Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Campagnolo, Alberto (2016) Local approaches applied to fracture and fatigue problems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione pubblicata
14Mb

Abstract (inglese)

Intentionally designed or accidentally caused, notches, cracks or defects are inevitably present in engineering components and can induce high stress gradients when a far field loading is applied. Then, structural strength assessments are often based on the local stress and strain state in the close neighbourhood of the stress raisers.
The present PhD thesis is divided into six Chapters corresponding to different research topics, all related to new applications of important and widely employed local approaches to notched or cracked structural components.
In the first Chapter, the adopted local approaches, namely the Notch Stress Intensity Factor-based approach (NSIF), the averaged Strain Energy Density (SED) criterion and the Peak Stress Method (PSM), are briefly introduced and described along with their theoretical frameworks.
The second Chapter deals with brittle fracture under mixed mode static loading. A wide experimental campaign has been carried out on PMMA as well as on graphite cracked and notched specimens subjected to mixed mode I+II and I+III loading. Then, all experimental results have been reanalysed by means of the SED approach.
The third Chapter deals with multiaxial fatigue loadings. First, the fatigue strength of severely notched titanium grade 5 alloy, Ti-6Al-4V, has been investigated. Then, the SED criterion has been applied for the first time to an industrial case study, that is the multiaxial fatigue strength assessment of steel welded rollers produced by Rulmeca S.p.a. Finally, some remarks about the phase angle effect on sharp V-notched components under multiaxial fatigue have been drawn on the basis of a proposed analytical frame.
The fourth Chapter addresses the numerical study of 3D effects in notched and cracked components. Initially, the attention has been focused on coupled modes and on the effect of different boundary conditions in 3D cracked discs and plates subjected to nominal mode III or mode II loading. Then, the presence of three-dimensional effects has been investigated both theoretically and numerically in blunt notched components under cyclic plasticity conditions.
The fifth Chapter, instead, is related to the comparison between different fracture criteria. The SED approach and that based on the Finite Fracture Mechanics (FFM) have been compared considering sharp V-notches under pure mode I or mode II loading.
Finally the sixth Chapter address the link between the SED approach and the Peak Stress Method (PSM). Cracks under in-plane mixed mode I+II and out-of-plane mixed mode I+III loading have been investigated. A method to rapidly evaluate the averaged SED based on the peak stresses at the crack tip has been proposed. On the basis of the derived link, some practical applications related to the fatigue strength assessment of aluminium and steel butt welded joints and of tube-to-flange steel welded joints have been carried out.

Abstract (italiano)

Variazioni geometriche, come intagli, cricche o difetti in generale, sono comunemente presenti nella maggior parte dei componenti meccanici e possono indurre elevati gradienti di tensione per effetto dei carichi esterni. La valutazione della resistenza strutturale dei componenti meccanici è perciò generalmente basata sullo stato di tensione e deformazione locale, nelle adiacenze di tali variazioni geometriche. La presente tesi di dottorato è divisa in sei Capitoli corrispondenti a diversi argomenti di ricerca, tutti relativi a nuove applicazioni di importanti e ampiamente diffusi approcci locali a componenti strutturali intagliati o criccati.
Nel primo Capitolo, sono brevemente introdotti e descritti gli approcci locali adottati, cioè l’approccio basato sul Notch Stress Intensity Factor (NSIF), il criterio basato sulla densità di energia di deformazione mediata (SED) e il Peak Stress Method (PSM), assieme alle loro basi teorico-analitiche.
Il secondo Capitolo si occupa della frattura fragile sotto carichi statici di modo misto. Una campagna sperimentale estesa è stata eseguita su provini intagliati e criccati in PMMA ed in grafite soggetti a carichi di modo misto I+II e I+III. In seguito, tutti i dati sperimentali sono stati rianalizzati per mezzo dell’approccio SED.
Il terzo Capitolo tratta il tema della fatica multiassiale. Inizialmente, è stata investigata la resistenza a fatica di una lega di titanio grado 5, Ti-6Al-4V, severamente intagliata. In seguito, il criterio SED è stato applicato per la prima volta ad un caso studio di interesse industriale: la valutazione della resistenza a fatica multiassiale di rulli saldati in acciaio, prodotti da Rulmeca S.p.a. e caratterizzati da cedimenti alla radice del cordone di saldatura. Infine, prendendo in esame componenti indeboliti da intagli a V acuti soggetti a carichi di fatica multiassiale, sono state tratte alcune osservazioni sull’effetto dell’angolo di fase sulla base di un nuovo approccio analitico.
Il quarto Capitolo tratta lo studio numerico e teorico degli effetti 3D in componenti intagliati e criccati. Inizialmente, l’attenzione è stata focalizzata sui modi accoppiati e sull’effetto di diverse condizioni al contorno in dischi e piastre criccate, tridimensionali e soggette ad un carico nominale di modo III o modo II. Infine la presenza di effetti 3D è stata investigata sia dal punto di vista teorico che numerico in componenti indeboliti da intagli blandi e in condizioni di plasticità ciclica.
Il quinto Capitolo, invece, è relativo al confronto tra diversi criteri di cedimento. Sono stati confrontati l’approccio SED e quello basato sulla teoria della Finite Fracture Mechanics (FFM), considerando intagli a V acuti soggetti a puro modo I o puro modo II.
Infine, nel sesto Capitolo è stato investigato un legame tra il criterio SED ed il Peak Stress Method (PSM). Sono stati presi in esame componenti strutturali criccati soggetti a carichi di modo misto nel piano I+II e fuori piano I+III. È stato proposto un metodo per calcolare rapidamente il SED a partire dalle tensioni di picco valutate all’apice di cricca. Il legame ottenuto tra PSM e SED è stato poi impiegato nella stima della resistenza a fatica di giunti saldati testa a testa in acciaio ed alluminio e di giunti saldati tubo-su-flangia in acciaio sottoposti a carichi torsionali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Berto, Filippo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:21 Gennaio 2016
Anno di Pubblicazione:21 Gennaio 2016
Parole chiave (italiano / inglese):meccanica della frattura/fracture mechanics, meccanismi di danneggiamento/damage mechanisms, statica/static, rottura fragile/brittle failure, fatica/fatigue, cricche/cracks, intagli/notches, carichi multiassiali/multiaxial loadings, effetti tridimensionali/three-dimensional effects, giunti saldati/welded joints, plasticità ciclica/cyclic plasticity,
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:9022
Depositato il:06 Ott 2016 15:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdelaziz, Y., Hamouine, A., 2008. A survey of the extended finite element. Comput. Struct. 86, 1141–1151. Cerca con Google

Akin, J.E., 1976. The generation of elements with singularities. Int. J. Numer. Methods Eng. 10, 1249–1259. Cerca con Google

Aliha, M.R.M., Ayatollahi, M.R., 2014. Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading – A statistical approach. Theor. Appl. Fract. Mech. 69, 17–25. Cerca con Google

Aliha, M.R.M., Ayatollahi, M.R., 2012. Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. Int. J. Solids Struct. 49, 1877–1883. Cerca con Google

Aliha, M.R.M., Hosseinpour, G.R., Ayatollahi, M.R., 2012. Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mech. Rock Eng. 46, 1023–1034. Cerca con Google

Allard, B., Rouby, D., Fantozzi, G., Dumas, D., Lacroix, P., 1991. Fracture behaviour of carbon materials. Carbon N. Y. 29, 457–468. Cerca con Google

Amstutz, H., Storzel, K., Seeger, T., 2001. Fatigue crack growth of a welded tube-flange connection under bending and torsional loading. Fatigue Fract. Eng. Mater. Struct. 24, 357–368. Cerca con Google

Anderson, T.L., 1994. Fracture Mechanics, Fundamentals and Applications, 2nd ed. CRC Press LLC, Boca Raton. Cerca con Google

Ardito, R., Corigliano, A., Frangi, A., Rizzini, F., 2014. Advanced models for the calculation of capillary attraction in axisymmetric configurations. Eur. J. Mech. - A/Solids 47, 298–308. Cerca con Google

Armstrong, P., Frederick, C.O., 1966. A mathematical representation of the multiaxial Bauschinger effect. Rep. RD/B/N 731, Cent. Electr. Gener. Board. Cerca con Google

ASTM E399-90 (1997). Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, 1997. Cerca con Google

Atzori, B., 1985. Fracture mechanics or notch effect for fatigue design, in: XIII National Congress of the Italian Society for Strain Analysis (Edited by AIAS). Bergamo Italy (in Italian). Cerca con Google

Atzori, B., Berto, F., Lazzarin, P., Quaresimin, M., 2006. Multi-axial fatigue behaviour of a severely notched carbon steel. Int. J. Fatigue 28, 485–493. Cerca con Google

Atzori, B., Dattoma, V., 1983. A comparison of the fatigue behaviour of welded joints in steels and in aluminium alloys. IIW Doc XXXIII-1089-1983. Cerca con Google

Atzori, B., Lazzarin, P., Meneghetti, G., 2003. Fracture mechanics and notch sensitivity. Fatigue Fract. Eng. Mater. Struct. 26, 257–267. Cerca con Google

Atzori, B., Lazzarin, P., Tovo, R., 1999. From a local stress approach to fracture mechanics: a comprehensive evaluation of the fatigue strength of welded joints. Fatigue Fract. Eng. Mater. Struct. 22, 369–381. Cerca con Google

Atzori, B., Lazzarin, P., Tovo, R., 1999. Stress field parameters to predict the fatigue strength of notched components. J. Strain Anal. Eng. Des. 34, 437–453. Cerca con Google

Atzori, B., Lazzarin, P., Tovo, R., 1997. Stress distributions for V-shaped notches under tensile and bending loads. Fatigue Fract. Eng. Mater. Struct. 20, 1083–1092. Cerca con Google

Atzori, B., Meneghetti, G., 2001. Fatigue strength of fillet welded structural steels: finite elements, strain gauges and reality. Int. J. Fatigue 23, 713–721. Cerca con Google

Awaji, H., Sato, S., 1978. Combined Mode Fracture Toughness Measurement by the Disk Test. J. Eng. Mater. Technol. 100, 175–182. Cerca con Google

Ayatollahi, M., Saboori, B., 2014. Maximum tangential strain energy density criterion for general mixed mode I/II/III brittle fracture. Int. J. Damage Mech. 24, 263–278. Cerca con Google

Ayatollahi, M.R., Aliha, M.R.M., 2009. Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76, 1563–1573. Cerca con Google

Ayatollahi, M.R., Aliha, M.R.M., 2008. Mixed mode fracture analysis of polycrystalline graphite – A modified MTS criterion. Carbon N. Y. 46, 1302–1308. Cerca con Google

Ayatollahi, M.R., Dehghany, M., Mirsayar, M.M., 2013. A comprehensive photoelastic study for mode I sharp V-notches. Eur. J. Mech. - A/Solids 37, 216–230. Cerca con Google

Ayatollahi, M.R., Mirsayar, M.M., Dehghany, M., 2011. Experimental determination of stress field parameters in bi-material notches using photoelasticity. Mater. Des. 32, 4901–4908. Cerca con Google

Ayatollahi, M.R., Nejati, M., 2011. An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis. Fatigue Fract. Eng. Mater. Struct. 34, 159–176. Cerca con Google

Ayatollahi, M.R., Pavier, M.J., Smith, D.J., 1998. Determination of T -stress from finite element analysis for mode I and mixed mode I/II loading. Int. J. Fract. 91, 283–298. Cerca con Google

Ayatollahi, M.R., Saboori, B., 2015. A new fixture for fracture tests under mixed mode I/III loading. Eur. J. Mech. - A/Solids 51, 67–76. Cerca con Google

Ayatollahi, M.R., Saboori, B., 2015. T-stress effects in mixed mode I/II/III brittle fracture. Eng. Fract. Mech. 144, 32–45. Cerca con Google

Ayatollahi, M.R., Torabi, A.R., 2011. Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch. J. Mech. Sci. Technol. 25, 2529–2534. Cerca con Google

Ayatollahi, M.R., Torabi, A.R., 2010a. Brittle fracture in rounded-tip V-shaped notches. Mater. Des. 31, 60–67. Cerca con Google

Ayatollahi, M.R., Torabi, A.R., 2010b. Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen. Int. J. Solids Struct. 47, 454–465. Cerca con Google

Ayatollahi, M.R., Torabi, A.R., 2010c. Investigation of mixed mode brittle fracture in rounded-tip V-notched components. Eng. Fract. Mech. 77, 3087–3104. Cerca con Google

Ayatollahi, M.R., Torabi, A.R., 2009. A criterion for brittle fracture in U-notched components under mixed mode loading. Eng. Fract. Mech. 76, 1883–1896. Cerca con Google

Ayatollahi, M.R., Torabi, A.R.R., Azizi, P., 2010. Experimental and Theoretical Assessment of Brittle Fracture in Engineering Components Containing a Sharp V-Notch. Exp. Mech. 51, 919–932. Cerca con Google

Ayatollahi, M.R.R., Berto, F., Lazzarin, P., 2011. Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite. Carbon N. Y. 49, 2465–2474. Cerca con Google

Ayatollahi, M.R.R., Torabi, A.R.R., 2011. Failure assessment of notched polycrystalline graphite under tensile-shear loading. Mater. Sci. Eng. A 528, 5685–5695. Cerca con Google

Ayatollahi, M.R.R., Torabi, A.R.R., 2010. Tensile fracture in notched polycrystalline graphite specimens. Carbon N. Y. 48, 2255–2265. Cerca con Google

Babuška, I., Miller, A., 1984. The post-processing approach in the finite element method—Part 2: The calculation of stress intensity factors. Int. J. Numer. Methods Eng. 20, 1111–1129. Cerca con Google

Barati, E., Aghazadeh Mohandesi, J., Alizadeh, Y., 2010a. The effect of notch depth on J-integral and critical fracture load in plates made of functionally graded aluminum–silicone carbide composite with U-notches under bending. Mater. Des. 31, 4686–4692. Cerca con Google

Barati, E., Alizadeh, Y., 2011. A numerical method for evaluation of J-integral in plates made of functionally graded materials with sharp and blunt V-notches. Fatigue Fract. Eng. Mater. Struct. 34, 1041–1052. Cerca con Google

Barati, E., Alizadeh, Y., Aghazadeh, J., Berto, F., 2010b. Some new practical equations for rapid calculation of J-integral in plates weakened by U-notches under bending. Mater. Des. 31, 2964–2971. Cerca con Google

Barsoum, R.S., 1975. Further application of quadratic isoparametric finite elements to linear fracture mechanics of plate bending and general shells. Int. J. Fract. 11, 167–169. Cerca con Google

Bazaj, D.K., Cox, E.E., 1969. Stress-concentration factors and notch-sensitivity of graphite. Carbon N. Y. 7, 689–697. Cerca con Google

Bažant, Z.P., Estenssoro, L.F., 1979. Surface singularity and crack propagation. Int. J. Solids Struct. 15, 405–426. Cerca con Google

Becker, T.H., Mostafavi, M., Tait, R.B., Marrow, T.J., 2012. An approach to calculate the J-integral by digital image correlation displacement field measurement. Fatigue Fract. Eng. Mater. Struct. 35, 971–984. Cerca con Google

Beghini, M., Bertini, L., Di Lello, R., Fontanari, V., 2007. A general weight function for inclined cracks at sharp V-notches. Eng. Fract. Mech. 74, 602–611. Cerca con Google

Beltrami, E., 1885. Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento 18 (in Italian). Cerca con Google

Benedetti, M., Bertini, L., Fontanari, V., 2004. Behaviour of fatigue cracks emanating from circular notches in Ti-6Al-4V under bending. Fatigue Fract. Eng. Mater. Struct. 27, 111–125. Cerca con Google

Benedetti, M., Fontanari, V., 2004. The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating from edge-notches. Fatigue Fract. Eng. Mater. Struct. 27, 1073–1089. Cerca con Google

Bentachfine, S., 1999. Notch effect in low cycle fatigue. Int. J. Fatigue 21, 421–430. Cerca con Google

Benthem, J.P., 1980. The quarter-infinite crack in a half space; Alternative and additional solutions. Int. J. Solids Struct. 16, 119–130. Cerca con Google

Benzley, S.E., 1974. Representation of singularities with isoparametric finite elements. Int. J. Numer. Methods Eng. 8, 537–545. Cerca con Google

Berto, F., 2015. Some recent results on the fatigue strength of notched specimens made of 40CrMoV13.9 steel at room and high temperature. Phys. Mesomech. 18, 105–126. Cerca con Google

Berto, F., Ayatollahi, M.R.R., 2011. Fracture assessment of Brazilian disc specimens weakened by blunt V-notches under mixed mode loading by means of local energy. Mater. Des. 32, 2858–2869. Cerca con Google

Berto, F., Campagnolo, A., Chebat, F., Cincera, M., Santini, M., 2016. Fatigue strength of steel rollers with failure occurring at the weld root based on the local strain energy values: modelling and fatigue assessment. Int. J. Fatigue 82, 643–657. Cerca con Google

Berto, F., Campagnolo, A., Elices, M., Lazzarin, P., 2013a. A synthesis of Polymethylmethacrylate data from U-notched specimens and V-notches with end holes by means of local energy. Mater. Des. 49, 826–833. Cerca con Google

Berto, F., Campagnolo, A., Gallo, P., 2015a. Brittle Failure of Graphite Weakened by V-Notches: A Review of Some Recent Results Under Different Loading Modes. Strength Mater. 47, 488–506. Cerca con Google

Berto, F., Campagnolo, A., Lazzarin, P., 2015b. Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 38, 503–517. Cerca con Google

Berto, F., Cendon, D.A.A., Lazzarin, P., Elices, M., 2013b. Fracture behaviour of notched round bars made of PMMA subjected to torsion at −60°C. Eng. Fract. Mech. 102, 271–287. Cerca con Google

Berto, F., Elices, M., Lazzarin, P., Zappalorto, M., 2012a. Fracture behaviour of notched round bars made of PMMA subjected to torsion at room temperature. Eng. Fract. Mech. 90, 143–160. Cerca con Google

Berto, F., Gallo, P., Lazzarin, P., 2014. High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel. Mater. Des. 63, 609–619. Cerca con Google

Berto, F., Kotousov, A., Lazzarin, P., Pegorin, F., 2013. On a coupled mode at sharp notches subjected to anti-plane loading. Eur. J. Mech. - A/Solids 38, 70–78. Cerca con Google

Berto, F., Lazzarin, P., 2014. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R Reports 75, 1–48. Cerca con Google

Berto, F., Lazzarin, P., 2013. Multiparametric full-field representations of the in-plane stress fields ahead of cracked components under mixed mode loading. Int. J. Fatigue 46, 16–26. Cerca con Google

Berto, F., Lazzarin, P., 2011. Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume. Int. J. Fatigue 33, 1055–1065. Cerca con Google

Berto, F., Lazzarin, P., 2009. A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theor. Appl. Fract. Mech. 52, 183–194. Cerca con Google

Berto, F., Lazzarin, P., 2007. Relationships between J-integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches. Int. J. Solids Struct. 44, 4621–4645. Cerca con Google

Berto, F., Lazzarin, P., Ayatollahi, M.R., 2012b. Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading. Carbon N. Y. 50, 1942–1952. Cerca con Google

Berto, F., Lazzarin, P., Ayatollahi, M.R.R., 2013c. Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading. Carbon N. Y. 63, 101–116. Cerca con Google

Berto, F., Lazzarin, P., Gallo, P., 2013d. High-temperature fatigue strength of a copper-cobalt-beryllium alloy. J. Strain Anal. Eng. Des. 49, 244–256 Cerca con Google

Berto, F., Lazzarin, P., Gómez, F.J., Elices, M., 2007a. Fracture assessment of U-notches under mixed mode loading: two procedures based on the “equivalent local mode I” concept. Int. J. Fract. 148, 415–433. Cerca con Google

Berto, F., Lazzarin, P., Kotousov, A., 2011a. On higher order terms and out-of-plane singular mode. Mech. Mater. 43, 332–341. Cerca con Google

Berto, F., Lazzarin, P., Kotousov, A., Harding, S., 2011b. Out-of-plane singular stress fields in V-notched plates and welded lap joints induced by in-plane shear load conditions. Fatigue Fract. Eng. Mater. Struct. 34, 291–304. Cerca con Google

Berto, F., Lazzarin, P., Kotousov, A., Pook, L.P., 2012c. Induced out-of-plane mode at the tip of blunt lateral notches and holes under in-plane shear loading. Fatigue Fract. Eng. Mater. Struct. 35, 538–555. Cerca con Google

Berto, F., Lazzarin, P., Marangon, C., 2014a. Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading. Mater. Des. 54, 57–66. Cerca con Google

Berto, F., Lazzarin, P., Marangon, C., 2012d. Brittle fracture of U-notched graphite plates under mixed mode loading. Mater. Des. 41, 421–432. Cerca con Google

Berto, F., Lazzarin, P., Marangon, C., 2012. The effect of the boundary conditions on in-plane and out-of-plane stress field in three dimensional plates weakened by free-clamped V-notches. Phys. Mesomech. 15, 26–36. Cerca con Google

Berto, F., Lazzarin, P., Matvienko, Y.G., 2007b. J-integral evaluation for U- and V-blunt notches under Mode I loading and materials obeying a power hardening law. Int. J. Fract. 146, 33–51. Cerca con Google

Berto, F., Lazzarin, P., Radaj, D., 2009. Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor for different failure hypotheses. Eng. Fract. Mech. 76, 1151–1175. Cerca con Google

Berto, F., Lazzarin, P., Radaj, D., 2008. Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor for different failure hypotheses. Part I: Basic stress equations. Eng. Fract. Mech. 75, 3060–3072. Cerca con Google

Berto, F., Lazzarin, P., Tovo, R., 2014b. Multiaxial fatigue strength of severely notched cast iron specimens. Int. J. Fatigue 67, 15–27. Cerca con Google

Berto, F., Lazzarin, P., Yates, J.R., 2011c. Multiaxial fatigue of V-notched steel specimens: A non-conventional application of the local energy method. Fatigue Fract. Eng. Mater. Struct. 34, 921–943. Cerca con Google

Berto, F., Marangon, C., 2013. Three-dimensional effects in finite thickness plates weakened by rounded notches and holes under in-plane shear. Fatigue Fract. Eng. Mater. Struct. 36, 1139–1152. Cerca con Google

Bhattacharjee, D., Knott, J.F., 1995. Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA). Int. J. Fract. 72, 359–381. Cerca con Google

Boukharouba, T., Tamine, T., Niu, L., Chehimi, C., Pluvinage, G., 1995. The use of notch stress intensity factor as a fatigue crack initiation parameter. Eng. Fract. Mech. 52, 503–512. Cerca con Google

Bower, A.F., 1987. Some aspects of plastic flow, residual stress and fatigue cracks due to rolling and sliding contact. University of Cambridge. Cerca con Google

Bower, A.F., Johnson, K.L., 1989. The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. J. Mech. Phys. Solids 37, 471–493. Cerca con Google

Brahtz, J., 1933. Stress Distribution in a Reentrant Corner. Trans. Am. Soc. Mech. Eng. 55, 31–37. Cerca con Google

Brandt, U., Lawrence, F. V., Sonsino, C.M., 2001. Fatigue crack initiation and growth in AlMg4.5Mn butt weldments. Fatigue Fract. Eng. Mater. Struct. 24, 117–126. Cerca con Google

Brandt, U., Lehrke, H.P., Sonsino, C.M., Radaj, D., 1999. Anwendung des Kergrundkonzeptes für die schwingfeste Bemessung von Schweissverbindungen aus Aluminiumknetlegierungen. Darmstadt. Cerca con Google

Brown, M., Miller, K., 1973. A theory for fatigue under multiaxial stress–strain conditions. Proc. Inst. Mech. Eng. 187, 745–756. Cerca con Google

Burchell, T.D., 1996. A microstructurally based fracture model for polygranular graphites. Carbon N. Y. 34, 297–316. Cerca con Google

Campagnolo, A., Berto, F., Lazzarin, P., 2015. The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading. Eur. J. Mech. - A/Solids 50, 76–86. Cerca con Google

Campagnolo, A., Berto, F., Leguillon, D., 2016. Mode II loading in sharp V-notched components: a comparison among some recent criteria. Theor. Appl. Fract. Mech. (Submitted). Cerca con Google

Campagnolo, A., Berto, F., Marangon, C., 2015. Cyclic plasticity in three-dimensional notched components under in-phase multiaxial loading at R=−1. Theor. Appl. Fract. Mech. doi:10.1016/j.tafmec.2015.10.004 Cerca con Google

Campagnolo, A., Meneghetti, G., Berto, F., 2016. Rapid evaluation by FEM of the averaged strain energy density of mixed-mode (I+II) crack tip fields including the T-stress contribution. Fatigue Fract. Eng. Mater. Struct. (Submitted). Cerca con Google

Capetta, S., Tovo, R., Taylor, D., Livieri, P., 2011. Numerical evaluation of fatigue strength on mechanical notched components under multiaxial loadings. Int. J. Fatigue 33, 661–671. Cerca con Google

Cardano, G., 1545. Artis magnae sive de regulis algebraicis, liber unus., Translated. ed. Nuremberg. Cerca con Google

Carpenter, W.C., 1985. The eigenvector solution for a general corner or finite opening crack with further studies on the collocation procedure. Int. J. Fract. 27, 63–73. Cerca con Google

Carpinteri, A., 1987. Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Eng. Fract. Mech. Cerca con Google

Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A., Taylor, D., 2008. A finite fracture mechanics approach to structures with sharp V-notches. Eng. Fract. Mech. 75, 1736–1752. Cerca con Google

Carpinteri, A., Spagnoli, A., 2004. A fractal analysis of size effect on fatigue crack growth. Int. J. Fatigue 26, 125–133 Cerca con Google

Carpinteri, A., Spagnoli, A., 2001. Multiaxial high-cycle fatigue criterion for hard metals. Int. J. Fatigue 23, 135–145 Cerca con Google

Carpinteri, A., Spagnoli, A., Vantadori, S., 2014. Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion. Int. J. Fatigue 67, 55–61. Cerca con Google

Carpinteri, A., Spagnoli, A., Vantadori, S., 2011. Multiaxial fatigue assessment using a simplified critical plane-based criterion. Int. J. Fatigue 33, 969–976. Cerca con Google

Carpinteri, A., Spagnoli, A., Vantadori, S., Bagni, C., 2013. Structural integrity assessment of metallic components under multiaxial fatigue: the C-S criterion and its evolution. Fatigue Fract. Eng. Mater. Struct. 36, 870–883. Cerca con Google

Chaboche, J.L., 2008. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693. Cerca con Google

Chaboche, J.L., 1991. On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7, 661–678. Cerca con Google

Chaboche, J.L., 1987. Cyclic plasticity modelling and ratchetting effects, in: Proceedings of the Second International Conference on Constitutive Laws for Engineering Materials: Theory and Applications. Elsevier Ltd, Tucson, Arizona, pp. 47–58. Cerca con Google

Chaboche, J.L., 1986. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149–188. Cerca con Google

Chaboche, J.L., Dang Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of the 316 stainless steel. Structural Mechanical in Reactor Technology, in: Structural Mechanical in Reactor Technology, Transaction of the 5th International Conference on Structural Mechanics in Reactor Technology. Berlin. Cerca con Google

Chang, J., Xu, J., Mutoh, Y., 2006. A general mixed-mode brittle fracture criterion for cracked materials. Eng. Fract. Mech. 73, 1249–1263. Cerca con Google

Chen, D.H., Ozaki, S., 2008. Investigation of failure criteria for a sharp notch. Int. J. Fract. 152, 63–74. Cerca con Google

Chen, Y.Z., 2000. Closed form solutions of T-stress in plane elasticity crack problems. Int. J. Solids Struct. 37, 1629–1637. Cerca con Google

Chen, Y.Z., Lin, X.Y., Wang, Z.X., 2010. A rigorous derivation for T-stress in line crack problem. Eng. Fract. Mech. 77, 753–757. Cerca con Google

Cho, S., Nakamura, Y., Mohanty, B., Kaneko, K., 2006. Study on control of crack-propagation in blasting, in: Fragblast 8. Santiago (Chile), pp. 124–128. Cerca con Google

Choi, S., Sankar, B. V., 2007. Fracture toughness of transverse cracks in graphite/epoxy laminates at cryogenic conditions. Compos. Part B Eng. 38, 193–200. Cerca con Google

Christopher, C.J., James, M.N., Patterson, E.A., Tee, K.F., 2008. A quantitative evaluation of fatigue crack shielding forces using photoelasticity. Eng. Fract. Mech. 75, 4190–4199. Cerca con Google

Christopher, C.J., James, M.N., Patterson, E.A., Tee, K.F., 2007. Towards a new model of crack tip stress fields. Int. J. Fract. 148, 361–371. Cerca con Google

Chu, C.-C., 1995. Fatigue Damage Calculation Using the Critical Plane Approach. J. Eng. Mater. Technol. 117, 41. Cerca con Google

Chu, C.-C., 1995. Incremental Multiaxial Neuber Correction for Fatigue Analysis. SAE Tech. Pap. Cerca con Google

Cooke, M.L., Pollard, D.D., 1996. Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J. Geophys. Res. 101, 3387. Cerca con Google

Corigliano, A., Ghisi, A., Langfelder, G., Longoni, A., Zaraga, F., Merassi, A., 2011. A microsystem for the fracture characterization of polysilicon at the micro-scale. Eur. J. Mech. - A/Solids 30, 127–136. Cerca con Google

Cornetti, P., Pugno, N., Carpinteri, A., Taylor, D., 2006. Finite fracture mechanics: A coupled stress and energy failure criterion. Eng. Fract. Mech. 73, 2021–2033. Cerca con Google

Cristofori, A., Benasciutti, D., Tovo, R., 2011. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading. Int. J. Fatigue 33, 887–899. Cerca con Google

Crupi, G., Crupi, V., Guglielmino, E., Taylor, D., 2005. Fatigue assessment of welded joints using critical distance and other methods. Eng. Fail. Anal. 12, 129–142. Cerca con Google

Davis, B.R., Wawrzynek, P.A., Ingraffea, A.R., 2014. 3-D simulation of arbitrary crack growth using an energy-based formulation – Part I: Planar growth. Eng. Fract. Mech. 115, 204–220. Cerca con Google

Dhondt, G., 1998. On corner point singularities along a quarter circular crack subject to shear loading. Int. J. Fract. 89, L13–L18. Cerca con Google

Doring, R., Hoffmeyer, J., Seeger, T., Vormwald, M., 2006. Short fatigue crack growth under nonproportional multiaxial elastic–plastic strains. Int. J. Fatigue 28, 972–982. Cerca con Google

Drucker, D.C., 1960. Plasticity in structural mechanics, in: Hoff, G. and (Ed.), Proceeding of the First Symposium on Naval Structural Mechanics. Pergamon, Macmillan, New York, pp. 331–350. Cerca con Google

Dunn, M.L., Suwito, W., Cunningham, S., 1997a. Fracture initiation at sharp notches: Correlation using critical stress intensities. Int. J. Solids Struct. 34, 3873–3883. Cerca con Google

Dunn, M.L., Suwito, W., Cunningham, S., 1997b. Stress intensities at notch singularities. Eng. Fract. Mech. 57, 417–430. Cerca con Google

Dunn, M.L., Suwito, W., Cunningham, S., May, C.W., 1997c. Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int. J. Fract. 84, 367–381. Cerca con Google

El Haddad, M.H., Topper, T.H., Smith, K.N., 1979. Prediction of non propagating cracks. Eng. Fract. Mech. 11, 573–584. Cerca con Google

Elices, M., Guinea, G.V., Gómez, J., Planas, J., Elices, M., G, J., 2002. The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69, 137–163. Cerca con Google

Ellyin, F., 1997. Fatigue damage, crack growth and life prediction. Cerca con Google

Ellyin, F., 1989. Cyclic strain energy density as a criterion for multiaxial fatigue failure, Biaxial an. ed. EGF Publication, London. Cerca con Google

Ellyin, F., 1974. A criterion for fatigue under multiaxial states of stress. Mech. Res. Commun. 1, 219–224. Cerca con Google

Ellyin, F., Kujawski, D., 1989. Generalization of notch analysis and its extension to cyclic loading. Eng. Fract. Mech. 32, 819–826. Cerca con Google

Ellyin, F., Kujawski, D., 1984. Plastic Strain Energy in Fatigue Failure. J. Press. Vessel Technol. 106, 342. Cerca con Google

Erdogan, F., Sih, G.C., 1963. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J. Basic Eng. 85, 519. Cerca con Google

Etter, T., Kuebler, J., Frey, T., Schulz, P., Löffler, J.F., Uggowitzer, P.J., 2004. Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process. Mater. Sci. Eng. A 386, 61–67. Cerca con Google

Eurocode 3: design of steel structures – part 1–9: fatigue, n.d. . European Committee for Standardization. Cerca con Google

Ewing, J.A., Humfrey, J.C.W., 1903. The Fracture of Metals under Repeated Alternations of Stress. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 200, 241–250. Cerca con Google

Ewing, P.D., Swedlow, J.L., Williams, J.G., n.d. Further results on the angled crack problem. Int. J. Fract. 12, 85–93. Cerca con Google

Fatemi, A., Kurath, P., 1988. Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses. J. Eng. Mater. Technol. 110, 380. Cerca con Google

Fatemi, A., Shamsaei, N., 2011. Multiaxial fatigue: An overview and some approximation models for life estimation. Int. J. Fatigue 33, 948–958. Cerca con Google

Fatemi, A., Socie, D.F., 1988. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11, 149–165. Cerca con Google

Feltner, C.E., Morrow, J.D., 1961. Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture. J. Basic Eng. 83, 15. Cerca con Google

Ferro, P., 2014. The local strain energy density approach applied to pre-stressed components subjected to cyclic load. Fatigue Fract. Eng. Mater. Struct. 37, 1268–1280. Cerca con Google

Fett, T., 1996. Failure of brittle materials near stress singularities. Eng. Fract. Mech. 53, 511–518. Cerca con Google

Fett, T., Munz, D., 2003. T-stress and crack path stability of DCDC specimens. Int. J. Fract. 124, L165–L170. Cerca con Google

Fett, T., Rizzi, G., 2005. Weight Functions for Stress Intensity Factors and T-Stress for Oblique Cracks in A Half-Space. Int. J. Fract. 132, L9–L16. Cerca con Google

Fett, T., Rizzi, G., Bahr, H.-A., 2006. Green’s functions for the T-stress of small kink and fork cracks. Eng. Fract. Mech. 73, 1426–1435. Cerca con Google

Filippi, S., Lazzarin, P., Tovo, R., 2002. Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int. J. Solids Struct. 39, 4543–4565. Cerca con Google

Firat, M., 2012. Cyclic plasticity modeling and finite element analyzes of a circumferentially notched round bar under combined axial and torsion loadings. Mater. Des. 34, 842–852. Cerca con Google

Firat, M., 2011. A notch strain calculation of a notched specimen under axial-torsion loadings. Mater. Des. 32, 3876–3882. Cerca con Google

Forsyth, P., 1961. A two stage process of fatigue crack growth, in: Crack Propagation Symposium - Cranfield: The College of Aeronautics. pp. 76–94. Cerca con Google

Gallo, P., Berto, F., Lazzarin, P., 2015. High temperature fatigue tests of notched specimens made of titanium Grade 2. Theor. Appl. Fract. Mech. 76, 27–34. Cerca con Google

Gao, Z., Qiu, B., Wang, X., Jiang, Y., 2010. An investigation of fatigue of a notched member. Int. J. Fatigue 32, 1960–1969. Cerca con Google

García, I.G., Leguillon, D., 2012. Mixed-mode crack initiation at a v-notch in presence of an adhesive joint. Int. J. Solids Struct. 49, 2138–2149. Cerca con Google

Givoli, D., Rivkin, L., 1993. The DtN finite element method for elastic domains with cracks and re-entrant corners. Comput. Struct. 49, 633–642. Cerca con Google

Gladskyi, M., Fatemi, A., 2014. Load sequence effects on fatigue crack growth in notched tubular specimens subjected to axial and torsion loadings. Theor. Appl. Fract. Mech. 69, 63–70. Cerca con Google

Gladskyi, M., Fatemi, A., 2013. Notched fatigue behavior including load sequence effects under axial and torsional loadings. Int. J. Fatigue 55, 43–53. Cerca con Google

Glinka, G., 1985. Energy density approach to calculation of inelastic strain-stress near notches and cracks. Eng. Fract. Mech. 22, 485–508. Cerca con Google

Glinka, G., Wang, G., Plumtree, A., 2007. Mean stress effects in multiaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 18, 755–764. Cerca con Google

Glushkov, E., Glushkova, N., Lapina, O., 1999. 3-D elastic stress singularity at polyhedral corner points. Int. J. Solids Struct. 36, 1105–1128. Cerca con Google

Golden, P.J., Nicholas, T., 2005. The effect of angle on dovetail fretting experiments in Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 28, 1169–1175. Cerca con Google

Gómez, F.J., Elices, M., 2003a. A fracture criterion for sharp V-notched samples. Int. J. Fract. 123, 163–175. Cerca con Google

Gómez, F.J., Elices, M., 2003b. Fracture of components with V-shaped notches. Eng. Fract. Mech. 70, 1913–1927. Cerca con Google

Gómez, F.J., Elices, M., Berto, F., Lazzarin, P., 2007. Local strain energy to assess the static failure of U-notches in plates under mixed mode loading. Int. J. Fract. 145, 29–45. Cerca con Google

Gomez, F.J., Elices, M., Valiente, A., 2000. Cracking in PMMA containing U-shaped notches. Fatigue Fract. Eng. Mater. Struct. 23, 795–803. Cerca con Google

Gómez, F.J.J., Elices, M., 2004. A fracture criterion for blunted V-notched samples. Int. J. Fract. 127, 239–264. Cerca con Google

Gough, H.J., Pollard, H. V, 1936. Properties of some materials for cast crankshafts, with special reference to combined stresses. Arch. Proc. Inst. Automob. Eng. 1906-1947 (vols 1-41) 31, 821–893. Cerca con Google

Grabner, K., Grimmer, K.J., Kessler, F., 1993. Research into normal-forces between belt and idlers at critical locations on the belt conveyor track. Bulk solids Handl. 13, 727–734. Cerca con Google

Gradin, A., 1982. A Fracture Criterion for Edge-Bonded Bimaterial Bodies. J. Compos. Mater. 16, 448–456. Cerca con Google

Greenstreet, W.L., 1968. Mechanical Properties of Artificial Graphites – A Survey Report. Oak Ridge, TN. Cerca con Google

Griffith, A.A., 1921. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London A 221, 163–198. Cerca con Google

Gross, B., Mendelson, A., 1972. Plane elastostatic analysis of V-notched plates. Int. J. Fract. Mech. 8, 267–276. Cerca con Google

Haibach, E., 2002. Service Fatigue-Strength – Methods and data for structural analysis. Springer Verlag, Berlin. Cerca con Google

Harding, S., Kotousov, A., Lazzarin, P., Berto, F., 2010. Transverse singular effects in V-shaped notches stressed in mode II. Int. J. Fract. 164, 1–14. Cerca con Google

Hardrath, F., Ohman, L., 1953. A study of elastic and plastic stress concentration factors due to notches and fillets in flat plates. NASA TC 1117. Cerca con Google

Haritos, G., Nicholas, T., Lanning, D.B., 1999. Notch size effects in HCF behavior of Ti–6Al–4V. Int. J. Fatigue 21, 643–652. Cerca con Google

Hasebe, N., Kutanda, Y., 1978. Calculation of stress intensity factor from stress concentration factor. Eng. Fract. Mech. 10, 215–221. Cerca con Google

He, Z., Kotousov, A., Berto, F., 2015. Effect of vertex singularities on stress intensities near plate free surfaces. Fatigue Fract. Eng. Mater. Struct. doi:10.1111/ffe.12294 Cerca con Google

Hellen, T.K., 2001. How to undertake fracture mechanics analysis with finite elements. NAFEMS, Hamilton, Scotland. Cerca con Google

Henshell, R.D., Shaw, K.G., 1975. Crack tip finite elements are unnecessary. Int. J. Numer. Methods Eng. 9, 495–507. Cerca con Google

Hentschel, K., Berger, P., Rossler, K., Schmidt, M., 1990. Weld geometry as a factor controlling the fatigue strength of butt welded joints. Weld. Int. 4, 494. Cerca con Google

Hertel, O., Vormwald, M., 2011. Short-crack-growth-based fatigue assessment of notched components under multiaxial variable amplitude loading. Eng. Fract. Mech. 78, 1614–1627. Cerca con Google

Heyliger, P.R., Kriz, R.D., 1989. Stress intensity factors by enriched mixed finite elements. Int. J. Numer. Methods Eng. 28, 1461–1473. Cerca con Google

Hobbacher, A., 2008. Recommendations for Fatigue design of welded joints and components. Cerca con Google

Hoffmann, M., Seeger, T., 1985. A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains, Part 1: Theory. J. Eng. Mater. Technol. 107, 250. Cerca con Google

Hoshide, T., Kakiuchi, E., Hirota, T., 1997. Microstructural effect on low cycle fatigue behaviour in Ti-alloys under biaxial loading. Fatigue Fract. Eng. Mater. Struct. 20, 941–950. Cerca con Google

Ince, A., Glinka, G., 2013. A numerical method for elasto-plastic notch-root stress-strain analysis. J. Strain Anal. Eng. Des. 48, 229–244. Cerca con Google

Irwin, G.R., 1962. Crack-Extension Force for a Part-Through Crack in a Plate. J. Appl. Mech. 29, 651. Cerca con Google

Irwin, G.R., 1957. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364. Cerca con Google

James, M.N., Christopher, C.J., Lu, Y., Patterson, E.A., 2013. Local crack plasticity and its influences on the global elastic stress field. Int. J. Fatigue 46, 4–15. Cerca con Google

Jasper, T.M., 1923. The value of the energy relation in the testing of ferrous metals at varying ranges of stress and at intermediate and high temperatures. Philos. Mag. Ser. 6 46, 609–627. Cerca con Google

Jiang, Y., 2000. A fatigue criterion for general multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 23, 19–32. Cerca con Google

Jiang, Y., 1994. Cyclic plasticity with an emphasys on ratchetting. University of Illinois at Urbana Champagne. Cerca con Google

Jiang, Y., Feng, M., 2004. Modeling of Fatigue Crack Propagation. J. Eng. Mater. Technol. 126, 77. Cerca con Google

Jiang, Y., Kurath, P., 1997. Nonproportional cyclic deformation: critical experiments and analytical modeling. Int. J. Plast. 13, 743–763. Cerca con Google

Jiang, Y., Kurath, P., 1996. Characteristics of the Armstrong-Frederick type plasticity models. Int. J. Plast. 12, 387–415. Cerca con Google

Jiang, Y., Sehitoglu, H., 1996a. Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations. J. Appl. Mech. 63, 720. Cerca con Google

Jiang, Y., Sehitoglu, H., 1996b. Modeling of Cyclic Ratchetting Plasticity, Part II: Comparison of Model Simulations With Experiments. J. Appl. Mech. 63, 726. Cerca con Google

Jiang, Y., Xu, B., 2001. Deformation analysis of notched components and assessment of approximate methods. Fatigue Fract. Eng. Mater. Struct. 24, 729–740. Cerca con Google

Jurf, R.A., Pipes, R.B., 1982. Interlaminar fracture of composite materials. J. Compos. Mater. 16, 386–394. Cerca con Google

Kallmeyer, A.R., Krgo, A., Kurath, P., 2002. Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V. J. Eng. Mater. Technol. 124, 229. Cerca con Google

Kamat, S.., Srinivas, M., Rama Rao, P., 1998. Mixed mode I/III fracture toughness of Armco iron. Acta Mater. 46, 4985–4992. Cerca con Google

Karihaloo, B.L., Xiao, Q.Z., n.d. Hybrid stress elements for accurate solution of elasticity problems with traction-free segments 109–125. Cerca con Google

Kawakami, H., 1985. Notch sensitivity of graphite materials for VHTR. J. At. Energy Soc. Japan / At. Energy Soc. Japan 27, 357–364. Cerca con Google

Kihara, S., Yoshii, A., 1991. A strength evaluation method of a sharply notched structure by a new parameter, “the equivalent stress intensity factor”. JSME Int. J. 34, 70–75. Cerca con Google

Kim, J.H., Lee, Y.S., Kim, D.H., Park, N.S., Suh, J., Kim, J.O., Il Moon, S., 2004. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method. Mater. Sci. Eng. A 387-389, 385–389. Cerca con Google

Knesl, Z., 1991. A criterion of V-notch stability. Int. J. Fract. 48, R79–R83. Cerca con Google

Knibbs, R.H., 1967. Fracture in polycrystalline graphite. J. Nucl. Mater. 24, 174–187. Cerca con Google

Kotousov, A., Berto, F., Lazzarin, P., Pegorin, F., 2012. Three dimensional finite element mixed fracture mode under anti-plane loading of a crack. Theor. Appl. Fract. Mech. 62, 26–33. Cerca con Google

Kotousov, A., Lazzarin, P., Berto, F., Harding, S., 2010. Effect of the thickness on elastic deformation and quasi-brittle fracture of plate components. Eng. Fract. Mech. 77, 1665–1681. Cerca con Google

Kotousov, A., Lazzarin, P., Berto, F., Pook, L.P., 2013. Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Eng. Fract. Mech. 108, 65–74. Cerca con Google

Lagoda, T., Macha, E., Bedkowski, W., 1999. A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime. Int. J. Fatigue 21, 431–443. Cerca con Google

Lan, W., Deng, X., Sutton, M.A., Cheng, C.-S., 2006. Study of slant fracture in ductile materials. Int. J. Fract. 141, 469–496. Cerca con Google

Lanning, D., Haritos, G.K., Nicholas, T., 1999. Influence of stress state on high cycle fatigue of notched Ti-6Al-4V specimens. Int. J. Fatigue 21, 87–95. Cerca con Google

Lanning, D., Haritos, G.K., Nicholas, T., Maxwell, D.C., 2001. Low-cycle fatigue/high-cycle fatigue interactions in notched Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 24, 565–577. Cerca con Google

Larsson, S.G., Carlsson, A.J., 1973. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solids 21, 263–277. Cerca con Google

Lassen, T., 1990. The effect of the welding process on the fatigue crack growth. Weld. Res. Suppl. 69, 75S–81S. Cerca con Google

Latella, B.A., Liu, T., 2006. The initiation and propagation of thermal shock cracks in graphite. Carbon N. Y. 44, 3043–3048. Cerca con Google

Lazzarin, P., Berto, F., 2008. Control volumes and strain energy density under small and large scale yielding due to tension and torsion loading. Fatigue Fract. Eng. Mater. Struct. 31, 95–107. Cerca con Google

Lazzarin, P., Berto, F., 2005. From Neuber’s Elementary Volume to Kitagawa and Atzori’s Diagrams: An Interpretation Based on Local Energy. Int. J. Fract. 135, L33–L38. Cerca con Google

Lazzarin, P., Berto, F., 2005. Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. Int. J. Fract. 135, 161–185. Cerca con Google

Lazzarin, P., Berto, F., Atzori, B., 2013a. A synthesis of data from steel spot welded joints of reduced thickness by means of local SED. Theor. Appl. Fract. Mech. 63-64, 32–39. Cerca con Google

Lazzarin, P., Berto, F., Ayatollahi, M.R., 2013b. Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading. Fatigue Fract. Eng. Mater. Struct. 36, 942–955. Cerca con Google

Lazzarin, P., Berto, F., Elices, M., Gòmez, J., 2009a. Brittle failures from U- and V-notches in mode I and mixed, I + II, mode: a synthesis based on the strain energy density averaged on finite-size volumes. Fatigue Fract. Eng. Mater. Struct. 32, 671–684. Cerca con Google

Lazzarin, P., Berto, F., Gomez, F., Zappalorto, M., 2008. Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints. Int. J. Fatigue 30, 1345–1357. Cerca con Google

Lazzarin, P., Berto, F., Radaj, D., 2009b. Fatigue-relevant stress field parameters of welded lap joints: pointed slit tip compared with keyhole notch. Fatigue Fract. Eng. Mater. Struct. 32, 713–735. Cerca con Google

Lazzarin, P., Berto, F., Radaj, D., 2006. Uniform fatigue strength of butt and fillet welded joints in terms of the local strain energy density, in: Proceeding of the 9th International Fatigue Congress. Atlanta, USA. Cerca con Google

Lazzarin, P., Berto, F., Zappalorto, M., 2010. Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications. Int. J. Fatigue 32, 1559–1567. Cerca con Google

Lazzarin, P., Campagnolo, A., Berto, F., 2014. A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theor. Appl. Fract. Mech. 71, 21–30. Cerca con Google

Lazzarin, P., Filippi, S., 2006. A generalized stress intensity factor to be applied to rounded V-shaped notches. Int. J. Solids Struct. 43, 2461–2478. Cerca con Google

Lazzarin, P., Lassen, T., Livieri, P., 2003. A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry. Fatigue Fract. Eng. Mater. Struct. 26, 49–58. Cerca con Google

Lazzarin, P., Livieri, P., Berto, F., Zappalorto, M., 2008. Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Eng. Fract. Mech. 75, 1875–1889. Cerca con Google

Lazzarin, P., Sonsino, C.M., Zambardi, R., 2004. A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract. Eng. Mater. Struct. 27, 127–140. Cerca con Google

Lazzarin, P., Tovo, R., 1998. A notch intensity factor approach to the stress analysis of welds. Fatigue Fract. Eng. Mater. Struct. 21, 1089–1103. Cerca con Google

Lazzarin, P., Tovo, R., 1996. A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches. Int. J. Fract. 78, 3–19. Cerca con Google

Lazzarin, P., Tovo, R., Filippi, S., 1998. Elastic stress distributions in finite size plates with edge notches. Int. J. Fract. 91, 269–282. Cerca con Google

Lazzarin, P., Tovo, R., Meneghetti, G., 1997. Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity. Int. J. Fatigue 19, 647–657. Cerca con Google

Lazzarin, P., Zambardi, R., 2002. The Equivalent Strain Energy Density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity. Fatigue Fract. Eng. Mater. Struct. 25, 917–928. Cerca con Google

Lazzarin, P., Zambardi, R., 2001. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112, 275–298. Cerca con Google

Lazzarin, P., Zappalorto, M., 2012. A three-dimensional stress field solution for pointed and sharply radiused V-notches in plates of finite thickness. Fatigue Fract. Eng. Mater. Struct. 35, 1105–1119. Cerca con Google

Le Biavant, K., Pommier, S., Prioul, C., 2002. Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy. Fatigue Fract. Eng. Mater. Struct. 25, 527–545. Cerca con Google

Leguillon, D., 2002. Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. - A/Solids 21, 61–72. Cerca con Google

Leguillon, D., 2001. A criterion for crack nucleation at a notch in homogeneous materials. Comptes Rendus l’Académie des Sci. - Ser. IIB - Mech. Cerca con Google

Leguillon, D., Murer, S., 2012. Fatigue crack nucleation at a stress concentration point, in: 4th International Conference on Crack Paths (CP2012), Gaeta, Italy, September 19-21. Cerca con Google

Leguillon, D., Yosibash, Z., 2003. Crack onset at a v-notch. Influence of the notch tip radius. Int. J. Fract. 122, 1–21. Cerca con Google

Leicester, R.H., 1973. Effect of size on the strength of structures. Cerca con Google

Lemaitre, J., Chaboche, J.-L., 1994. Mechanics of solid materials. New ed. Cambridge University Press. Cerca con Google

Li, M., Tsujimura, M., Sakai, M., 1999. Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture. Carbon N. Y. 37, 1633–1639. Cerca con Google

Li, Z., Guo, W., n.d. Three-dimensional elastic stress fields ahead of blunt V-notches in finite thickness plates. Int. J. Fract. 107, 53–71. Cerca con Google

Li, Z., Guo, W., Kuang, Z., 2000. Three-dimensional elastic stress fields near notches in finite thickness plates. Int. J. Solids Struct. 37, 7617–7632. Cerca con Google

Lin, B., Mear, M.E., Ravi-Chandar, K., 2010. Criterion for initiation of cracks under mixed-mode I + III loading. Int. J. Fract. 165, 175–188. Cerca con Google

Lin, K.Y., Tong, P., 1980. Singular finite elements for the fracture analysis of V-notched plate. Int. J. Numer. Methods Eng. 15, 1343–1354. Cerca con Google

Liu, K., 1993. A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction, in: Advances in Multiaxial Fatigue, ASTM STP 1191. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, pp. 67–84. Cerca con Google

Livieri, P., 2008. Use of J-integral to predict static failures in sharp V-notches and rounded U-notches. Eng. Fract. Mech. 75, 1779–1793. Cerca con Google

Livieri, P., 2003. A new path independent integral applied to notched components under mode I loadings. Int. J. Fract. 123, 107–125. Cerca con Google

Livieri, P., Lazzarin, P., 2005. Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int. J. Fract. 133, 247–276. Cerca con Google

Lomakin, E. V., Zobnin, A.I., Berezin, A. V., 1975. Finding the fracture toughness characteristics of graphite materials in plane strain. Strength Mater. 7, 484–487. Cerca con Google

Losty, H.H.W., Orchard, J.S., 1962. The Strength of Graphite, in: In Fifth Conference on Carbon. Pennsylvania State University, Macmillan. Cerca con Google

Macha, E., Sonsino, C.M., 1999. Energy criteria of multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 22, 1053–1070. Cerca con Google

Mandelbrot, B.M., 1983. The fractal geometry of nature. W H Freeman and Company, New York, USA. Cerca con Google

Manoharan, M., Hirth, J.P., Rosenfield, A.R., 1991. Combined mode I-mode III fracture toughness of a spherodized 1090 steel. Acta Metall. Mater. 39, 1203–1210. Cerca con Google

Marangon, C., Campagnolo, A., Berto, F., 2015. Three-dimensional effects at the tip of rounded notches subjected to mode-I loading under cyclic plasticity. J. Strain Anal. Eng. Des. 50, 299–313. Cerca con Google

Marangon, C., Lazzarin, P., Berto, F., Campagnolo, A., 2014. Some analytical remarks on the influence of phase angle on stress fields ahead of sharp V-notches under tension and torsion loads. Theor. Appl. Fract. Mech. 74, 64–72. Cerca con Google

Marmi, A.K., Habraken, A.M., Duchene, L., 2009. Multiaxial fatigue damage modelling at macro scale of Ti–6Al–4V alloy. Int. J. Fatigue 31, 2031–2040. Cerca con Google

Marsavina, L., Constantinescu, D.M., Linul, E., Apostol, D.A., Voiconi, T., Sadowski, T., 2014. Refinements on fracture toughness of PUR foams. Eng. Fract. Mech. 129, 54–66. Cerca con Google

Marsavina, L., Sadowski, T., Knec, M., 2013. Crack propagation paths in four point bend Aluminium–PMMA specimens. Eng. Fract. Mech. 108, 139–151. Cerca con Google

Matvienko, Y.U.G., Morozov, E.M., 2004. Calculation of the energy J -integral for bodies with notches and. Int. J. Fract. 125, 249–261. Cerca con Google

McClintock, F.A., Irwin, G.R., n.d. Plasticity aspects of fracture mechanics, in: Fracture Toughness Testing and Its Applications. ASTM STP 381. American Society for Testing and Materials, Philadelphia, USA, pp. 84–113. Cerca con Google

Melin, S., 1994. Accurate Data for Stress Intensity Factors at Infinitesimal Kinks. J. Appl. Mech. 61, 467. Cerca con Google

Meneghetti, G., 2013. The peak stress method for fatigue strength assessment of tube-to-flange welded joints under torsion loading. Weld. World 57, 265–275. Cerca con Google

Meneghetti, G., 2012. The use of peak stresses for fatigue strength assessments of welded lap joints and cover plates with toe and root failures. Eng. Fract. Mech. 89, 40–51. Cerca con Google

Meneghetti, G., 2008. The peak stress method applied to fatigue assessments of steel and aluminium fillet-welded joints subjected to mode I loading. Fatigue Fract. Eng. Mater. Struct. 31, 346–369. Cerca con Google

Meneghetti, G., Atzori, B., Campagnolo, A., Berto, F., 2015a. A link between the peak stresses and the averaged strain energy density for cracks under mixed-mode (I+II) loading. Fract. Struct. Integr. doi:10.3221/IGF-ESIS.34.11 Cerca con Google

Meneghetti, G., Atzori, B., Manara, G., 2010. The Peak Stress Method applied to fatigue assessments of steel tubular welded joints subject to mode-I loading. Eng. Fract. Mech. 77, 2100–2114. Cerca con Google

Meneghetti, G., Campagnolo, A., Berto, F., 2015b. Fatigue strength assessment of partial and full-penetration steel and aluminium butt-welded joints according to the peak stress method. Fatigue Fract. Eng. Mater. Struct. 38, 1419–1431. Cerca con Google

Meneghetti, G., Campagnolo, A., Berto, F., Atzori, B., 2015c. Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) loading. Theor. Appl. Fract. Mech. 79, 113–124. Cerca con Google

Meneghetti, G., Guzzella, C., 2014. The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models. Eng. Fract. Mech. 115, 154–171. Cerca con Google

Meneghetti, G., Guzzella, C., Atzori, B., 2014. The peak stress method combined with 3D finite element models for fatigue assessment of toe and root cracking in steel welded joints subjected to axial or bending loading. Fatigue Fract. Eng. Mater. Struct. 37, 722–739. Cerca con Google

Meneghetti, G., Lazzarin, P., 2011. The Peak Stress Method for Fatigue Strength Assessment of welded joints with weld toe or weld root failures. Weld. World 55, 22–29. Cerca con Google

Meneghetti, G., Lazzarin, P., 2007. Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract. Eng. Mater. Struct. 30, 95–106. Cerca con Google

Meneghetti, G., Ricotta, M., 2012. The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Eng. Fract. Mech. 81, 2–16. Cerca con Google

Mirsayar, M.M., 2014. On fracture of kinked interface cracks – The role of T-stress. Mater. Des. 61, 117–123. Cerca con Google

Moes, N., Dolbow, J., Belytschko, T., 1999. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150. Cerca con Google

Moftakhar, A., Buczynski, A., Glinka, G., 1995. Calculation of elasto-plastic strains and stresses in notches under multiaxial loading. Int. J. Fract. 70, 357–373. Cerca con Google

Molski, K., Glinka, G., 1981. A method of elastic-plastic stress and strain calculation at a notch root. Mater. Sci. Eng. 50, 93–100. Cerca con Google

Morrissey, R., McDowell, D.L., Nicholas, T., 1999. Frequency and stress ratio effects in high cycle fatigue of Ti-6Al-4V. Int. J. Fatigue 21, 679–685. Cerca con Google

Morrissey, R., Nicholas, T., 2005. Fatigue strength of Ti–6Al–4V at very long lives. Int. J. Fatigue 27, 1608–1612. Cerca con Google

Mostafavi, M., Marrow, T.J., 2011. In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading. Eng. Fract. Mech. 78, 1756–1770. Cerca con Google

Murer, S., Leguillon, D., 2010. Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model. Eur. J. Mech. - A/Solids 29, 109–118. Cerca con Google

Nakamura, H., Takanashi, M., Itoh, T., Wu, M., Shimizu, Y., 2011. Fatigue crack initiation and growth behavior of Ti–6Al–4V under non-proportional multiaxial loading. Int. J. Fatigue 33, 842–848. Cerca con Google

Nakamura, T., Parks, D.M., 1989. Antisymmetrical 3-D stress field near the crack front of a thin elastic plate. Int. J. Solids Struct. 25, 1411–1426. Cerca con Google

Nakamura, T., Parks, D.M., 1988. Three-Dimensional Stress Field Near the Crack Front of a Thin Elastic Plate. J. Appl. Mech. 55, 805. Cerca con Google

Neuber, H., 1985. Kerbspannungslehre, 3rd Edition. Springer-Verlag, Berlin. Cerca con Google

Neuber, H., 1968. Űber die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20, 245–251. Cerca con Google

Neuber, H., 1961. Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law. J. Appl. Mech. 28, 544. Cerca con Google

Neuber, H., 1958a. Kerbspannungslehre, 2nd Edition. Springer-Verlag, Berlin. Cerca con Google

Neuber, H., 1958b. Theory of Notch Stresses. Springer-Verlag, Berlin. Cerca con Google

Neuber, H., 1936. Zur Theorie der technischen Formzahl. Forsch Ing Wes 7, 271–274. Cerca con Google

Nicholas, T., 2002. Step loading for very high cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 25, 861–869. Cerca con Google

Nieslony, A., Sonsino, C.M., 2008. Comparison of some selected multiaxial fatigue assessment criteria. Cerca con Google

Nisitani, H., Teranishi, T., 2004. KI of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM. Eng. Fract. Mech. 71, 579–585. Cerca con Google

Nisitani, H., Teranishi, T., 2001. KI value of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM, in: Guagliano, M., Aliabadi, M.H. (Eds.), Proceedings of the 2nd International Conference on Fracture and Damage Mechanics. pp. 141–146. Cerca con Google

Novozhilov, V., 1969. On a necessary and sufficient criterion for brittle strength. J. Appl. Math. Mech. (Translation PMM) 33, 201–210. Cerca con Google

Nui, L.S., Chehimi, C., Pluvinage, G., 1994. Stress field near a large blunted tip V-notch and application of the concept of the critical notch stress intensity factor (NSIF) to the fracture toughness of very brittle materials. Eng. Fract. Mech. 49, 325–335. Cerca con Google

Ohkawa, C., Ohkawa, I., 2011. Notch effect on torsional fatigue of austenitic stainless steel: Comparison with low carbon steel. Eng. Fract. Mech. 78, 1577–1589. Cerca con Google

Ohno, N., Wang, J.D., 1991. Non linear kinematic hardening rule: proposition and application to ratchetting problems, in: Structural Mechanical in Reactor Technology, Transaction of the 11th International Conference on Structural Mechanics in Reactor Technology. Shibata. Cerca con Google

Omer, N., Yosibash, Z., 2005. On the Path Independency of the Point-wise J Integral in Three-dimensions. Int. J. Fract. 136, 1–36. Cerca con Google

Paris, P.G., Sih, G.C., 1965. Stress analysis of cracks, in: Fracture Toughness Testing and Its Applications. ASTM STP 381. American Society for Testing and Materials, Philadelphia, USA, pp. 30–81. Cerca con Google

Park, J., Nelson, D., 2000. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life. Int. J. Fatigue 22, 23–39. Cerca con Google

Petersen, D., Kumar, A., Hirth, J., Hoagland, R., Feng, X., 1994. A Suggested Test Procedure to Measure Mixed Mode I–III Fracture Toughness of Brittle Materials. J. Test. Eval. 22, 327. Cerca con Google

Petershagen, H., 1992. Fatigue tests with hyperbaric dry butt welded specimens. Cerca con Google

Peterson, R.E., 1959. Notch sensitivity. Metal fatigue, McGraw Hill, New York (USA). Cerca con Google

Pippan, R., Zelger, C., Gach, E., Bichler, C., Weinhandl, H., 2011. On the mechanism of fatigue crack propagation in ductile metallic materials. Fatigue Fract. Eng. Mater. Struct. 34, 1–16. Cerca con Google

Planas, J., Elices, M., Guinea, G.., Gómez, F.., Cendón, D.., Arbilla, I., 2003. Generalizations and specializations of cohesive crack models. Eng. Fract. Mech. 70, 1759–1776. Cerca con Google

Pluvinage, G., 1997. Rupture and fatigue initiated from notches. Application of the notch intensity factor. Rev. Fr. Mec. (in French) 53–61. Cerca con Google

Pook, 2000. Crack profiles and corner point singularities. Fatigue Fract. Eng. Mater. Struct. 23, 141–150. Cerca con Google

Pook, L., 2003. A finite element analysis of cracked square plates and bars under antiplane loading. Fatigue Fract. Eng. Mater. 533–541. Cerca con Google

Pook, L.P., 2015. The linear elastic analysis of cracked bodies and crack paths. Theor. Appl. Fract. Mech. Cerca con Google

Pook, L.P., 2013. A 50 year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mater. Struct. 36, 699–723. Cerca con Google

Pook, L.P., 2007. Metal fatigue: what it is, why it matters., Solid Mechanics and Its Applications. Springer Netherlands, Dordrecht. Cerca con Google

Pook, L.P., 2002. Crack paths. WIT Press, Southampton, UK. Cerca con Google

Pook, L.P., 2001. A finite element analysis of cracked square plates and bars under antiplane loading, in: de Freitas, M. (Ed.), Fatigue and Fracture of Engineering Materials and Structures. Instituto Superior Técnico, Lisbon, Portugal, pp. 701–708. Cerca con Google

Pook, L.P., 2000. Linear elastic fracture mechanics for engineers. Theory and applications. WIT Press, Southampton, UK. Cerca con Google

Pook, L.P., 1994. Some implications of corner point singularities. Eng. Fract. Mech. 48, 367–378. Cerca con Google

Pook, L.P., 1985. The fatigue crack direction and threshold behaviour of mild steel under mixed mode I and III loading. Int. J. Fatigue 7, 21–30. Cerca con Google

Pook, L.P., Berto, F., Campagnolo, A., Lazzarin, P., 2014. Coupled fracture mode of a cracked disc under anti-plane loading. Eng. Fract. Mech. 128, 22–36. Cerca con Google

Pook, L.P., Campagnolo, A., Berto, F., Lazzarin, P., 2015. Coupled fracture mode of a cracked plate under anti-plane loading. Eng. Fract. Mech. 134, 391–403. Cerca con Google

Pook, L.P., Sharples, J.K., 1979. The mode III fatigue crack growth threshold for mild steel. Int. J. Fract. 15, R223–R226. Cerca con Google

Portela, A., Aliabadi, M.H., Rooke, D.P., 1991. Efficient boundary element analysis of sharp notched plates. Int. J. Numer. Methods Eng. 32, 445–470. Cerca con Google

Prager, W., 1955. The theory of plasticity: a survey of recent achievements. Arch. Proc. Inst. Mech. Eng. 1847-1982 (vols 1-196) 169, 41–57. Cerca con Google

Priel, E., Yosibash, Z., Leguillon, D., 2008. Failure initiation at a blunt V-notch tip under mixed mode loading. Int. J. Fract. 149, 143–173. Cerca con Google

Pu, S.L., Hussain, M.A., Lorensen, W.E., 1978. The collapsed cubic isoparametric element as a ingular element for crack probblems. Int. J. Numer. Methods Eng. 12, 1727–1742. Cerca con Google

Qian, J., Hasebe, N., 1997. Property of eigenvalues and eigenfunctions for an interface V-notch in antiplane elasticity. Eng. Fract. Mech. 56, 729–734. Cerca con Google

Qiu, B., Gao, Z., Wang, X., 2009. Fatigue Life Prediction of Notched Components Based on Multiaxial Local Stress-Strain Approach, in: Volume 6: Materials and Fabrication, Parts A and B. ASME, pp. 183–189. Cerca con Google

Radaj, D., 2015. State-of-the-art review on the local strain energy density concept and its relation to the J -integral and peak stress method. Fatigue Fract. Eng. Mater. Struct. 38, 2–28. Cerca con Google

Radaj, D., 2014. State-of-the-art review on extended stress intensity factor concepts. Fatigue Fract. Eng. Mater. Struct. 37, 1–28. Cerca con Google

Radaj, D., 2010. T-stress corrected notch stress intensity factors with application to welded lap joints. Fatigue Fract. Eng. Mater. Struct. 33, 378–389. Cerca con Google

Radaj, D., 1990. Design and Analysis of Fatigue Resistant Welded Structures. Abington Publishing, Cambridge. Cerca con Google

Radaj, D., Berto, F., Lazzarin, P., 2009a. Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches. Eng. Fract. Mech. 76, 1109–1130. Cerca con Google

Radaj, D., Lazzarin, P., Berto, F., 2013. Generalised Neuber concept of fictitious notch rounding. Int. J. Fatigue 51, 105–115. Cerca con Google

Radaj, D., Lazzarin, P., Berto, F., 2009b. Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding. Int. J. Fatigue 31, 1490–1504. Cerca con Google

Radaj, D., Sonsino, C.M., Fricke, W., 2006. Fatigue Assessment of Welded Joints by Local Approaches, 2nd ed. Woodhead Publishing, Cambridge. Cerca con Google

Radaj, D., Vormwald, M., 2013. Advanced Methods of Fatigue Assessment. Springer Berlin Heidelberg, Berlin, Heidelberg. Cerca con Google

Ramesh, K., Gupta, S., Kelkar, A.A., 1997. Evaluation of stress field parameters in fracture mechanics by photoelasticity -revisited. Eng. Fract. Mech. Cerca con Google

Ramesh, K., Gupta, S., Srivastava, A.K., 1996. Equivalence of multi-parameter stress field equations in fracture mechanics. Int. J. Fract. 79. Cerca con Google

Razmjoo, G.R., 1996. Fatigue of load carrying fillet welded joints under multiaxial loading. Fatigue core research from TWI. Abington Publishing, Abington. Cerca con Google

Reis, L., Li, B., de Freitas, M., 2009. Crack initiation and growth path under multiaxial fatigue loading in structural steels. Int. J. Fatigue 31, 1660–1668. Cerca con Google

Rice, J.R., 1974. Limitations to the small scale yielding approximation for crack tip plasticity. J. Mech. Phys. Solids 22, 17–26. Cerca con Google

Richard, H.A., Benitz, K., 1983. A loading device for the creation of mixed mode in fracture mechanics. Int. J. Fract. 22, R55–R58. Cerca con Google

Richard, H.A., Fulland, M., Sander, M., 2005. Theoretical crack path prediction. Fatigue Fract. Eng. Mater. Struct. 28, 3–12. Cerca con Google

Ritchie, R.O., 1988. Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater. Sci. Eng. A 103, 15–28. Cerca con Google

Rulmeca Bulk Catalogue, 2015. Cerca con Google

URL http://www.rulmeca.it/en/products_bulk/catalogue/1/trasporto_a_nastro/1/rollers Vai! Cerca con Google

Saghafi, H., Ayatollahi, M.R., Sistaninia, M., 2010. A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials. Mater. Sci. Eng. A 527, 5624–5630. Cerca con Google

Sakai, M., Urashima, K., Inagaki, M., 1983. Energy Principle of Elastic-Plastic Fracture and Its Application to the Fracture Mechanics of a Polycrystalline Graphite. J. Am. Ceram. Soc. 66, 868–874. Cerca con Google

Salavati, H., Alizadeh, Y., Berto, F., 2014. Effect of notch depth and radius on the critical fracture load of bainitic functionally graded steels under mixed mode I + II loading. Phys. Mesomech. 17, 178–189. Cerca con Google

Sapora, A., Cornetti, P., Carpinteri, A., 2014. V-notched elements under mode II loading conditions. Struct. Eng. Mech. 49, 499–508. Cerca con Google

Sapora, A., Cornetti, P., Carpinteri, A., 2013. A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading. Eng. Fract. Mech. 97, 216–226. Cerca con Google

Sato, S., Awaji, H., Akuzawa, H., 1978. Fracture toughness of reactor graphite at high temperature. Carbon N. Y. 16, 95–102. Cerca con Google

Sato, S., Kawamata, K., Awaji, H., Osawa, M., Manaka, M., 1981. Thermal shock resistance and fracture toughness during the graphitization process. Carbon N. Y. 19, 111–118. Cerca con Google

Schleicher, F., 1926. Der Spannungszustand an der Fliessgrenze (Plastizitatsbedingung). Z. Angew. Math. Mech. 6, 199–216. Cerca con Google

Seeger, T., Olivier, R., 1992. Slope and knee-point of the S-N curve of shear loaded fillet welds. Stahlbau (in Ger. 61, 137–142. Cerca con Google

Seeger, T., Olivier, R., 1987. Tolerable and allowable shear stresses at fatigue loaded welded joints. Stahlbau (in Ger. 8, 231–238. Cerca con Google

Serpieri, R., Sacco, E., Alfano, G., 2015. A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies. Eur. J. Mech. - A/Solids 49, 13–25. Cerca con Google

Sethuraman, R., Viswanadha Gupta, S., 2004. Evaluation of notch root elasto-plastic stress–strain state for general loadings using an elastic solution. Int. J. Press. Vessel. Pip. 81, 313–325. Cerca con Google

Seweryn, A., 2002. Modeling of singular stress fields using finite element method. Int. J. Solids Struct. 39, 4787–4804. Cerca con Google

Seweryn, A., 1994. Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47, 673–681. Cerca con Google

Seweryn, A., Łukaszewicz, A., 2002. Verification of brittle fracture criteria for elements with V-shaped notches. Eng. Fract. Mech. 69, 1487–1510. Cerca con Google

Seweryn, A., Molski, K., 1996. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Eng. Fract. Mech. 55, 529–556. Cerca con Google

Seweryn, A., Mróz, Z., 1995. A non-local stress failure condition for structural elements under multiaxial loading. Eng. Fract. Mech. 51, 955–973. Cerca con Google

Seweryn, A., Poskrobko, Sł., Mróz, Z., 1997. Brittle Fracture in Plane Elements with Sharp Notches under Mixed-Mode Loading. J. Eng. Mech. 123, 535–543. Cerca con Google

Shamsaei, N., Fatemi, A., 2010. Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Mater. Sci. Eng. A 527, 3015–3024. Cerca con Google

Shang, D., 2001. Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading. Int. J. Fatigue 23, 903–910. Cerca con Google

Sheldon, I., 2008. Chaboche Nonlinear Kinematic Hardening Model. Memo Number STI0805A, ANSYS. URL http://ansys.net/tips_sheldon/STI0805_Chaboche.pdf Vai! Cerca con Google

Sheppard, S.D., 1991. Field Effects in Fatigue Crack Initiation: Long Life Fatigue Strength. J. Mech. Des. 113, 188. Cerca con Google

Sherry, A.H., France, C.C., Goldthorpe, M.R., 1995. Compendium of T-stress solutions for two and three dimensional cracked geometries. Fatigue Fract. Eng. Mater. Struct. 18, 141–155. Cerca con Google

Shetty, D.K., Rosenfield, A.R., Duckworth, W.H., 1987. Mixed-mode fracture in biaxial stress state: Application of the diametral-compression (Brazilian disk) test. Eng. Fract. Mech. 26, 825–840. Cerca con Google

Shi, L., Li, H., Zou, Z., Fok, A.S.L., Marsden, B.J., Hodgkins, A., Mummery, P.M., Marrow, J., 2008. Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens. J. Nucl. Mater. 372, 141–151. Cerca con Google

Sih, G.C., 1991. Mechanics of Fracture Initiation and Propagation. Springer Netherlands, Dordrecht. Cerca con Google

Sih, G.C., 1974. Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10, 305–321. Cerca con Google

Sih, G.C., Tang, X.S., 2005. Scaling of volume energy density function reflecting damage by singularities at macro-, meso- and microscopic level. Theor. Appl. Fract. Mech. 43, 211–231. Cerca con Google

Siljander, A., Kurath, P., Lawrence, F., 1992. Non proportional fatigue of welded structures, in: Mitchell, M., Landgraf, R. (Eds.), Advances in Fatigue Lifetime Predictive Techniques, ASTMSTP 1122. American Society for Testing and Materials, Philadelphia, USA, pp. 319–338. Cerca con Google

Singh, M.N.K., Glinka, G., Dubey, R.N., 1996. Elastic-plastic stress-strain calculation in notched bodies subjected to non-proportional loading. Int. J. Fract. 76, 39–60. Cerca con Google

Singh, P.J., Achar, D.R.G., Guha, B., Nordberg, H., 2003a. Fatigue life prediction of gas tungsten arc welded AISI 304L cruciform joints with different LOP sizes. Int. J. Fatigue 25, 1–7. Cerca con Google

Singh, P.J., Guha, B., Achar, D.R.., 2003b. Fatigue life improvement of AISI 304L cruciform welded joints by cryogenic treatment. Eng. Fail. Anal. 10, 1–12. Cerca con Google

Smith, D.J., Ayatollahi, M.R., Pavier, M.J., 2001. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract. Eng. Mater. Struct. 24, 137–150. Cerca con Google

Smith, R., Watson, P., Topper, T., 1970. A stress–strain function for the fatigue of metal. J Mater 5, 767–778. Cerca con Google

Smith, R.A., Miller, K.J., 1978. Prediction of fatigue regimes in notched components. Int. J. Mech. Sci. 20, 201–206. Cerca con Google

Socie, D., Marquis, G., 2000. Multiaxial fatigue. Society of Automotive Engineers, Warrendale (PA). Cerca con Google

Sonsino, C., 2009. Multiaxial fatigue assessment of welded joints – Recommendations for design codes. Int. J. Fatigue 31, 173–187. Cerca con Google

Sonsino, C., 1995. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. Int. J. Fatigue 17, 55–70. Cerca con Google

Sonsino, C.M., 1997. Fatigue strength of welded components under complex elasto-plastic, multiaxial deformations. Cerca con Google

Sonsino, C.M., Kueppers, M., 2001. Multiaxial fatigue of welded joints under constant and variable amplitude loadings. Fatigue Fract. Eng. Mater. Struct. 24, 309–327. Cerca con Google

Sonsino, C.M., Radaj, D., Brandt, U., Lehrke, H.P., 1999. Fatigue assessment of welded joints in AlMg 4.5Mn aluminum alloy (AA 5083) by local approaches. Int. J. Fatigue 21, 985–999. Cerca con Google

Stowell, E.Z., 1950. Stress and strain concentration at a circular hole in an infinite plate. NACA TN 2073. Cerca con Google

Susmel, L., 2013. On the estimation of the material fatigue properties required to perform the multiaxial fatigue assessment. Fatigue Fract. Eng. Mater. Struct. 36, 565–585. Cerca con Google

Susmel, L., 2010. Estimating fatigue lifetime of steel weldments locally damaged by variable amplitude multiaxial st Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record