cluster MS 1054-03: Morphologies, Butcher- Oemler Effect, and the Color-Magnitude Relation at Z = 0.83. ApJ 541, 95–111. Cerca con Google

169. van Dokkum, P. G., M. Franx, D. D. Kelson, & G. D. Illingworth (1998, September). Luminosity Evolution of Early-Type Galaxies to Z = 0.83: Constraints on Formation Epoch and Omega. ApJ 504, L17+. Cerca con Google

170. Vazdekis, A., E. Casuso, R. F. Peletier, & J. E. Beckman (1996, October). A New Chemo-evolutionary Population Synthesis Model for Early-Type Galaxies. I. Theoretical Basis. ApJS 106, 307–+. Cerca con Google

171. Vazdekis, A., R. F. Peletier, J. E. Beckman, & E. Casuso (1997, July). A New Chemo-evolutionary Population Synthesis Model for Early-Type Galaxies. II. Observations and Results. ApJS 111, 203–+. Cerca con Google

172. White, S. D. M. & M. J. Rees (1978, May). Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering. MNRAS 183, 341–358. Cerca con Google

173. Yoshii, Y. & F. Takahara (1988, March). Galactic evolution and cosmology - Probing the cosmological deceleration parameter. ApJ 326, 1–18. Cerca con Google

174. Ziegler, B. L. & R. Bender (1997, November). The Mg(b)-sigma relation of elliptical galaxies at Z of about 0.37. MNRAS 291, 527–+. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record