Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pachera, Paola (2016) Integrated experimental and numerical approach to the biomechanics of surgical meshes evaluating interaction phenomena with regard to abdominal wall repair. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato)
10Mb

Abstract (inglese)

The research activity performed is addressed to the evaluation of the interaction phenomena between surgical meshes and native biological tissues and structures, with the aim to assess the biomechanical compatibility, which represents a mandatory factor for successful adoptions in different surgical procedures. The mechanical characterization of meshes for repairs is performed by means of an integrated experimental-numerical approach, in direct correlation with the surgical techniques.
Surgical grafts can origin from different sources and they can be classified as synthetic or biological, characterized by peculiar biochemical and mechanical properties and, consequently, by different biomechanical performances. Biological grafts are derived from collagen-rich tissues and can be drawn from animal (xenografts) or human (allograft) sources, the latter are usually obtained from the fascial system. For this reason, the mechanical characterization of fascial tissues is performed, evaluating the in situ functional role in the interaction with surrounding biological structures. With the purpose to interpret fascial tissues mechanical behaviour, which is characterized by anisotropy, coupled geometric and material non-linearity and time-dependent phenomena, a specific fiber reinforced visco-hyperelastic model is provided. The constitutive parameters evaluation is performed through the minimization of a cost function that defines the discrepancy between experimental data and results from the model of the tensile tests. The optimization technique, based on the Simulated Annealing optimization algorithm, leads to the definition of the set of constitutive parameters to be adopted within the constitutive formulation and implemented in the model, with the purpose to achieve a suitable description of tissue in situ mechanical behaviour.
The preliminary phase of fascial tissues performances is investigated through numerical analysis of the anterior compartment of the leg. The response in this region allow for a definition of the characteristic facial tissues behaviour and is of clinical interest in the several painful syndrome, as the compartment syndrome, also offering the possibility of several references in literature.
As an example of xenograft, Permacol ™ is characterized through experimental analysis and constitutive modelling. It is derived from decellularized and cross-linked porcine skin and it is a graft commonly used in abdominal wall surgery.
As far as synthetic meshes is concerned, Bard® Soft mesh is studied, as a lightweight, large pore monofilament polypropylene mesh, following the above mentioned procedure.
The mechanical investigation of different kinds of surgical meshes is fundamental for the definition of the numerical model of the herniated and repaired human abdominal wall. The reconstruction of the abdominal region is based on MR images integrated with data from literature. Constitutive formulations of the different biological tissues of the anatomical region are provided. The numerical model allows the analysis of different configurations, firstly considering the healthy abdomen to assess its overall mechanical behaviour in physiological conditions. Then a hernia defect is introduced in the abdominal wall, with size and position defined in accordance with clinical evidences, virtually repaired by means of different kinds of grafts (biologic and synthetic). The purpose is to evaluate the mechanical interaction between native abdominal wall tissues and structures and surgical meshes, to assess the mechanical functional response and compatibility. The analysis allows the comparison between physiological and pathological conditions and between different kinds of meshes, by means of the estimation of the stress and strain fields within biological tissues and prosthesis. Attention is paid to the interaction at tissue-implant interface, providing a useful computational tool for the evaluation of surgical strategies in dependence on prosthesis configuration.
The investigation entails a relevant experimental effort, essential for the extensive numerical analysis of the anatomical district considered, providing a result evaluation by direct correlation with surgical competences.

Abstract (italiano)

Lo scopo della presente ricerca consiste nella valutazione dei fenomeni di interazione che si vengono a creare nell’accoppiamento di mesh chirurgiche e tessuti e strutture biologiche. La valutazione della compatibilità meccanica tra tessuti e impianto rappresenta un fattore fondamentale per il buon esito dell’intervento. In quest’ottica, risulta necessaria la caratterizzazione meccanica delle mesh chirurgiche che viene condotta attraverso un approccio numerico-sperimentale integrato, in diretta correlazione con le tecniche chirurgiche.
Le mesh chirurgiche hanno differente origine e possono essere classificate come sintetiche o biologiche, caratterizzate da particolari proprietà biochimiche e meccaniche e, conseguentemente, da differenti prestazioni. Le mesh biologiche sono ricavate da tessuti ricchi di collagene e possono essere di origine animale (xenograft) o umana (allograft), queste ultime sono principalmente ottenute dal sistema fasciale. Per questo motivo i tessuti fasciali vengono caratterizzati meccanicamente, valutandone il ruolo funzionale in situ in interazione con le circostanti strutture biologiche. Uno specifico modello visco-iperelastico e fibrorinforzato viene utilizzato allo scopo di interpretare il comportamento meccanico dei tessuti biologici, caratterizzati da proprietà di anisotropia, grandi deformazioni e fenomeni dipendenti dal tempo. I parametri costitutivi vengono definiti attraverso la minimizzazione di una funzione costo che esprime la differenza tra dati sperimentali e dati numerici. La tecnica di ottimizzazione, basata sull’algoritmo di ottimizzazione del Simulated Annealing, porta all’individuazione di un set di parametri costitutivi che vengono adottati nella formulazione costitutiva, successivamente implementata nel modello numerico, allo scopo di ottenere un’adeguata descrizione del comportamento meccanico del tessuto in situ.
Analisi numeriche sul compartimento anteriore della gamba vengono utilizzate per lo studio della meccanica dei tessuti fasciali di questo distretto. Il compartimento anteriore è di particolare interesse clinico a causa delle diverse patologie a carico di tale regione come, ad esempio, la sindrome compartimentale.
La mesh chirurgica Permacol™ viene studiata come esempio di xenograft e caratterizzata attraverso analisi sperimentale e modellazione costitutiva. Tale mesh, comunemente utilizzata nella ricostruzione della parete addominale, è ottenuta da derma suino debitamente decellularizzato e trattato al fine di ottenere cross-links.
La mesh Bard® Soft viene studiata in quanto esempio di mesh sintetica leggera in polipropilene, caratterizzata da elevata porosità.
L’analisi meccanica di diversi tipi di mesh è fondamentale per la definizione del modello numerico della parete addominale erniata e virtualmente riparata. La ricostruzione della geometria della regione addominale viene effettuata attraverso immagini diagnostiche (MR) e dati di letteratura. Nel testo viene specificata la formulazione costitutiva adottata per la descrizione dei diversi tessuti componenti la regione addominale. Il modello numerico permette una prima valutazione del comportamento meccanico globale della parete addominale integra in condizioni fisiologiche. Successivamente, nel modello, viene introdotta una porta erniaria di posizione e dimensioni compatibili con le evidenze cliniche. Tale difetto viene virtualmente riparato con mesh chirurgiche caratterizzate in diverso modo (biologica e sintetica). Lo scopo consiste nella valutazione dell’interazione meccanica tra mesh chirurgiche e i tessuti biologici, considerandone la compatibilità della risposta meccanica funzionale. Le analisi numeriche permettono di valutare il comportamento della parete addominale sana con quello della parete riparata confrontando i campi di tensione e deformazione di tessuti biologici e mesh chirurgica. Il modello numerico proposto fornisce una prima valutazione degli effetti, indotti dalla presenza della protesi, sul comportamento meccanico globale della parete addominale e fornisce gli strumenti per future valutazioni utili alla pianificazione chirurgica e alla configurazione della protesi.
Lo studio proposto si fonda su una forte base sperimentale, essenziale per lo svolgimento delle successive analisi numeriche.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Natali, Arturo
Correlatore:Pavan, Piero
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA, DEI MATERIALI E MECCANICA
Data di deposito della tesi:19 Gennaio 2016
Anno di Pubblicazione:Marzo 2016
Parole chiave (italiano / inglese):abdominal wall biomechanics, experimental tests, constitutive modeling
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/34 Bioingegneria industriale
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Meccanica dei Materiali Biologici
Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:9053
Depositato il:21 Ott 2016 10:21
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Shankaran V, Weber DJ, Reed RL, Luchette FA (2011). A Review of Available Prosthetics for Ventral Hernia Repair. Ann Surg 253(1):16-26. Cerca con Google

[2] Hernández-Gascón B, Peña E, Melero H, Pascual G, Doblaré M, Ginebra MP, Bellón JM, Calvo B (2011). Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomater 7(11):3905-3913. Cerca con Google

[3] Gaertner WB, Bonsack ME, Delaney JP (2007). Experimental evaluation of four biologic prostheses for ventral hernia repair. J Gastrointest Surg 11(10):1275-1285. Cerca con Google

[4] Hashizume R, Fujimoto KL, Hong Y, Amoroso NJ, Tobita K, Miki T , Keller BB, Wagner WR (2010). Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials 31 (12):3253-3265. Cerca con Google

[5] Bellows CF, Alder A, Helton WS (2006). Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devic 3 (5):657-675. Cerca con Google

[6] Matthews BD, Pratt BL, Pollinger HS, Backus CL, Kercher KW, Sing RF, Heniford BT (2003). Assessment of adhesion formation to intraabdominal polypropylene mesh and polytetrafluoroethylene mesh. J Surg Res 114:126–132. Cerca con Google

[7] Read RC(2004). Milestones in the history of hernia surgery: prosthetic repair. Hernia 8:8–14. Cerca con Google

[8] Todros S, Pavan PG, A. N. Natali (2015). Synthetic surgical meshes used in abdominal wall surgery: part I - materials and structural conformation. J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.33586. Cerca con Google

[9] Klinge U (2007). Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg 31:867–8. Cerca con Google

[10] Cobb WS, Burns JM, Peindl RD, Carbonell AM, Matthews BD, Kercher KW (2006). Textile analysis of heavy-weight, mid-weight and light-weight polypropylene mesh in a porcine ventral hernia model. J Surg Res 136:1–7. Cerca con Google

[11] Brown GL, Richardson JD, Malangoni MA, Tobin GR, Ackerman D, Polk HC (1985). Comparison of prosthetic materials for abdominal wall reconstruction in the presence of contamination and infection. Ann Surg 210:705–711. Cerca con Google

[12] Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002). PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–3493. Cerca con Google

[13] Amid PK (1997). Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1: 15-21. Cerca con Google

[14] Maurer MM, Rohrnbauer B, Feola A, Deprest J, Mazza E (2014). Mechanical biocompatibility of prosthetic meshes: A comprehensive protocol for mechanical characterization. J Mech Behav Biomed 40:42-58. Cerca con Google

[15] Dietz HP, Vancaillie P, Svehla M, Walsh W, Steensma AB, Vancaillie TG (2003). Mechanical properties of urogynecologic implant materials. Int. Urogynecol. J. Pelvic Floor Dysfunct. 14:239–243. Cerca con Google

[16] Deeken CR, Abdo MS, Frisella MM, Matthews BD (2011). Physicomechanical evaluation of Polypropylene, Polyester, and Polytetrafluoroethylene Meshes for Inguinal Hernia Repair. J Am Coll Surg 212:68–79. Cerca con Google

[17] Cobb WS, Peindl RM, Zerey M, Carbonell AM, Heniford BT (2009). Mesh terminology 101. Hernia 13:1–6. Cerca con Google

[18] Culav EM, Clark CH, Merrilees MJ (1999). Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308-319. Cerca con Google

[19] Castro Brás LE, Shurey S, Sibbons PD (2012). Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia 16 (1):77-89. Cerca con Google

[20] Society of American Gastrointestinal and Endoscopic Surgeons http://www.sages.org/wiki/biologic-mesh/ (last access 14-04-2015). Vai! Cerca con Google

[21] Cano ML, Carrasco MA, Perez MTQ, Via MAA (2013). Biological implants in abdominal waal hernia surgery. Cir Esp 91(4):217–223. Cerca con Google

[22] Cornwell KG, Landsman A, James KS (2009). Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 26(4): 507-523. Cerca con Google

[23] Ionescu MI, Ross DN, Deac R, Grimshaw VA, Taylor SH, Whitaker W, Wooler GH (1970). Autologous fascia lata for heart valve replacement. Thorax 25(1): 46–56. Cerca con Google

[24] Nakata K, Shino K, Horibe S, Natsu-ume T, Mae T, Ochi T (2000). Reconstruction of the lateral ligaments of the ankle using solvent-dried and gamma-irradiated allogeneic fascia lata. J Bone Joint Surg Br 82(4):579-82. Cerca con Google

[25] Cerruto MA, Cardarelli S, Aloisi A, Gigli F, Tiscione D, Arancio M, Ruggera L, Zattoni F, Curti P (2001). Pubo-vaginal sling using cadaveric fascia lata in the treatment of female stress urinary incontinence due to a sphincteric deficiency: our experience with a 10-year follow-up. J Urol 165(5):1605-11. Cerca con Google

[26] Lemound J, Stoetzer M, Kokemüller H, Schumann P, Gellrich NC (2014). Modified Technique for Rehabilitation of Facial Paralysis Using Autogenous Fascia Lata Grafts. J Oral Maxillofac Surg 73:176–183. Cerca con Google

[27] Stecco C, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, De Caro R (2008). Histological study of the deep fascia of the limbs. J Bodywork Mov Ther 12(3):225-30. Cerca con Google

[28] Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, Natali AN, De Caro R (2009). Mechanics of crural fascia: from anatomy to costitutive modelling. Surg Radiol Anat 31:523-529. Cerca con Google

[29] Benjamin M (2009) The fascia of the limbs and back – a review. J Anat 214: 1–18. Cerca con Google

[30] Stecco A, Macchi V, Masiero S, Porzionato A, Tiengo C, Stecco C, Delmas V, De Caro R (2009). Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat 31:35–42. Cerca con Google

[31] Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, Natali AN, De Caro R (2009). Mechanics of crural fascia: from anatomy to costitutive modelling. Surg Radiol Anat 31:523-529. Cerca con Google

[32] Fung YC (1981). Biomechanics: mechanical properties of living tissues. Springer-Verlag, New York. Cerca con Google

[33] Spencer AJM (1992). Continuum theory of the mechanics of fiber-reinforced composites. Springer-Verlag, New York. Cerca con Google

[34] Holzapfel GA (2000). Nonlinear solid mechanics. John Wiley & Sons LTD, New York. Cerca con Google

[35] Gurtin, ME (1981). An introduction to continuum mechanics. Academic Press, San Diego. Cerca con Google

[36] Limbert G, Middleton J (2004). A transversally isotropic viscohyperelastic material: Application to the modeling of biological soft connective tissues. Int J Solids Struct 41: 4237-4260. Cerca con Google

[37] Truesdell C, Noll W (1992). The non-linear field theories of mechanics (second edition), Springer-Verlag, Berlin. Cerca con Google

[38] Belytschko T, Liu WK, Moran B (2001). Nonlinear finite elements for continua and structures, John Wiley & Sons LTD, New York. Cerca con Google

[39] Carew TE, Vaishnav RN, Patel DJ (1968). Compressibility of the arterial wall. Circ Res 23(1):61-8. Cerca con Google

[40] Zhang G (2005). Evaluating the viscoelastic properties of biological tissues in a new way. J Musculoskelet Neuronal Interact 5(1):85-90. Cerca con Google

[41] Natali AN, Pavan PG, Carniel EL, Dorow C (2004). Viscoelastic response of the periodontal ligament: an experimental-numerical analysis. Connect Tissue Res 45:222-230. Cerca con Google

[42] Lei F, Szeri AZ (2007). Inverse analysis of constitutive models: biological soft tissues, J Biomech 40 (4):936-940. Cerca con Google

[43] Park MW, Kim YD (1998). A systematic procedure for setting parameters in simulated annealing algorithms. Computers Ops Res. 25(3):207-217. Cerca con Google

[44] Pavan PG, Pachera P, Forestiero A, Reggiani C, Natali AN (2015). Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model. Under revision at J Biomech. Cerca con Google

[45] Pavan PG, Pachera P, Stecco C, Natali AN (2015). Biomechanical behavior of human crural fascia in anterior and posterior regions of lower limb. Med Biol Eng Comput 53(10):951-9. Cerca con Google

[46] Pavan PG, Stecco C, Pachera P, De Caro R, Natali AN (2014). Investigation of the mechanical properties of the human crural fascia and their possible clinical implications. Surg Radiol Anat 36(1):25-32. Cerca con Google

[47] Natali AN, Carniel EL, Pavan PG (2008). Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7):905-912. Cerca con Google

[48] Pfaeffle HJ, Toamino MM, Grewal R, Xu J, Boardman ND, Woo SL, Herndon JH (1996). Tensile properties of the interosseous membrane of the human forearm. J Orthop Res 14(5): 842-845. Cerca con Google

[49] Nordez A, Hug F (2010). Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol 108:1389-1394. Cerca con Google

[50] Geerligs M, Peters WMG, Ackermans PAJ, Oomens CWJ, Baaijens FTP (2008). Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45:677–688. Cerca con Google

[51] Mattei CP, Beca S, Zahouani H (2008). In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30:599–606. Cerca con Google

[52] Pavan PG, Pachera P, Natali AN (2015). Numerical modelling of crural fascia mechanical interaction with muscular compartments. Proc Inst Mech Eng H J Eng Med Part h 229(5):395-402. Cerca con Google

[53] French EZ, Price WH (1962). Anterior tibial pain. Br Med J 2:1290. Cerca con Google

[54] Gershuni DH, Gosink BB, Hargens AR, Gould RN, Forsythe JR, Mubarak SJ, Akeson WH (2011). Ultrasound evaluation of the anterior musculofascial compartment of the leg following exercise. Clin Orthop Relat Res 10:59-65. Cerca con Google

[55] Hurschler C, Vanderby R, Martinez DA, Vailas AC, Turnipseed WD (1994). Mechanical and biomechanical analyses of tibial compartment fascia in chronic compartment syndrome. Ann Biomed Eng 22:272-279. Cerca con Google

[56] Friden J, Sfakianos PN, Hargens AR (1985). Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol 61(6):2175-9. Cerca con Google

[57] Roman M, Chaudhry H, Bukiet B, Stecco A, Findley WT (2013). Mathematical Analysis of the Flow of Hyaluronic Acid Around Fascia During Manual Therapy Motions. J Am Osteopath Assoc 113:600-610. Cerca con Google

[58] Mijailovich SM, Stojanovic B, Ko Liang A, Wedeen VJ, Gilber RJ (2010). Derivation of a finite-element model of lingual deformation swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI. J Appl Physiol 109:1500-1514. Cerca con Google

[59] Joahansson T, Meier P, Blickhan R (2000). A finite-element model for the mechanical analysis of skeletal muscle. J Theor Biol 206:131-149. Cerca con Google

[60] Eheret AE, Böl M, Itskiv M (2011). A continuum constitutive model for the active behaviour of skeletal muscle. J Mech Phys Solids 59:625-636. Cerca con Google

[61] Mubarak SJ, Owen CA, Hargens AR, Garetto LP, Akeson WH (1978). Acute compartment syndromes: diagnosis and treatment with the aid of the wick catheter. J Bon Joint Surg Am 60(8):1901-1905. Cerca con Google

[62] Friden J, Sfakianos PN, Hargens AR (1985). Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol 61(6):2175-9. Cerca con Google

[63] Cooper A, Key SA (1844). The anatomy and surgical treatment of abdominal hernia: with numerous plates. Philadelphia: Lea & Blanchard. Cerca con Google

[64] Gascon BH (2013). Mechanical modelling of the abdominal wall and biomaterials for hernia surgery. PhD thesis. Cerca con Google

[65] Ahluwalia HS , Burger JP, Quinn TH (2004). Anatomy of the anterior abdominal wall. Oper Tech Gen Surg 6(3):147-155. Cerca con Google

[66] Norasteh A, Ebrahimi E, Salavati M, Rafiei J, Abbasnejad E (2007). Reliability of B-mode ultrasonography for abdominal muscles in asymptomatic and patients with acute low back pain. J Bodyw Mov Ther 11.1: 17-20. Cerca con Google

[67] Urquhart DM, Barker PJ, Hodges PW, Story IH, Briggs CA (2005). Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clin Biomec 20.3: 233-241. Cerca con Google

[68] Muysoms FE, Miserez M, Berrevoet F, Campanelli G, Champault GG, Chelala E, Dietz UA, Eker HH, Nakadi IE, Hauters P, Pascual MH, Hoeferlin A, Klinge U, Montgomery A, Simmermacher RKJ, Simons MP, Smietanski M, Sommeling C, Tollens T, Vierendeels T, Kingsnorth A (2009). Classification of primary and incisional abdominal wall hernias. Hernia13:407–414. Cerca con Google

[69] Skandalakis PN, Zoras O, Skandalakis JE, Mirilas P (2006). Spigelian hernia: surgical anatomy, embryology, and technique of repair. Am Surg 72(1):42-8. Cerca con Google

[70] Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT (2005). Normal Intraabdominal pressure in healthy adults. J. Surg. Res 129.2: 231-235. Cerca con Google

[71] Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Öttinger AP, Schumpelick V (1998). Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg, 164.12: 951-960. Cerca con Google

[72] Pachera P, Pavan PG, Todros S, Cavinato C, Fontanella CG, Natali AN (2015). “A numerical investigation of the healthy abdominal wall structures”. Under revision at J Biomech Cerca con Google

[73] Förstemann T, Trzewik J, Holste J, Batke B, Konerding MA, Wolloscheck T, Cerca con Google

Hartung C (2011). Forces and deformations of the abdominal wall—a mechanical and Cerca con Google

geometrical approach to the linea alba. J Biomech 44.4: 600-606. Cerca con Google

[74] Abdelounis HB, Nicolle S, Otténio M, Beillas P, Mitton D (2013). Effect of two loading Cerca con Google

rates on the elasticity of the human anterior rectus sheath. J Mech Behav Biomed Mater, 20: 1-5. Cerca con Google

[75] Cardoso MHS (2012). Experimental study of the Human Abdominal Wall. Universidade do Porto PhD thesis. Cerca con Google

[76] Konerding MA, Bohn M, Wolloscheck T, Batk B, Holste JL, Wohlert S, Trzewik J, Förstemann T, Hartung C (2011). Maximum forces acting on the abdominal wall: Experimental validation of a theoretical modeling in a human cadaver study. Med Eng Phys 33:789–792. Cerca con Google

[77] Song C, Alijani A, Frank T, Hanna GB, Cuschieri A (2006). Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc 20: 987–990. Cerca con Google

[78] Martins P, Peña E, Natal Jorge RM, Santosd A, Santos L, Mascarenhas T, Calvo B (2011). Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111-22. Cerca con Google

[79] Hernández-Gascón B, Mena A, Peña E, Pascual G, Bellón JM, Calvo B (2013). Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41(2):433-44. Cerca con Google

[80] Pavan PG, Pachera P, Todros S, Tiengo C, Natali AN (2015). Mechanical characterization of animal derived grafts for surgical implantation. J Mech Med Biol. doi: 10.1142/S0219519416500238. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record