Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Trentin, Anna Rita (2015) Gamma-glutamyl cycle in plant's adaptation to environment. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
3144Kb

Abstract (inglese)

This thesis work focusses on the gamma-glutamyl cycle in plants, with the aim to address the physiological significance of this cycle in plant adaptation to the environment. It is composed of three sections, where different approaches have been developed to understand different aspects of the cycle. In consideration that alternative and converging strategies may provide tools for deciphering plant metabolism,two main approaches were adopted: the application of stress conditions, and the use of mutants.
In the first work, integrated biochemical, immunocytochemical, and quantitative proteomics analyses were performed in leaves of Arabidopsis thalianaggt1 knockout mutant (lacking apoplastic GGT1 isoform) and itscorresponding wild-type (WT). The ggt1 knockout leaves exhibited an increased ascorbate and GSH content, increased apoplastic GSH content, and enhanced protein carbonylations in the low-molecular-weight range compared to WT. Proteome data showed that disruption of gamma-glutamyl cycle in ggt1 knockout-leaves was associated with the induction of genes encoding four GSTs, a GSH peroxidase (GPX1), and glyoxylase II, suggesting that GGT1 plays a role in redox signaling. The disruption of the gamma-glutamyl cycle in the ggt1 mutant results in pleiotropic effects related to biotic and abiotic stress response, antioxidant metabolism, senescence, carbohydrate metabolism and photosynthesis, with strong implications for plant’s adaptation to environment.
The objective of the second contribution wastounderstand how the ggt1 mutant line responds when it is exposed to an external oxidative stress by UV-B radiation. The response of ggt1 knockout Arabidopsis leaves to UV-B radiation was assessed by investigating changes in extracellular glutathione and ascorbate content and their redox state, and in apoplastic protein composition.Results show that, upon UV-B exposure, soluble antioxidants are altered in both genotypes. Rearrangements occur in their apoplastic protein composition, both in the wildtype under UV-B and in the ggt1 mutant in physiological conditions. This suggeststhe involvement of H2O2, which may ultimately act as a signal. I argue that oxidative stress conditions imposed by UV-B and disruption of the gamma-glutamyl cycle result in similar stress-induced responses, to some degree at least.
Since the gamma-glutamyl transferase operates in the extracellular space, aim of the third contribution was to better investigate the reactions involvingLMW thiols (glutathione,cysteine and cysteinyl-glycine), metals and enzymes related to ROS metabolism in the cell wall. Resultsindicate that LMW thiolsexhibit quenching capacity for reactive oxygen species generated in the apoplastic spaceandpoint to a role for LMW thiols, which are metabolically related to each other in the gamma-glutamyl cycle, in modulating redox reactions in plant cell walls.

Abstract (italiano)

L’argomento della mia tesi di dottorato è stato il ciclo del gamma-glutammile nelle piante con lo scopo generale di investigare il significato fisiologico di questo ciclo nell’adattamento delle piante all’ambiente. Il lavoro è composto da tre contributi sperimentali, nei quali differenti approcci sono stati adottati per capire diversi aspetti del ciclo. Quando si vogliono approfondire le conoscenze per decifrare il metabolismo si possono usare strategie alternative e convergenti, due sono i principali approcci che sono stati adottati: sono stati imposti degli stress ossidativi esterni per valutare la risposta della pianta e si è fatto uso di mutanti.
Nel primo lavoro, sono state eseguite analisi biochimiche, immunocitochimiche e proteomiche in foglie di Arabidopsis thaliana del mutante ggt1 (mancante dell’isoforma apoplastica di GGT1) e nel corrispondente wild-type (WT). Comparando le foglie wild-tipe con il mutante ggt1,quest’ultimo presentava un incremento del contenuto di ascorbato e glutatione, anche il GSH apoplastico risultava aumentato e un cambiamento nelle carbonilazioni delle proteinea basso peso molecolare. I dati proteomici evidenziavano che l’interruzione del ciclo del gamma-glutammile nelle foglie del mutante ggt1 era associato con l’induzione di geni codificanti per quattro glutatione-sulfo-transferasi (GSTs), una glutatione perossidasi (GPX1), e la gliossilasi II, suggerendo che la proteina GGT1 ha un ruolo nel redox signaling. Quindi l’interruzione del ciclo del gamma glutammile nel mutante ggt1 porta ad effetti pleiotropici legati alla risposta a stress biotici e abiotici, altera il metabolismo degli antiossidanti, la senescenza, il metabolismo dei carboidrati e la fotosintesi, con forti implicazioni nell’adattamento delle piante all’ambiente.
L’obiettivo del secondo contributo era capire come il mutante ggt1 risponde quando è esposto ad un stress ossidativo esterno, è stato scelto di usare la radiazione UV-B. La risposta del mutante ggt1alla radiazione UV-B è stata valutata investigando i cambiamenti nello spazio apoplastico della composizione proteica e del contenuto di glutatione e ascorbato e il loro stato redox. I risultati evidenziano che, l’esposizione all’UV-B, altera gli antiossidanti solubili in entrambi i genotipi. I riarrangiamentiche avvengono nella composizione proteica dell’apoplasto, nel wild-type sottoposto a UV-B e nel mutante ggt1 in condizioni fisiologiche, suggeriscono un coinvolgimento del perossido di idrogeno (H2O2), il quale potrebbe agire come segnale. Questo mi porta a dedurre che le condizioni di stress ossidativo (imposte con l’UV-B) a l’interruzione del ciclo del gamma glutammile,in una certa misura, portano a una simile risposta indotta da stress.Poichè la gamma-glutammil transferase agisce nello spazio extracellulare, scopo del terzo contributo è stato investigare le reazioni che avvengono tra i tioli a basso peso molecolare (glutathione, cisteina e cisteinil-glicina), i metalli e gli enzimi legati al metabolismo dei ROS nella parete cellulare. I risultati indicano che i tioli LMW sono in grado di quenchare le specie attive dell’ossigeno generate nell’ apoplasto e evidenziano un ruolo per i tioli, i quali sono metabolicamente correlati tra loro nel ciclo del gamma-glutammile, nel modulare le reazioni redox nella parete cellulare.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Masi, Antonio
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE ANIMALI E AGROALIMENTARI > PRODUZIONI AGROALIMENTARI
Data di deposito della tesi:30 Luglio 2015
Anno di Pubblicazione:30 Luglio 2015
Parole chiave (italiano / inglese):ciclo del gamma-glutammile; glutatione; apoplasto; ROS.
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:8917
Depositato il:30 Ago 2016 08:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agrawal G.K., Jwa N.S., Lebrun M.H., Job D., Rakwal R. (2010). “Plant secretome: unlocking secrets of the secreted proteins”. Proteomics 10 pp. 799-827. Cerca con Google

Aliaga M.E., López-Alarcón C., Barriga G., Olea-Azar C., Speisky H. (2010). “Redox-active complexes formed during the interaction between glutathione and mercury and/or copper ions”.J Inorg Biochem 104(10):1084-90. doi: 10.1016/j.jinorgbio.2010.06.006. Cerca con Google

Aliaga M.E., López-Alarcón C., García-Río L., Martín-Pastor M., Speisky H. (2012). “Redox-changes associated with the glutathione-dependent ability of the Cu(II)-GSSG complex to generate superoxide”.Bioorg Med Chem 1;20(9):2869-76. doi: 10.1016/j.bmc.2012.03.027. Cerca con Google

Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., Ecker, J. R. (2003). Genome-wide insertional mutagenesis of Arabidopsisthaliana. Science 301 (5633), 653–657. doi:10.1126/science.1086391 Cerca con Google

Alscher, R. G., Erturk, N., Health, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341. doi:10.1093/jexbot/53.372.1331 Cerca con Google

Apel K., Hirt H. (2004). “Reactive oxygen species: metabolism, oxidative stress, and signal transduction”. Annu Rev Plant Biol 55 pp. 373–399. Cerca con Google

Asada K. (2006).“Production and scavenging of reactive oxygen species in chloroplasts and their functions”. Plant Physiol 141 pp. 391–396. Cerca con Google

Asada, K. (1999). “The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons”. Ann Rev Plant Physiol Plant Mol Biol50 pp. 601-639. Cerca con Google

Ball L., Accotto G., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., and Mullineaux P.M. (2004). “Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis”. Plant Cell 16 pp. 2448–2462. Cerca con Google

Bienert, G. P., Schjoerring, J. K., Jahn T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta 1758 pp. 994-1004. Cerca con Google

Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., et al., (2006).“Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance” . Plant J 47 pp. 851–863. Cerca con Google

Bischof K., Janknegt P.J., Buma A.G.J., Rijstenbil J.W., Peralta G., Breeman A.M. (2003). “Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulvacanopies from southern Spain”. Sci Mar 67 (3) pp. 353-359. Cerca con Google

Bloem E., Haneklaus S., Salac I., Wickenhäuser P., Schnug E. (2007). “Facts and fiction about sulfur metabolism in relation to plantpathogen interactions”. Plant Biol 9 pp. 596–607. Cerca con Google

Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., et al. (2004). “Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L”. J Exp Bot 55 pp. 2305–2312. Cerca con Google

Brandes, N., Schmitt, S., Jakob, U. (2009). Thiol-based redox switches in eukaryotic proteins. Antiox. Redox Signal. 11, 997–1014. doi:10.1089/ARS.2008.2285 Cerca con Google

Brosché, M., Strid, Å., (2003). Molecular events following perception of ultraviolet-B radiation by plants. Physiol. Plant. 117 pp. 1-10. doi: 10.1034/j.1399-3054.2003.1170101.x Cerca con Google

Brunet, S. Thibault, P., Gagnon, E., Kearney, P., Bergeron, J. J., Desjardins, M. (2003). “Organelle proteomics: looking at less to see more”. Trends Cell Biol 13 pp. 629–638. doi:10.1016/j.tcb.2003.10.006 Cerca con Google

Carmel-Harel O, Storz G., (2000). “Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress”. Annu Rev Microbiol 54 pp. 439-61. Cerca con Google

Carrasco-Pozo C., Aliaga M.E., Olea-Azar C., Speisky H. (2008). “Double edge redox-implications for the interaction between endogenous thiols and copper ions: In vitro studies”. Bioorg Med Chem 15;16(22):9795-803. doi: 10.1016/j.bmc.2008.09.068. Cerca con Google

Chen S. and SchopferP. (1999). “Hydroxyl-radical production in physiological reactionsA novel function of peroxidase”.Eur J Biochem 260 pp. 726-735. Cerca con Google

Cheng, Z., Zheng, Z., Huang, J., Lai, Z., Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant signal Behav. 4:6, pp. 493-496. Cerca con Google

Chew O., Whelan J., Millar A.H. (2003). “Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants”. J Biol Chem 278 pp. 46869–46877. Cerca con Google

Conesa, A., Götz, S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. doi:10.1155/2008/619832 Cerca con Google

Corpas F.J., Barroso J.B., del Río L.A. (2001). “Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells”. Trends Plant Sci 6 pp. 145–150. Cerca con Google

Cosgrove, D. J. (1997). Assembly and enlargement of the primary cell wall in plants. Ann. Rev. Cell Dev. Biol. 13, 171-201 Cerca con Google

Creissen G., Firmin J., Fryer M., Kular B., Leyland M., Reynolds H., Pastori G., Wellburn F., Baker N.R., Wellburn A., and Mullineaux P. (1999). “Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco paradoxically causes increased oxidative stress”. Plant Cell 11 pp. 1277–1291. Cerca con Google

Dangl J.L., and Jones J.D.G. (2001). “Plant pathogens and integrated defence responses to infection”. Nature 411 pp. 826–833. Cerca con Google

Daudi A, Cheng Z, O'Brien JA, Mammarella N, et al., The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 2012, 24, 275-87. Cerca con Google

del Río L.A. (2015). “ROS and RNS in plant physiology: an overview”. J Exp Bot 66 (10): 2827-2837. doi: 10.1093/jxb/erv099. Cerca con Google

del Rio L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gomez M., Barroso J.B. (2002). “Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes”. J Exp Bot 53 pp. 1255–1272. Cerca con Google

Delaunois B., Jeandet P., Clément C., Baillieul F., Dorey S., Cordelier S. (2014). “Uncovering plant-pathogen crosstalk through apoplastic proteomic studies”. Front PlantSci5, 249. doi:10.3389/fpls.2014.00249. Cerca con Google

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, et al., (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4, P3. Cerca con Google

DestroT., Prasad D., Martignago D., Bernet I. L., et al., (2011).“Compensatory expression and substrate inducibility of gamma-glutamyl transferase GGT2 isoform in Arabidopsis thaliana”. J Exp Bot 62 pp. 805-814. Cerca con Google

Dietz, K.J. (1997). “Functions and responses of the leaf apoplast under stress”. Progress in Botany 58 pp. 221-254. Cerca con Google

Ding, Y., Wang, J., Wang, J., Stierhof, Y. D., Robinson, D. G., Jiang, L. (2012). Unconventional protein secretion. Trends in Plant Science 17 pp. 606-615. doi:10.1016/j.tplants.2012.06.004 Cerca con Google

Dixon D.P., Edwards R.(2010).“GlutathioneS-transferases”.In The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199:tab.0131. Cerca con Google

Dokken K.M., Parsons J.G., McClure J., and Gardea-Torresdey J.L. (2009). Synthesis and structural analysis of copper(II) cysteine complexes Inorg Chim Acta362 pp. 395–401. Cerca con Google

Dominici S., Paolicchi A., Corti A., Maellaro E., Pompella A. (2005). “Prooxidant reactions promoted by soluble and cell-bound gamma-glutamyltransferase activity”. Methods Enzymol 401 pp. 484–501. Cerca con Google

Ducic T. and Polle A. (2005). “Transport and detoxification of manganese and copper in plants”. Braz J Plant Physiol17 pp. 103-112. Cerca con Google

Edwards E.A., Rawsthorne S., Mullineaux P.M. (1990). “Subcellular distribution of multiple forms of glutathione reductase in pea (Pisum sativum L.)”. Planta 180 pp. 278–284. Cerca con Google

Evans N.H., McAinsh M.R., Hetherington A.M., and Knight M.R. (2005). “ROS perception in Arabidopsis thaliana: The ozone-induced calcium response”. Plant J 41 pp. 615–626. Cerca con Google

Ferretti M., Destro T., Tosatto S.C.E., La Rocca N., Rascio N., Masi A. (2009). “Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast”. New Phytol 181 pp. 115–126. Cerca con Google

Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., et al., (2005). “The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress”. J Biol Chem 280 pp. 12168-12180. Cerca con Google

Foyer C.H. and Noctor G. (2009). “Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications”. Antioxidants & RedoxSignaling 11(4) pp. 861-905. doi:10.1089/ars.2008.2177. Cerca con Google

Foyer C.H., Mullineaux P.M. (1998). “The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues”. FEBS Lett425 pp. 528–529. Cerca con Google

Foyer C.H., Noctor G. (2005). “Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses”. Plant Cell 17(7) pp. 1866-75. Cerca con Google

Foyer C.H., Noctor G. (2011). “Ascorbate and Glutathione: the heart of the redox hub”. Plant Physiol155 pp. 2-18. Cerca con Google

Foyer C.H., Noctor G., (2013). “Redox Signaling in Plants”. Antioxidants & Redox Signaling 18(16) pp. 2087-90. Cerca con Google

Gepstein, S., Sabehi, S., Carp, M. J., Hajouj, T., et al., (2003). “Large-scale identification of leaf senescence-associated genes”. Plant J 36 pp. 629-642. Cerca con Google

Gill S.S., Tuteja N. (2010). “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants”. Plant Physiol Biochem 48(12) pp. 909-30. doi: 10.1016/j.plaphy.2010.08.016. Cerca con Google

Gilmour, S. J., Artus, N. N., Thomashow, M. F. (1992). “cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana”. Plant Mol Biol 18 pp. 13-21. Cerca con Google

Giraldo M.C., Valent B. (2013). “Apoplastic and symplastic compartments in plants”. Nature Rev Microbiol 11 pp. 800–814. doi:10.1038/nrmicro3119. Cerca con Google

Gomez L.D., Noctor G., Knight M., and Foyer C.H. (2004). “Regulation of calcium signaling and gene expression by glutathione”. J Exp Bot 55 pp. 1851–1859. Cerca con Google

Grbic V. (2003). “SAG2 and SAG12 protein expression in senescing Arabidopsis plants”. Phys Plant 119 pp. 263-269. Cerca con Google

Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106 pp. 207–212. doi:10.1016/0003-2697(80)90139-6 Cerca con Google

Grzam, A., Martin, M. N., Hell, R., Meyer, A. J. (2007). γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett. 581, 3131-3138. Cerca con Google

Guan L.M., Scandalios J.G. (2000). “Hydrogen peroxide-mediated catalase gene expression in response to wounding”. Free Rad Biol Med 28 pp.1182–1190. Cerca con Google

Gullner G., Tóbiás I., Fodor J., Kömives T. (1999). “Elevation of glutathione level and activation of glutathione-related enzymes affect virus infection in tobacco”. Free Radic Res 31(Suppl.), S155–S161. doi: 10.1080/10715769900301451. Cerca con Google

Gunawardena, H. P., Huang, Y.,Kenjale, R.,Wang, H., Xie, L., Chen, X. (2011). Unambiguous Characterization of Site-specific Phosphorylation of Leucine-rich Repeat Fli-I-interacting Protein 2 (LRRFIP2) in Toll-like Receptor 4 (TLR4)-mediated Signaling. J Biol Chem, 286, 10897-10910. Cerca con Google

Gupta R., and Luan S. (2003). “Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants”. Plant Physiol132 pp. 1149–1152. Cerca con Google

Halliwell B. (2006). “Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life”. Plant Physiol 141(2) pp. 312–322. doi: 10.1104/pp.106.077073. Cerca con Google

Halliwell B., Foyer C.H. (1978). “Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography”. Planta 139 pp. 9–17. Cerca con Google

Halliwell B., Gutteridge J.M.C. (2006). “Free Radicals in Biology and Medicine”. Ed 4. Clarendon Press, Oxford. Cerca con Google

Han Y., Chaouch S., Mhamdi A., Queval G., et al., Functional Analysis of Arabidopsis Mutants Points to Novel Roles for Glutathione in Coupling H(2)O(2) to Activation of Salicylic Acid Accumulation and Signaling. Antioxid Redox Signal. 2013, (in press). doi:10.1089/ars.2012.5052. Cerca con Google

Harms K., von Ballmoos P., Brunold C., Hofgen R., Hesse H. (2000). “Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione”. Plant J 22 pp. 335–343. Cerca con Google

Henzler, T., Steudle, E. (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina : model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51, 2053–2066 Cerca con Google

Hernandez J.A., Ferrer M.A., Jimenez A., Barcelo A.R., Sevilla F. (2001). “Antioxidant systems and O2.-/ H2O2 production in the apoplast of Pea leaves. Its relation with salt-induced necrotic lesions in minor veins”. Plant Physiol 127 pp. 817–831. Cerca con Google

Hewitt, E. J., Dickes, G. J. (1961). Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissues. Biochem. J. 78, 384–391 Cerca con Google

Hideg, E., Jansen, M. A. K., Strid, A. (2013). UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115. doi:10.1016/j.tplants.2012.09.003 Cerca con Google

HigashiY., TakechiK., TakanoH., Takio S. (2015). “Maintenance of Normal Stress Tolerance in the Moss Physcomitrella patens Lacking Chloroplastic CuZn-Superoxide Dismutase”.AJPS Vol.06 No.05 Article ID:54601,10 pages doi: 10.4236/ajps.2015.65064 Cerca con Google

Hoque, T. S., Uraji, M., Tuya, A., Nakamura, Y., Murata, Y., Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol. 2012, 5, 854-858. Cerca con Google

Hourton-Cabassa C., Ambard-Bretteville F., Moreau F., Davy de Virville J., et al., Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 1998, 116, 627-635. Cerca con Google

Hu J.F., Li G.F., Gao Z.H., Chen L., Ren H B., Jia W.S. (2005). “Regulation of water deficit-induced abscisic acid accumulation by apoplastic ascorbic acid in maize seedlings”. J IntegrPlant Biol 47 pp. 1335-1344. Cerca con Google

Huang, W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57. Cerca con Google

Huseby, N. E., Stromme, J. H. (1974). Practical points regarding routine determination of  -glutamyl transferase (γ-GT) in serum with a kinetic method at 37°C. Scand. J. Clin. Lab. Invest. 34, 357–363 Cerca con Google

Jaspers, P., Kollist, H., Langebartels, C., Kangasjarvi, J. (2005). “Plant responses to ozone,” in Antioxidants and reactive oxygen species in plants, ed. N. Smirnoff (Oxford: Blackwell Publishing), pp. 268-292. Cerca con Google

Jaspers, P., Kollist, H., Langebartels, C., Kangasjarvi, J. (2005). “Plant responses to ozone,” in Antioxidants and reactive oxygen species in plants, ed. N. Smirnoff (Oxford: Blackwell Publishing) pp. 268-292. Cerca con Google

Jiménez A., Hernández J.A., del Río L., Sevilla F. (1997). “Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves”. Plant Physiol 114 pp. 275–284. Cerca con Google

Kaffarnik, F. A., Jones, A. M., Rathjen, J. P.,. Peck, S. C. (2009). Effector proteins of the bacterial pathogen pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsisthaliana. Mol. Cell. Proteomics 8:145–56. doi:10.1074/mcp.M800043-MCP200 Cerca con Google

Kang, J. S., Frank, J., Kang, C. H., Kajiura, H., Vikram, M., Ueda, A., Kim, S., Bahk, J. D., Triplett, B., Fujiyama, K., Lee, S.Y., Von Schaewen, A., Koiwa, H. (2008). Salt tolerance of Arabidopsisthaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl. Acad. Sci. U. S. A. 105, 5933-5938. doi: 10.1073/pnas.0800237105 Cerca con Google

Karkonen A. and Fry S.C. (2006).“Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells”. J Exp Bot 57 pp. 1633 – 1644 . Cerca con Google

Karpinska, B., Karlsson, M., Schinkel, H., Streller, S., Su, K., Melzer, M., Wingsle, G. (2001). A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization. Plant Physiol. 126, 1668–1677 Cerca con Google

Karuppanapandian T., Moon J.C., Kim C., Manoharan K., Kim W. (2011). “Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms”. AJCS5(6) pp. 709-725. Cerca con Google

Karuppanapandian T., Saranyadevi A.R., Jeyalakshmi K., Manoharan K. (2008).“Mechanism, control and regulation of leaf senescence in plants”. J Plant Biol 35 pp. 141–155. Cerca con Google

Karuppanapandian T., Sinha P.B., Kamarul Haniya A,. Premkumar G., Manoharan K. (2006b).“Aluminium-induced changes in antioxidative enzyme activities, hydrogen peroxide content and cell wall peroxidase activity in green gram (Vigna radiataL. cv. Wilczek) roots”. J Plant Biol 33 pp. 241–246. Cerca con Google

Karuppanapandian T., Sinha P.B., Kamarul Haniya A., Manoharan K. (2006a).“Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves”. J Plant Biol 49 pp. 440–447. Cerca con Google

Karuppanapandian T., Sinha P.B., Kamarul Haniya A., Manoharan K. (2009).“Chromium-induced accumulationof peroxide content, stimulation of antioxidative enzymes and lipid peroxidation in green gram (Vigna radiata L. cv. Wilczek) leaves”. Afr J Biotechnol 8 pp. 475–479. Cerca con Google

Karuppanapandian T., Sinha P.B., Premkumar G., Manoharan K. (2006c). “Chromiumtoxicity: Correlated with increased in degradation of photosynthetic pigments and total soluble protein and increased peroxidase activity in green gram (Vigna radiataL.) seedlings”. J Swamy Bot-Cl 23 pp. 117–122. Cerca con Google

Kataya A.M.R., Reumann S. (2010). “Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol”. Plant Signal Behav 5 pp. 171–175. Cerca con Google

Kaur C., Kapoor H.C. (2001). “Antioxidants in fruits and vegetables—the millennium's health”. IntJ Food Sci Tech 36(7) pp. 703–725 Cerca con Google

Köcher, T., Pichler, P., Schutzbier, M., Stingl, C., Kaul, A., Teucher, N., Hasenfuss, G., Penninger, J. M., Mechtler, K. (2009). High precision quantitative proteomics using iTRAQ on an LTQ orbitrap: a new mass spectrometric method combining the benefits of all. J. Prot. Res. 8, 4743–4752. doi:10.1021/pr900451u Cerca con Google

Kocsy G., Tari I., Vankova R., Zechmann B., Gulyas Z., Poor P., Galiba G. (2013). “Redox control of plant growth and development”. Plant Sci211 pp. 77–91. doi: 10.1016/j.plantsci.2013.07.004. Cerca con Google

Kopriva S., Rennenberg H. (2004). “Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism”. J Exp Bot 55 pp. 1831–1842. Cerca con Google

Kovtun Y., Chi, W.-L., Ten, G., and Shee, J. (2000). “Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants”. Proc Natl Acad SciUSA 97 pp. 2940–2945. Cerca con Google

Kramer, E. M. (2006). How far can a molecule of weak acid travel in the apoplast or xylem ? Plant Physiol. 141, 1233–1236. doi:10.1104/pp.106.083790.1 Cerca con Google

Kukavica B., Mojovic´ M., Vucˇinic´Ž., Maksimovic´ V., Takahama U.and Veljovic´ Jovanovic´ S. (2009).“Generation of Hydroxyl Radical in Isolated Pea Root Cell Wall, and the Role of Cell Wall-Bound Peroxidase, Mn-SOD and Phenolics in Their Production”. Plant Cell Physiol50(2) pp. 304–317 doi:10.1093/pcp/pcn199. Cerca con Google

Kumada H. O., Koizumi Y., Sekiya J. (2007). Purification and characterization of dipeptidase hydrolyzing L-cysteinylglycine from radish cotyledon. Biosci. Biotechnol. Biochem. 71, 3102-3104. Cerca con Google

Kurkela, S., Borg-Frank, M. (1992). “Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana”. Plant Mol Biol 19 pp. 689-692. Cerca con Google

Kurkela, S., Franck, M. (1990). “Cloning and characterization of a cold- and ABA- inducible Arabidopsis gene”. Plant Mol Biol 15 pp. 137-144. Cerca con Google

Kushnir, S., Babiychuk, E., Kampfenkel, K., Belles-Boix, E., et al. (1995). “Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide”. Proc. Natl Acad Sci USA 92 pp. 10580-10584. Cerca con Google

Kwon, H. K., Yokoyama, R., Nishitani, K. (2005).A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells.Plant Cell Physiol 46, 843-857 Cerca con Google

Lappartient, A. G., Vidmar, J. J., Leustek, T., Glass, A. D., Touraine, B. (1999). “Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound”. Plant J 18 pp. 89-95. Cerca con Google

Lappartinent, A.G., Touraine, B., (1996). “Demand-driven control of root ATP-sulfurylase activity and sulfate uptake in intact canola”. Plant Physiol 177 pp. 147-157. Cerca con Google

Lecourieux D., Mazars C., Pauly N., Ranjeva R., and Pugin A. (2002). “Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells”. Plant Cell14 pp. 2627–2641. Cerca con Google

Leustek T., and Saito K. (1999). “Sulfate Transport and Assimilation in Plants”. Plant Physiol 120(3) pp. 637-644. Cerca con Google

Levitt, J. (1972). “Responses of plants to environmental stresses”. New York: Academic Press,. Cerca con Google

Li C.W., Lee S.-H., Chieh P.-S., Lin C.-S., et al., (2012). “Arabidopsis Root-Abundant Cytosolic Methionine Sulfoxide Reductase B Genes MsrB7 and MsrB8 are Involved in Tolerance to Oxidative Stress”. Plant Cell Physiol 53 pp. 1707-1719. Cerca con Google

Li, L., Van Staden, J. (1998). Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation 24, 55–66 Cerca con Google

Lieberherr, D., Wagner, U., Dubuis, P. H., Métraux, J. P., Mauch, F. (2003). “The Rapid Induction of Glutathione S-Transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the Result of Combined Salicylic Acid and Ethylene Signaling”. Plant Cell. Physiol. 44 pp. 750-757. Cerca con Google

Lindermayr C., Saalbach G., Dürner J. (2005). “Proteomic identification of S-nitrosylated proteins in Arabidopsis”. Plant Physiol137 pp. 921–930. Cerca con Google

Liszkay A., van der Zalm A.and Schopfer P. ( 2004 ). “Production of reactive oxygen intermediates (O 2–・ H2O2and ・OH) by maize rootsand their role in wall loosening and elongation growth”. Plant Physiol136 pp. 3114 – 3123. Cerca con Google

Liu G., Greenshields D.L., Sammynaiken R., Hirji R.N., Selvaraj G., Wei Y. (2007). “Targeted alterations in iron homeostasis underlie plant defense responses”. J Cell Sci 15;120 pp. 596-605. Cerca con Google

Lohaus, G., Pennewiss, K., Sattelmacher, B., Hussmann, M., Muehling, K. H. (2001). Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol. Plant. 111, 457–465. doi:10.1034/j.1399-3054.2001.1110405.x Cerca con Google

Ludidi, N. N., Heazlewood, J. L., Seoighe, C., Irving, H. R., Gehring, C. A. J. (2002). Expansin-like molecules: novel functions derived from common domains. Mol. Evol. 54, 587-594 Cerca con Google

Luwe, M., Antioxidants in the apoplast and synplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ. 1996, 19, 321-328. Cerca con Google

Manoharan K., Karuppanapandian T., Sinha P.B., Prasad R. (2005). “Membrane degradation, accumulation of phosphatidic acid, stimulation of catalase activity and nuclear DNA fragmentation during 2,4-D-induced leaf senescence in mustard”. J Plant Biol 48 pp. 394–403. Cerca con Google

Martin M.N., Saladores P.H., Lambert E., Hudson A.O., Leustek T. (2007). “Localization of members of the -glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis”. Plant Physiol 144 pp. 1715-1732. Cerca con Google

Masi A., Trentin A.R., Agrawal, G.K., RakwalR. (2015). “Gamma-glutamyl cycle in plants: a bridge connecting the environment to the plant cell?” Front Plant Sci 16 April 2015 | http://dx.doi.org/10.3389/fpls.2015.00252. Vai! Cerca con Google

Masi, A., Ghisi, R., Ferretti, M., (2002). “Measuring low-molecular-weight thiols by detecting the fluorescence of their SBD derivatives: application to studies of diurnal and UV B induced changes in Zea mays L”. Plant Physiol1 59 pp. 499 507. Cerca con Google

Matern S., Peskan-BerghoeferT., GromesR., Vazquez Kiesel R., and Rausch T. (2015). “Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against”. J Exp Bot doi: 10.1093/jxb/eru546. Cerca con Google

Mawdsley J.R., O’Maley R., Ojima D.S. (2009).“A Review of Climate-Change Adaptation Strategies for Wildlife Management and Biodiversity Conservation”. Conservation Biology 23(5) pp. 1080–1089. Cerca con Google

Meister A., (1988). “Glutathione Metabolism and Its Selective Modification”. J Biol Chem 263(33) pp. 17205-17208. Cerca con Google

Meister A., and Anderson M.E. (1983). “Glutathione”. Annu Rev Biochem 52 pp. 711-760. Cerca con Google

Meister, A., Tate, S. S., Griffith, O. W. (1981). “Gamma-glutamyl transpeptidase”. Methods Enzymol. 77 pp. 237-253. Cerca con Google

Mejer A.J., Hell R. (2005). “Glutathione homeostasis and redox-regulation by sulfhydryl groups”. Photosynth Res 86(3) pp. 435–457. Cerca con Google

Minic, Z., Jamet, E., Négroni, L., Arsene der Garabedian, P., Zivy, M., Jouanin, L. (2007). A sub-proteome of Arabidopsisthaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J. Exp. Bot. 58, 2503–2512. doi:10.1093/jxb/erm082 Cerca con Google

Mittler R. (2002). “Oxidative stress, antioxidants and stress tolerance”. Trends Plant Sci 7(9) pp. 405-10. Cerca con Google

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004).“Reactive oxygen gene network of plants”. Trends Plant Sci 9 pp. 490–498. Cerca con Google

Moller I.M., Jensen P.E., Hansson A. (2007). “Oxidative modifications to cellular components in plants”. Annu Rev Plant Biol 58 pp. 459–481. Cerca con Google

Mou Z., Fan W., and Dong X. (2003). “Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes”. Cell 113 pp. 935–944. Cerca con Google

Mullineaux, P. M., Karpinski, S., Baker, N. R. (2006). Spatial dependence for hydrogen peroxide-directed signalling in light-stressed plants. Plant Physiol 141, 346-350 Cerca con Google

Munne-Bosch S., Alegre L. (2004). “Die and let live: leaf senescence contributes to plant survival under drought stress”. Funct Plant Biol 31 pp. 203–216 . Cerca con Google

Nakabayashi R. and Saito K. (2015). “Integrated metabolomics for abiotic stress responses in plants”.Curr Opin Plant Biol 24 pp. 10–16. Cerca con Google

Navabpour S., Morris K., Allen R., Harrison E., et al. (2003). “Expression of senescence-enhanced genes in response to oxidative stress”. J Exp Bot 54 pp. 2285–2292. Cerca con Google

Navrot N., Roubier N., Gelbaye E., Jacquot J-P. (2007).“Reactive oxygen species generation and antioxidant systems in plant mitochondria”. Physiol Plant 129 pp. 185–195. Cerca con Google

Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., Beveridge, C. A., Ghisalberti, E. L., Smith, S. M. (2011). F-Box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsisthaliana. Proc. Natl. Acad. Sci. U.S.A. 108, 8897–8902. doi:10.1073/pnas.1100987108 Cerca con Google

Noctor G. (2006). Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29, 409-425. Cerca con Google

Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J., Marquez-Garcia B., et al., Glutathione in plants: an integrated overview.Plant Cell Environ. 2012,35, 454-484. Cerca con Google

Noctor G., Queval G., Mhamdi A., Chaouch S., Foyer C.H. (2011). “Glutathione”. Arabidopsis Book doi: 10.1199/tab.0142. Cerca con Google

Noctor G., Veljovic-Jovanovic S., Driscoll S., Novitskaya L., and Foyer C.H. (2002a). “Drought and oxidative load in wheat leaves: A predominant role for photorespiration?” Ann Bot 89 pp. 841–850. Cerca con Google

Noctor, G., Foyer, C. H. (1998). “Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione”. Anal Bioche. 1 pp. 98-110. Cerca con Google

Noctor, G., Mhamdi, A., Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164, 1636-1648. doi: 10.1104/pp.113.233478 Cerca con Google

NoctorG., GomezL., VanackerH., FoyerC.H. (2002b). “Interactions between biosynthesis, compartimentation and transport in the control of glutathione homeostasis and signalling”.J Exp Bot 53(372)pp. 1283–1304. Cerca con Google

Noji M., Saito K. (2002). “Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants”. Amino Acids 22 pp. 231–243. Cerca con Google

Nutricati, E., Miceli, A., Blando, F., De Bellis, L., Characterization of two Arabidopsis thaliana glutathione S-transferase. Plant. Cell. Rep. 2006, 997-1005. Cerca con Google

Nystrom, T., Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005, 24, 1311-1317. Cerca con Google

Obel, N., Porchia, A. C., Scheller, H. V. (2002). Dynamic changes in cell wall polysaccharides during wheat seedling development. Phytochemistry 60, 603-610 Cerca con Google

Ohkama-Ohtsu N., Oikawa A., Zhao P., Xiang C., Saito K., Oliver D. J. (2008). “A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis”. Plant Physiol 148 pp. 1603–1613. Cerca con Google

Ohkama-Ohtsu N., Radwan S., Peterson A., Zhao P., et al. (2007a). “Characterization of the extracellular -glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis”. Plant J 49 pp. 865-877. Cerca con Google

Ohkama-Ohtsu, N., Zhao, P., Xiang, C., Oliver, D. J. (2007b). “Glutathione-conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis”. Plant J 49 pp. 878-888. Cerca con Google

Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A.(2002). “Glutathione catabolism as a signaling mechanism”. Biochem Pharmacol 64(5–6) pp. 1027–35. Epub 2002/09/06. Cerca con Google

Pechanova, O., Hsu, C. Y., Adams, J. P., Pechan, T., Vandervelde, L., Drnevich, J., Jawdy, S., Adeli, A., Suttle, J. C., Lawrence, A. M., Tschaplinski, T. J., Séguin, A., Yuceer, C. (2010). Apoplast proteome reveals that extracellular matrix contributes to multistress response in Poplar. BMC Genomics 11: 674. doi:10.1186/1471-2164-11-674 Cerca con Google

Pei Z-M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., Schroeder J.I. (2000). “Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells”. Nature 406 pp. 731–734. Cerca con Google

Pennacchio F., Masi A., Pompella A. (2014). “Glutathione levels modulation as a strategy in host-parasite interactions—insights for biology of cancer”. Front Pharmacol 2014; 5: 180. doi: 10.3389/fphar.2014.00180. Cerca con Google

Pignocchi C., Foyer C. H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6, 379-389. Cerca con Google

Pitzschke, A.,Fornazi, C., Hirt, H. (2006). Reactive oxygen species signalling in plants. AntioxidRedox Sign 8 pp. 1757–1764. Cerca con Google

Pivato M., Fabrega-Prats M., Masi A. (2014). “Low-molecular-weight thiols in plants: Functional and analytical implications”. Arch Biochem Biophys 560 pp. 83–99. Cerca con Google

Polle, A., Chakrabarti, K., Schuermann, W., Rennenberg, H. (1990). “Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst)”. Plant Physiol 94 pp. 312-319. Cerca con Google

Pompella A., Visvikis A., Paolicchi A.,De Tata V.,Casini A.F. (2003). “The changing faces of glutathione, a cellular protagonist”. Biochem Pharmacol 66(8) pp. 1499–1503. Cerca con Google

Popper, Z. A., Fry, S.C. (2003). Primary cell wall composition of Bryophytes and Charophytes. Ann. Bot. 91, 1–12. doi:10.1093/aob/mcg013 Cerca con Google

Potters G., Horemans N., Jansen M. A. K. (2010). The cellular redox state in plant stress biology – a charging concept. Plant Physiol. Biochem. 48, 292-300 Cerca con Google

Potters, G., Pasternak, T. P, Guisez, Y, Jansen, M. A. (2009). Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32(2), 158-169. doi: 10.1111/j.1365-3040.2008.01908.x Cerca con Google

Prasad T.K., Anderson M.D., and Stewart C.R. (1995).“Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings”.Plant Physiol 108 pp.1597-1605. Cerca con Google

Pristov J.B., Jovanović S.V., Mitrović A., Spasojević I. (2013). “UV-irradiation provokes generation of superoxide on cell wall polygalacturonic acid”. Physiol Plant 148 pp. 574–581. Cerca con Google

Rafudeen, S., Gxaba, G., Makgoke, G., Bradley, G., Pironcheva, G., Raitt, L., Irving H., Gehrin, C. (2003). A role for plant natriuretic peptide immuno-analogues in NaCl- and drought-stress responses. Physiol. Plant. 199, 554-562. doi: 10.1046/j.1399-3054.2003.00201.x Cerca con Google

Rahantaniaina M.S., Tuzet A., Mhamdi A., Noctor G. (2013). “Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?”Front Plant Sci 4:477 10.3389/fpls.2013.00477 Cerca con Google

Reczek CR, Chandel NS. (2015). “ROS-dependent signal transduction”. Curr Opin Cell Biol 33 pp. 8-13. doi: 10.1016/j.ceb.2014.09.010. Cerca con Google

Reiter, W. D. (2002). Biosynthesis and properties of the plant cell wall. Curr. Opin. Plant Biol. 5, 536–542 Cerca con Google

RennenbergH., FilnerP. (1982).“Stimulation of h(2)s emission from pumpkin leaves by inhibition of glutathione synthesis”.Plant Physiol 69(4) pp. 766–770. Cerca con Google

Rentel M.C., Lecourieux D., Ouaked F., Usher S.L., Peterson L., Okamoto H., Knight H., Peck S.C., Grierson C.S., Hirt H., and Knight M.R. (2004). “OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis”. Nature 427 pp. 858–861. Cerca con Google

Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., Siedow, J. N., Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 2006, 141, 357-366. Cerca con Google

Rizhsky L., Hallak-Herr E., Van Breusegem F., Rachmilevitch S., Barr J.E., Rodermel S., Inzé D., and Mittler R. (2002). “Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase”. Plant J32 pp. 329–342. Cerca con Google

Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., Schäfer, E., Nagy, F., Jenkins, G. I., Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332 (6025), 103–106. doi:10.1126/science.1200660 Cerca con Google

Rodman, J. E. (1991). A taxonomic analysis of glucosinolate-producing plants. Part 1: Phenetics, Syst. Bot. 16, 598-618 Cerca con Google

Rodriguez-Serano M. , Romero-Puertas M., Zabalza A., CorpasF.J., Gomez M., Del Rio L.A. et al . ( 2006 ). “Cadmium effect on oxidative metabolism of pea ( Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo”. Plant Cell Environ 29 pp. 1532 – 1544. Cerca con Google

Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., et al. (2004). “Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents”. Mol Cell Proteomics 3 pp. 1154-1169. Cerca con Google

Rossato L, MacDuff JH, Laine P, Le Deunff E, Ourry A. (2002). “Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation”. J Exp Bot 53 pp. 1131-41. Cerca con Google

Ryu, H. Y., Kim, S. Y., Park, H. M. You, J. Y. et al., (2009). “Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death”. Biochem. Biophys. Res. Commun. 379 pp. 417-422. Cerca con Google

Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., et al., (2006). “The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses”. Proteomics 6, pp. 2180-98. Cerca con Google

Saruhan, N., Terzi, R., Saglam, A., Kadioglu, A. (2009). The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe Setosa subjected to drought stress. Biol. Res. 42, 315–326. doi:10.4067/S0716-97602009000300006 Cerca con Google

Sattelmacher B. (2000). “The apoplast and its significance for plant mineral nutrition”. New Phytol149(2) pp. 167–192. Cerca con Google

Sävenstrand, H., Brosché, M., Strid, A. (2004). Ultraviolet-B signalling: Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence gene expression. Plant Physiol. Biochem. 42, 687–694. doi:10.1016/j.plaphy.2004.06.011 Cerca con Google

Scandalios, J. G., (1997). “Oxidative stress and the molecular biology of antioxidant defenses”. Cold Spring Harbor Laboratory Press, Plainview, NY, USA. Cerca con Google

Schafer, F. Q., Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad. Biol. Med. 30, 1191–1212. doi:10.1016/S0891-5849(01)00480-4 Cerca con Google

Scheler, C., Durner, J., Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16, 534–539. doi:10.1016/j.pbi.2013.06.020 Cerca con Google

Schopfer P., Liszkay A., Bechtold M, Frahy G. and Wagner A. ( 2002 ). “Evidence that hydroxyl radicals mediate auxin-induced extension growth”. Planta 214 pp. 821 – 828 . Cerca con Google

Schopfer P., Plachy C. and Frahry G. ( 2001 ). “Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid”. Plant Physiol 125 pp. 1591 – 1602. Cerca con Google

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high -salinity stresses using a full-length cDNA microarray. Plant J 31, 279-292 Cerca con Google

Shapiguzov A., Vainonen J.P., Wrzaczek M., Kangasjärvi J., ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through. Front. Plant Sci. 2012, 3, 292. Cerca con Google

SharmaP.,Bhushan Jha A., Dubey R.S., and Pessarakli M. (2012).“Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions”.J Bot Article ID 217037. Cerca con Google

Shiu S. H., Bleecker A. B., (2003). “Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis”. Plant Physiol 132 pp. 530-543. Cerca con Google

Shiu, C.-T. (2005). Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva Fasciata. J. Exp. Bot. 56,2851–2865. doi:10.1093/jxb/eri277 Cerca con Google

Singh P., Kaloudas D., Raines, C. A. (2008). “Expression analysis of the Arabidopsis CP12 gene family suggest novel roles for these proteins in roots and floral tissues”. J Exp Bot 59 pp. 3975-3985. Cerca con Google

Smirnoff, N., Pallanca, J. E. (1996). Ascorbate metabolism in relation to oxidative stress. Biochem. Soc. Trans. 24, 472–478 Cerca con Google

Smith I.K., Vierheller T.L., Thorne C.A.(1989). “Properties and functions of glutathione reductase in plants”. Physiol Plant 77 pp. 449–456. Cerca con Google

Speisky H., Gómez M., Carrasco-Pozo C., Pastene E., Lopez-Alarcón C., Olea-Azar C. (2008). “Cu(I)-glutathione complex: a potential source of superoxide radicals generation”. Bioorg Med Chem 1;16(13):6568-74. doi: 10.1016/j.bmc.2008.05.026. Cerca con Google

Speisky H., López-Alarcón C., Olea-Azar C., Sandoval-Acuña C., Aliaga M.E. (2011). “Role of superoxide anions in the redox changes affecting the physiologically occurring cu(i)-glutathione complex”. Bioinorg Chem Appl 2011:674149. doi: 10.1155/2011/674149. Cerca con Google

Sreeramulu D., Reddy C.V.K., Chauhan A., Balakrishna N., Raghunath M. (2013). “Natural Antioxidant Activity of Commonly Consumed Plant Foods in India: Effect of Domestic Processing”. Oxid Med Cell Longev 2013 12;2013:369479. http://dx.doi.org/10.1155/2013/369479. Vai! Cerca con Google

Stark A.A, Zeiger E, Pagano D.A. (1993).”Glutathione metabolism by γ-glutamyl transpeptidase leads to lipid peroxidation: characterization of the system and relevance to hepatocarcinogenesis”.Carcinogenesis 14 pp. 183–189. Cerca con Google

Stolle-Smits, T., Beekhuizen, J. G., Kok, M. T., Pijnenburg, M, Recourt, K., Derksen, J., Voragen, A. G. (1999). Changes in cell wall polysaccharides of green bean pods during development. Plant Physiol. 121, 363–372 Cerca con Google

Storozhenko, S., Belles-Boix, E., Babiychuk, E., Hérouart, D., et al., (2002). -Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol. 128 pp. 1109 1119. Cerca con Google

Šukalovic´ V.H.T., Vuletic´ M. and Vucˇinic´ Ž. ( 2005 ). “The role of p -coumaric acid in oxidative and peroxidative cycle of the ionically bound peroxidase of the maize root cell wall”. Plant Sci 168 pp. 931 – 938. Cerca con Google

Suzuki N., Rivero R.M., Shulaev V., Blumwald E., Mittler R. (2014). “Abiotic and biotic stress combinations”. New Phytol 203(1) pp. 32–43. Cerca con Google

Tate, S. S., Meister A. (1978). Serine-borate complex as a transition state inhibitor of -glutamyl transpeptidase. Proc. Natl. Acad. Sci.USA 75 pp. 4806-4809. Cerca con Google

Tolin S., Arrigoni G., Trentin A.R., Veljovic-Jovanovic S., Pivato M., Zechman B., Masi A. (2013). “Biochemical and quantitative proteomics investigations in Arabidopsisggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment”. Proteomics 13 pp. 2031–2045. Cerca con Google

Torres M. A., Jones J. D. G., Dangl J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 41, 373-378. Cerca con Google

Uotila, L., Koivusalo, M. (1979). Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch. Biochem. Biophys. 196 pp. 33-45. Cerca con Google

Urbañski N.K. and Berêsewicz A. (2000). “Generation of •OH initiated by interaction of Fe2+ and Cu+with dioxygen; comparison with the Fenton chemistry”. Acta Biochimica Polonica 47 pp. 951-962. Cerca con Google

Vanacker H., Carver T.L.W., and Foyer C.H. (2000). “Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction”. Plant Physiol 123 pp. 1289–1300. Cerca con Google

Vanacker, H., Carver, T. L. W., Foyer, C. H. (1998a). Pathogen-Induced Changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114. doi:10.1104/pp.117.3.1103 Cerca con Google

Vanacker, H., Harbinson, J., Ruisch, J., Carver, T. L. W., Foyer, C. H. (1998b). Antioxidant defences of the apoplast. Protoplasma 205, 129-140 Cerca con Google

Vellosillo T., Vicente J., Kulasekaran S., Hamberg M., Castresana C. (2010). “Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens”. Plant Physiol 154 pp. 444–448. Cerca con Google

Vranova E., Inze D., Van Breusegem F. (2002). “Signal transduction during oxidative stress”. J Exp Bot 53 pp. 1227–1236. Cerca con Google

Wang W., Ballatori N. (1998). “Endogenous glutathione conjugates: occurrence and biological functions”. PharmacolRev50 pp. 335–355. Cerca con Google

Waszczak C., Akter S., Jacques S., Huang J., Messens J., and Van Breusegem F. (2015). “Oxidative post-translational modifications of cysteine residues in plant signal transduction”. J Exp Bot doi: 10.1093/jxb/erv084. Cerca con Google

Will, Y., Fischer, K. A., Horton, R. A., Kaetzel, R. S., Brown, M. K., et al., Gamma-glutamyltranspeptidase-deficient knockout mice as a model to study the relationship between glutathione status, mitochondrial function, and cellular function. Hepatology 2000, 32, 740-749. Cerca con Google

Wirtz M., Hell R. (2007). “Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco”. Plant Cell 19 pp. 625–639. Cerca con Google

Wrzaczek M., Brosché M., Salojärvi J., Kangasjärvi S., et al., .(2010). Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10, 95. Cerca con Google

Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., Lamb, C. (2004). An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980–988. doi:10.1038/sj.emboj.7600086 Cerca con Google

Xin, Z., Zhao, Y., Zheng, Z. L., (2005). Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol 139, 1350–1365. doi:10.1104/pp.105.068064.dopsis Cerca con Google

Yao, X., Xiong, W., Ye, T., Wu, Y. (2012). Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 1-15doi: 10.1093/jxb/err433 Cerca con Google

Yoo, K. S., Ok, S. H., Jeong, B. C., Jung, K. W., et al., (2011). Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Plant Cell 23 pp. 3577-94. Cerca con Google

Zechmann B. (2014). Compartment-specific importance of glutathione during abiotic and biotic stress. Front. Plant Sci. 5, 566. Cerca con Google

Zechmann B., Müller M., Zellnig G. (2008). “Modified levels of cysteine affect glutathione metabolism in plant cells”.In Sulfur Assimilation and Abiotic Stress in Plants, eds Khan N. A., Singh S., Umar S., editors. (Berlin: Springer; ) pp. 193–206. Cerca con Google

Zechmann B., Zellnig G., Urbanek-Krajnc A., Müller M. (2007). “Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants”. Arch Virol 152 pp. 747–762. Cerca con Google

Zechmann, B., Müller, M., (2010). Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma. 246 pp.15-24. Cerca con Google

Zechmann, B., Stumpe, M., Mauch, F. (2011). Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233 pp. 1-12. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record