Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bojkovic, Velibor (2015) Finite morphisms of p-adic curves. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1120Kb

Abstract (english)

In this thesis we study finite morphisms $\vphi:Y\to X$ of quasi-smooth k-analytic curves which admit nite semistable triangulations, and where k is algebraically closed eld, complete with respect to a non-trivial, nonarchimedean valuation and of mixed characteristic. We introduce the notion of (strictly)-compatible (strictly) semistable triangulations of Y and X, respectively, and prove their existence as well as various consequences in terms of "compatible partitions" of Y and X, and at the same time provide a new proof of existence of strictly semistable formal models of Y and X, respectively, to which $\vphi$ extends as a nite morphism.
We introduce and study the main properties of the pro-category W whose objects are built from systems of wide open curves and inclusions. It is a full subcategory of the pro-category of k-analytic curves. We introduce a Grothendieck topology on W making it a site, and exploit the "pro" structure of the objects which makes them behave particularly nice in coverings, to study (hyper)cohomology groups of complexes of coherent sheaves on k-analytic curves, and in particular we provide a new point of view on dagger curves and their de Rham cohomology.
Finally, we state and prove the Riemann-Hurwitz formula for nite morphisms of pro-wide open curves, which in particular gives Riemann-Hurwitz formula for compact, connected, quasi-smooth k-analytic curves.

Abstract (italian)

In questa tesi studiamo morfismi finiti $\vphi:Y\to X$ di curve quasi-lisce k-analitiche, che ammettono triangolazioni finite semistabili, dove k è un campo algebricamente chiuso, completo rispetto ad una valutazione non-archimedea, non-triviale, in caratteristica mista.

Introduciamo la nozione di triangolazioni (strettamente) semistabili (strettamente) $\vphi$-compatibili di Y ed X, rispettivamente, e dimostriamo la loro esistenza, così come varie conseguenze in termini di "partizioni compatibili" di Y ed X, ed allo stesso tempo otteniamo una nuova dimostrazione dell'esistenza dei modelli formali strettamente semistabili di Y ed X, rispettivamente, ai quali $\vphi$ si estende come morfismo finito.

Introduciamo e studiamo le proprietà principali della pro-categoria W, i cui oggetti sono ottenuti da sistemi di curve largamente aperte e inclusioni. E' una sottocategoria piena della categoria di curve k-analitiche. Introduciamo una topologia di Grothendieck su W , trasformandola in un sito, e utilizziamo la "pro" struttura degli oggetti, che li fa comportare particolarmente bene rispetto ai rivestimenti, per studiare i gruppi di (iper)coomologia dei complessi di fasci coerenti su curve k-analitiche ed in particolare otteniamo un nuovo punto di vista per le curve dagger e la loro coomologia di De Rham.

Infine, enunciamo e dimostriamo la formula di Riemann-Hurwitz per i morfismi finiti di curve pro-largamente aperte, che in particolare fornisce la formula di Riemann-Hurwitz per curve k-analitiche, quasi-lisce, connesse e compatte.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Baldassarri, Francesco and Benois, Denis
Ph.D. course:Ciclo 27 > scuole 27 > SCIENZE MATEMATICHE > MATEMATICA
Data di deposito della tesi:24 July 2015
Anno di Pubblicazione:24 July 2015
Key Words:p-adic curves, Berkovich spaces, finite morphisms, Riemann-Hurwitz formula
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/03 Geometria
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:8863
Depositato il:26 Oct 2018 12:38
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record