Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dotolo, Raffaele (2016) Studio dell'espressione e della localizzazione di tre proteine, PTMA, PREP e DAAM1, per la prima volta associate alla spermatogenesi dei Vertebrati. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

During the years of activity as a PhD student in the group of Prof. Sergio Minucci (Dept. of Experimental Medicine, Second University of Naples) I studied the expression and localization of two proteins, prothymosin alpha (Part I) and discevelled-associated activator of morphogenesis (Part III) in male gametogenesis. Moreover, I spent six months in US at the School of Medicine of Yale University (NH, Connecticut). There I focused on the possible role for Prolyl endopeptidase on spermatogenesis in mouse (Part II).
Part I: PTMA expression and localization during the spermatogenesis of Danio rerio
Prothymosin alpha (PTMA) is a highly acidic (Frangou-Lazaridis et al., 1988), intrinsically disordered protein (Gast et al., 1995), which was first extracted from rat thymus and characterized as an immunogenic factor (Haritos et al., 1984a) but soon detected in a variety of mammalian tissues (Haritos et al., 1984b; Clinton et al., 1989). The presence of a nuclear localization signal and the adoption of a peculiar random coil conformation are amongst the reasons behind its interaction with a number of molecular partners; hence, today PTMA is known to be a very conserved and widely-expressed molecule, involved in several and diverse biological processes, like H1 histone interaction and chromatin remodeling (Karetsou et al., 1998; Ueda et al., 2012), cell death (Enkermann et al., 2000a; Jiang et al., 2003; Malicet et al., 2006; Ueda, 2009), transcriptional regulation (Karetsou et al., 2002; Martini et al., 2000; Martini and Katzenellenbogen, 2003) cancer development (Dominguez et al., 1993; Skopeliti et al., 2006; Tsitsiloni et al., 1993; Wu et al., 1997; Zhang et al., 2014) and, as already alluded to, immunity (Baxevanis et al., 1992; Pan et al., 1986; Voutsas et al., 2000).
Since 2002 our group has studied PTMA during the spermatogenesis of several vertebrate species (Aniello et al., 2002; Ferrara et al., 2009; Prisco et al., 2009; Ferrara et al., 2010; Ferrara et al., 2013): the expression of PTMA in meiotic and post-meiotic germ cells inside testicular tubules and its presence in spermatozoa (associated with the acrosome, where present) reveal a striking conservation of the pattern during phylogenesis and suggest a possible role for the protein in gametogenesis and in fertilization. Since many vertebrate models show an established association between PTMA and the acrosome (Ferrara et al., 2013), the study of the possible differences in an acrosome-less sperm model may prove very compelling. In the light of the above Danio rerio was chosen as a model for the continuation of the project (first part of thesis work), given its peculiar anastomosing tubular organization of the testis and, above all, the fact that the spermatozoa (SPZ) do not develop an acrosome system at all, being its fertilization a mechanical process (Hirai, 1988).
Ptma transcript localization in the testis of Danio rerio approximately matches the pattern that we and others had previously highlighted in other species (Aniello et al., 2002, Ferrara et al., 2009; Prisco et al., 2009; Ferrara et al., 2010; Ferrara et al., 2013), with a clear predilection for meiotic and post-meiotic germ cells.
The immunohistochemical data clearly show that the protein shares the same localization. Indeed, it is absent in spermatogonia, which suggests that it does not participate in the proliferation of staminal/mitotic phases, while its presence in primary spermatocytes (SPC) and in spermatids (SPT) supports its possible role during meiosis and/or during the subsequent stages of SPT differentiation into mature SPZ. Specifically, soon after its first appearance in the cytoplasm of leptotene/zygotene primary SPC, PTMA extends its localization to the membrane-free chromatin region of dividing cells and, then, it retains its nuclear distribution during SPT differentiation.
The nuclear localization in the acrosome-lacking spermatozoa suggests a role for PTMA in chromatin remodeling during gamete differentiation. These data further provide a compelling starting point for the study of PTMA functions during vertebrate fertilization.
Part II: PREP is associated with male reproductive function and male gametes in mice
Prolyl endopeptidase (PREP) is a member of the serine peptidase group, which is widely conserved through evolution (Venäläinen et al., 2004). PREP is involved in the maturation and degradation of peptide hormones and neuropeptides (Mentlein, 1988; Wilk, 1983), but its activity is restricted to oligopeptides comprising no more than about 30 amino acid residues.
Despite its common cytosolic localization, it is believed that PREP may act outside the cells by inactivating extracellular neuropeptides. In fact, it was suggested that PREP may be released from the cells (Ahmed et al., 2005), even though it lacks a secretion signal and it does not contain a transmembrane region, or a lipid anchor sequence (Venäläinen et al, 2004). PREP has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides (Mentlein, 1988), learning and memory (Cunningham and O’Connor, 1997; D’Agostino et al., 2013), cell proliferation and differentiation (Matsubara et al., 1998; Suzuki et al., 2014) and glucose metabolism (Kim et al., 2014). A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes (Kimura et al., 1998; Kimura et al., 2002). In order to improve the understanding of the possible role of PREP in male reproduction, in this second part of thesis work the effect of PREP knockdown (Prepgt/gt) on testis and sperm in adult mice was examined.
After confirming PREP expression in wild type (wt) testis and spermatozoa (SPZ), as opposed to Prepgt/g samples, we performed a comparison of macroscopic parameters on wt and knockdown testes: the data show that Prepgt/gt gonads are smaller and weigh less than the wild type. Likewise, histological analysis shows that, while the general morphology appears to be preserved, tubule and lumen diameters are reduced in Prepgt/gt mice, and that the percentage of spermiated tubules is also lower than wt.
Inside the gonad, the protein is localized in elongating spermatids and luminal SPZ of wt mice, as well as Sertoli cells, Leydig cells and peritubular cells. PREP is also expressed in epididymal SPZ, where it is detected in the head, as well as in the midpiece of the sperm flagellum, while the remaining tail region shows a weaker signal. Conversely, in knockdown testis and SPZ the signal is almost undetectable. These data suggest that the endopeptidase may be involved in mature sperm function; indeed, this is supported and enriched by final data on sperm parameters, which show that total count, normal morphology, and motility are altered and reduced in Prepgt/gt mice, compared to the wild type.
These results suggest that PREP may play a fundamental role in mouse spermatogenesis, and sperm motility. Further experiments are required to understand whether the role played by this protein in spermatogenesis affects gonadal tissue development and gamete function directly.
Part III: DAAM1 expression and localization during the spermatogenesis of rat and in human spermatozoa
DAAM1 is a protein belonging to the formins, a large group of molecules which control the nucleation and assembly of actin fibers in response to several signals (Kovar, 2006; Goode and Eck, 2007). Several studies have shown that DAAM1 participates in essential biological processes, such as cytoskeletal organization, movement and adhesion during morphogenesis and organogenesis, as well as cell polarity (Zallen, 2007; Sato et al., 2006; Matusek et al., 2006; Aspenstrom et al., 2006; Lu et al., 2007; Yamashita et al., 2007).
Cytoskeletal remodelling is a process that allows the cells to modulate their architecture and shape following intracellular and/or extracellular stimuli. As a formin, DAAM 1 has the ability to nucleate unbranched actin filaments and, thus, it acts as a regulator of the cytoskeleton in cell polarity and movement. Although its role during the development has been well studied, its potential activity in adult tissues is still unexplored. As of now, no reports have directly associated DAAM1 with reproductive processes, but it is known that factors which participate in the same molecular pathways are expressed during spermatogenesis: these include Dvl1, Dvl2 and 3 (Ma et al., 2006), as well as several GTPases and Rho-related proteins (Naud et al., 2003).
In 2011, our group isolated a cDNA coding for DAAM1 from the testis of Pelophylax esculentus. The first studies, carried out on this model, showed that the protein localizes inside the spermatocysts. In this third part of thesis work, the study was focused on another model, Rattus norvegicus, since its testicular anatomy and the events which occur during spermatogenesis are emblematic of those of Mammals (Russell et al., 1989). First, the presence of DAAM1 was confirmed in rat testis at several time points during post-natal development (7-14-21-28-35-42-60 days post-partum, dpp), which suitably recapitulate the key events of the first spermatogenetic wave. In order to better characterize DAAM1 profile and to confirm its possible involvement during spermatogenesis, the localization of the protein during the post-natal development of the male gonad was studied by immunofluorescence analysis. A remarkable variation in DAAM1 distribution was detected through the times point studied: at 7 dpp, the protein localizes in the central region of the tubules; at 14 dpp, the signal is evident in A and B spermatogonia in the same central region, up until 21-28 dpp, when the signal is detectable inside the spermatocytes. During spermiohistogenesis (35 dpp and 42 dpp), DAAM1 signal is detectable in spermatids, with a peculiar localization in the forming acrosomal region. Finally, at 60 dpp, the signal is also present in mature spermatozoa (SPZ), in the cytoplasmic droplet.
Given DAAM1 involvement in cytoskeletal remodeling, the localization profile of the formin was compared with the distribution of other cytoskeletal proteins: actin and tubulin. Actin signal is consistent with DAAM1 during the first phases of testis development, but it is also present in Sertoli cells which form the blood-testis barrier; later, at 35 dpp, the signal is evident in the now-complete barrier, as well as, during spermiohistogenesis, in the epithelial cells which rearrange their architecture to support the path of the evolving germ cells toward the lumen (42 dpp). Inside the adult testis, actin is expressed by all the cell types, including the SPZ. As for tubulin, it is also expressed in all stages, located inside the Sertoli cells which nurse the germ cells during their differentiation into SPZ. In order to deepen the knowledge on DAAM1 localization in male gametes, an immunofluorescence analysis was carried out on rat epididymal SPZ: there, the protein is mainly detectable inside the flagellum. Then, the analysis was extended to DAAM1 localization in human ejaculated SPZ, where the droplet is often physiologically retained (WHO 2010; Mortimer & Menkveld, 2001). Indeed, the signal in human gametes confirmed DAAM1 retention inside this cytoplasmic structure. Finally, a comparative analysis of the localization of cytoskeletal proteins was also performed on rat epididymal SPZ and in human ejaculated sperm: in both species actin is located in the head, in the acrosomal region, as well as in the flagellum, while tubulin is mainly distributed in the latter region.
These results show, for the first time, the expression and the localization of DAAM1 during rat spermatogenesis and in rat and human SPZ, and they provide a comparative profile of its distribution versus the main germinal-compartment architectural factors, suggesting its possible involvement as an actor in morpho-functional remodeling and organization of the gonad and of male gametes

Abstract (italiano)

Durante l’attività di ricerca svolta, come dottorando, nel gruppo del Prof. Sergio Minucci (Dipartimento di Medicina Sperimentale, Seconda Università di Napoli), ho contribuito allo studio dell’espressione e della localizzazione di due proteine, prothymosin alpha (Parte I) e discevelled-associated activator of morphogenesis (Parte III), nella gametogenesi maschile. Inoltre, durante il periodo di studi all’estero presso la School of Medicine della Yale University (NH, Connecticut), ho analizzato il possibile coinvolgimento dell’enzima Prolil-endopeptidasi nella spermatogenesi, utilizzando modelli murini geneticamente modificati (Parte II).
Parte I: Espressione e localizzazione di PTMA durante la spermatogenesi di Danio rerio
La protimosina alfa (PTMA) è una proteina altamente acida (Frangou-Lazaridis et al., 1988), appartenente alle proteine intrinsecamente non strutturate (Gast et al., 1995), isolata per la prima volta nel timo di ratto. Caratterizzata inizialmente come un fattore immunogeno (Haritos et al., 1984a), presto è stata ritrovata in diversi tessuti dei Mammiferi (Haritos et al., 1984b; Clinton et al., 1989). La presenza di un segnale nucleare, oltre alla peculiare conformazione random coil, permettono a tale proteina di interagire con numerosi partner molecolari. PTMA è una molecola altamente conservata nella filogenesi e coinvolta in diversi processi biologici, come nell’interazione con l’istone H1 e il rimodellamento cromatinico (Karetsou et al., 1998; Ueda et al., 2012), la morte cellulare (Enkermann et al., 2000a; Jiang et al., 2003; Malicet et al., 2006; Ueda, 2009), la regolazione della trascrizione (Karetsou et al., 2002; Martini et al., 2000; Martini and Katzenellenbogen, 2003), lo sviluppo del cancro (Dominguez et al., 1993; Skopeliti et al., 2006; Tsitsiloni et al., 1993; Wu et al., 1997; Zhang et al., 2014), e l’immunità (Baxevanis et al., 1992; Pan et al., 1986; Voutsas et al., 2000).
Dal 2002 il nostro gruppo ha iniziato uno studio di espressione e localizzazione di PTMA durante la spermatogenesi di diversi Vertebrati (Aniello et al., 2002; Ferrara et al., 2009; Prisco et al., 2009; Ferrara et al., 2010; Ferrara et al., 2013): l’espressione della proteina nelle cellule meiotiche e post-meiotiche dei testicoli e la sua presenza negli spermatozoi (associata con l’acrosoma, dove presente) rivelano un pattern molto conservato durante la filogenesi e suggeriscono un possibile ruolo per PTMA nella gametogenesi e nella fecondazione. Dato che alcuni Vertebrati mostrano un’associazione di PTMA e l’acrosoma (Ferrara et al., 2013), lo studio della proteina in modelli animali che presentano spermatozoi privi della suddetta struttura risulta particolarmente interessante. Per questo motivo è stato scelto il modello Danio rerio per continuare il progetto di ricerca (prima parte del lavoro di tesi), data la sua peculiare organizzazione dei testicoli in tubuli anastomizzati e principalmente per la caratteristica assenza dell’acrosoma nello spermatozoo (SPZ), il quale feconda l’uovo attraverso una penetrazione meccanica (Hirai, 1988).
La localizzazione del trascritto di ptma nel testicolo di Danio rerio, presenta un pattern simile a quanto osservato in altre specie (Aniello et al., 2002, Ferrara et al., 2009; Prisco et al., 2009; Ferrara et al., 2010; Ferrara et al., 2013), in particolare nelle cellule meiotiche e post-meiotiche.
I dati dell’analisi immunoistochimica mostrano che la proteina mantiene la propria localizzazione anche in questa specie. Infatti, risulta assente negli spermatogoni, suggerendo che essa non partecipa nella fasi proliferative, mentre la presenza della proteina negli spermatociti (SPC) primari e negli spermatidi (SPT) supporta un suo possibile ruolo durante la meiosi e/o nelle fasi di differenziamento degli SPT in SPZ. In particolare, la proteina è presente nel citoplasma degli SPC in leptotene/zigotene; in seguito Ptma estende la sua localizzazione alla regione cromatinica delle cellule in divisione, e mantiene la sua distribuzione nucleare anche durante il differenziamento degli SPT.
La localizzazione nucleare in spermatozoi privi di acrosoma suggerisce un ruolo per Ptma nel rimodellamento cromatinico durante il differenziamento dei gameti. Questi dati, quindi, forniscono un’interessante punto di partenza per lo studio delle funzioni di Ptma nella riproduzione dei Vertebrati.
Parte II: PREP è associato alle funzioni riproduttive maschili ed ai gameti maschili in topo
La prolil endopeptidasi (PREP) è un membro della famiglia delle serina peptidasi molto conservato durante l’evoluzione (Venäläinen et al., 2004). PREP è coinvolto nella maturazione e degradazione di ormoni peptidici e neuropeptidi (Mentlein, 1988; Wilk, 1983), ma la sua attività è limitata a oligopeptidi composti da non più di trenta residui amminoacidici.
Nonostante la sua localizzazione citoplasmatica, tale enzima può svolgere la propria attività esternamente alla cellula, inattivando neuropeptidi nell’ambiente extracellulare. Infatti, è stato suggerito che PREP può essere rilasciato dalle cellule (Ahmed et al., 2005), anche se non possiede un segnale di secrezione o una regione di interazione con la membrana plasmatica (Venäläinen et al, 2004). PREP è stato implicato in diversi processi biologici, come la maturazione e la degradazione di ormoni e neuropeptidi (Mentlein, 1988), apprendimento e memoria (Cunningham and O’Connor, 1997; D’Agostino et al., 2013), proliferazione cellulare e differenziamento (Matsubara et al., 1998; Suzuki et al., 2014), e nel metabolismo del glucosio (Kim et al., 2014). Ad oggi, alcuni studi hanno ipotizzato una partecipazione di PREP anche nei processi associati alla riproduzione (Kimura et al., 1998; Kimura et al., 2002). Allo scopo di approfondire un possibile ruolo della proteina nella riproduzione maschile, in questo seconda parte del lavoro di tesi sono stati esaminati gli effetti della sua mancata espressione genica, utilizzando topi transgenici PREP knockdown (Prepgt/gt), su testicoli e spermatozoi (SPZ).
Dopo aver confermato la presenza dell’espressione di PREP nei testicoli e SPZ wild type (wt), rispetto ai campioni Prepgt/gt, è stata eseguita un’analisi comparata dei parametri macroscopici sui testicoli di wt e knockdown: i dati mostrano che le gonadi di Prepgt/gt presentano un peso e dimensione ridotta rispetto ai wt. Similmente, le analisi istologiche mostrano che, mentre la morfologia generale è preservata tra i due genotipi, il diametro e il lume dei tubuli sono ridotti nei topi Prepgt/gt, e che la percentuale di tubuli seminiferi spermiati è maggiore nei wt.
Nella gonade maschile la proteina localizza negli spermatidi allungati e negli SPZ luminali dei topi wt, nelle cellule di Sertoli, Leydig e nelle cellule peritubulari. PREP è espresso anche negli SPZ epididimali, dove localizza nella testa e nel tratto intermedio del flagello, mentre nella restante regione della coda il segnale è ridotto. Come atteso, nei campioni knockdown sia nel testicolo che negli SPZ il segnale non è rilevabile.
Questi dati suggeriscono che la endopeptidasi potrebbe essere associata alla maturazione dei gameti; infatti, a supporto di ciò, i dati finali ottenuti analizzando i parametri spermatici mostrano una riduzione della conta totale e della motilità, nonché una maggiore alterazione della normale morfologia nei topi Prepgt/gt, rispetto ai wt.
Questi risultati suggeriscono che PREP potrebbe avere un ruolo fondamentale nella spermatogenesi di topo e nella motilità dello spermatozoo. Tuttavia, ulteriori esperimenti sono richiesti per comprendere se il ruolo di questo enzima nella spermatogenesi è svolto durante lo sviluppo testicolare o direttamente nella fisiologia del gamete maturo.
Parte III: Espressione e localizzazione di DAAM1 durante la spermatogenesi di ratto e negli spermatozoi di uomo
DAAM1 è una proteina appartenente alla famiglia delle formine, un gruppo di molecole che controllano la nucleazione e l’assemblaggio delle fibre di actina in risposta a diversi segnali (Kovar, 2006; Goode and Eck, 2007). Molti studi hanno mostrato che DAAM1 è coinvolto in processi biologici essenziali, come la polarità cellulare, il movimento e l’adesione durante la morfogenesi e organogenesi, così come l’organizzazione citoscheletrica (Zallen, 2007; Sato et al., 2006; Matusek et al., 2006; Aspenstrom et al., 2006; Lu et al., 2007; Yamashita et al., 2007).
Il rimodellamento citoscheletrico è un processo mediante il quale le cellule modulano la loro architettura e forma in seguito a stimoli intracellulari e/o extracellulari. Come tutte le formine, DAAM1 possiede la capacità di nucleare filamenti di actina ed agire come regolatore del citoscheletro nel movimento e nella polarità cellulare. Sebbene il ruolo di questa proteina durante lo sviluppo sia stato ben studiato, la sua potenziale attività nei tessuti adulti resta ancora da esplorare.
Fino ad oggi, non ci sono studi che mostrano un coinvolgimento di DAAM1 nei processi riproduttivi, tuttavia alcune molecole che sono coinvolte negli stessi pathway molecolari risultano espresse durante la spermatogenesi (Ma et al., 2006).
Nel 2011, il nostro gruppo ha isolato un cDNA codificante DAAM1 dal testicolo di Pelophylax esculentus. I primi studi, condotti utilizzando questo modello, hanno mostrato che la proteina localizza nelle spermatocisti. In questa terza parte del lavoro di tesi lo studio è stato spostato su un altro modello, Rattus norvegicus, dato che in questa specie l’anatomia testicolare e gli eventi che avvengono durante la spermatogenesi sono rappresentatiti dei Mammiferi (Russell et al., 1989). Inizialmente, è stata confermata la presenza di DAAM1 nel testicolo di ratto a diversi stadi durante lo sviluppo post-natale (7-14-21-28-35-42-60 days post-partum, dpp), che ricapitola gli eventi chiave della prima ondata spermatogenetica. Allo scopo di caratterizzare un profilo di espressione della proteina e confermare il suo possibile coinvolgimento durante la spermatogenesi, è stata studiata la sua localizzazione durante lo sviluppo post-natale delle gonade di ratto, tramite immunofluorescenza. DAAM1 mostra una particolare distribuzione negli stadi analizzati: a 7 dpp, la proteina localizza nella regione centrale dei tubuli; a 14 dpp, il segnale è evidente negli spermatogoni A e B nella stessa regione centrale, fino ai 21- 28 dpp, quando il segnale si evidenzia negli spermatociti. Durante la spermioistogenesi (35 e 42 dpp), DAAM1 è presente negli spermatidi, con una peculiare localizzazione nella regione acrosomica in formazione. Infine a 60 dpp, quando la prima ondata spermatogenetica è completata, il segnale è presente anche negli spermatozoi (SPZ), a livello del residuo citoplasmatico.
Dato il coinvolgimento di DAAM1 nel rimodellamento citoscheletrico, il profilo di localizzazione della formina è stato comparato con la distribuzione di altre proteine citoscheletriche: actina e tubulina. Il segnale dell’actina è simile a quello di DAAM1 durante le prime fasi dello sviluppo testicolare, ma essa è presente anche nelle cellule di Sertoli che iniziano a formare la barriera emato-testicolare; in seguito, a 35 dpp, il segnale è evidente nella barriera completata. Inoltre, durante la spermioistogenesi, l’actina localizza anche nelle cellule epiteliali che supportano il riarrangiamento cito-strutturale delle cellule germinali verso il lume (42 dpp). Nel testicolo adulto, l’actina è espressa in tutte le cellule, inclusi gli SPZ. La tubulina risulta espressa in tutte le fasi dello sviluppo, e localizza nelle cellule di Sertoli che svolgono un ruolo essenziale nel sostenere le cellule germinale durante il loro differenziamento in SPZ. Allo scopo di approfondire la localizzazione di DAAM1 nei gameti maschili, è stata eseguita un’analisi di immunofluorescenza su spermatozoi epididimali di ratto: i risultati mostrano che la proteina è presente nel flagello. Successivamente, l’analisi è stata estesa a SPZ eiaculati di uomo, dove la goccia citoplasmatica è spesso fisiologicamente ritenuta (WHO 2010; Mortimer & Menkveld, 2001). Infatti, è stata confermata la localizzazione di DAAM1 nel residuo citoplasmatico dei gameti umani. Infine, è stata condotta un‘analisi comparativa della localizzazione delle proteine citoscheletriche negli SPZ di ratto e uomo: in entrambe le specie l’actina localizza nella testa, nella regione acrosomale, e nella coda; mentre la tubulina è distribuita nel flagello.
Questi risultati mostrano, per la prima volta, l’espressione e la localizzazione di DAAM1 durante la spermatogenesi di ratto e negli spermatozoi di ratto e uomo, e forniscono un profilo comparato della distribuzione della formina rispetto ai principali fattori che controllano la cito-architettura delle cellule germinali, suggerendo un suo possibile coinvolgimento nel rimodellamento morfo-funzionale e nell’organizzazione della gonade e dei gameti maschili.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Minucci, Sergio
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > BIOMEDICINA > MEDICINA RIGENERATIVA
Data di deposito della tesi:16 Gennaio 2016
Anno di Pubblicazione:16 Gennaio 2016
Parole chiave (italiano / inglese):PTMA, PREP, DAAM1, spermatogenesi, testicolo, spermatozoi
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Medicina Molecolare
Codice ID:9043
Depositato il:06 Ott 2016 16:33
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Introduzione: Cerca con Google

Barrow PC, Barbellion S, Stadler J. 2011. Preclinical evaluation of juvenile toxicity. Methods Mol Biol 691:17-35 Cerca con Google

Callard GV. 1996. Endocrinology of Leydig cells in nonmammalian vertebrates. In:Payne, A.H., Hardy, M.P., Russell, L.D. (Eds.), The Leydig Cell. Cache River Press,Vienna, IL, USA, pp. 308–331 Cerca con Google

Davidoff MS, Schulze W, Middendorff R, Holstein AF. 1993. The Leydig cell of the human testis--a new member of the diffuse neuroendocrine system. Cell Tissue Res. 271(3):429-39 Cerca con Google

De Rooij DG, Russell LD. 2000. All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 21: 776–798 Cerca con Google

Grier HJ. 1981. Cellular organization of the testis and spermatogenesis in fishes. Am. Zool. 21:345–357 Cerca con Google

Jamieson BGM. 1991. Fish Evolution and Systematics: Evidence from Spermatozoa. Cambridge University Press, Cambridge Cerca con Google

Korenbrot CC, Huhtaniemi IT, Weiner RI. 1977. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod 17(2):298-303 Cerca con Google

Ojeda SR, Advis JP, Andrews WW. 1980. Neuroendocrine control of the onset of puberty in the rat. Fed Proc 39(7):2365-71 Cerca con Google

Ojeda SR and Skinner MK. 2006. Puberty in the rat. In Knobil and Neill’s Physiology of Reproduction, Vol. 2, 3rd ed., pp. 2061–126. Academic Press, San Diego, CA Cerca con Google

Parenti LR, Grier HJ. 2004. Evolution and phylogeny of gonad morphology in bony fishes. Integr. Comp. Biol. 44:333-48 Cerca con Google

Picut CA, Remick AK, de Rijk EP, Simons ML, Stump DG, Parker GA. 2015. Postnatal development of the testis in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol. 43(3):326-42 Cerca con Google

Russell D, Griswold MD. 1993. The Sertoli cell. Mol Reprod Dev Vol. 36, Issue 4, page 517 Cerca con Google

Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. 2010. Spermatogenesis in fish. Comp. Endocrinol. 165:390-411 Cerca con Google

Schulz RW, Menting S, Bogerd J, Franca LR, Vilela DAR, Godinho HP. 2005. Sertoli cell proliferation in the adult testis: evidence from two fish species belonging to different orders. Biol. Reprod. 73, 891–898 Cerca con Google

Parte I (Ptma): Cerca con Google

Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O et al. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence.377:3-174 Cerca con Google

Aniello F, Branno M, De Rienzo G, Ferrara D, Palmiero C, Minucci S. 2002. First evidence of prothymosin alpha in a non-mammalian vertebrate and its involvement in the spermatogenesis of the frog Rana esculenta. Mech. Dev. 110:213-7 Cerca con Google

Baxevanis CN, Thanos D, Reclos GJ, Anastasopoulos E, Tsokos GC, Papamatheakis J, Papamichail M. 1992. Prothymosin alpha enhances human and murine MHC class II surface antigen expression and messenger RNA accumulation. J. Immunol. 148:1979-84 Cerca con Google

Bianco NR, Montano MM. 2002. Regulation of prothymosin alpha by estrogen receptor alpha: molecular mechanisms and relevance in estrogen-mediated breast cell growth. Oncogene 21:5233-44. Erratum in Oncogene 2002. 21:8221 Cerca con Google

Billard R. 1990. Spermatogenesis in teleost fish. In: Lamming, G.E. (Ed.), Marshall’s Physiology of Reproduction. Reproduction in Males, vol. 2. Churchill Livingston, Edinburgh, pp. 183–212 Cerca con Google

Boán F, Viñas A, Buceta M, Domínguez F, Sánchez L, Gómez-Márquez J. 2001. Prothymosin alpha, a mammalian c-myc-regulated acidic nuclear protein, provokes the decondensation of human chromosomes in vitro. Cytogenet Cell Genet 93:171-4 Cerca con Google

Cannavo A, Rengo G, Liccardo D, Pironti G, Scimia MC, Scudiero L, De Lucia C, Ferrone M, Leosco D, Zambrano N, Koch WJ, Trimarco B, Esposito G. 2013. Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis 18(10):1252-61 Cerca con Google

Carrell DT. 2011. Epigenetic marks in zebrafish sperm: insights into chromatin compaction, maintenance of pluripotency, and the role of the paternal genome after fertilization. Asian J. Androl. 13:620-1 Cerca con Google

Clinton M, Frangou-Lazaridis M, Panneerselvam C, Horecker BL. 1989. Prothymosin alpha and parathymosin: mRNA and polypeptide levels in rodent tissues. Arch. Biochem. Biophys. 269:256-63 Cerca con Google

De Rienzo G, Di Sena R, Ferrara D, Palmiero C, Chieffi Baccari G, Minucci S. 2002. Temporal and spatial localization of prothymosin alpha transcript in the Harderian gland of the frog, Rana esculenta. J. Exp. Zool. 292:633-9 Cerca con Google

Díaz-Jullien C, Pérez-Estévez A, Covelo G, Freire M. 1996. Prothymosin alpha binds histones in vitro and shows activity in nucleosome assembly assay. Biochim Biophys Acta. 1296:219-27 Cerca con Google

Dominguez F, Magdalena C, Cancio E, Roson E, Paredes J, Loidi L, Zalvide J, Fraga M, Forteza J, Regueiro BJ. 1993. Tissue concentrations of prothymosin alpha: a novel proliferation index of primary breast cancer. Eur. J. Cancer 29A:893-7 Cerca con Google

Donizetti A, Liccardo D, Esposito D, Del Gaudio R, Locascio A, Ferrara D, Minucci S, Aniello F. 2008. Differential expression of duplicated genes for prothymosin alpha during zebrafish development. Dev. Dyn. 237:1112-8 Cerca con Google

Dosil M, Freire M, Gómez-Márquez J. 1990. Tissue-specific and differential expression of prothymosin alpha gene during rat development. FEBS Lett. 269:373-6 Cerca con Google

Earnshaw WC. 1987. Anionic regions in nuclear proteins. J Cell Biol. 105:1479-82 Cerca con Google

Enkemann SA, Ward RH, Trumbore MW, Berger SL. 2000a. Functional discontinuities in prothymosin alpha caused by caspase cleavage in apoptotic cells. J. Cell. Physiol. 182:256-68 Cerca con Google

Enkemann SA, Ward RD, Berger SL. 2000b. Mobility within the nucleus and neighboring cytosol is a key feature of prothymosin-alpha. J. Histochem. Cytochem. 48:1341-55 Cerca con Google

Eschenfeldt WH, Manrow RE, Krug MS, Berger SL. 1989. Isolation and partial sequencing of the human prothymosin alpha gene family. Evidence against export of the gene products. J Biol Chem. 264:7546-55 Cerca con Google

Evstaf'eva AG, Karapetian RN, Rubtsov IuP, Filonov GS, Abaeva IS, Fateeva TV, Mel'nikov SV, Chichkova NV, Vartapetian AB. 2005. Novel functions of the well-known protein--prothymosin alpha is involved in protection of cells against apoptosis and oxidative stress. Mol Biol (Mosk). 39:729-45 Cerca con Google

Ferrara D, Palmiero C, Branno M, Pierantoni R, Minucci S. 2004. Testicular activity of Mos inthe frog, Rana esculenta: A new role in spermatogonial proliferation. Biol. Reprod. 70:1782–1789 Cerca con Google

Ferrara D, Izzo G, Liguori L, d'Istria M, Aniello F, Minucci S. 2009. Evidence for the involvement of prothymosin alpha in the spermatogenesis of the frog Rana esculenta. J. Exp. Zool. A Ecol. Genet. Physiol. 311: 1-10 Cerca con Google

Ferrara D, Izzo G, Pariante P, Donizetti A, d'Istria M, Aniello F, Minucci S. 2010. Expression of prothymosin alpha in meiotic and post-meiotic germ cells during the first wave of rat spermatogenesis. J. Cell. Physiol. 224:362-8 Cerca con Google

Ferrara D, Pariante P, Di Matteo L, Serino I, Oko R, Minucci S. 2013. First evidence of prothymosin α localization in the acrosome of mammalian male gametes. J. Cell. Physiol. 228:1629-37 Cerca con Google

Frangou-Lazaridis M, Clinton M, Goodall GJ, Horecker BL. 1988. Prothymosin alpha and parathymosin: amino acid sequences deduced from the cloned rat spleen cDNAs. Arch. Biochem. Biophys. 263:305-10 Cerca con Google

Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Müller-Frohne M, Zirwer D, Czarnecki J, Damaschun G. 1995. Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry 34:13211-8 Cerca con Google

George EM, Brown DT. 2010. Prothymosin alpha is a component of a linker histone chaperone. FEBS Lett. 584:2833-6 Cerca con Google

Goldstein AL, Low TL, McAdoo M, McClure J, Thurman GB, Rossio J, Lai CY, Chang D, Wang SS, Harvey C, Ramel AH, Meienhofer J. 1977. Thymosin alpha1: isolation and sequence analysis of an immunologically active thymic polypeptide. Proc Natl Acad Sci USA. 74:725-9. Cerca con Google

Goldstein AL, Stater FD, White A. 1966. Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Nat Acad Sci USA. 56:1010-17 Cerca con Google

Goldstein AL, Thurman GB, Cohen GH, Hooper JA. 1975. Thymosin chemistry, biology and clinical applications. In: Van Bekkum DW editors. Biological Activity of Thymic Hormones. Rotterdam: Kooyker Scientific Pub. pp 173-197 Cerca con Google

Gómez-Márquez J. 2007. Function of prothymosin alpha in chromatin decondensation and expression of thymosin beta-4 linked to angiogenesis and synaptic plasticity. Ann N Y Acad Sci. 1112:201-9 Cerca con Google

Goodall GJ, Dominguez F, Horecker BL. 1986. Molecular cloning of cDNA for human prothymosin alpha. Proc Natl Acad Sci USA. 83:8926-8 Cerca con Google

Grier, HJ. 1993. Comparative organization of Sertoli cells including the Sertoli cell barrier. In L. D. Russell, and M. D. Griswold (eds.), The Sertoli cell, pp. 704–730. Cache River Press, Clearwater, Florida. Cerca con Google

Hannappel E, Huff T. 2003. The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. Vitam. Horm. 66:257-96 Cerca con Google

Haritos AA, Goodall GJ, Horecker BL. 1984a. Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc. Natl. Acad. Sci. USA 81:1008-11 Cerca con Google

Haritos AA, Tsolas O, Horecker BL. 1984b. Distribution of prothymosin alpha in rat tissues. Proc. Natl. Acad. Sci. USA 81:1391-3 Cerca con Google

Hirai A. 1988. Fine structure of the micropyles of pelagic eggs of some marine fishes. Jap. J. Ichthyol. 35, 351–357. Cerca con Google

Hooper JA, McDaniel MC, Thurman GB, Cohen GH, Schulof RS, Goldstein AL. 1975. Purification and properties of bovine thymosin. Ann N Y Acad Sci. 249:125-44 Cerca con Google

Huszno J, Klag J. 2012. The reproductive cycle in the male gonads of Danio rerio (Teleostei, Cyprinidae). Stereological analysis. Micron 43:666-72 Cerca con Google

Jamieson, BGM. 1991. Fish Evolution and Systematics: Evidence from Spermatozoa. Cambridge University Press, Cambridge. Cerca con Google

Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X. 2003. Distinctive role of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299:233-6 Cerca con Google

Karetsou Z, Sandaltzopoulos R, Frangou-Lazaridis M, Lai CY, Tsolas O, Becker PB, Papamarcaki T. 1998. Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic Acids Res. 26:3111-8 Cerca con Google

Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T. 2002. Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep. 3:361-6 Cerca con Google

Karetsou Z, Martic G, Tavoulari S, Christoforidis S, Wilm M, Gruss C, Papamarcaki T. 2004. Prothymosin alpha associates with the oncoprotein SET and is involved in chromatin decondensation. FEBS Lett. 577:496-500 Cerca con Google

Leal MC, Cardoso ER, Nóbrega RH, Batlouni SR, Bogerd J, França LR, Schulz RW. 2009. Histological and stereological evaluation of zebrafish (Danio rerio) spermatogenesis with an emphasis on spermatogonial generations. Biol. Reprod. 81:177-87 Cerca con Google

Malicet C, Giroux V, Vasseur S, Dagorn JC, Neira JL, Iovanna JL. 2006. Regulation of apoptosis by the p8/prothymosin alpha complex. Proc. Natl. Acad. Sci. USA 103:2671-6 Cerca con Google

Manrow RE, Leone A, Krug MS, Eschenfeldt WH, Berger SL. 1992. The human prothymosin alpha gene family contains several processed pseudogenes lacking deleterious lesions. Genomics 13:319-31. Cerca con Google

Martini PG, Delage-Mourroux R, Kraichely DM, Katzenellenbogen BS. 2000. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity. Mol. Cell. Biol. 20:6224-32 Cerca con Google

Martini PG, Katzenellenbogen BS. 2003. Modulation of estrogen receptor activity by selective coregulators. J. Steroid. Biochem. Mol. Biol. 85:117-22 Cerca con Google

Moody TW, Leyton J, Zia F, Tuthill C, Badamchian M, Goldstein AL. 2000. Thymosinalpha1 is chemopreventive for lung adenoma formation in A/J mice. Cancer Lett. 155: 121-7 Cerca con Google

Mosoian A, Teixeira A, Burns CS, Khitrov G, Zhang W, Gusella L, Klotman P, Klotman M (2007). Influence of prothymosin-alpha on HIV-1 target cells. Ann. N. Y. Acad. Sci. 1112:269-85 Cerca con Google

Mosoian A. 2011. Intracellular and extracellular cytokine-like functions of prothymosin α: implications for the development of immunotherapies. Future Med. Chem. 3:1199-208 Cerca con Google

Pan LX, Haritos AA, Wideman J, Komiyama T, Chang M, Stein S, Salvin SB, Horecker BL. 1986. Human prothymosin alpha: amino acid sequence and immunologic properties. Arch. Biochem. Biophys. 250:197-201 Cerca con Google

Papamarcaki T, Tsolas O. 1994. Prothymosin alpha binds to histone H1 in vitro. FEBS Lett 345:71-5 Cerca con Google

Parenti LR, Grier HJ. 2004. Evolution and phylogeny of gonad morphology in bony fishes. Integr. Comp. Biol. 44:333-48 Cerca con Google

Piñeiro A, Cordero OJ, Nogueira M. 2000. Fifteen years of prothymosin alpha: contradictory past and new horizons. Peptides 21:1433-46 Cerca con Google

Prisco M, Donizetti A, Aniello F, Locascio A, Del Giudice G, Agnese M, Angelini F, Andreuccetti P. 2009. Expression of Prothymosin alpha during the spermatogenesis of the spotted ray Torpedo marmorata. Gen. Comp. Endocrinol. 164:70-6 Cerca con Google

Pudney J. 1996. Comparative cytology of the Leydig cell. In: Payne, A.M., Hardy, M.P., Russell, L.D. (Eds.), The Leydig Cell. Vienna, Cache River, pp. 611–657 Cerca con Google

Romani L, Bistoni F, Gaziano R, Bozza S, Montagnoli C, Perruccio K, Pitzurra L, Bellocchio S, Velardi A, Rasi G, Di Francesco P, Garaci E. 2004. Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood 103:4232-9 Cerca con Google

Rosón E, Gallego R, García-Caballero T, Heimer EP, Felix AM, Domínguez F. 1990. Prothymosin alpha expression is associated to cell division in rat testis. Histochemistry 94:597-9 Cerca con Google

Rubtsov IuP, Vartapetian AB. 1995. New intronless members of human prothymosin alpha genes. Mol Biol (Mosk). 29:1320-5 Cerca con Google

Rupik W, Huszno J, Klag J. 2011. Cellular organisation of the mature testes and stages of spermiogenesis in Danio rerio (Cyprinidae; Teleostei)--structural and ultrastructural studies. Micron 42:833-9 Cerca con Google

Sanger F, Coulson AR. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94:441–448 Cerca con Google

Sarandeses CS, Covelo G, D Díaz-Jullien C, Freire M. 2003. Prothymosin alpha is processed to thymosin alpha 1 and thymosin alpha 11 by a lysosomal asparaginyl endopeptidase. J Biol Chem. 278:13286-93 Cerca con Google

Schulof RS, Goldstein AL. 1981. In: Hadden JW, Stewart WR editors. The Lymphokines, Biochemistrey and Biological Activity. Clinton, NJ: Humana Press. pp 397-423 Cerca con Google

Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. 2010. Spermatogenesis in fish. Comp. Endocrinol. 165:390-411 Cerca con Google

Skopeliti M, Voutsas IF, Klimentzou P, Tsiatas ML, Beck A, Bamias A, Moraki M, Livaniou E, Neagu M, Voelter W, Tsitsilonis OE. 2006. The immunologically active site of prothymosin alpha is located at the carboxy-terminus of the polypeptide. Evaluation of its in vitro effects in cancer patients. Cancer Immunol. Immunother. 55:1247-57 Cerca con Google

Sprenger H, Konrad L, Rischowsky E, Gemsa D. 1995. RNA extraction from gastrointestinaltract and pancreas by a modified Chomczynski and Sacchi method. Biotechniques 19:340–343 Cerca con Google

Szabo P, Panneerselvam C, Clinton M, Frangou-Lazaridis M, Weksler D, Whittington E, Macera MJ, Grzeschik KH, Selvakumar A, Horecker BL. 1993. Prothymosin alpha gene in humans: organization of its promoter region and localization to chromosome 2. Human Genet. 90:629-34 Cerca con Google

Thurman A, Ahmed A, Strong M, Gershwin ME, Steinberg AD, Goldstein AL. 1975. Thymosin induced increase in mitogenic responsiveness of C57BL/6J, NZB/W, and nude mice. Trans Proc 7:299-303 Cerca con Google

Trumbore MW, Manrow RE, Berger SL. 1998. Prothymosin alpha is not found in yeast. Protein Expr Purif. 1998 13:383-8 Cerca con Google

Trumbore MW, Wang RH, Enkemann SA, Berger SL. 1997. Prothymosin alpha in vivo contains phosphorylated glutamic acid residues.J Biol Chem. 272:26394-404 Cerca con Google

Tsitsiloni OE, Stiakakis J, Koutselinis A, Gogas J, Markopoulos C, Yialouris P, Bekris S, Panoussopoulos D, Kiortsis V, Voelter W. 1993. Expression of alpha-thymosins in human tissues in normal and abnormal growth. Proc. Natl. Acad. Sci. USA 90:9504-7 Cerca con Google

Ueda H. 2009. Prothymosin alpha and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. Pharmacol. Ther. 123:32333 Cerca con Google

Ueda H, Matsunaga H, Halder SK. 2012. Prothymosin α plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Ann. N. Y. Acad. Sci. 2012 1269:34-43 Cerca con Google

Voutsas IF, Baxevanis CN, Gritzapis AD, Missitzis I, Stathopoulos GP, Archodakis G, Banis C, Voelter W, Papamichail M. 2000. Synergy between interleukin-2 and prothymosin alpha for the increased generation of cytotoxic T lymphocytes against autologous human carcinomas. Cancer Immunol. Immunother. 49:449-58 Cerca con Google

Wang M, Pan JY. 2007. Prothymosin alpha and tumor: current status and perspective. Chin. J. Cancer 26:333-336 Cerca con Google

Wu CG, Habib NA, Mitry RR, Reitsma PH, van Deventer SJ, Chamuleau RA. 1997. Overexpression of hepatic prothymosin alpha, a novel marker for human hepatocellular carcinoma. Br. J. Cancer 76:1199-204 Cerca con Google

Wu SF, Zhang H, Cairns BR. 2011. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 21:578-89 Cerca con Google

Zhang M, Cui F, Lu S, Lu H, Jiang T, Chen J, Zhang X, Jin Y, Peng Z, Tang H. 2014. Increased expression of prothymosin-α, independently or combined with TP53, correlates with poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 7:4867-76 Cerca con Google

Parte II (PREP): Cerca con Google

Ahmed MM, Arif M, Chikuma T, Kato T. 2005. Pentylenetetrazol-induced seizures affect the levels of prolyl oligopeptidase, thimet oligopeptidase and glial proteins in rat brain regions, and attenuation by MK-801 pretreatment. Neurochem Int 47:248-59 Cerca con Google

Alvarez-Sieiro P, Martin MC, Redruello B, Del Rio B, Ladero V, Palanski BA, Khosla C, Fernandez M, Alvarez MA. 2014. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl Microbiol Biotechnol 98(15):6689-700 Cerca con Google

Aoyagi T, Wada T, Nagai M, Kojima F, Harada S, Takeuchi T, Takahashi H, Hirokawa K and Tsumita T. 1990. Deficiency of kallikrein-like enzyme activities in cerebral tissue of patients with Alzheimer's disease. Experientia 46(1):94-7 Cerca con Google

Arentz-Hansen H, McAdam SN, Molberg O, Fleckenstein B, Lundin KE, Jorgensen TJ, Jung G, Roepstorff P and Sollid LM. 2002. Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123(3):803-9 Cerca con Google

Bär JW, Rahfeld JU, Schulz I, Gans K, Ruiz-Carrillo D, Manhart S, Rosche F, Demuth HU. 2006. Prolyl endopeptidase cleaves the apoptosis rescue peptide humanin and exhibits an unknown post-cysteine cleavage specificity. Adv Exp Med Biol 575:103-8 Cerca con Google

Benowitz LI1, Routtenberg A. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84-91 Cerca con Google

Breen G, Harwood AJ, Gregory K, Sinclair M, Collier D, St Clair D and Williams RS. 2004. Two peptidase activities decrease in treated bipolar disorder not schizophrenic patients. Bipolar Disord 6(2):156-61 Cerca con Google

Camargo AC, Caldo H, Reis ML. 1979. Susceptibility of a peptide derived from bradykinin to hydrolysis by brain endo-oligopeptidases and pancreatic proteinases. J Biol Chem 254(12):5304-7 Cerca con Google

Comino I, Moreno Mde L, Real A, Rodríguez-Herrera A, Barro F, Sousa C. 2013. The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250-68 Cerca con Google

Cunningham DF, O'Connor B 1997. Identification and initial characterisation of a N-benzyloxycarbonyl-prolyl-prolinal (Z-Pro-prolinal)-insensitive 7-(N-benzyloxycarbonyl-glycyl-prolyl-amido)-4-methylcoumarin (Z-Gly-Pro-NH-Mec)-hydrolysing peptidase in bovine serum. Eur J Biochem 244(3):900-3 Cerca con Google

D'Agostino G, Kim JD, Liu ZW, Jeong JK, Suyama S, Calignano A, Gao XB, Schwartz M, Diano S. 2013. Prolyl endopeptidase-deficient mice have reduced synaptic spine density in the CA1 region of the hippocampus, impaired LTP, and spatial learning and memory. Cereb Cortex 23:2007-14 Cerca con Google

Garcia-Horsman JA, Venalainen JI, Lohi O, Auriola IS, Korponay-Szabo IR, Kaukinen K, Maki M and Mannisto PT. 2007. Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand. J. Gastroenterol 42(5):562-71 Cerca con Google

Gass J, Ehren J, Strohmeier G, Isaacs I and Khosla C. 2005. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy. Biotechnol Bioeng 92(6):674-84 Cerca con Google

Hannula MJ, Myöhänen TT, Tenorio-Laranga J, Männistö PT, Garcia-Horsman JA. 2013. Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases. Neuroscience 242:140-50 Cerca con Google

Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA. 2005. The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 202:663-71 Cerca con Google

Ho HC, Suarez SS. 2003. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 68:1590-6. Cerca con Google

Irazusta J, Larrinaga G, González-Maeso J, Gil J, Meana JJ, Casis L. 2002. Distribution of prolyl endopeptidase activities in rat and human brain. Neurochem Int 40:337-45 Cerca con Google

Kimura A, Ohnishi J, Okimura H, Hamabata T, Takahashi T. 1998. Localization of prolyl endopeptidase mRNA in small growing follicles of porcine ovary. Mol Reprod Dev 50:121-7. Cerca con Google

Kimura A, Matsui H, Takahashi T. 2002. Expression and localization of prolyl oligopeptidase in mouse testis and its possible involvement in sperm motility. Zoolog Sci 19:93-102 Cerca con Google

Kim JD, Toda C, D'Agostino G, Zeiss CJ, DiLeone RJ, Elsworth JD, Kibbey RG, Chan O, Harvey BK, Richie CT, Savolainen M, Myöhänen T, Jeong JK, Diano S. 2014. Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci 111:11876-81 Cerca con Google

Koida M, Walter R. 1976. Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography. J Biol Chem 251(23):7593-9 Cerca con Google

Laitinen KS, van Groen T, Tanila H, Venalainen J, Mannisto PT and Alafuzoff I. 2001. Brain prolyl oligopeptidase activity is associated with neuronal damage rather than beta-amyloid accumulation. Neuroreport 12(15):3309-12 Cerca con Google

Leahy JC, Luo Y, Kent CS, Meiri KF, Vallano ML. 1993. Demonstration of presynaptic protein kinase C activation following long-term potentiation in rat hippocampal slices. Neuroscience 52:563–574 Cerca con Google

Männisto PT, Venalainen, J Jalkanen A and Garcia-Horsman JA. 2007. Prolyl oligopeptidase: a potential target for the treatment of cognitive disorders. Drug News Perspect 20(5):293-305 Cerca con Google

Mantle D, Falkous G, Ishiura S, Blanchard PJ and Perry EK. 1996. Comparison of proline endopeptidase activity in brain tissue from normal cases and cases with Alzheimer's disease, Lewy body dementia, Parkinson's disease and Huntington's disease. Clin Chim Acta 249(1-2):129-39 Cerca con Google

Matysiak-Budnik T, Candalh C, Cellier C, Dugave C, Namane A, Vidal-Martinez T, Cerf-Bensussan N and Heyman M. 2005. Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease. Gastroenterology 129(3):786-96 Cerca con Google

Matsubara Y, Ono T, Tsubuki S, Irie S, Kawashima S. 1998. Transient up-regulation of a prolyl endopeptidase activity in the microsomal fraction of rat liver during postnatal development. Eur J Biochem 252:178-83 Cerca con Google

Matsuda T, Sakaguchi M, Tanaka S, Yoshimoto T, Takaoka M. 2013. Prolyl oligopeptidase is a glyceraldehyde-3-phosphate dehydrogenase-binding protein that regulates genotoxic stress-induced cell death. Int J Biochem Cell Biol 45:850-7 Cerca con Google

Mentlein R. 1988. Proline residues in the maturation and degradation of peptide hormones and neuropeptides. FEBS Lett 234:251-6 Cerca con Google

Myöhänen TT, Pyykkö E, Männistö PT, Carpen O. 2012. Distribution of prolyl oligopeptidase in human peripheral tissues and in ovarian and colorectal tumors. J Histochem Cytochem 60:706-15. Cerca con Google

Odaka C, Mizuochi T, Shirasawa T, Morain P, Checler F. 2002. Murine T cells expressing high activity of prolyl endopeptidase are susceptible to activation-induced cell death. FEBS Lett 512(1-3):163-7 Cerca con Google

Oliveira EB, Martins AR, Camargo AC. 1976. Isolation of brain endopeptidases: influence of size and sequence of substrates structurally related to bradykinin. Biochemistry 15(9):1967-74 Cerca con Google

Polgár L. 1992. Prolyl endopeptidase catalysis. A physical rather than a chemical step is rate-limiting.Biochem J. 283 ( Pt 3):647-8 Cerca con Google

Rennex D, Hemmings BA, Hofsteenge J, Stone SR. 1991. cDNA cloning of porcine brain prolyl endopeptidase and identification of the active-site seryl residue. Biochemistry 30(8):2195-203 Cerca con Google

Rossner S, Schulz I, Zeitschel U, Schliebs R, Bigl V, Demuth HU. 2005. Brain prolyl endopeptidase expression in aging, APP transgenic mice and Alzheimer's disease. Neurochem Res 30:695-702 Cerca con Google

Schulz I, Zeitschel U, Rudolph T, Ruiz-Carrillo D, Rahfeld JU, Gerhartz B, Bigl V, Demuth HU, Rossner S. 2005. Subcellular localization suggests novel functions for prolyl endopeptidase in protein secretion. J Neurochem. 94(4):970-9 Cerca con Google

Sheehan DC, Hrapchak BB. 1987. Theory and practice of histotechnology. Battelle Press. Cerca con Google

Shinoda M, Toide K, Ohsawa I and Kohsaka S. 1997. Specific inhibitor for prolyl endopeptidase suppresses the generation of amyloid beta protein in NG108-15 cells. Biochem Biophys Res Commun 235(3):641-5 Cerca con Google

Siegel M, Bethune MT, Gass J, Ehren J, Xia J, Johannsen A, Stuge TB, Gray GM, Lee PP, Khosla C. 2006. Rational design of combination enzyme therapy for celiac sprue. Chem Biol 13:649-58 Cerca con Google

Siviter RJ1, Cockle SM. 1995. Peptides related to thyrotrophin-releasing hormone are degraded in seminal plasma by an enzyme similar to prolyl endopeptidase. J Endocrinol 144(1):61-6 Cerca con Google

Soriano S, Lu DC, Chandra S, Pietrzik CU and Koo EH. 2001. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem 276(31):29045-50 Cerca con Google

Stone SR, Rennex D, Wikstrom P, Shaw E, Hofsteenge J. 1991. Inactivation of prolyl endopeptidase by a peptidylchloromethane. Kinetics of inactivation and identification of sites of modification. Biochem J 276 ( Pt 3):837-40 Cerca con Google

Suzuki K, Sakaguchi M2, Tanaka S1, Yoshimoto T3, Takaoka M1. 2014. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells. Biochem Biophys Res Commun 443:91-6 Cerca con Google

Szeltner Z, Polgár L. 2008. Structure, function and biological relevance of prolyl oligopeptidase. Curr Protein Pept Sci 9:96-107 Cerca con Google

Taylor WL, Andrews PC, Henrikson CK, Dixon JE. 1980. New fluorogenic substrates for a rat brain proline endopeptidase. Anal Biochem 105:58-64 Cerca con Google

Valdivia A, Irazusta J, Fernández D, Múgica J, Ochoa C, Casis L Regul Pept. 2004. Pyroglutamyl peptidase I and prolyl endopeptidase in human semen: increased activity in necrozoospermia. Regul Pept 122:79-84 Cerca con Google

Venäläinen JI, Juvonen RO, Männistö PT. 2004. Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur J Biochem 271:2705-15 Cerca con Google

Walter R, Shlank H, Glass JD, Schwartz IL, Kerenyi TD. 1971. Leucylglycinamide released from oxytocin by human uterine enzyme. Science 173:827–829 Cerca con Google

Wilk S. 1983. Prolyl endopeptidase. Life Sci 33:2149-57 Cerca con Google

Williams RS, Eames M, Ryves WJ, Viggars J, Harwood AJ. 1999. Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J. 18(10):2734-45 Cerca con Google

Yamanaka C, Lebrethon MC, Vandersmissen E, Gerard A, Purnelle G, Lemaitre M, Wilk S, Bourguignon JP. 1999. Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. Inhibitory autofeedback control through prolyl endopeptidase degradation of GnRH. Endocrinology 140:4609-15 Cerca con Google

Yokosawa H, Miyata M, Sawada H, Ishii S. 1983. Isolation and characterization of a post-proline cleaving enzyme and its inhibitor from sperm of the ascidian, Halocynthia roretzi. J Biochem 94:1067–1076 Cerca con Google

Yoshida K, Inaba K, Ohtake H, Morisawa M. 1999. Purification and characterization of prolyl endopeptidase from the Pacific herring, Clupea pallasi, and its role in the activation of sperm motility. Dev Growth Differ 41:217-25 Cerca con Google

Yoshimoto T, Ogita K, Walter R, Koida M, Tsuru D. 1979. Post-proline cleaving enzyme. Synthesis of a new fluorogenic substrate and distribution of the endopeptidase in rat tissues and body fluids of man. Biochim Biophys Acta 569:184-92 Cerca con Google

Parte III (DAAM1): Cerca con Google

Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. 1997. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J., 16:3797–804 Cerca con Google

Abraham-Peskir JV, Chantler E, Uggerhøj E, Fedder J. 2002. Response of midpiece vesicles on human sperm to osmotic stress. Hum Reprod 17(2):375-82 Cerca con Google

Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I. 2002. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev., 16:1066–76 Cerca con Google

Aspenström P, Richnau N, Johansson AS. 2006. The diaph¬anous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp Cell Res 312:2180-94 Cerca con Google

Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. 1996. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382(6588):225-30 Cerca con Google

Bao B, Zhang L, Hu H, Yin S, Liang Z. 2012. Deletion of a single-copy DAAM1 gene in congenital heart defect: a case report. BMC Med Genet 13:63 Cerca con Google

Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. 1996. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382:638–42 Cerca con Google

Bershadsky AD, Futerman AH. 1994. Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration. Proc Natl Acad Sci USA, 91: 5686–5689 Cerca con Google

Boutros M, Mlodzik M. 1999. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev., 83:27–37 Cerca con Google

Chantler E, Abraham-Peskir JV. 2004. Significance of midpiece vesicles and functional integrity of the membranes of human spermatozoa after osmotic stress. Andrologia 36(2):87-93 Cerca con Google

Chassot AA, Gillot I, Chaboissier MC. 2014. R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148(6):R97-110 Cerca con Google

Chawengsaksophak K, Svingen T, Ng ET, Epp T, Spiller CM, Clark C, Cooper H, Koopman P. 2012. Loss of Wnt5a disrupts primordial germ cell migration and male sexual development in mice. Biol Reprod 86(1):1-12 Cerca con Google

Cheng CY, Mruk DD. 2012. The blood-testis barrier and its implication in Male contraception. Pharmacol Rev 64:16–64 Cerca con Google

Clermont Y, Perey B. 1957. Quantitative study of the cell population of the seminiferous tubules in immature rats. AM J Anat. 100:241-267 Cerca con Google

Cooper TG, Yeung CH, Fetic S, Sobhani A, Nieschlag E. 2004. Cytoplasmic droplets are normal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Hum Reprod 19(10):2283-8 Cerca con Google

Cooper TG. 2011. The epididymis, cytoplasmic droplets and male fertility. Asian J Androl. 13(1):130-8 Cerca con Google

Cui Q, Xie P. 2015. Correlation Between Daam2 Expression Changes and Demyelination in Guillain-Barre Syndrome. Cell Mol Neurobiol [Epub ahead of print] Cerca con Google

Dhanasekaran DN, Reddy EP. 2008. JNK signaling in apoptosis. Oncogene;27:6245-51 Cerca con Google

DeRosier DJ, Edds KT. 1980. Evidence for fascin cross-links between the actin filaments in coelomocyte filopodia. Exp. Cell Res., 126:490–494 Cerca con Google

Dvorakova K , Moore HDM, Sebkova N, Palecek J. 2005. Cytoskeleton localization in the sperm head prior to fertilization. Reproduction 130: 61–69 Cerca con Google

Evangelista M, Zigmond S, Boone C. 2003. Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci., 116: 2603–2611 Cerca con Google

Faix J, Rottner K. 2006. The making of filopodia. Cell Biol. 18:18–25 Cerca con Google

Ferrara D, Izzo G, Liguori L, d’Istria M, Aniello F, Minucci S. 2009. Evidence for the involvement of prothymosin alpha in the spermatogenesis of the frog Rana esculenta. J. Exp. Zool. A Ecol. Genet Physiol 311(1):1-10 Cerca con Google

Ferrara D, Izzo G, Pariante P, Donizetti A, d'Istria M, Aniello F, Minucci S. 2010. Expression of prothymosin alpha in meiotic and post-meiotic germ cells during the first wave of rat spermatogenesis. J Cell Physiol 224(2):362-8 Cerca con Google

Fetic S, Yeung CH, Sonntag B, Nieschlag E, Cooper TG. 2006. Relationship of cytoplasmic droplets to motility, migration in mucus, and volume regulation of human spermatozoa. J Androl. 27(2):294-301 Cerca con Google

Franca LR, Auharek SA, Hess RA, Dufour JM, Hinton BT. 2012. Blood-tissue barriers: Morphofunctional and immunological aspects of the blood-testis and blood-epididymal barriers. Adv Exp Med Biol 763:237–259 Cerca con Google

Gong W, Pan L, Lin Q, Zhou Y, Xin C, Yu X, Cui P, Hu S, Yu J. 2013. Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing. Sci. China Life Sci 56(1):1-12 Cerca con Google

Goode BL, Eck MJ. 2007. Mechanism and function of formins in the control of actin assembly. Annu Rev. Biochem 76:593-627 Cerca con Google

Guttman J, Takai Y, Vogl AW. 2004a. Evidence that tubulobulbar complexes in the seminiferous epithelium are involved with internalization of adhesion junctions. Biol. Reprod 71(2):548-59 Cerca con Google

Guttman JA, Obinata T, Shima J, Griswold M, Vogl AW. 2004b. Non-muscle cofilin is a component of tubulobulbar complexes in the testis. Biol Reprod 70(3):805-12 Cerca con Google

Habas R, Kato Y, He X. 2001. Wnt/Frizzled Activation of Rho Regulates Vertebrate Gastrulation and Requires a Novel Formin Homology Protein Daam1. Cell 107:843–854 Cerca con Google

Habas R, Dawid IB. 2005. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 2005; 4:2 Cerca con Google

Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. 1998. Downregulation of betacatenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol,. 8:573–81 Cerca con Google

Higgs HN. 2005. Formin proteins: a domain-based approach. Trends Biochem Sci., 30: 342–353 Cerca con Google

He X, Semenov M, Tamai K, Zeng. 2004. LDL receptor-related proteins 5 and 6 in Wnt/betacatenin signaling: arrows point the way. Development, 131:1663-77 Cerca con Google

Hermo L, Dworkin J, Oko R. 1988. Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa. Am J Anat 183(2):107-24 Cerca con Google

Huszar G, Vigue L. 1990. Spermatogenesis-related change in the synthesis of the creatine kinase B-type and M-type isoforms in human spermatozoa. Mol Reprod Dev 25(3):258-62 Cerca con Google

Huszar G, Patrizio P, Vigue L, Willets M, Wilker C, Adhoot D, Johnson L. 1998. Cytoplasmic extrusion and the switch from creatine kinase B to M isoform are completed by the commencement of epididymal transport in human and stallion spermatozoa. J Androl 19(1):11-20 Cerca con Google

Jaiswal R, Breitsprecher D, Collins A, Correˆa IR Jr, Xu MQ, Goode BL. 2013. The Formin Daam1 and Fascin Directly Collaborate to Promote Filopodia Formation Current Biology, 23:1373–1379 Cerca con Google

Jeays-Ward K, Dandonneau M, Swain A. 2004. Wnt4 is required for proper male as well as female sexual development. Dev Biol 276(2):431-40 Cerca con Google

Ju R, Cirone P, Lin S, Griesbach H, Slusarski DC, Crews CM. 2010. Activation of the planar cell polarity formin DAAM1 leads to inhibition of endothelial cell proliferation, migration, and angiogenesis. Proc Natl Acad Sci U S A 107(15):6906-11 Cerca con Google

Kerr GE, Young JC, Horvay K, Abud HE, Loveland KL. 2014. Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice. Biol Reprod 90(1):3 Cerca con Google

Kida Y, Shiraishi T, Ogura T. 2004. Identification of chick and mouse Daam1 and Daam2 genes and their expression patterns in the central nervous system. Brain Res Dev Brain Res 153(1):143-50 Cerca con Google

Kida YS, Sato T, Miyasaka KY, Suto A, Ogura T. 2007. Daam1 regulates the endocytosis of EphB dur¬ing the convergent extension of the zebrafish noto¬chord. Proc Natl Acad Sci U S A 104:6708-13 Cerca con Google

Klein TJ, Mlodzik M. 2005. Planar cell polarization: An emerging model points in the right direction. Annu Rev Cell Dev Biol., 21:155–176 Cerca con Google

Kobielak A, Pasolli HA, Fuchs E. 2004. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol., 6:21-30 Cerca con Google

Kohn AD, Moon RT. 2005. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium, 38:439-46 Cerca con Google

Kovar DR. 2006. Molecular details of forminmediated actin assembly. Curr Opin Cell Biol 18:11–17 Cerca con Google

Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD. 2006. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124:423-35 Cerca con Google

Kühn S, Geyer M. 2014. Formins as effector proteins of Rho GTPases. Small GTPases 5:e29513 Cerca con Google

Lewis AK, Bridgman PC. 1992. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell. Biol., 119:1219–1243 Cerca con Google

Li F, Higgs HN. 2003. The mouse formin, mDia1, is a potent actin nucleation factor regulated by auto-inhibition. Curr Biol., 13:1335-1340 Cerca con Google

Li Q, Isikawa TO, Miyoshi H, Oshima M, Taketo MM. 2005. A targeted mutation of Nkd1 impairs mouse spermatogenesis. J Biol Chem 280(4):2831-9 Cerca con Google

Li N, Mruk DD, Wong CKC, Han D, Lee WM, Cheng CY. 2015. Formin 1 regulates ectoplasmic specialization in the rat testis through its actin nucleation and bundling activity. Endocrinology 156(8):2969–2983 Cerca con Google

Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schartz RJ, Field LJ, Atkinson SJ, Shou W. 2011. Dishevelled-associated activator of morphogenesis 1 Daam1 is required for heart morphogenesis. Development 138:303-315 Cerca con Google

Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schartz RJ, Field LJ, Atkinson SJ, Shou W. 2011. Dishevelled-associated activator of morphogenesis 1 Daam1 is required for heart morphogenesis Development, 138:303-315 Cerca con Google

Li MWM, Mruk DD, Cheng CY. 2012. Gap junctions and blood-tissue barriers. Adv Exp Med Biol 763:260–280 Cerca con Google

Lie PPY, Mruk DD, Lee WM, Cheng CY. 2009. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 23:2555–2567 Cerca con Google

Lie PPY, Mruk DD, Lee WM, Cheng CY. 2010. Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1581–1592 Cerca con Google

Lin X. 2004. Functions of heparan sulfate proteoglycans in cell signaling during development. Development, 131:6009-21 Cerca con Google

Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. 2010. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140(3):327-37 Cerca con Google

Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. 1999. Beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. USA 96:6273–78. Cerca con Google

Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. 2002. Control of beta-catenin phosphorylation/ degradation by a dual-kinase mechanism. Cell, 108:837–47 Cerca con Google

Liu W, Sato A, Khadka D, Bharti R, Diaz, H, Runnels LW, Habas R. 2008. Mechanism of activation of the Formin protein Daam1. Proc Natl Acad Sci USA 105(1):210-5 Cerca con Google

Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. 2007. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol 369:1258-69 Cerca con Google

Ma P, Wang H, Guo R, Ma Q, Yu Z, Jiang Y, Ge Y,Ma J, Xue S, Han D. 2006. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol Repr and Develop 73:774–783 Cerca con Google

Marinou K, Christodoulides C, Antoniades C, Koutsilieris M. 2012. Wnt signaling in cardiovascular physiology. Trends Endocrinol Metab 23(12):628-36 Cerca con Google

Marlow F, Topczewski J, Sepich D, Solnica-Krezel L. 2002. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12:876-84 Cerca con Google

Mattila PK, Lappalainen P. 2008. Filopodia: molecular architectureand cellular functions. Nat. Rev. Mol. Cell Biol,. 9: 446–454 Cerca con Google

Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihály J. 2006. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133:957-66 Cerca con Google

Miller RK, Canny SG, Jang CW, Cho K, Ji H, Wagner DS, Jones EA, Habas R, McCrea PD. 2011. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J Am Soc Nephrol 22(9):1654-64 Cerca con Google

Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H. 1996. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 86:391–99 Cerca con Google

Mortimer D, Menkveld R. 2001. Sperm morphology assessment--historical perspectives and current opinions. J Androl 22(2):192-205 Cerca con Google

Mortimer D, Templeton AA, Lenton EA, Coleman RA. 1982. Semen analysis parameters and their interrelationships in suspected infertile men. Arch Androl 8(3):165-71 Cerca con Google

Naud N, Tourè A, Liu J, Pineau C, Morin L, Dorseuil O, Escalier D, Chardin P, Gacon G. 2003. Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells. Biochem J 372(Pt 1):105-12 Cerca con Google

Nicol B, Guiguen Y. 2011. Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev 5(6):318-29 Cerca con Google

Okabe S, Hirokawa N. 1991: Actin dynamics in growth cones, J. Neurosci., 11:1918–1929 Cerca con Google

Pellegrin S, Mellor H. 2005. The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol., 15:129-133 Cerca con Google

Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. 2011. ProgHistochem Cytochem 46:49–127 Cerca con Google

Pengpeng M, Huizhen W, Rui G, Quanhong M, Zuoren Y, Yi J, Yeuha G, Jing M, Shepu X, Daishu H. 2006. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol Repr and Develop 73:774–783 Cerca con Google

Picut CA, Remick AK, de Rijk EP, Simons ML, Stump DG, Parker GA. 2015. Postnatal development of the testis in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol. 43(3):326-42 Cerca con Google

Pruyne D, Evangelista M., Yang C, Bi E, Zigmond S, Bretscher A, Boone C. 2002. Role of formins in actin assembly: nucleation and barbed-end association. Science, 297:612–615 Cerca con Google

Rengan AK, Agarwal A, van der Linde M, du Plessis SS. 2012. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod Biol Endocrinol 17;10:92 Cerca con Google

Reya T, Clevers H. 2005. Wnt signalling in stem cells and cancer. Nature, 434:843-50 Cerca con Google

Rotkopf S, Hamberg Y, Aigaki T, Snapper SB, Shilo BZ, Schejter ED. 2011. The WASp-based actin polymerization machinery is required in somatic support cells for spermatid maturation and release. Development 138(13):2729-39 Cerca con Google

Russell LD. 1979. Further observations on tubulobulbar complexes formed by late spermatids and Sertoli cell in rat testis. Anat Rec 194: 213–232 Cerca con Google

Russell LD, Bartke A, Goh JC. 1989. Postanal development of the Sertoli cell barrier, tubular lumen, and cytoskeleton of Sertoli and myoid cells in the rat, and their relationship to tubular fluid secretion and flow. Am J Anat.,184(3):179-89 Cerca con Google

Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D. 2002. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol., 4:626–631 Cerca con Google

Sato A, Khadka DK, Liu W, Bharti R, Runnels LW, Dawid IB, Habas R. 2006. Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133(21):4219-31 Cerca con Google

Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kühl M, Moon RT. 2003. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol. ;161(4):769-77 Cerca con Google

Slusarski DC, Pelegri F. 2007. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol., 307:1-13 Cerca con Google

Small JV, Isenberg G, Celis JE. 1978. Polarity of actin at the leading edge of cultured cells, Nature, 272:638–639 Cerca con Google

Staal FJ, Luis TC, Tiemessen MM. 2008. WNT signalling in the immune system: WNT is spreading its wings. Nature Reviews Immunology 8, 581-593 Cerca con Google

Su W, Mruk DD, Cheng CY. 2013. Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Crit Rev Biochem Mol Biol. 48(2):153-72 Cerca con Google

Tamai K, SemenovM, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. 2000. LDL-receptor-related proteins in Wnt signal transduction. Nature, 407:530– 35 Cerca con Google

Tanegashima K, Zhao H, Dawid IB. 2008. WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J 27(4):606-17 Cerca con Google

Tang EI, Mok KW, Lee WM, Cheng CY. 2015. EB1 regulates tubulin and actin cytoskeletal networks at the Sertoli cell blood-testis barrier in male rats—an in vitro study. Endocrinology 156:680–693 Cerca con Google

Tolwinski NS, Wieschaus E. 2004. A nuclear function for Armadillo/beta-Catenin. PLoS Biol., 2:486–93 Cerca con Google

Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG. 2006. Role of fascin in filopodial protrusion. J. Cell Biol., 174:863–875 Cerca con Google

Vogl AW, Vaid KS, Guttman JA. 2008. The Sertoli cell cytoskeleton. Adv Exp Med Biol 636:186–211 Cerca con Google

Wallingford JB, Habas R. 2005. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development, 132:4421-36 Cerca con Google

Wong EWP, Mruk DD, Cheng CY. 2008. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochim Biophys Acta 1778,692–708 Cerca con Google

World Health Organization: Standard procedures. In WHO laboratory manual for the examination and processing of human semen. 5th edition. Edited by Cooper TG. Cambridge: Cambridge University Press 2010:68 Cerca con Google

Xu Y, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, Eck MJ. 2004. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell, 116:711–723 Cerca con Google

Yamaguchi TP. 2001. Heads or tails: Wnts and anterior-posterior patterning. Curr Biol., 11:713-24 Cerca con Google

Yamashita M, Higashi T, Suetsugu S, Sato Y, Ikeda T, Shirakawa R, Kita T, Takenawa T, Horiuchi H, Fukai S, Nureki O. 2007.Crystal structure of human DAAM1 formin homology 2 domain. Genes Cells 12(11):1255-65 Cerca con Google

Yanagawa S, Matsuda Y, Lee JS, Matsubayashi H, Sese S, Kadowaki T, Ishimoto A. 2002. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J., 21:1733–42 Cerca con Google

Yeung CH, Barfield JP, Cooper TG. 2006. Physiological volume regulation by spermatozoa. Cerca con Google

Mol Cell Endocrinol 250(1-2):98-105 Cerca con Google

Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. 1996. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10:1443–54 Cerca con Google

Young JS, Guttman JA, Vaid KS, Vogl AW. 2009a. Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80:162–174 Cerca con Google

Young JS, Guttman JA, Vaid KS, Shahinian H, Vogl AW. 2009b. Cortactin (CTTN), N-WASP (WASL), and clathrin (CLTC) are present at podosome-like tubulobulbar complexes in the rat testis. Biol Reprod 80:153–161 Cerca con Google

Zallen JA. 2007. Planar polarity and tissue morphogenesis. Cell 129:1051-1063 Cerca con Google

Zigmond SH. 2004. Formin-induced nucleation of actin filaments. Curr Opin Cell Biol. 16(1):99-105 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record