Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ruli, Erlis and Sartori, Nicola and Ventura, Laura (2012) Marginal posterior simulation via higher-order tail area approximations. [Working Paper] WORKING PAPER SERIES, 8/2012 . , PADOVA

Full text disponibile come:

PDF Document (Publisher's version/PDF)

Abstract (english)

In this paper we explore the use of higherorder tail area approximations for Bayesian simulation. These approximations give rise to alternative simulation schemes to MCMC for Bayesian computation of marginal posterior distributions for a scalar parameter of interest, in the presence of nuisance parameters. Their advantage over MCMC methods is that samples are drawn independently and much lower computational time is needed. The methods are illustrated by a genetic linkage model, a normal regression with censored data and a logistic regression model.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Working Paper
Anno di Pubblicazione:2012
More information:Pubblicato in: Bayesian Analysis, Volume 9, Number 1 (2014), 129-146; doi:10.1214/13-BA851. http://projecteuclid.org/euclid.ba/1393251773
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:8825
Depositato il:09 Jun 2015 17:30
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record