Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Gallo, Pasquale (2016) Local approaches for the fatigue design of components subjected to high temperature. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (T)
5Mb

Abstract (inglese)

The present document summarized the aims and the results obtained by the candidate, during the Ph.D. programme. The research activity consisted in the investigation of the high temperature fatigue behaviour, considering the effect of the temperature combined with creep. After a preliminary analysis, the investigation of different notches reproducing the geometry of real components was considered a key topic in the present research activity. These geometries, indeed, are completely neglected in the past and recent literature, despite their important role played in industrial applications. Moreover, the interaction between creep and fatigue is still not well understood and the available design tools are not effective.
Considering a topic so wide and complex, it was essential to approach and face the problems from different viewpoints strictly related one another:
-from the experimental point of view: the aim was the characterization of the high temperature fatigue behavior of different innovative materials, considering a large number of notch geometries, in order to obtain a robust experimental set of new data;
-from analytical/theoretical point of view: with the aim to develop and/or extend methods based on energy approaches to high temperature phenomena, to analyse the elastic-plastic behaviour of the material and try to give robust and reliable tool for the design against creep.
For these reasons, high temperature fatigue tests have been conducted on Cu-Co-Be alloy, 40CrMoV13.9, Titanium grade 2, and a synthesis in terms of the strain energy density of high temperature fatigue data has been proposed successfully, for the first time. In addition, on the 40CrMoV13.9 steel, an investigation on the crack initiation from notches and on the influence of surface roughness at elevated temperature was accurately conducted.
Because of the good results obtained with the SED approach, it was investigated the accuracy of the averaged SED considering a large bulk of high temperature fatigue data taken from literature. Notched components made of different C45 carbon steel at 250°C, Inconel 718 at 500°C and directionally solidified superalloy DZ125 at 850°C were considered. The control volume was derived for each material through the analytical relation within El Haddad-Smith-Topper parameter and the material characteristic length defined by the Theory of Critical Distances. SED based curves were obtained and allowed proving that the proposed approach can be a reliable design tool in practical applications when dealing with high temperature.
Relating to the creep phenomenon, the author developed a useful numerical tool allowing assessing the stress relaxation and the strain evolution against time, at the tip of blunt V-notches. In detail, starting from Neuber’s rule extended to time-dependent problems and assuming Lazzarin-Tovo equations to describe the early elastic state of the system, a set of new differential equations to be solved numerically has been derived in order to predict the evolution of stresses and strains for a material obeying a Norton power law. The results have shown an excellent prediction of the stresses and strains evolution against time, with a maximum discrepancy within theoretical and finite element method prediction of 20%. Some preliminary analyses on the extension of SED under creeping conditions have been also reported.
At the end, the contour J-Integral, developed for elastic-plastic problems, have been also considered for further applications to high temperature and creep.
The results led to several international fruitful collaborations and solid bases for interesting future development of a unified SED approach of fatigue and creep

Abstract (italiano)

L’obiettivo del Dottorato di Ricerca era lo studio del comportamento a fatica di materiali metallici ad alta temperatura, indagando in modo particolare il fenomeno del creep, che diventa non trascurabile in determinate condizioni di carico e interagisce con la resistenza a fatica stessa. È stata ritenuta interessante soprattutto l’analisi di componenti in presenza di intagli e/o di geometrie complesse che rappresentassero in qualche modo la geometria di componenti effettivamente utilizzati nelle applicazioni industriali.
Da un’iniziale e approfondita analisi bibliografica è emerso come in letteratura si trascurino la fatica ad alta temperatura ad alto numero di cicli e in particolar modo le applicazioni relative a componenti intagliati. Inoltre, l’interazione fra fatica e creep si presenta come un evento ancora poco chiaro e trattato con strumenti poco efficienti.
Considerando fenomeni molto complessi e un tema così ampio, è stato indispensabile affrontare l’oggetto del presente dottorato di ricerca da diversi punti di vista ma strettamente interconnessi:
-quello sperimentale: caratterizzando il comportamento a fatica ad alta temperatura di diversi materiali innovativi e multifunzionali d’interesse industriale, considerando varie geometrie d’intaglio, in modo tale da fornire un consistente numero di dati sperimentali di partenza;
-quello analitico/teorico: cercando di sviluppare e/o estendere approcci energetici ad alta temperatura, analizzando il comportamento elasto-plastico, gli strumenti a disposizione e cercando, infine, di fornire strumenti efficaci per la progettazione in presenza di creep.
Per queste ragioni, è stata condotta una campagna sperimentale al fine di caratterizzare il comportamento a fatica ad alta temperatura di geometrie intagliate di una lega Cu-Co-Be, 40CrMV13.9 a Titanio Grado 2. I dati sperimentali ottenuti sono stati sintetizzati in termini di Strain Energy Density, esteso per la prima volta all’alta temperatura. Sempre considerando l'acciaio 40CrMoV13.9, è stata condotta un’analisi sull’innesco di cricche a bordo foro, ad alta temperatura, valutando l’influenza della rugosità superficiale.
Visti i positivi riscontri ottenuti con la sintesi in energia dei dati sperimentali, la potenzialità del metodo è stata ulteriormente verificata considerando nuovi materiali e geometrie presenti in letteratura. Sono state prese in esame prove a fatica condotte su un acciaio C45 a 250°C, Inconel 718 a 500°C e sulla superlega DZ125 a 850°C. I dati, originariamente sintetizzati attraverso la Teoria delle Distanze Critiche, sono stati ripresentati con successo in termini di densità di energia di deformazione mediata su un volume di controllo. Il raggio di controllo per ogni materiale è stato determinato attraverso la relazione che lega il raggio stesso con il parametro di El Haddad-Smith-Topper e la distanza critica caratteristica del materiale.
Successivamente, il fenomeno del creep è stato accuratamente considerato. In dettaglio, è stato con successo fornito uno strumento numerico capace di prevedere il rilassamento delle tensioni e l’evoluzione delle deformazioni nel tempo, all’apice d’intagli a V raccordati. In dettaglio, partendo dall’estensione della regola di Neuber a problemi dipendenti dal tempo, e utilizzando le equazioni di Lazzarin-Tovo al fine di descrivere lo stato elastico iniziale del problema, è stato poi ricavato un set di equazioni differenziali da risolvere in modo iterativo/numerico al fine di valutare tensioni e deformazioni nel tempo, assumendo la legge di Norton per la rappresentazione del fenomeno del creep. Al fine di validare il metodo, i risultati ottenuti sono stati confrontati con quelli ricavati da accurate analisi agli elementi finiti, ottenendo un buon accordo. Tutte le tensioni sono state previste con errori trascurabili, mentre in alcuni e limitati casi, le deformazioni hanno mostrato un errore percentuale leggermente più elevato ma comunque inferiore al 20%. Sono state inoltre condotte delle analisi preliminari agli elementi finiti al fine di esplorare il comportamento del SED in presenza di creep, risultando tempo-variante ma tendente ad un valore di plateau.
Infine, sono stati considerati approcci energetici alternativi utilizzati nella caratterizzazione dei fenomeni elasto-plastici che possono essere presenti alle alte temperature. In particolare, tra le varie metodologie presenti in letteratura, è stato considerato il J-Integral.
L’attività lascia infine interessanti possibili sviluppi futuri di ricerca che possono portare a un approccio unificato, basato sul SED, per progettazione a fatica in presenza di creep e di forte interazione creep-fatica

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Berto, Filippo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE MECCANICA DEL PRODOTTO
Data di deposito della tesi:21 Gennaio 2016
Anno di Pubblicazione:21 Gennaio 2016
Parole chiave (italiano / inglese):strain energy density, fatica ad alta temperatura/high temperature fatigue, componenti intagliati/notched components, intaglio/notches, resistenza a fatica /fatigue strength, meccanica della frattura/fracture mechanics, approcci locali/local approaches, creep, titanium grade 2, campi di tensione/stress field, titanio/titanium, 40CrMoV13.9, Cu-Be alloys
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:9065
Depositato il:07 Ott 2016 09:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

D. Radaj, State-of-the-art review on the local strain energy density concept and its relation to the J -integral and peak stress method, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 2–28. Cerca con Google

D. Radaj, State-of-the-art review on extended stress intensity factor concepts, Fatigue Fract. Engng. Mater. Struct. 37 (2014) 1–28. Cerca con Google

G.C. Sih, Directional dissimilarity of transitional functions: Volume energy density factor, Phys. Mesomech. 16 (2013) 355–361. Cerca con Google

G.C. Sih, D. Zacharopoulos, Tendency towards sphericity symmetry of pebbles: The rate change of volume with surface, Phys. Mesomech. 18 (2015) 100–104. Cerca con Google

G.C. Sih, Short and long crack data for fatigue of 2024-T3 Al sheets: binariness of scale segmentation in space and time, Fatigue Fract. Engng. Mater. Struct. 37 (2014) 484–493. Cerca con Google

F. Berto, A review on coupled modes in V-notched plates of finite thickness: A generalized approach to the problem, Phys. Mesomech. 16 (2013) 378–390. Cerca con Google

P. Gallo, F. Berto, P. Lazzarin, High temperature fatigue tests of notched specimens made of titanium Grade 2, Theor. Appl. Fract. Mech. 76 (2015) 27–34. Cerca con Google

P. Gallo, F. Berto, P. Lazzarin, P. Luisetto, High Temperature Fatigue Tests of Cu-be and 40CrMoV13.9 Alloys, Procedia Mater. Sci. 3 (2014) 27–32. Cerca con Google

F. Berto, P. Lazzarin, P. Gallo, High-temperature fatigue strength of a copper-cobalt-beryllium alloy, J. Strain Anal. Eng. Des. 49 (2014) 244–256. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel, Mater. Des. 63 (2014) 609–619. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High Temperature Fatigue Tests of a Cu-Be Alloy and Synthesis in Terms of Linear Elastic Strain Energy Density, Key Eng. Mater. 627 (2015) 77–80. Cerca con Google

G.C. Sih, Redemption of the formalism of segmented linearity: multiscaling of non-equilibrium and non-homogeneity applied to fatigue crack growth, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 621–628. Cerca con Google

Iziumova, O. Plekhov, Calculation of the energy J-integral in plastic zone ahead of a crack tip by infrared scanning, Fatigue Fract. Engng. Mater. Struct. 37 (2014) 1330–1337. Cerca con Google

L. Li, Y.H. Yang, Z. Xu, G. Chen, X. Chen, Fatigue crack growth law of API X80 pipeline steel under various stress ratios based on J-integral, Fatigue Fract. Engng. Mater. Struct. (2014) n/a–n/a. Cerca con Google

Z. He, A. Kotousov, F. Berto, Effect of vertex singularities on stress intensities near plate free surfaces, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 860–869. Cerca con Google

J. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968) 379–386. Cerca con Google

J. Hutchinson, Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids. 16 (1968) 13–31. Cerca con Google

J.R. Rice, G.F. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids. 16 (1968) 1–12. Cerca con Google

F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 503–517. Cerca con Google

A.R. Torabi, A. Campagnolo, F. Berto, Tensile fracture analysis of V-notches with end holes by means of the local energy, Phys. Mesomech. 18 (2015) 5–12. Cerca con Google

F. Noori-Azghad, H. Khademizadeh, E. Barati, Some analytical and numerical expressions for evaluation of the critical J-integral in plates with blunt V-notches under Mode I loading, J. Strain Anal. Eng. Des. 49 (2013) 352–360. Cerca con Google

F. Berto, P. Lazzarin, Y.G. Matvienko, J-integral evaluation for U- and V-blunt notches under Mode I loading and materials obeying a power hardening law, Int. J. Fract. 146 (2007) 33–51. Cerca con Google

P. Livieri, A new path independent integral applied to notched components under mode I loadings, Int. J. Fract. 123 (2003) 107–125. Cerca con Google

P. Lazzarin, R. Zambardi, P. Livieri, A J-integral-based approach to predict the fatigue strength of components weakened by sharp V-shaped notches, Int. J. Comput. Appl. Technol. 15 (2002) 202. Cerca con Google

F. Berto, P. Lazzarin, C. Marangon, The effect of the boundary conditions on in-plane and out-of-plane stress field in three dimensional plates weakened by free-clamped V-notches, Phys. Mesomech. 15 (2012) 26–36. Cerca con Google

V. Kumar, M.D. German, C.F. Shih, An Engineering Approaches for Elastic-Plastic Fracture Analysis, Rep. EPRI/Electric Power Res. Inst. (1981). Cerca con Google

T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, Third Edition, III, Taylor & Francis, 2005. Cerca con Google

A. Saxena, Nonlinear fracture mechanics for engineers, CRC Press, 1998. Cerca con Google

W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, Natl. Advis. Comm. Aeronaut. (1943) Technical Note No. 902. Cerca con Google

C.S. Atchison, J. Miller, Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel, Natl. Advis. Comm. Aeronaut. (1942) Technical Note No. 840. Cerca con Google

] V. Kumar, M.D. German, W.W. Wilkening, W.R. Andrwes, H.G. DeLorenzi, D.F. Mewbray, Advances in elastic-plastic fracture analysis, Rep. EPRI/Electric Power Res. Inst. (1984). Cerca con Google

N.E. Dowling, J.A. Begley, Fatigue crack growth during gross plasticity and the J-integral, Astm Stp. 590 (1976) 82–103. Cerca con Google

R.P. Skelton, Fatigue at high temperature, Applied Science Publishers, 1983. Cerca con Google

M.L. Williams, Stress Singularities Resulting From Various Boundary Conditions, J. Appl. Mech. 19 (1952) 526–528. Cerca con Google

B. Gross, A. Mendelson, Plane elastostatic analysis of V-notched plates, Int. J. Fract. Mech. 8 (1972) 267–276. Cerca con Google

P. Lazzarin, R. Zambardi, P. Livieri, Plastic notch stress intensity factors for large V-shaped notches under mixed load conditions, Int. J. Fract. 107 (2001) 361–377. Cerca con Google

R. Afshar, F. Berto, P. Lazzarin, L.P. Pook, Analytical expressions for the notch stress intensity factors of periodic V-notches under tension by using the strain energy density approach, J. Strain Anal. Eng. Des. 48 (2013) 291–305. Cerca con Google

F. Berto, P. Lazzarin, D. Radaj, Fictitious notch rounding concept applied to V-notches with root hole subjected to in-plane mixed mode loading, Eng. Fract. Mech. 128 (2014) 171–188. Cerca con Google

F. Li, A. Needleman, C. Shih, Characterization of near tip stress and deformation fields in creeping solids, Int. J. Fract. 186 (1988) 163–186. Cerca con Google

G. Härkegård, S. Sørbø, Applicability of Neuber’s Rule to the Analysis of Stress and Strain Concentration Under Creep Conditions, J. Eng. Mater. Technol. 120 (1998) 224–229. Cerca con Google

C.P. Providakis, Creep analysis of V-notched metallic plates: boundary element method, Theor. Appl. Fract. Mech. 32 (1999) 1–7. Cerca con Google

H. Zhu, J. Xu, M. Feng, Singular fields near a sharp V-notch for power law creep material, Int. J. Fract. 168 (2011) 159–166. Cerca con Google

J. Landes, J. Begley, A Fracture Mechanics Approach to Creep Crack Growth, in: Mech. Crack Growth, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1976: pp. 128–148. Cerca con Google

K. Nikbin, G. Webster, C. Turner, Relevance of Nonlinear Fracture Mechanics to Creep Cracking, in: Cracks Fract., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1976: pp. 47–62. Cerca con Google

M.P. Harper, E.G. Ellison, The use of the C* parameter in predicting creep crack propagation rates, J. Strain Anal. Eng. Des. 12 (1977) 167–179. Cerca con Google

B.N. Leis, An Energy-Based Fatigue and Creep-Fatigue Damage Parameter, J. Press. Vessel Technol. 99 (1977) 524. Cerca con Google

A. Saxena, Evaluation of C* for the Characterization of Creep-Crack-Growth Behavior in 304 Stainless Steel, in: Fract. Mech., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1980: pp. 131–151. Cerca con Google

K.-O. Lee, S.-G. Hong, S.-B. Lee, A new energy-based fatigue damage parameter in life prediction of high-temperature structural materials, Mater. Sci. Eng. A. 496 (2008) 471–477. Cerca con Google

W.M. Payten, D.W. Dean, K.U. Snowden, A strain energy density method for the prediction of creep–fatigue damage in high temperature components, Mater. Sci. Eng. A. 527 (2010) 1920–1925. Cerca con Google

S.-P. Zhu, H.-Z. Huang, L.-P. He, Y. Liu, Z. Wang, A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys, Eng. Fract. Mech. 90 (2012) 89–100. Cerca con Google

J.. Nuñez, G. Glinka, Analysis of non-localized creep induced strains and stresses in notches, Eng. Fract. Mech. 71 (2004) 1791–1803. Cerca con Google

P. Gallo, F. Berto, G. Glinka, Generalized approach to estimation of strains and stresses at blunt V-notches under non-localized creep, Fatigue Fract. Eng. Mater. Struct. (2015) In Press. doi:10.1111/ffe.12374. Cerca con Google

P. Lazzarin, R. Tovo, A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches, Int. J. Fract. 78 (1996) 3–19. Cerca con Google

F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports. 75 (2014) 1–48. Cerca con Google

P. Lazzarin, F. Berto, Control volumes and strain energy density under small and large scale yielding due to tension and torsion loading, Fatigue Fract. Eng. Mater. Struct. 31 (2008) 95–107. Cerca con Google

F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor. Appl. Fract. Mech. 52 (2009) 183–194. Cerca con Google

F. Erdogan, G.C. Sih, On the Crack Extension in Plates Under Plane Loading and Transverse Shear, J. Basic Eng. 85 (1963) 519. Cerca con Google

D. Radaj, State-of-the-art review on the local strain energy density concept and its relation to the J -integral and peak stress method, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 2–28. Cerca con Google

P. Lazzarin, F. Berto, F.J. Gómez, M. Zappalorto, Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints, Int. J. Fatigue. 30 (2008) 1345–1357. Cerca con Google

P. Lazzarin, F. Berto, M. Zappalorto, Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications, Int. J. Fatigue. 32 (2010) 1559–1567. Cerca con Google

L. Susmel, D. Taylor, Fatigue design in the presence of stress concentrations, J. Strain Anal. Eng. Des. 38 (2003) 443–452. Cerca con Google

R. Louks, L. Susmel, The linear-elastic Theory of Critical Distances to estimate high-cycle fatigue strength of notched metallic materials at elevated temperatures, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 629–640. Cerca con Google

L. Susmel, D. Taylor, Two methods for predicting the multiaxial fatigue limits of sharp notches, Fatigue Fract. Eng. Mater. Struct. 26 (2003) 821–833. Cerca con Google

F. Berto, A. Campagnolo, P. Gallo, Brittle Failure of Graphite Weakened by V-Notches: A Review of Some Recent Results Under Different Loading Modes, Strength Mater. 47 (2015) 488–506. Cerca con Google

Z. He, A. Kotousov, F. Berto, Effect of vertex singularities on stress intensities near plate free surfaces, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 860–869. Cerca con Google

F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 503–517. Cerca con Google

G.C. Sih, Redemption of the formalism of segmented linearity: multiscaling of non-equilibrium and non-homogeneity applied to fatigue crack growth, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 621–628. Cerca con Google

K.K. Tang, S.H. Li, Interactive creep-fatigue crack growth of 2024-T3 Al sheets: selective transitional functions, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 597–609. Cerca con Google

F.K. Zhuang, S.T. Tu, G.Y. Zhou, Q.Q. Wang, A small cantilever beam test for determination of creep properties of materials, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 257–267. Cerca con Google

R.P. Skelton, Fatigue at high temperature, Applied Science Publishers, 1983. Cerca con Google

M. Chaudonneret, J.P. Culie, Adaptation of Neuber’s theory to stress concentration in viscoplasticity, Rech. Aerosp. English Ed. 4 (1985) 33–40. Cerca con Google

H. Neuber, Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law, J. Appl. Mech. 28 (1961) 544. Cerca con Google

S. Kubo, K. Ohji, Development of simple methods for predicting plane-strain and axi-symmetric stress relaxation at notches in elastic-creep bodies, in: Proc. Int. Conf. Creep, JSME, Tokyo, Japan, 1986: pp. 417–422. Cerca con Google

A.A. Moftakhar, G. Glinka, D. Scarth, D. Kawa, Multiaxial stress-strain creep analysis for notches, in: ASTM Spec. Tech. Publ., ASTM, 1994: pp. 230–243. Cerca con Google

G. Härkegård, S. Sørbø, Applicability of Neuber’s Rule to the Analysis of Stress and Strain Concentration Under Creep Conditions, J. Eng. Mater. Technol. 120 (1998) 224–229. Cerca con Google

H. Zhu, J. Xu, M. Feng, Singular fields near a sharp V-notch for power law creep material, Int. J. Fract. 168 (2011) 159–166. Cerca con Google

J.. Nuñez, G. Glinka, Analysis of non-localized creep induced strains and stresses in notches, Eng. Fract. Mech. 71 (2004) 1791–1803. Cerca con Google

M. Creager, P. Paris, Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int. J. Fract. Mech. 3 (1967) 247–252. Cerca con Google

P. Lazzarin, R. Tovo, A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches, Int. J. Fract. 78 (1996) 3–19. Cerca con Google

F.H. Norton, The creep of steel at high temperatures, McGraw-Hill, New York, 1929. Cerca con Google

G. Glinka, Calculation of inelastic notch-tip strain-stress histories under cyclic loading, Eng. Fract. Mech. 22 (1985) 839–854. Cerca con Google

K. Molski, G. Glinka, A method of elastic-plastic stress and strain calculation at a notch root, Mater. Sci. Eng. 50 (1981) 93–100. Cerca con Google

R. Von Mises, Mechanik der festen Körper im plastisch- deformablen Zustand, J. Math. Phys. 1 (1913) 582–592. Cerca con Google

G.R. Irwin, Linear fracture mechanics, fracture transition, and fracture control, Eng. Fract. Mech. 1 (1968) 241–257. Cerca con Google

G.R. Irwin, Analysis of stresses and strains near the end of cracking traversing a plate, J. Appl. Mech. 24 (1957) 361–364. Cerca con Google

M.L. Williams, Stress Singularities Resulting From Various Boundary Conditions, J. Appl. Mech. 19 (1952) 526–528. Cerca con Google

G. Glinka, A. Newport, Universal features of elastic notch-tip stress fields, Int. J. Fatigue. 9 (1987) 143–150. Cerca con Google

K. Hatanaka, A.N. Yahya, I. Nonaka, H. Umaki, Initiation of High Temperature Creep Voids in Notched Components., JSME Int. J. Ser. A. 42 (1999) 280–287. Cerca con Google

P. Gallo, F. Berto, P. Lazzarin, High temperature fatigue tests of notched specimens made of titanium Grade 2, Theor. Appl. Fract. Mech. 76 (2015) 27–34. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel, Mater. Des. 63 (2014) 609–619. Cerca con Google

F. Berto, P. Lazzarin, P. Gallo, High-temperature fatigue strength of a copper-cobalt-beryllium alloy, J. Strain Anal. Eng. Des. 49 (2014) 244–256. Cerca con Google

P. Gallo, F. Berto, P. Lazzarin, P. Luisetto, High Temperature Fatigue Tests of Cu-be and 40CrMoV13.9 Alloys, Procedia Mater. Sci. 3 (2014) 27–32. Cerca con Google

F. Berto, P. Gallo, Extension of linear elastic strain energy density approach to high temperature fatigue and a synthesis of Cu-Be alloy experimental tests, Eng. Solid Mech. 3 (2015) 111–116. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High Temperature Fatigue Tests of a Cu-Be Alloy and Synthesis in Terms of Linear Elastic Strain Energy Density, Key Eng. Mater. 627 (2015) 77–80. Cerca con Google

P. Gallo, F. Berto, Influence of surface roughness on high temperature fatigue strength and cracks initiation in 40CrMoV13.9 notched components, Theor. Appl. Fract. Mech. 80 (2015) 226–234. Cerca con Google

F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports. 75 (2014) 1–48. Cerca con Google

F. Berto, P. Lazzarin, C.H. Wang, Three-dimensional linear elastic distributions of stress and strain energy density ahead of V-shaped notches in plates of arbitrary thickness, Int. J. Fract. 127 (2004) 265–282. Cerca con Google

D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue. 21 (1999) 413–420. Cerca con Google

Taylor, Wang, The validation of some methods of notch fatigue analysis, Fatigue Fract. Eng. Mater. Struct. 23 (2000) 387–394.. Cerca con Google

L. Susmel, D. Taylor, Fatigue design in the presence of stress concentrations, J. Strain Anal. Eng. Des. 38 (2003) 443–452. Cerca con Google

L. Susmel, D. Taylor, Two methods for predicting the multiaxial fatigue limits of sharp notches, Fatigue Fract. Eng. Mater. Struct. 26 (2003) 821–833. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel, Mater. Des. 63 (2014) 609–619. Cerca con Google

N. Hamada, M. Sakane, T. Itoh, H. Kanayama, High temperature nonproportional low cycle fatigue using fifteen loading paths, Theor. Appl. Fract. Mech. 73 (2014) 136–143. Cerca con Google

K. Prasad, R. Sarkar, P. Ghosal, V. Kumar, M. Sundararaman, High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc, Mater. Sci. Eng. A. 568 (2013) 239–245. Cerca con Google

T. Hasebe, M. Sakane, M. Ohnami, High Temperature Low Cycle Fatigue and Cyclic Constitutive Relation of MAR-M247 Directionally Solidified Superalloy, J. Eng. Mater. Technol. 114 (1992) 162. Cerca con Google

T. Inoue, M. Sakane, Y. Fukuda, T. Igari, M. Miyahara, M. Okazaki, Fatigue-creep life prediction for a notched specimen of steel at 600°C, Nucl. Eng. Des. 150 (1994) 141–149. Cerca con Google

P. Hurley, M. Whittaker, S. Williams, W. Evans, Prediction of fatigue initiation lives in notched Ti 6246 specimens, Int. J. Fatigue. 30 (2008) 623–634. Cerca con Google

M. Whittaker, W. Evans, P. Hurley, D. Flynn, Prediction of notched specimen behaviour at ambient and high temperatures in Ti6246, Int. J. Fatigue. 29 (2007) 1716–1725. Cerca con Google

D. Leidermark, J. Moverare, M. Segersäll, K. Simonsson, S. Sjöström, S. Johansson, Evaluation of fatigue crack initiation in a notched single-crystal superalloy component, Procedia Eng. 10 (2011) 619–624. Cerca con Google

M. Filippini, Notched fatigue strength of single crystals at high temperature, Procedia Eng. 10 (2011) 3787–3792. Cerca con Google

K.K. Tang, S.H. Li, Interactive creep-fatigue crack growth of 2024-T3 Al sheets: selective transitional functions, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 597–609. Cerca con Google

Q. Chen, N. Kawagoishi, H. Nisitani, Evaluation of notched fatigue strength at elevated temperature by linear notch mechanics, Int. J. Fatigue. 21 (1999) 925–931. Cerca con Google

N. Kawagoishi, Q. Chen, H. Nisitani, Fatigue strength of Inconel 718 at elevated temperatures, Fatigue Fract. Eng. Mater. Struct. 23 (2000) 209–216. Cerca con Google

D.Q. Shi, X.A. Hu, J.K. Wang, H.C. Yu, X.G. Yang, J. Huang, Effect of notch on fatigue behaviour of a directionally solidified superalloy at high temperature, Fatigue Fract. Eng. Mater. Struct. 36 (2013) 1288–1297. Cerca con Google

R. Louks, L. Susmel, The linear-elastic Theory of Critical Distances to estimate high-cycle fatigue strength of notched metallic materials at elevated temperatures, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 629–640. Cerca con Google

P. Lazzarin, R. Zambardi, A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract. 112 (2001) 275–298. Cerca con Google

P. Lazzarin, F. Berto, Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches, Int. J. Fract. 135 (2005) 161–185. Cerca con Google

F. Erdogan, G.C. Sih, On the Crack Extension in Plates Under Plane Loading and Transverse Shear, J. Basic Eng. 85 (1963) 519. Cerca con Google

G.C. Sih, Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities and multiscale segments, Theor. Appl. Fract. Mech. 51 (2009) 11–32. Cerca con Google

X.S. Tang, T.T. Wei, Microscopic inhomogeneity coupled with macroscopic homogeneity: A localized zone of energy density for fatigue crack growth, Int. J. Fatigue. 70 (2015) 270–277. Cerca con Google

G.C. Sih, K.K. Tang, Short crack data derived from the fatigue data of 2024-T3 Al with long cracks: Material, load and geometry effects locked-in by transitional functions, Theor. Appl. Fract. Mech. 71 (2014) 2–13. Cerca con Google

F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports. 75 (2014) 1–48. Cerca con Google

F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor. Appl. Fract. Mech. 52 (2009) 183–194. Cerca con Google

F. Berto, A. Campagnolo, P. Gallo, Brittle Failure of Graphite Weakened by V-Notches: A Review of Some Recent Results Under Different Loading Modes, Strength Mater. 47 (2015) 488–506. doi:10.1007/s11223-015-9682-7. Cerca con Google

Z. Yosibash, A. Bussiba, I. Gilad, Failure criteria for brittle elastic materials, Int. J. Fract. 125 (2004) 307–333. Cerca con Google

M.H. El Haddad, T.H. Topper, K.N. Smith, Prediction of non propagating cracks, Eng. Fract. Mech. 11 (1979) 573–584. Cerca con Google

P. Lazzarin, C.M. Sonsino, R. Zambardi, A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings, Fatigue Fract. Eng. Mater. Struct. 27 (2004) 127–140. Cerca con Google

P. Lazzarin, F. Berto, F.J. Gómez, M. Zappalorto, Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints, Int. J. Fatigue. 30 (2008) 1345–1357. Cerca con Google

H.-J. Christ, C.K. Wamukwamba, H. Mughrabi, The effect of mean stress on the high-temperature fatigue behaviour of SAE 1045 steel, Mater. Sci. Eng. A. 234-236 (1997) 382–385. Cerca con Google

P. Lazzarin, F. Berto, From Neuber’s Elementary Volume to Kitagawa and Atzori’s Diagrams: An Interpretation Based on Local Energy, Int. J. Fract. 135 (2005) L33–L38. Cerca con Google

K. Tanaka, Engineering formulae for fatigue strength reduction due to crack-like notches, Int. J. Fract. 22 (1983) 39–46. Cerca con Google

D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue. 21 (1999) 413–420. Cerca con Google

M.H. El Haddad, K.N. Smith, T.H. Topper, Fatigue Crack Propagation of Short Cracks, J. Eng. Mater. Technol. 101 (1979) 42. Cerca con Google

P. Livieri, P. Lazzarin, Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. J. Fract. 133 (2005) 247–276. Cerca con Google

P. Lazzarin, P. Livieri, F. Berto, M. Zappalorto, Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading, Eng. Fract. Mech. 75 (2008) 1875–1889. Cerca con Google

P. Lazzarin, R. Zambardi, The Equivalent Strain Energy Density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 917–928. Cerca con Google

P. Fernandez-Zelaia, R.W. Neu, Influence of notch severity on thermomechanical fatigue life of a directionally solidified Ni-base superalloy, Fatigue Fract. Eng. Mater. Struct. 37 (2014) 854–865. Cerca con Google

P. Lazzarin, M. Zappalorto, F. Berto, Averaged strain energy density and J-integral for U- and blunt V-shaped notches under torsion, Int. J. Fract. 188 (2014) 173–186. Cerca con Google

D. Radaj, State-of-the-art review on the local strain energy density concept and its relation to the J -integral and peak stress method, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 2–28. Cerca con Google

Z. He, A. Kotousov, F. Berto, Effect of vertex singularities on stress intensities near plate free surfaces, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 860–869. Cerca con Google

P. Gallo, F. Berto, Some considerations on the J-Integral under elastic-plastic conditions for materials obeying a Ramberg-Osgood law, Phys. Mesomech. 18 (2015) 298–306. Cerca con Google

T.H. Krukemyer, A. Fatemi, R.W. Swindeman, Fatigue Behavior of a 22Cr-20Ni-18Co-Fe Alloy at Elevated Temperatures, J. Eng. Mater. Technol. 116 (1994) 54. Cerca con Google

H. Kobayashi, a Todoroki, T. Oomura, T. Sano, T. Takehana, Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr–1Mo steel at elevated temperatures, Int. J. Fatigue. 28 (2006) 1633–1639. Cerca con Google

Z. Fan, X. Chen, L. Chen, J. Jiang, Fatigue–creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction, Int. J. Fatigue. 29 (2007) 1174–1183. Cerca con Google

Y. Uematsu, M. Akita, M. Nakajima, K. Tokaji, Effect of temperature on high cycle fatigue behaviour in 18Cr–2Mo ferritic stainless steel, Int. J. Fatigue. 30 (2008) 642–648. Cerca con Google

Q. Chen, N. Kawagoishi, H. Nisitani, Evaluation of notched fatigue strength at elevated temperature by linear notch mechanics, Int. J. Fatigue. 21 (1999) 925–931. Cerca con Google

N. Kawagoishi, Q. Chen, H. Nisitani, Fatigue strength of Inconel 718 at elevated temperatures, Fatigue Fract. Engng. Mater. Struct. 23 (2000) 209–216. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High Temperature Fatigue Tests of a Cu-Be Alloy and Synthesis in Terms of Linear Elastic Strain Energy Density, Key Eng. Mater. 627 (2015) 77–80. Cerca con Google

D.Q. Shi, X.A. Hu, J.K. Wang, H.C. Yu, X.G. Yang, J. Huang, Effect of notch on fatigue behaviour of a directionally solidified superalloy at high temperature, Fatigue Fract. Engng. Mater. Struct. 36 (2013) 1288–1297. Cerca con Google

R. Louks, L. Susmel, The linear-elastic Theory of Critical Distances to estimate high-cycle fatigue strength of notched metallic materials at elevated temperatures, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 629–640. Cerca con Google

J.J. Kim, S.W. Nam, J.H. Ryu, The sensitivity of surface crack initiation to surface roughness in low-cycle fatigue at high temperature, Mater. Sci. Eng. A. 130 (1990) L7–L10. Cerca con Google

J. Ryu, S. Nam, Effect of surface roughness on low-cycle fatigue life of Cr-Mo-V steel at 550 °C, Int. J. Fatigue. 11 (1989) 433–436. Cerca con Google

F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading, Fatigue Fract. Engng. Mater. Struct. 38 (2015) 503–517. Cerca con Google

F. Berto, P. Lazzarin, P. Gallo, High-temperature fatigue strength of a copper-cobalt-beryllium alloy, J. Strain Anal. Eng. Des. 49 (2014) 244–256. Cerca con Google

P. Gallo, F. Berto, P. Lazzarin, High temperature fatigue tests of notched specimens made of titanium Grade 2, Theor. Appl. Fract. Mech. 76 (2015) 27–34. Cerca con Google

M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd ed., Elsevier Ltd, 2009. Cerca con Google

L. F. Coffin Jr, Fatigue at high temperature-Prediction and interpretation, Proc. Inst. Mech. Eng. 188 (1974) 109–127. Cerca con Google

S.S. Manson, G.R. Halford, Fatigue & Durability of Metals at High Temperatures, ASM Intern, Ohio, 2009. Cerca con Google

J. Tong, L.G. Zhao, B. Lin, Ratchetting strain as a driving force for fatigue crack growth, Int. J. Fatigue. 46 (2013) 49–57. Cerca con Google

K. Hussain, D.S. Wilkinson, J.D. Embury, Effect of surface finish on high temperature fatigue of a nickel based super alloy, Int. J. Fatigue. 31 (2009) 743–750. Cerca con Google

Y.K. Gao, X. Bin Li, Q.X. Yang, M. Yao, Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel, Mater. Lett. 61 (2007) 466–469. Cerca con Google

P. Lazzarin, R. Zambardi, A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract. 112 (2001) 275–298. Cerca con Google

P. Lazzarin, F. Berto, Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches, Int. J. Fract. 135 (2005) 161–185. Cerca con Google

P. Lazzarin, C.M. Sonsino, R. Zambardi, A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings, Fatigue Fract. Engng. Mater. Struct. 27 (2004) 127–140. Cerca con Google

D. Radaj, F. Berto, P. Lazzarin, Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches, Eng. Fract. Mech. 76 (2009) 1109–1130. Cerca con Google

D. Radaj, P. Lazzarin, F. Berto, Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding, Int. J. Fatigue. 31 (2009) 1490–1504. Cerca con Google

F. Berto, D. Croccolo, R. Cuppini, Fatigue strength of a fork-pin equivalent coupling in terms of the local strain energy density, Mater. Des. 29 (2008) 1780–1792. Cerca con Google

F. Berto, P. Lazzarin, Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume, Int. J. Fatigue. 33 (2011) 1055–1065. Cerca con Google

P. Lazzarin, F. Berto, M. Elices, J. Gómez, Brittle failures from U- and V-notches in mode I and mixed, I + II, mode: a synthesis based on the strain energy density averaged on finite-size volumes, Fatigue Fract. Engng. Mater. Struct. 32 (2009) 671–684. Cerca con Google

F. Berto, P. Lazzarin, C. Marangon, Brittle fracture of U-notched graphite plates under mixed mode loading, Mater. Des. 41 (2012) 421–432. Cerca con Google

F. Berto, A. Campagnolo, M. Elices, P. Lazzarin, A synthesis of Polymethylmethacrylate data from U-notched specimens and V-notches with end holes by means of local energy, Mater. Des. 49 (2013) 826–833. Cerca con Google

F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor. Appl. Fract. Mech. 52 (2009) 183–194. Cerca con Google

F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports. 75 (2014) 1–48. Cerca con Google

M.H. El Haddad, T.H. Topper, K.N. Smith, Prediction of non propagating cracks, Eng. Fract. Mech. 11 (1979) 573–584. Cerca con Google

G. Pluvinage, J. Capelle, On characteristic lengths used in notch fracture mechanics, Int. J. Fract. 187 (2014) 187–197. Cerca con Google

F. Berto, P. Lazzarin, C. Marangon, Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading, Mater. Des. 54 (2014) 57–66. Cerca con Google

B.A. Latella, S.R. Humphries, Young’s modulus of a 2.25Cr–1Mo steel at elevated temperature, Scr. Mater. 51 (2004) 635–639. Cerca con Google

C. Leyens, M. Peters, eds., Titanium and Titanium Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2003. Cerca con Google

M.J. Donachie, Titanium: a technical guide, 2nd Edition, 2nd ed., ASM International, 2000. Cerca con Google

R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A. 213 (1996) 103–114. Cerca con Google

H. Ghonem, Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys, Int. J. Fatigue. 32 (2010) 1448–1460. Cerca con Google

H. Kitahara, K. Uchikado, J. Makino, N. Iida, M. Tsushida, N. Tsuji, et al., Fatigue Crack Propagation Behavior in Commercial Purity Ti Severely Deformed by Accumulative Roll Bonding Process, Mater. Trans. 49 (2008) 64–68. Cerca con Google

D. Lanning, T. Nicholas, a Palazotto, The effect of notch geometry on critical distance high cycle fatigue predictions, Int. J. Fatigue. 27 (2005) 1623–1627. Cerca con Google

A.R. Kallmeyer, A. Krgo, P. Kurath, Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V, J. Eng. Mater. Technol. 124 (2002) 229. Cerca con Google

D.. Ramsamooj, T.. Shugar, Model prediction of fatigue crack propagation in metal alloys in laboratory air, Int. J. Fatigue. 23 (2001) 287–300. Cerca con Google

S. Hosseini, M.B. Limooei, Investigation of Fatigue Behaviour and Notch Sensitivity of Ti-6Al-4V, Appl. Mech. Mater. 80-81 (2011) 7–12. Cerca con Google

S. Baragetti, S. Cavalleri, F. Tordini, Fatigue behavior of notched Ti-6Al-4V in air and corrosive environment, Procedia Eng. 10 (2011) 2435–2440. Cerca con Google

R. Dobeson, N. Petrazoller, M. Dargusch, S. McDonald, Effect of thermal exposure on the room temperature tensile properties of Grade 2 titanium, Mater. Sci. Eng. A. 528 (2011) 3925–3929. Cerca con Google

D. Eylon, S. Fujishiro, P.J. Postans, F.H. Froes, High-Temperature Titanium Alloys—A Review, JOM. 36 (2013) 55–62. Cerca con Google

S. Lesterlin, C. Sarrazin-Baudoux, J. Petit, Effects of temperature and environment interactions on fatigue crack propagation in a Ti alloy, Scr. Mater. 34 (1996) 651–657. Cerca con Google

A.H. Rosenberger, H. Ghonem, Influence of creep-fatigue interaction on high temperature fatigue crack growth behavior of Ti-1100, Fatigue Fract. Engng. Mater. Struct. 17 (1994) 397–410. Cerca con Google

J. Kumar, K. Prasad, V. Kumar, High-temperature low cycle fatigue damage assessment in near alpha IMI-834 titanium alloy, Fatigue Fract. Engng. Mater. Struct. 34 (2011) 131–138. Cerca con Google

Mohandas, Srinivas, Kutumbarao, Effect of post-weld heat treatment on fracture toughness and fatigue crack growth behaviour of electron beam welds of a titanium (alpha+beta) alloy, Fatigue Fract. Engng. Mater. Struct. 23 (2000) 33–38. Cerca con Google

A.H. Rosenberger, H. Ghonem, High temperature elastic-plastic small crack growth behavior in a Nickel-base superalloy, Fatigue Fract. Engng. Mater. Struct. 17 (1994) 509–521. Cerca con Google

W.J. Plumbridge, Damage production during high temeprature-low cycle fatigue of a Titanium alloy (IMI829), Fatigue Fract. Engng. Mater. Struct. 10 (1987) 385–398. Cerca con Google

J. Kumar, A. V. Rao, V. Kumar, Simulation of elevated temperature fatigue damage evolution using the finite element method for near alpha titanium alloy, Fatigue Fract. Engng. Mater. Struct. (2014). Cerca con Google

P. Matteis, G. Scavino, a. Castello, D. Firrao, High Temperature Fatigue Properties of a Si-Mo Ductile Cast Iron, Procedia Mater. Sci. 3 (2014) 2154–2159. Cerca con Google

F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor. Appl. Fract. Mech. 52 (2009) 183–194. Cerca con Google

F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports. 75 (2014) 1–48. Cerca con Google

P. Lazzarin, A. Campagnolo, F. Berto, A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading, Theor. Appl. Fract. Mech. 71 (2014) 21–30. Cerca con Google

M.H. El Haddad, T.H. Topper, K.N. Smith, Prediction of non propagating cracks, Eng. Fract. Mech. 11 (1979) 573–584. Cerca con Google

G. Pluvinage, J. Capelle, On characteristic lengths used in notch fracture mechanics, Int. J. Fract. 187 (2014) 187–197. Cerca con Google

W.F. Brown, H. Mindlin, C.Y. Ho, Aerospace Structural Metals Handbook. Volume IV., Cindas/Purdue university, 1998. Cerca con Google

G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, 1993. Cerca con Google

P. Livieri, P. Lazzarin, Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. J. Fract. 133 (2005) 247–276. Cerca con Google

P. Lazzarin, F. Berto, Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches, Int. J. Fract. 135 (2005) 161–185. Cerca con Google

P. Lazzarin, C.M. Sonsino, R. Zambardi, A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings, Fatigue Fract. Engng. Mater. Struct. 27 (2004) 127–140. Cerca con Google

F. Berto, P. Lazzarin, P. Gallo, High-temperature fatigue strength of a copper-cobalt-beryllium alloy, J. Strain Anal. Eng. Des. 49 (2014) 244–256. Cerca con Google

G. Glinka, Energy density approach to calculation of inelastic strain-stress near notches and cracks, Eng. Fract. Mech. 22 (1985) 485–508. Cerca con Google

P. Lazzarin, R. Zambardi, The Equivalent Strain Energy Density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity, Fatigue Fract. Engng. Mater. Struct. 25 (2002) 917–928. Cerca con Google

Q. Chen, N. Kawagoishi, H. Nisitani, Evaluation of notched fatigue strength at elevated temperature by linear notch mechanics, Int. J. Fatigue. 21 (1999) 925–931. Cerca con Google

N. Kawagoishi, Q. Chen, H. Nisitani, Fatigue strength of Inconel 718 at elevated temperatures, Fatigue Fract. Engng. Mater. Struct. 23 (2000) 209–216. Cerca con Google

F. Berto, P. Gallo, P. Lazzarin, High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel, Mater. Des. 63 (2014) 609–619. Cerca con Google

A.C. Reardon, Metallurgy for the Non-metallurgist, II, ASM International, 2011. Cerca con Google

J.O. Ratka, W.D. Spiegelberg, A high performance beryllium copper alloy for magnet applications, IEEE Trans. Magn. 30 (1994) 1859–1862. Cerca con Google

S. Constantinescu, A. Popa, J. Groza, I. Bock, New high-temperature copper alloys, J. Mater. Eng. Perform. 5 (1996) 695–698. Cerca con Google

J.R. Davis, Copper and Copper Alloys, ASM International, 2001. Cerca con Google

R.N. Caron, Copper Alloys: Properties and Applications, Encycl. Mater. Sci. Technol. (2001) 1665–1668. Cerca con Google

D.-P. Lu, J. Wang, W.-J. Zeng, Y. Liu, L. Lu, B.-D. Sun, Study on high-strength and high-conductivity Cu–Fe–P alloys, Mater. Sci. Eng. A. 421 (2006) 254–259. Cerca con Google

H.T. Zhou, J.W. Zhong, X. Zhou, Z.K. Zhao, Q.B. Li, Microstructure and properties of Cu–1.0Cr–0.2Zr–0.03Fe alloy, Mater. Sci. Eng. A. 498 (2008) 225–230. Cerca con Google

B.. Gonzalez, C.S.. Castro, V.T.. Buono, J.M.. Vilela, M.. Andrade, J.M.. Moraes, et al., The influence of copper addition on the formability of AISI 304 stainless steel, Mater. Sci. Eng. A. 343 (2003) 51–56. Cerca con Google

A. Kar, M. Ghosh, A.K. Ray, R.N. Ghosh, Effect of copper addition on the microstructure and mechanical properties of lead free solder alloy, Mater. Sci. Eng. A. 459 (2007) 69–74. Cerca con Google

B. Bose, R.J. Klassen, Effect of copper addition and heat treatment on the depth dependence of the nanoindentation creep of aluminum at 300K, Mater. Sci. Eng. A. 500 (2009) 164–169. Cerca con Google

K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, U. Ramamurty, Effect of copper addition on the fracture and fatigue crack growth behavior of solution heat-treated SUS 304H austenitic steel, Mater. Sci. Eng. A. 527 (2010) 4600–4604. Cerca con Google

B.C. Maji, M. Krishnan, Effect of copper addition on the microstructure and shape recovery of Fe–Mn–Si–Cr–Ni shape memory alloys, Mater. Sci. Eng. A. 570 (2013) 13–26. Cerca con Google

M. Li, B.. Singh, J.. Stubbins, Room temperature creep–fatigue response of selected copper alloys for high heat flux applications, J. Nucl. Mater. 329-333 (2004) 865–869. Cerca con Google

G. Li, B. Thomas, J. Stubbins, Modeling creep and fatigue of copper alloys, Metall. Mater. Trans. A. 31 (2000) 2491–2502. Cerca con Google

S. Kwofie, Cyclic creep of copper due to axial cyclic and tensile mean stresses, Mater. Sci. Eng. A. 427 (2006) 263–267. Cerca con Google

H. Miura, Y. Ito, T. Sakai, M. Kato, Cyclic creep and fracture behavior of Cu–SiO2 bicrystals with [011] twist boundaries, Mater. Sci. Eng. A. 387-389 (2004) 522–524. Cerca con Google

J.H. Yang, X.P. Zhang, Y.-W. Mai, W.P. Jia, W. Ke, Environmental effects on deformation mechanism and dislocation microstructure in fatigued copper single crystal, Mater. Sci. Eng. A. 396 (2005) 403–408. Cerca con Google

K. Shen, M.P. Wang, S.M. Li, Study on the properties and microstructure of dispersion strengthened copper alloy deformed at high temperatures, J. Alloys Compd. 479 (2009) 401–408. Cerca con Google

M.F. Quinlan, M.T. Hillery, High-strain-rate testing of beryllium copper at elevated temperatures, J. Mater. Process. Technol. 153-154 (2004) 1051–1057. Cerca con Google

S.J. Ko, Y.-J. Kim, High temperature fatigue behaviors of a cast ferritic stainless steel, Mater. Sci. Eng. A. 534 (2012) 7–12. Cerca con Google

K. Prasad, R. Sarkar, P. Ghosal, V. Kumar, M. Sundararaman, High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc, Mater. Sci. Eng. A. 568 (2013) 239–245. Cerca con Google

J. Liu, Q. Zhang, Z. Zuo, Y. Xiong, F. Ren, A. a. Volinsky, Microstructure evolution of Al–12Si–CuNiMg alloy under high temperature low cycle fatigue, Mater. Sci. Eng. A. 574 (2013) 186–190. Cerca con Google

E. Hosseini, S.R. Holdsworth, E. Mazza, Creep constitutive model considerations for high-temperature finite element numerical simulations, J. Strain Anal. Eng. Des. 47 (2012) 341–349. Cerca con Google

Y. Gorash, H. Altenbach, G. Lvov, Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach, J. Strain Anal. Eng. Des. 47 (2012) 229–243. Cerca con Google

I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner, R.O. Ritchie, On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550°C, Int. J. Fatigue. 44 (2012) 292–302. Cerca con Google

P. Lazzarin, R. Zambardi, A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract. 112 (2001) 275–298. Cerca con Google

P. Lazzarin, F. Berto, Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches, Int. J. Fract. 135 (2005) 161–185. Cerca con Google

J. Harkness, A. Guha, Metallographic Techniques For Beryllium Copper and Beryllium Nickel Alloys, 1997. Cerca con Google

F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor. Appl. Fract. Mech. 52 (2009) 183–194. Cerca con Google

F.J. Gómez, M. Elices, F. Berto, P. Lazzarin, A generalised notch stress intensity factor for U-notched components loaded under mixed mode, Eng. Fract. Mech. 75 (2008) 4819–4833. Cerca con Google

P. Lazzarin, F. Berto, M. Zappalorto, Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications, Int. J. Fatigue. 32 (2010) 1559–1567. Cerca con Google

P. Lazzarin, F. Berto, F.J. Gómez, M. Zappalorto, Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints, Int. J. Fatigue. 30 (2008) 1345–1357. Cerca con Google

G. Glinka, Energy density approach to calculation of inelastic strain-stress near notches and cracks, Eng. Fract. Mech. 22 (1985) 485–508. Cerca con Google

P. Lazzarin, R. Zambardi, The Equivalent Strain Energy Density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity, Fatigue Fract. Engng. Mater. Struct. 25 (2002) 917–928. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record