Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Donà , Giulia (2008) Principal component analysis for motor skills characterization and individual monitoring in sports science. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Sports biomechanics is the science that applies the laws of mechanics and physics to athlete performance, in order to gain a greater understanding of motor skills through measurement, modelling and simulation. It operates for meeting the growing demands of coaches, physicians and athletes, to quantitatively assess the essential characteristics of performance. In clinical "gait analysis", standard protocols have been widely validated and quantitative analysis has become a powerful tool for surgical decision and for post-operative and rehabilitative monitoring. In sports field the great amount of disciplines and the difficulty in standardizing movements have acted as a brake on the systematic use of powerful techniques like stereophotogrammetry. These methods, although offering great potentialities, are still at their beginning. Substantial issues are still to be investigated, such as time needed for data collection and data analysis, handling of the equipment, costs, lack of subject-specific models, etc.
One of the purposes of sports research should be the identification of the peculiar characteristics and of the most proficient strategy for each athlete. The monitoring of a group of athletes should be the base for an accurate quantitative assessment of the movement under analysis and for the identification of different skill levels. Then, the knowledge of single athlete's abilities or deficiencies should help coaches to adjust individual training programs. Moreover, a reliable characterization of the subject should pass through longitudinal monitoring: the athlete might be compared with himself in different times during the training season.
The purpose of this thesis was to investigate the use of principal component analysis for reducing and interpreting sports motion data, while accounting for their original variability. Race walking was chosen as the mean of investigation, because it is a motor task that presents peculiar biomechanical and coordinative demands. An optoelectronic system and a force plate were used to collect and estimate kinematics and kinetics of seven race walkers of international level. Several race walking repetitions were acquired and kinematics and kinetics variables were processed.
Principal component analysis summarized the most important information in the data, by representing the variables in a limited number of components that explained most of data variance. Data underwent three different applications of PCA: traditional (t-PCA), functional (f-PCA) and two-stage (2-PCA).
Advantages and disadvantages of the three methods in solving different challenges were evaluated. A general characterization of race walking biomechanics was pursued, in order to get a full comprehension of the movement under analysis. Then, a robust and complete characterization of the single athlete's performance strategy was given. The most important factors that distinguish athletes according to their skill levels were found out. Moreover, the peculiar technical and coordinative characteristics of each athlete were widely described. Finally, an example of longitudinal monitoring was described. Motion analysis, combined with PCA, was used on data from two subsequent testing sessions, to identify the main improvements caused by training.
This study tried to show how principal component analysis could represent a valuable tool for motor skills characterization and individual monitoring. It gave also important information about motion behaviours that might be primarily responsible for injury. Moreover, a special effort was spent in finding a connection between a complex and theoretical mathematical approach (PCA) and its practical application. The biomechanical interpretations of the statistical results was intended to make information intelligible from practitioners.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Claudio, Cobelli
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA DELL'INFORMAZIONE > BIOINGEGNERIA
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):principal component analysis, race walking, individual monitoring, motor skills
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:853
Depositato il:30 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] H. Ahn, E. Choi, and I. Han. Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing. Expert Systems with Applications, 33:181–191, 2007. Cerca con Google

[2] J.L. Astephen and K.J. Deluzio. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique. Clinical Biomechanics, 20:209–217, 2005. Cerca con Google

[3] S. Barker, R. Craik, W. Freedman, N. Herrmann, and H. Hillstrom. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med Eng Phys, 28(5):460–467, 2006. Cerca con Google

[4] V. Barra. Analysis of gene expression data using functional principal components. Computer Methods and Programs in Biomedicine, 75, 2004. Cerca con Google

[5] R. Bartlett. Future trends in sports biomechanics - reducing injury risk or improving performance? In Proceedings of the XXIII ISBS Symposium, 2005. Cerca con Google

[6] R. Bartlett. Artificial intelligence in sports biomechanics: new dawn or false hope? Journal of Sports Science and Medicine, 5(443):474–479, 2006. Cerca con Google

[7] R.M. Bartlett. Current issues in the mechanics of athletic activities. A position paper. Journal of Biomechanics, 30:477–486, 1997. Cerca con Google

[8] R.M. Bartlett, J. Wheat, and M. Robins. Is movement variability important for sports biomechanics? Sports Biomechanics, 4(2):224– 243, 2007. Cerca con Google

[9] J.G. Barton and A. Lees. An application of neural networks for distinguishing gait patterns on the basis of hipknee joint angle diagrams. Gait and Posture, 5:28–33, 1997. Cerca con Google

[10] R. Begg and J. Kamruzzaman. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. Journal of Biomechanics, 38:401–408, 2005. Cerca con Google

[11] E. Bingham. Advances in independent component analysis with applications to data mining. PhD thesis, Helsinki University of Technology, 2003. Cerca con Google

[12] W. Blajer andW. Schielen. Walking without impacts as a motion/force control problem. ASME Journal of Dynamic Systems, Measurement and Control, 114, 1992. Cerca con Google

[13] M.A. Cairns, R.G. Burdett, J.C. Pisciotta, and S.R. Simon. A biomechanical analysis of racewalking gait. Medicine and Science in Sports and Exercise, 18(4):446–453, 1986. Cerca con Google

[14] A. Cappello and R. Stagni. Errori e artefatti in stereofotogrammetria e loro compensazione, pages 103–129. Patron, 2003. Cerca con Google

[15] R.B. Cattell. The scree test for the number of factors. Multivariate Behavioral Research, 1:245–276, 1966. Cerca con Google

[16] M.M. Cerney. From gesture recognition to functional motion analysis: Quantitative techniques for the application and evaluation of human motion. PhD thesis, Iowa State University, 2005. Cerca con Google

[17] T.H. Chang and Y. Hurmuzlu. Sliding control without reaching phase and its application to bipedal locomotion. ASME Journal of Dynamic Systems, Measurement and Control, 105, 1994. Cerca con Google

[18] T. Chau. A review of analytical techniques for gait data. part 1: fuzzy, statistical and fractal methods. Gait and Posture, 13:49–66, 2001. Cerca con Google

[19] T. Chau and S. Redekop. Managing variability in the summary and comparison of gait data. J Neuroengineering Rehabil, 2(22), 2005. Cerca con Google

[20] T. Chau, S. Young, and S. Redekop. Managing variability in the summary and comparison of gait data. Journal of NeuroEngineering and Rehabilitation, 2(22), 2005. Cerca con Google

[21] V.L. Chester and A.T. Wrigley. The identification of age-related differences in kinetic gait parameters using principal component analysis. Clinical Biomechanics, doi:10.1016/j.clinbiomech.2007.09.007, 2007. Cerca con Google

[22] L. Chiari, U. Della Croce, A. Leardini, and A. Cappozzo. Human movement analysis using stereophotogrammetry. part 2: instrumental errors. Gait and Posture, 21(2):197–211, 2005. Cerca con Google

[23] G. Courtine and M. Schieppati. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans. Journal of Neurophysiology, 91:1524–1535, 2004. Cerca con Google

[24] U. Della Croce, A. Cappozzo, and D.C. Kerrigan. Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med Biol Eng Comput, 37(2):155–161, 1999. Cerca con Google

[25] U. Della Croce, A. Leardini, L. Chiari, and A. Cappozzo. Human movement analysis using stereophotogrammetry. part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait and Posture, 21(2):226–237, 2005. Cerca con Google

[26] A. Daffertshofer, C.J.C. Lamoth, O.G. Meijer, and P.J. Beek. Pca in studying coordination and variability: a tutorial. Clinical Biomechanics, 19:415–428, 2004. Cerca con Google

[27] M. D’Amico and G. Ferrigno. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med Biol Eng Comput, 28:407–415, 1990. Cerca con Google

[28] S. Das, M. Lazarewicz, and L.H. Finkel. Principal component analysis of temporal and spatial information for human gait recognition. In Proceedings of the 26th Annual International Conference of the IEEE EMBS, 2004. Cerca con Google

[29] S.R. Das, R.C. Wilson, M.T. Lazarewicz, and L.H. Finkel. Gait recognition by two-stage principal component analysis. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, 2006. Cerca con Google

[30] S.R. Das, R.C. Wilson, M.T. Lazarewicz, and L.H. Finkel. Two-stage pca extracts spatiotemporal features for gait recognition. Journal of Sports Sciences, 1(5):9–17, 2006. Cerca con Google

[31] K.J. Deluzio and J.L. Astephen. Biomechanical features of gait wave-form data associated with knee osteoarthritis. an application of principal component analysis. Gait Posture, 25:86–93, 2007. Cerca con Google

[32] K.J. Deluzio, U.P. Wyss, P.A. Costigan, C. Sorbie, and B. Zee. Gait assessment in unicompartmental knee arthroplasty patients: Principal component modelling of gait waveforms and clinical status. Human Movement Science, 18(5):701–711, 1997. Cerca con Google

[33] K.J. Deluzio, U.P. Wyss, B. Zee, P.A. Costigan, and C. Sorbie. Principal component models of knee kinematics and kinetics: Normal vs. pathological gait patterns. Human Movement Science, 16:201–217, 1997. Cerca con Google

[34] J.S. Dufek, B.T. Bates, N. Stergiou, and C.R. James. Interactive effects between group and single-subject response patterns. Hum Mov Sci, 14(3):301–323, 1995. Cerca con Google

[35] A. Duhamel, J.L. Bourriez, P. Devos, P. Krystkowiak, A. Destee, P. Derambure, and L. Defebvre. Statistical tools for clinical gait analysis. Gait Posture, 20:204–212, 2006. Cerca con Google

[36] Y. Ehara, H. Fujimoto, S. Miyazaki, M. Mochimaru, S. Tanaka, S. Yamamoto, S. Barker, R. Craik, W. Freedman, N. Herrmann, and H. Hillstrom. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Gait and Posture, 5(3):251–255, 1997. Cerca con Google

[37] P.H.C. Eilers and B.D. Marx. Flexible smoothing with ß-splines and penalties. Statistical Science, 11(2):89–121, 1996. Cerca con Google

[38] B. Elliott. Biomechanics: An integral part of sport science and sport medicine. Journal of Science and Medicine in Sport, 2(4):299–310, 1999. Cerca con Google

[39] J. Fan and S.K. Lin. Test of significance when data are curves. Journal of the American Statistical Association, 93, 1998. Cerca con Google

[40] J.J. Faraway and J. Hu. Modeling variability in reaching motions. In Proceedings of the SAE Digital Human Modeling Conference, 2001. Cerca con Google

[41] R. Ferber, I. McClay Davis, D.S. Williams, and C. Laughton. A comparison of within- and between-day reliability of discrete 3d lower extremity variables in runners. J Orthop Res, 20(6):1139–1145, 2002. Cerca con Google

[42] A. Forner-Cordero, O. Levin, Y. Li, and S.P. Swinnen. Principal component analysis of complex multijoint coordinative movements. Biological Cybernetics, 93:63–78, 2005. Cerca con Google

[43] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery, 1(1):11–28, 1997. Cerca con Google

[44] D. Graham and A.J. Harrison. An investigation of schema theory applied to the biomechanics of the sprint starts in athletics. In Proceedings of the XXIV ISBS Symposium, 2006. Cerca con Google

[45] E. Growney, D. Meglan, M. Johnson, T. Cahalan, and K.N. An. Repeated measures of adult normal walking using a video tracking system. Gait Posture, 6(2):147–162, 1997. Cerca con Google

[46] P. Hall, H.G. Mller, and J.L. Wang. Properties of principal component methods for functional and longitudinal data analysis. The Annals of Statistics, 34(3):1493–1517, 2006. Cerca con Google

[47] J. Hamill, J. M. Haddad, and E.A. van Emmerik. Using coordination measures for movement analysis. In Proceedings of the XXIII ISBS Symposium, 2005. Cerca con Google

[48] J. Hamill, J.M. Haddad, and E.A. van Emmerik. Overuse injuries in running: do complex analysis help our understanding? In Proceedings of the XXIV ISBS Symposium, 2006. Cerca con Google

[49] J. Hamill, R.E. van Emmerik, B.C. Heiderscheit, and L. Li. A dynamical systems approach to lower extremity running injuries. Clin Biomech, 14(5):297–308, 1999. Cerca con Google

[50] D. Hand, H. Mannila, and P. Smyth. Principles of data mining. The MIT Press., 2001. Cerca con Google

[51] A.J. Harrison, W. Ryan, and K. Hayes. Functional data analysis of joint coordination in the development of vertical jump performance. Sports Biomechanics, 6(2):199–214, 2007. Cerca con Google

[52] H. Hatze. Motion variabilityits definition, quantification, and origin. J Mot Behav, 18(1):5–16, 1986. Cerca con Google

[53] J.M. Hausdorff. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Human Movement Science, 2007. Cerca con Google

[54] J. Himberg. From insights to innovations: data mining, visualization, and user interfaces. PhD thesis, Helsinki University of Technology, 2004. Cerca con Google

[55] A.L. Hof. Scaling gait data to body size [1]. Gait Posture, 4(3):222– 223, 1996. Cerca con Google

[56] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:498–520, 1933. Cerca con Google

[57] J.L. Hudson. Sports biomechanics in the year 2000: Some observations on trajectory. In Proceedings of XVIII International Symposium of Biomechanics in Sports, 2000. Cerca con Google

[58] International Association of Athletics Federations. IAAF Competition Rules 2006-2007, 2006. Cerca con Google

[59] I.T. Joliffe. Principal Component Analysis. Springer, New York, NY. Cerca con Google

[60] I.T. Joliffe and B.J.T. Morgan. Principal component analysis and exploratory factor analysis. Statistical Methods in Medical Research, 1, 1992. Cerca con Google

[61] M.P. Kabada, H.K. Ramakrishnan, and M.E. Wootten. Measurement of lower extremity kinematics during level walking. J Orthop Res, 8(3):383–392, 1990. Cerca con Google

[62] M.P. Kabada, H.K. Ramakrishnan, M.E. Wootten, J. Gainey, G. Gorton, and G.V. Cochran. Repestability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res, 7(6):849–860, 1989. Cerca con Google

[63] J. Kepner and R. Kim. Cluster detection in databases: The adaptive matched filter algorithm and implementation. Data Mining and Knowledge Discovery, 7(1):57–79, 2003. Cerca con Google

[64] M. Kermit and O. Tomic. Independent component analysis applied on gas sensor array measurement data. IEEE Sensors Journal, 3(2):218– 228, 2003. Cerca con Google

[65] A. Kocsor and L. Toth. Kernel-based feature extraction with a speech technology application. IEEE Transactions on Signal Processing, 52:2250–2263, 2004. Cerca con Google

[66] W. Kroll. Reliability theory and research decision in selection of a criterion score. Research Quarterly, 38, 1957. Cerca con Google

[67] M.J. Kurz and N. Stergiou. Effect of normalization and phase angle calculations on continuous relative phase. Journal of Biomechanics, 35, 2002. Cerca con Google

[68] M.J. Kurz and N. Stergiou. Innovative analysis of human movement. Human Kinetics, 2004. Cerca con Google

[69] A. Lees. Technique analysis in sports: a critical review. Journal of Sports Sciences, 20:813–828, 2002. Cerca con Google

[70] M.W. Lenhoff, T. Santner, J. Otis, M.G.E. Petreson, B.J. Williams, and S.I. Backus. Bootstrap prediction and confidence bands: a superior statistical method for analysis of gait data. Gait Posture, 9:10–17, 1997. Cerca con Google

[71] S.E. Leurgrans, R.A. Moyeed, and B.W. Silverman. Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society - Series B, 55(3):725–740, 1993. Cerca con Google

[72] D.G. Liebermann, L. Katz, M.D. Hughes, R.M. Bartlett, J. Mc-clements, and I.M. Franks. Advances in the application of information technology to sport performance. Journal of Sports Sciences, 20:755– 769, 2002. Cerca con Google

[73] M. Loewenstein and J. Spletzer. General and specific training. Evidence and implications. The Journal of Human Resources, 34(4):710–733, 1999. Cerca con Google

[74] E. Mller, U. Benko, C. Raschner, and H. Schwameder. Specific fitness training and testing in competitive sports. Medicine Science in sports exercises, 32(1):216–220, 2000. Cerca con Google

[75] M. Mller. Decomposition of variability in the execution of goal oriented tasks: three components of skill improvement. J. Exp. Psychol. Hum. Percept. Perform., 30(1):212–233, 2004. Cerca con Google

[76] K.C. Moisio, D.R. Sumner, S. Shott, and D.E. Hurwitz. Normalization of joint moments during gait: A comparison of two techniques. J Biomech, 36(4):599–603, 2003. Cerca con Google

[77] R.D. Mullineaux, R.M. Bartlett, and S. Bennett. Research design and statistics in biomechanics and motor control. Journal of Sports Sciences, 19:739–760, 2001. Cerca con Google

[78] M.P. Murray, G.N. Guten, L.A. Mollinger, and G.M. Gardner. Kinematic and electromyographic patterns of olympic race walkers. The American Journal of Sports Medicine, 11(2):68–74, 1983. Cerca con Google

[79] H.F. Neumann, J. Krug, and D. Gohlitz. Coordinative threshold in race walking. In Proceedings of the ISBS Symposium, 2006. Cerca con Google

[80] B.M. Nigg and M. Bobbert. On the potential of various approaches in load analysis to reduce the frequency of sports injuries. Journal of Biomechanics, 23(1):3–12, 1990. Cerca con Google

[81] B. Odegard, N. Bulat, B. Savilonis, and Y. Mendelson. An analysis of race walking styles using a 2-dimensional mathematical knee model. In Bioengineering Conference, Proceedings of the IEEE 1997 23rd North- east, 1997. Cerca con Google

[82] S.J. Olney, M.P. Griffin, and I.D. McBride. Multivariate examination of data from gait analysis of persons with stroke. Phys Ther, 78(8):814– 828, 1998. Cerca con Google

[83] D. Ormoneit, M.J. Black, T. Hastie, and H. Kjellstrm. Representing cyclic human motion using functional analysis. Image and Vision Computing, 23:1264–1276, 2005. Cerca con Google

[84] D. Ormoneit, H. Sidenbladh, M.J. Black, T. Hastie, and D.J. Fleet. Learning and tracking human motion using functional analysis. In IEEE Workshop on Human Modeling, Analysis and Synthesis, 2000. Cerca con Google

[85] F. O’Sullivan. Automatic smoothing of regression functions in generalized linear models. Journal of the American Statistical Association, 81(393):96–103, 1986. Cerca con Google

[86] A. Pascucci. Toward a PhD Thesis on Pattern Recognition. PhD thesis, Università degli Studi di Roma - La Sapienza, 2006. Cerca con Google

[87] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559–572, 1901. Cerca con Google

[88] A. Pedotti and C. Frigo. Quantitative analysis of locomotion for basic research and clinical applications. Functional Neurology, 7(4):47–56, 1992. Cerca con Google

[89] B.T. Peters, M.H. Jeffrey, B.C. Heiderscheit, R.E.A. Van Emmerik, and J. Hamill. Limitations in the use and interpretation of continuous relative phase. Journal of Biomechanics, 36, 2003. Cerca con Google

[90] E. Preatoni. Innovative Methods for the Analysis of Sports Movements and for the Longitudinal Monitoring of Individual Motor Skills. PhD thesis, Politecnico di Milano, 2007. Cerca con Google

[91] E. Preatoni, A. La Torre, and R. Rodano. A biomechanical comparison between racewalking and normal walking stance phase. In Proceedings of the ISBS Symposium, 2006. Cerca con Google

[92] R.M. Queen, M.T. Gross, and H. Liu. Repeatability of lower extremity kinetics and kinematics for standardized and self-selected running speeds. Gait and Posture, 23(3):282–287, 2006. Cerca con Google

[93] I.O. Ramsay and B.W. Silverman. Functional Data Analysis. Number 22. Inc., New York, 1997. Cerca con Google

[94] I.O. Ramsay and B.W. Silverman. Applied functional Data Analysis. Inc., New York, 2002. Cerca con Google

[95] J.O. Ramsay and C.J. Dalzell. Some tools for functional data analysis. Journal of the Royal Statistical Society Series B, 53, 1991. Cerca con Google

[96] J.O. Ramsay and X. Li. Curve registration. Journal of the Royal Statistical Society Series B, 60(2):351–363, 1998. Cerca con Google

[97] R. Rodano. Bioingegneria dello sport, pages 513–529. Patron, 2003. Cerca con Google

[98] T. Ruchlewicz, R. Staszkiewicz, W. Chwals, and J. Laska. Oscillations of the centre of gravity in world elite race walkers. Physical Education and Sport, 50, 2006. Cerca con Google

[99] O.M. Rutherford and D.A. Jones. The role of learning and coordination in strength training. European Applied Physiology, 55, 1986. Cerca con Google

[100] W. Ryan, A. J. Harrison, and K. Hayes. Functional data analysis in biomechanics: a case study of knee joint vertical jump kinemtaics. Sports Biomechanics, 5, 2006. Cerca con Google

[101] H. Sadeghi. Local or global asymmetry in gait of people without impairments. Gait and Posture, 17:197–204, 2003. Cerca con Google

[102] H. Sadeghi, P. Allard, F. Barbier, S. Sadeghi, S. Hinse, R. Perrault, and H. Labelle. Main functional roles of knee flexors/extensors in able-bodied gait using principal component analysis. The Knee, 9:47–53, 2002. Cerca con Google

[103] H. Sadeghi, P. Allard, and M. Duhaime. Functional gait asymmetry in able-bodied subjects. Human Movement Science, 16:243–258, 1997. Cerca con Google

[104] H. Sadeghi, F. Prince, S. Sadeghi, and H. Labelle. Principal component analysis of the power developed in the flexion/extension muscles of the hip in able-bodied gait. Medical Engineering Physics, 22:703–710, 2000. Cerca con Google

[105] R.A. Schmidt and C.A. Wrisberg. Motor learning and performance. Human Kinetics, 2004. Cerca con Google

[106] H. Schwameder. Issues and challenges of applied sport biomechanics research. Journal of Biomechanics, 40(2):S14, 2007. Cerca con Google

[107] R. Shiavi and P. Griffin. Representing and clustering electromyographic gait patterns with multivariate techniques. Med Biol Eng Computing, pages 605–611, 1981. Cerca con Google

[108] B.W. Silverman. Incorporating parametric effects into functional principal component analysis. Journal of the Royal Statistical Society Series B, 57(4):673–689, 1995. Cerca con Google

[109] J.P. Stevens. Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum Associates Publishers, 2002. Cerca con Google

[110] E. Thelen and B.D. Ulrich. Hidden skills: a dynamic systems analysis of treadmill stepping during the first year. Monographs of the Society for Research in Child Development, 56(1):1–104, 1991. Cerca con Google

[111] J.R. Thomas and J.K. Nelson. Research methods in physical activity. Human Kinetics, 1996. Cerca con Google

[112] M. Tingley, C. Wilson, E. Biden, and W.R. Knight. An index to quantify normality of gait in young children. Gait Posture, 16, 2002. Cerca con Google

[113] N.F. Troje. Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. Journal of Vision, 2(5):371–387, 2002. Cerca con Google

[114] R.E.A. van Emmerik and R.C. Wagenaar. Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics, 29(9):1175–1184, 1996. Cerca con Google

[115] G.A. Westerfield. The use of biomechanics in the judging of race walking. In Proceedings of the International Race Walk Forum, 2007. Cerca con Google

[116] D.A.Winter. Kinematic and kinetic patterns in human gait: variability and compensating effects. Human Movement Science, 3(1-2):51–76, 1984. Cerca con Google

[117] S. Wolf, T. Loose, M. Schablowski, L. Doederlein, R. Rupp, H.J. Gerner, G. Bretthauer, and R. Mikut. Automated feature assessment in instrumented gait analysis. Gait Posture, 23:331–338, 2006. Cerca con Google

[118] M.E. Wootten, M.P. Kadaba, and G.V.B. Cochran. Dynamic electromyography i: numerical representation using principal component analysis. J Orthop Res, pages 247–258, 1990. Cerca con Google

[119] A.T. Wrigley, W.J. Albert, K.J. Deluzio, and J.M. Stevenson. Differentiating lifting technique between those who develop low back pain and those who do not. Clinical Biomechanics, 20:254–263, 2005. Cerca con Google

[120] A.T. Wrigley, W.J. Albert, K.J. Deluzio, and J.M. Stevenson. Principal component analysis of lifting waveforms. Clinical Biomechanics, 21(6):567–578, 2006. Cerca con Google

[121] J. Wu, J. Wang, and L. Liu. Feature extraction via kpca for classification of gait patterns. Human Movement Science, 2007. Cerca con Google

[122] S. Yamamoto, Y. Suto, H. Kawamura, T. Hashizume, S. Kakurai, and S. Sugahara. Quantitative gait evaluation of hip diseases using principal component analysis. Journal of Biomechanics, 16:717–726, 1983. Cerca con Google

[123] K.A. Yeomans and P.A. Golder. The guttman-kaiser criterion as a predictor of the number of common factors. The Statistician, 31(3):221– 229, 1982. Cerca con Google

[124] H. Yoon, K. Yang, and C. Shahabi. Feature subset selection and feature ranking for multivariate time series. IEEE Transactions On Knowledge And Data Engineering, 17(9):1186–1198, 2005. Cerca con Google

[125] V.M. Zatsiorsky and V.N. Seluyanov. The mass and inertia characteristics of the main segments of the human body, pages 1152–1159. Human Kinetics, Champaign, IL, 1983. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record