Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Anesi, Laura (2008) Analisi molecolare di geni coinvolti nello spettro fenotipico Angelman-Rett. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
715Kb

Abstract (inglese)

Within mental retardation, the clinical phenotypes of Rett syndrome and Angelman syndrome have been known and described for a long time. The molecular basis of both these pathologies have been identified: alterations of the MECP2 gene are detected in 80% of the Rett cases and anomalies in the expression of the UBE3A gene - in most of cases due to defects altering the 15q11-q13 cytogenetic region - can be observed in 90% of the subjects with Angelman phenotype. Nevertheless, there is a percentage of subjects with both disorders, for whom the genetic investigation resulted negative, and this testify the presence of genetic heterogeneity.
On the other hand, it has been observed that in an increasing number of subjects, who present with characteristics of both the clinical phenotypes, the diagnostic criteria for either disease are not satisfied. The existence of an AS/RTT-like phenotypic spectrum suggests the existence of a common pathogenetic pathway that involves, at different levels, the protein products of the MECP2 gene and of the UBE3A gene. This hypothesis is supported by the description of cases of Angelman syndrome with mutations of the MECP2 gene.
Alterations of the MECP2 gene should therefore be searched for in subjects affected by the classic Rett syndrome or by Angelman syndrome, as well as in AS/RTT like subjects and in all phenotypes that could belong to the "MECP2 related disorder" family.
Between 2005 and 2006 it was observed that another gene located on the X chromosome, called CDKL5 or STK9, may be mutated in Rett patients affected by a form of the disease characterised by early onset of seizures.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Murgia, Alessandra
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE > MALATTIE RARE
Data di deposito della tesi:30 Gennaio 2008
Anno di Pubblicazione:30 Gennaio 2008
Parole chiave (italiano / inglese):MECP2 ANGELMAN RETT
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Pediatria
Codice ID:882
Depositato il:02 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Adler DA, Quaderi NA, Brown SD, Chapman VM, Moore J, Tate P, Disteche CM. (1995) The X-linked methylated DNA binding protein , Mecp2, in subject to X inactivaction in the mouse. Mamm Genome;6:491-2. Cerca con Google

2. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet;23:185-8. Cerca con Google

3. Allen RC. Zoghi HY, Moisley AB, Rosenblatt HM, Belmont JW. (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-recptor gene correlate with X chromosome inactivation. Am J Hum Genet 51: 1229-39. Cerca con Google

4. Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O'Callaghan F, Huyton M, O'Regan M, Tolmie J, Sampson J, Clarke A, Osborne J. (2006) CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet. Sep;43(9):729-34. EpubApr 12. Cerca con Google

5. Balmer D,Goldstine J, Rao YM and LaSalle JM. (2003) Elevated methyl-CpGbinding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation, J. Mol. Med. 81: 61–68. Cerca con Google

6. Bienvenue T and Chelly J.(2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized.Nature Reviews Jun;Vol 5. Cerca con Google

7. Blennow E, Nielsen KB, Telenius H, Carter NP, Kristoffersson U, Holmberg E, et al. (1995) Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization. Am J Med Genet 55:85-94. Cerca con Google

8. Buerger J, Horn H, Toennies H, Neitzel H, Reis A.(2002) Familial Interstizial 570 kbp Deletion of the UBE3A Gene Region Causing Angelman Syndrome but Not Prader-Willi Syndrome. Am. J. Med. Genet. 111:233-237 . Cerca con Google

9. Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B (1995). Inherited microdeletions in the Angelman and Prader-Willi sindromes define an imprinting center. Cerca con Google

10. Cheng SD, Spinner NB, Zackai EH, Knoll JH. (1994) Cytogenetics and molecular carachterization of inverted duplicates chromosomes 15 from 11 patients. Am J Hum Genet; 55:753-759. Cerca con Google

11. Chahrour M and Zoghbi HY. (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron. Nov 8;56(3):422-37 Cerca con Google

12. Ciechanover A and Schwartz AL (1998) The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death. Proc Natl Acad Sci 95: 2727- 2730. Cerca con Google

13. Cohen DR, Matarazzo V, Palmer AM, Tu Y, Jeon OH, Pevsner J and RonnettGV. (2003) Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis, Mol. Cell. Neurosci. 22: 417–429. Cerca con Google

14. Coy JF, Sedlacek Z, Bachner D, Delius H, Poutska A. (1999) A complex pattern of evolutionary conservation and alternative polyadenilation within the long 3’-untranslated region of the methyl-CpG-binding protein 2 gene (MECP2) suggest a regulatory role in gene expression. Hum Mutat;15:7-12. Cerca con Google

15. D’Esposito M, Quaderi NA, Ciccodicola A, Bruni P, Espodito T, D’Urso M, Brown SD. (1996) Isolation, physical mapping, and northern analysis of the Xlinked human gene encoding methyl CpG-binding protein MECP2. Mamm Genome;7:533-35. Cerca con Google

16. Donlon TA, Lalande M, Wyman A, Bruns G, Latt SA.. (1986) Isolation of molecular probes associated with the cromosome 15 instability in the Prader- Willi syndrome. Proc Natl Acad Sci USA; 83:4408-12. Cerca con Google

17. Glotzer M, Murray AW and Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349: 132-138. Cerca con Google

18. Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D, Wang L, Craig JM, Jones PL, Sif S and El-Osta A, (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing,Nat Genet. Mar;37(3):254-64. Epub 2005 Feb 6 Cerca con Google

19. Hershko A AND Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479. Cerca con Google

20. Hochstrasser M (1996b) Ubiquitin-dependent protein degradation. Ann Rev Genet 30: 405-439. Cerca con Google

21. Huibregtse JM, Scheffner M AND Howley PM (1993a): Cloning and expression of the cDNA for E6- AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13: 775-784. Cerca con Google

22. Huibregtse JM, Scheffner M and Howley PM (1993b) Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13: 4918-4927. Cerca con Google

23. Jiang Y, Lev-Lehman E, Bressler J, Tsai TF, Beaudet AL.(1999 ) Genetics of Angelman syndrome.Am J Hum Genet. Jul;65(1):1-6 Cerca con Google

24. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet;19:187-191. Cerca con Google

25. Jung et al., 2003 B.P. Jung, D.G. Jugloff, G. Zhang, R. Logan, S. Brown and J.H. Eubanks. (2003) The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells, J. Neurobiol. 55: 86–96 Cerca con Google

26. Kaludov and Wolffe, 2000 N.K. Kaludov and A.P. Wolffe. (2000) MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery, Nucleic Acids Res. 28: 1921–1928 Cerca con Google

27. Kalscheuer VM, Jiong Tao J, Donnelly A, Hollway G, Schwinger E, Kübart S, Menzel C, Hoeltzenbein M, Tommerup N, Eyre H, Harbord M, Haan E, Sutherland GR, Ropers HH and Gécz J (2003) Disruption of the Serine/Threonine Kinase 9 Gene Causes Severe X-Linked Infantile Spasms and Mental Retardation. Am J Hum Genet. June; 72(6): 1401–1411 Cerca con Google

28. Kimura and Shiota, 2003 H. Kimura and K. Shiota. (2003) Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1, J. Biol. Chem. 278 Cerca con Google

29. Kishi and Macklis, 2004 N. Kishi and J.D. Macklis. (2004) MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions, Mol. Cell. Neurosci. 27: 306–321. Cerca con Google

30. Kishino T and Wagstaff J (1998) Genomic oorganization of the UBE3A/E6-AP gene and related pseudogenes. Genomics 47: 101-107. Cerca con Google

31. Kishino T, Lalande M and Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet 15: 70-73. Cerca con Google

32. Klose et al., 2005 R.J. Klose, S.A. Sarraf, L. Schmiedeberg, S.M. McDermott, I. Stancheva and A.P. Bird. (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG, Mol. Cell 19: 667–678 Cerca con Google

33. Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, Yasukawa T, Colmenares C and Ishii S. (2001) The Ski protein family is required for MeCP2-mediated transcriptional repression, J. Biol. Chem. 276: 34115–34121 Cerca con Google

34. Kosaki K, McGinniss MJ, Veraksa AN, McGinnis WJ, Jones KL. (1997) Prader- Willi and Angelman syndromes: diagnosis with a bisulfite-treated methylationspecific PCR method. Am J Med Genet. Dec 19;73(3):308-13. Cerca con Google

35. Kriaucionis K and Bird A. (2004) The major form of MeCP2 has a novel Nterminus generated by alternative splicing, Nucleic Acids Res. 32 : 1818–1823. Cerca con Google

36. Lawson-Yuen A, Wu B, Lip v, Sahoo T, Kimonis V. (2006) Atypical Cases of Angelman Syndrome. Am. J. Med. Genet. 140A:2361-2364 Cerca con Google

37. Lee SS, Wan M, Francke U. (2001) Spectrum of MECP2 mutations in Rett syndrome. Brain Dev;23 Suppl 1:S138-S143. Cerca con Google

38. Lewis JD; Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A. (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell;69:905-914. Cerca con Google

39. Makedonski K, Abuhatzira L, Kaufman Y, Razin A, Shemer R. (2005) MeCp2 deficiency in Rett syndrome causes epigenetics aberrations at the PE/AS imprinting center that affects UBE3A expressions. Hum Mol Genet 14: 1049- 1058. Cerca con Google

40. Maraschio P, Cuococ C, Gimelli G, Zuffardi O, Tiepolo L. (1986) Origin and clinical significance of inv dup (15). In: Danil A, editor. The cytogenetics and mammalian autosomal rearrangiaments. New York: Alan R. Liss; p:615-634. Cerca con Google

41. Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N. (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. Jul 15;14(14):1935-46. Epub 2005 May 25. Cerca con Google

42. Mari, F. et al. Germline mosaicism in Rett syndrome identified by prenatal diagnosis. Clin. Genet. 67, 258–260 (2005). Cerca con Google

43. Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, T. Yamada T, MacLeod PJ, J.R. Jones JR, Scherer SW, Schanen NC and Friez MJet al., (2004)A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome, Nat. Genet. 36: 339–341. Cerca con Google

44. Montini E, Andolfi G, Caruso A, Buchner G, Walpole SM, Mariani M, Consalez G, Trump D, Ballabio A., Franco B. (1998) Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics 51: 427- 433. Cerca con Google

45. Mullaney BC, Johnston MV and Blue ME. (2004) Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain, Neuroscience 123 : 939–949. Cerca con Google

46. Nan X, Hou J, Maclean A, Nasir J, Lafuente MJ, Shu X, Kriaucionis S and Bird A. (2007) Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation, Proc. Natl. Acad. Sci. USA 104 . Cerca con Google

47. Nan X, Campoj FJ, Bird A. (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell;88:471-81. Cerca con Google

48. Nan X, Meehan RR, Bird A. (1993) Dissection of the methyl-CpG-binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886-92. Cerca con Google

49. Nectoux J, Heron D, Tallot M, Chelly J, Bienvenu T. (2006) Maternal origin of a novel C-terminal truncation mutation in CDKL5 causing a severe atypical form of Rett syndrome. Clin Genet. Jul;70(1):29-33. Cerca con Google

50. Raca G, Buiting K, Das S. ( 2004) Deletion analysis of the imprinting center region in patients with Angelman syndrome and Prader-Willi syndrome by realtime quantitative PCR. Genet Test. Winter;8(4):387-94. Cerca con Google

51. Rapakko K, Kokkonen H, Leisti J. (2004) UBE3A gene mutations in Finnish Angelman syndrome patients detected by conformation sensitive gel electrophoresis. Am J Med Genet A. Apr 30;126(3):248-52. Cerca con Google

52. RETTbase IRSA MECP2 Variation Database: http://mecp2.chw.edu.au/mecp2/ Vai! Cerca con Google

53. Robinson WP, Binkert F, Gine R, Vazquez C, Muller W, Rosenkranz W, et al. (1993) Clinical and molecular anaLYSIS of five inv dup (15) patients. Eur J Hum Genet 1:37-50. Cerca con Google

54. Rougeulle C, Glatt H and Lalande M (1997) The Angelman syndrome canditate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17: 14-15. Cerca con Google

55. Samaco RC, Hogart A, LaSalle JM (2005). Epigenetics overlap in autismspectrum disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14:483-492. Cerca con Google

56. Samaco RC, Nagarajan RP, Braunschweig D, et al. (2004). Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet 13:629-639. Cerca con Google

57. Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A. (2005) CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet. Feb;42(2):103-107. Cerca con Google

58. Scheffner M, Nuber U and Huibregtse JM. (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81-83. Cerca con Google

59. Scheffner, M, Werness JM, Huibregtse JM, Levine AJ and Howley PM (1990) The E6 oncoprotein encodes by human papillomavirus types 16 and 18 promotes the degradation of 53. Cell 63: 1129-1136. Cerca con Google

60. Shahbazian MD, Antalffy B, Armstrong DL and Zoghbi HY. (2002) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation, Hum. Mol. Genet. 11: 115–124. Cerca con Google

61. Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns JP, Schwinger E, Gécz J, Ropers HH, Kalscheuer VM. (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation.Am J Hum Genet. Dec;75(6):1149-54. Cerca con Google

62. The GDB Human Genome Database (GDB) http://www.gdb.org/gdb/ Vai! Cerca con Google

63. The Human Gene Mutation Database (HGMD) http://www.hgmd.cf.ac.uk/ac/index.php Vai! Cerca con Google

64. Tudor M, Akbarian S, Chen RZ, Jaenisch R. (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptionals changes in the brain. Proc. Natl. Acad. Sci. USA 99, 15536-15541. Cerca con Google

65. Vilain A, Apiou F, Vogt N, Dutrillaux B, Malfoy B. (1996) Assignament of the gene for methyl-CpG-binding protein 2 (MECP2) to human chromosom band Xq28 by in situ hibridization. Cytogenet Cell Genet;74:293-94. Cerca con Google

66. Vu PK and Sakamoto KM (2000) Ubiquitin-mediated proteolysis and human disease. Mol Genet Metab 71: 261-266. Cerca con Google

67. Vu TH and Hoffman AR (1997) Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat gebet 17: 12-13. Cerca con Google

68. Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H, Evans J, Clarke A, Pelka GJ, Tam PP, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gécz J. (2004) Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004 Dec;75(6):1079-93. Epub Oct 18. Cerca con Google

69. Williams CA and Driscoll DJ (2007) Angelman Syndrome.GeneReviews at GeneTests: Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1997-2008. Available at http://www.genetests.org. Accessed [2007]. Vai! Cerca con Google

70. Williams CA, Angelman H, Clayton-Smith J, Driscoll DJ, Hendrickson JE, Knoll JH, Magenis RE, Schinzel A, Wagstaff J, Whidden EM, Zori RT. 1995. Angelman syndrome: Consensus for diagnostic criteria. Angelman Syndrome Foundation. Am J Med Genet 56: 237-238. Cerca con Google

71. Yamamoto Y, Huibregtse JM and Howley PM (1997) The human E6-AP gene (UBE3A) endoces three potential protein isoforms generated by differential splicing. Genomics 41: 263-266. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record