Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lissandron, Stefano (2016) Islanding and stability of low voltage distribution grids with renewable energy sources. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

The employment of renewable energy sources is driving an increase of the amount of embedded generation that is connected to the medium and low voltage distribution networks. This penetration brings new challenges to improve the grid operation, but also concerns because these parts of the grid were not designed to host generation. These energy sources are usually interfaced by power electronic converters, e.g. inverters, which are flexible in terms of control capability. For instance, they can control output currents or voltages, both in phase and amplitude. So, a proper design of the regulators of inverters can improve distribution efficiency and reliability of the grid.
Distributed generation can also increase power quality and provide voltage regulation in the distribution grid. For instance, parts of the electric network can be operated intentionally as autonomous networks, when the connection to the mains is lost. In this way, the reliability of the grid can increase and uninterruptible power supply capabilities can be achieved. However, in autonomous or islanded operation the voltage must be managed by the inverters to correctly feed all the loads, since the main control is missing, and the load power has also to be shared among the distributed energy resources.
On the other side, the penetration of distributed generation can also be dangerous in some particular cases, if it is not properly managed. For instance, islanded operation can appear also unintentionally and without being expected, because of the local generation. In this case, islanded operation is a problem for the electric grid because it may damage the electric equipment or create safety hazard for the line workers. The probability of unintentional islanded operation has increased due to the newly introduced standards for generators, which in particular impose wider frequency and voltage ranges and active and reactive power support capabilities using of P/f and Q/V droop characteristics. Anti-islanding protections that each inverter is equipped with, may fail to detect the grid transition and so uncontrolled islanded operation may appear.
In this scenario, some contributions of this Thesis are related to the islanded operation of parts of the electric grid. First, the unintentional islanding risk is studied considering the newly introduced standards for distributed energy resources and in particular for photovoltaic sources. A potential increase of such phenomenon will be shown and suggestions will be provided in order to reduce this risk.
Then, another part of the Thesis addresses the intentional islanded operation. A local controller for inverter of distributed energy resources is presented to manage a part of the grid during grid-connected and autonomous operating modes and also during the transition: during grid-connected operation, the controller tracks active and reactive power references and, during islanded mode, it exploits the droop control properties to share the load among the distributed energy resources. The peculiarity of this regulator is that it does not need to identify the particular operation mode and so a smooth transition from grid-connected to islanded mode can be achieved with no communication within the power grid or among the disconnecting switch and distributed energy resources.
Another important issue in these complex scenarios is the system stability: the interactions of more and more power electronics-interfaced power systems can indeed worsen the power quality and the stability of distribution networks. These phenomena can be addressed by analyzing the source and load impedances at the section of interaction between two subsystems. Well-established approaches exist for DC and three-phase AC networks to analyze the source-load system. Some papers focused also on single-phase AC systems, whose study is generally more difficult due to their time-varying characteristics. Another contribution of this Thesis is an extension of a method to study the stability of single-phase AC power systems, together with its experimental validation. This approach bases on the dynamic phasor method to determine the 2-dimensional source and load impedances and it addresses the stability with the Generalized Nyquist stability Criterion, previously used to study balanced three-phase AC system stability.
Distribution grid stability can be studied also focusing on the high level interactions of its multitude of devices, such as generators and loads, and this can be done considering approximated and general models that can account different types of device. The last contribution of this work is the system stability and dynamic studies of large distribution grids, with large penetration of distributed generation. Simplified models for the single units are linked together in large small-signal models, with a scalable and automatable approach for the dynamic analysis, that can address the study of a grid with a generic number of node, with no more effort by the user. In particular, this activity was done during a visiting research period done by the Author at the Institute Automation of Complex Power Systems of RWTH Aachen University (Germany).
The results of this Thesis are given in terms of analytic and simulation studies, together with experimental validations. Also hardware-in-the-loop and real-time simulation approaches have been used for implementation and validation purposes.

Abstract (italiano)

L’impiego di fonti di energia rinnovabile sta portando ad un aumento della quantità di generazione integrata connessa alle reti di distribuzione di media e bassa tensione. Questa penetrazione sta aprendo nuove sfide per migliorare il funzionamento della rete elettrica, ma anche alcuni rischi e problemi perché queste parti di rete non erano inizialmente state progettate per ospitare generazione. Tali sorgenti energetiche sono solitamente interfacciate da convertitori elettronici di potenza, ad esempio inverter, che risultano essere unità estremamente flessibili in termini di funzionalità e controllo. Ad esempio, gli inverter hanno grande autonomia sul controllo delle correnti e tensioni d’uscita, sia in fase che in ampiezza. Quindi, una corretta ed appropriata progettazione dei loro regolatori può migliorare l’efficienza della distribuzione e l’affidabilità della rete.
La generazione distribuita può inoltre migliorare la qualità della tensione fornita ai carichi all’interno della rete elettrica. Ad esempio, parti di rete possono essere mantenute in funzionamento intenzionalmente come reti autonome anche quando la connessione alla rete principale viene a mancare. In questo modo, l’affidabilità della rete può aumentare, ottenendo sempre continuità di servizio di fornitura dell’energia elettrica. Tuttavia, in funzionamento autonomo o ad isola la tensione deve essere controllata dagli inverter al fine di alimentare correttamente tutti i carichi, dal momento che il controllo solitamente effettuato dal gestore di rete viene a mancare, e la potenza richiesta dai carichi deve anche essere suddivisa adeguatamente tra le risorse energetiche distribuite.
Dall’altro lato, l’aumento della generazione distribuita può portare anche ad avere dei rischi aggiuntivi in alcuni casi, se non viene gestito correttamente. Ad esempio, il funzionamento ad isola può manifestarsi anche involontariamente e senza essere previsto a causa della generazione locale che può mantenere in funzione parti di rete elettrica. In questo caso, il funzionamento ad isola è un problema per la rete elettrica perché può danneggiare le apparecchiature elettriche o creare pericoli per la sicurezza dei lavoratori. La probabilità di funzionamento involontario ad isola è aumentata di recente a causa di nuove normative introdotte per i generatori le quali, in particolare, impongono gamme di funzionamento più ampie per frequenza e tensione e impongono il supporto alla regolazione della frequenza e della tensione con caratteristiche droop di tipo P/f e Q/V ai singoli generatori. Ogni inverter può essere dotato di protezioni contro il modo di funzionamento involontario ad isola, tuttavia tali protezioni potrebbero in alcuni casi non riuscire a riconoscere la transizione dal modo di funzionamento in parallelo alla rete principale a quello ad isola. Questo potrebbe impedire la disconnessione degli inverter e portare al modo di funzionamento ad isola non controllata.
In questo scenario complesso, alcuni contributi di questa Tesi sono legati al funzionamento ad isola di parti di rete elettrica. In primo luogo, il rischio di formazione dell’isola involontaria è studiato considerando l’effetto delle nuove normative introdotte per la connessione delle risorse energetiche distribuite ed in particolare delle fonti fotovoltaiche. Si mostrerà che tale rischio è potenzialmente in aumento e alcuni suggerimenti potranno essere ricavati per cercare di contenere il fenomeno di isola non intenzionale.
Un’altra parte della Tesi affronta il modo di funzionamento in isola intenzionale. Un controllore locale per inverter per risorse energetiche distribuite è presentato per gestire una parte di rete durante il funzionamento in parallelo al gestore principale, durante il funzionamento autonomo (o ad isola) e anche durante la transizione: durante il funzionamento in parallelo alla rete, il regolatore insegue riferimenti di potenza attiva e reattiva e, nella modalità ad isola sfrutta le proprietà del controllo droop al fine di suddividere il carico tra le risorse energetiche distribuite e per regolare la tensione. La peculiarità di questo regolatore è che non necessita di identificare la particolare modalità di funzionamento e quindi la transizione dal modo di funzionamento in parallelo alla rete principale a quello autonomo può avvenire senza comunicazione all’interno della rete elettrica, né tra gli inverter né con il sezionatore che connette la rete al gestore principale.
Nello scenario fin qui descritto, un altro aspetto importante è quello legato alla stabilità del sistema, più o meno esteso: le interazioni tra sistemi di conversione dell’energia sempre più basati su convertitori elettronici di potenza possono infatti peggiorare la qualità dell’alimentazione e la stabilità della rete. Questi fenomeni possono essere affrontati analizzando le impedenze di sorgente e carico in corrispondenza della sezione di interazione tra due sottosistemi. Per questo, esistono approcci efficaci per quanto riguarda le reti in corrente continua ed alternata di tipo trifase per analizzare il sistema sorgente-carico. Alcuni lavori si sono concentrati anche sui sistemi a corrente alternata monofase, il cui studio è generalmente più complesso a causa delle loro caratteristiche di tempo-varianza. Un altro contributo di questa Tesi è la descrizione di un’estensione per lo studio di stabilità di sistemi di alimentazione in corrente alternata monofase, assieme alla sua validazione sperimentale. Questo metodo si basa sull’applicazione dei fasori dinamici per determinare le impedenze di sorgente e di carico di tipo bidimensionale e affronta la stabilità con il criterio generalizzato di Nyquist, precedentemente impiegato per lo studio di sistemi trifase in corrente alternata bilanciati.
La stabilità della rete di distribuzione può essere studiata anche concentrandosi sulle interazioni di alto livello dovute alla sua moltitudine di dispositivi, come generatori e carichi, e questo può essere fatto considerando modelli approssimati e generali che possono descrivere diverse tipologie di dispositivo. L’ultimo contributo di questo lavoro è lo studio di stabilità di sistema e lo studio dinamico di grandi reti di distribuzione, con grande penetrazione di generazione distribuita. Modelli semplificati per i singoli dispositivi sono collegati insieme in grandi modelli di piccolo segnale, con un approccio scalabile e automatizzabile per l’analisi dinamica, che può affrontare lo studio di una rete con un numero generico di nodi, senza richiedere sforzi aggiuntivi da parte dell’utente. In particolare, tale attività è stata svolta nel corso di un periodo di ricerca presso l’Istituto Automation of Complex Power Systems di RWTH Aachen University (Germania).
I risultati di questa Tesi sono supportati da studi analitici, tramite simulazione al calcolatore e con validazioni di tipo sperimentale. Inoltre, sono stati utilizzati strumenti quali l’hardware-in-the-loop e la simulazione in tempo reale al fine di implementare alcuni concetti e poterli validare.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mattavelli, Paolo - Tenti, Paolo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:20 Gennaio 2016
Anno di Pubblicazione:Gennaio 2016
Parole chiave (italiano / inglese):power electronics smart grids microgrids islanding stability Distribution Grids Renewable Energy Sources unintentional droop inverter
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:9071
Depositato il:17 Ott 2016 16:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] F. Katiraei and J. Agüero, “Solar PV integration challenges,” IEEE Power and Energy Magazine, vol. 9, no. 3, pp. 62–71, May 2011. Cerca con Google

[2] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power and Energy Magazine, vol. 7, no. 2, pp. 52–62, Mar 2009. Cerca con Google

[3] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids management,” IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 54–65, 2008. Cerca con Google

[4] Enel Distribuzione, Workshop on “Uncontrolled islanding phenomena in distribution networks”, Rome, Italy, April 2014. Cerca con Google

[5] J. von Appen, M. Braun, T. Stetz, K. Diwold, and D. Geibel, “Time in the sun: The challenge of high PV penetration in the german electric grid,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 55–64, March 2013. Cerca con Google

[6] S. Steffel and A. Dinkel, “Absorbing the rays: Advanced inverters help integrate PV into electric utility distribution systems,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 45–54, March 2013. Cerca con Google

[7] CEI Comitato Elettrotecnico Italiano, “Standard-CEI 0-21, reference technical rules for the connection of active and passive users to the LV electrical utilities,” 2011-12, standards. Cerca con Google

[8] R. Sgarbossa, S. Lissandron, P. Mattavelli, R. Turri, and A. Cerretti, “Analysis of load-induced unintentional islanding in low voltage grids with PV generators,” in 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), June 2014. Cerca con Google

[9] J. Guerrero, J. Vasquez, J. Matas, L. de Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - A general approach toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, Jan 2011. Cerca con Google

[10] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodrı́guez, “Control of power converters in AC microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734–4749, Nov 2012. Cerca con Google

[11] “IEEE standard for interconnecting distributed resources with electric power systems,” IEEE Std 1547-2003, pp. 1–28, July 2003. Cerca con Google

[12] R. Lasseter, “Microgrids,” in IEEE Power Engineering Society Winter Meeting 2002, vol. 1, 2002, pp. 305–308. Cerca con Google

[13] S. Ashabani and Y.-R. Mohamed, “New family of microgrid control and management strategies in smart distribution grids - analysis, comparison and testing,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2257–2269, Sept 2014. Cerca con Google

[14] J. Vasquez, J. Guerrero, J. Miret, M. Castilla, and L. de Vicuña, “Hierarchical control of intelligent microgrids,” IEEE Industrial Electronics Magazine, vol. 4, no. 4, pp. 23–29, Dec 2010. Cerca con Google

[15] S. Bolognani, G. Cavraro, F. Cerruti, and A. Costabeber, “A linear dynamic model for microgrid voltages in presence of distributed generation,” in 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS), Oct 2011, pp. 31–36. Cerca con Google

[16] M. Chandorkar, D. Divan, and R. Adapa, “Control of parallel connected inverters in standalone AC supply systems,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp. 136–143, Jan 1993. Cerca con Google

[17] A. Tuladhar, K. Jin, T. Unger, and K. Mauch, “Parallel operation of single phase inverter modules with no control interconnections,” in Applied Power Electronics Conference and Exposition (APEC ’97), vol. 1, 1997, pp. 94–100 vol.1. Cerca con Google

[18] J. Guerrero, L. Garcia de Vicuña, J. Matas, M. Castilla, and J. Miret, “A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1205–1213, 2004. Cerca con Google

[19] E. Coelho, P. Cortizo, and P. Garcia, “Small-signal stability for parallel-connected inverters in stand-alone ac supply systems,” IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 533–542, Mar 2002. Cerca con Google

[20] Q.-C. Zhong and T. Hornik, Control of Power Inverters in Renewable Energy and Smart Grid Integration. Wiley-IEEE Press, Jan 2013. Cerca con Google

[21] J. Kim, J. Guerrero, P. Rodriguez, R. Teodorescu, and N. Kwanghee, “Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 689–701, March 2011. Cerca con Google

[22] F. Katiraei and M. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1821–1831, Nov 2006. Cerca con Google

[23] G. Andersson, “Electric Power Systems - Electric power transmission and distribution,” Sept. 2009, EEH - Power Systems Laboratory – ETH Zürich. Cerca con Google

[24] A. R. Bergen and V. Vittal, Power Systems Analysis, 2nd Edition. Prentice Hall, 2000. Cerca con Google

[25] A. Engler and N. Soultanis, “Droop control in LV-grids,” in International Conference on Future Power Systems, 2005. Cerca con Google

[26] A. Hasanzadeh, O. Onar, H. Mokhtari, and A. Khaligh, “A proportional-resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs,” IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 468–478, 2010. Cerca con Google

[27] S. Iyer, M. Belur, and M. Chandorkar, “A generalized computational method to determine stability of a multi-inverter microgrid,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2420–2432, 2010. Cerca con Google

[28] L. Xinchun, F. Feng, D. Shanxu, K. Yong, and C. Jian, “Modeling and stability analysis for two paralleled UPS with no control interconnection,” in IEEE International Electric Machines and Drives Conference 2003 (IEMDC’03), vol. 3, 2003, pp. 1772–1776. Cerca con Google

[29] K. De Brabandere, “Voltage and frequency droop control in low voltage grids by distributed generators with inverter front-end,” Ph.D. dissertation, Katholieke Universiteit Leuven - Faculteit Ingenieurswetenschappen - Departement Elektrotechniek, 2006. Cerca con Google

[30] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1107–1115, July 2007. Cerca con Google

[31] Y. W. Li and C.-N. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2977–2988, 2009. Cerca con Google

[32] J. Guerrero, L. Garcia de Vicuña, J. Matas, M. Castilla, and J. Miret, “Output impedance design of parallel-connected UPS inverters with wireless load-sharing control,” IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1126–1135, 2005. Cerca con Google

[33] J. Guerrero, J. Matas, L. de Vicuña, M. Castilla, and J. Miret, “Wireless-control strategy for parallel operation of distributed-generation inverters,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1461–1470, 2006. Cerca con Google

[34] C. Sao and P. Lehn, “Autonomous load sharing of voltage source converters,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1009–1016, 2005. Cerca con Google

[35] Y.-R. Mohamed and E. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2806–2816, 2008. Cerca con Google

[36] M. Prodanovic, K. De Brabandere, J. Van Den Keybus, T. Green, and J. Driesen, “Harmonic and reactive power compensation as ancillary services in inverter-based distributed generation,” IET Generation, Transmission Distribution, vol. 1, no. 3, pp. 432–438, 2007. Cerca con Google

[37] B. Kroposki, C. Pink, R. De Blasio, H. Thomas, M. Simões, and P. Sen, “Benefits of power electronic interfaces for distributed energy systems,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 901–908, Sept 2010. Cerca con Google

[38] Y. T. Tan and D. Kirschen, “Impact on the power system of a large penetration of photovoltaic generation,” in 2007 IEEE Power Engineering Society General Meeting, June 2007. Cerca con Google

[39] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1063–1073, June 2011. Cerca con Google

[40] F. Andren, B. Bletterie, S. Kadam, P. Kotsampopoulos, and C. Bucher, “On the stability of local voltage control in distribution networks with a high penetration of inverter-based generation,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2519–2529, April 2015. Cerca con Google

[41] P. Esslinger and R. Witzmann, “Evaluation of reactive power control concepts for PV inverters in low-voltage grids,” in CIRED 2012 Workshop on Integration of Renewables into the Distribution Grid, May 2012. Cerca con Google

[42] Y. Zhou, H. Li, and L. Liu, “Integrated autonomous voltage regulation and islanding detection for high penetration PV applications,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2826–2841, June 2013. Cerca con Google

[43] L. Herman, B. Blazic, and I. Papic, “Voltage profile support in LV distribution networks with distributed generation,” in 2009 Proceedings of the 44th International Universities Power Engineering Conference (UPEC), Sept 2009. Cerca con Google

[44] P. Jahangiri and D. Aliprantis, “Distributed Volt/VAr control by PV inverters,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3429–3439, Aug 2013. Cerca con Google

[45] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local voltage control in distribution systems,” in 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), Dec 2013, pp. 4329–4334. Cerca con Google

[46] A. Hoke and D. Maksimovic, “Active power control of photovoltaic power systems,” in 2013 1st IEEE Conference on Technologies for Sustainability (SusTech), Aug 2013, pp. 70–77. Cerca con Google

[47] H. Alatrash, A. Mensah, E. Mark, G. Haddad, and J. Enslin, “Generator emulation controls for photovoltaic inverters,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 996–1011, June 2012. Cerca con Google

[48] H. Xin, Y. Liu, Z. Wang, D. Gan, and T. Yang, “A new frequency regulation strategy for photovoltaic systems without energy storage,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 985–993, Oct 2013. Cerca con Google

[49] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963–1976, Dec 2012. Cerca con Google

[50] A. Cagnano, E. De Tuglie, M. Liserre, and R. Mastromauro, “Online optimal reactive power control strategy of PV inverters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4549–4558, Oct 2011. Cerca con Google

[51] T. Caldognetto, P. Tenti, A. Costabeber, and P. Mattavelli, “Improving microgrid performance by cooperative control of distributed energy sources,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3921–3930, Nov 2014. Cerca con Google

[52] S. Bolognani and S. Zampieri, “A distributed control strategy for reactive power compensation in smart microgrids,” IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2818–2833, Nov 2013. Cerca con Google

[53] E. Dall’Anese, S. Dhople, and G. Giannakis, “Optimal dispatch of photovoltaic inverters in residential distribution systems,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487–497, April 2014. Cerca con Google

[54] J. Sun, “Small-signal methods for AC distributed power systems – A review,” IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. Cerca con Google

2545–2554, Nov 2009. Cerca con Google

[55] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Small-signal stability analysis of three-phase AC systems in the presence of constant power loads based on measured d-q frame impedances,” IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5952–5963, Oct 2015. Cerca con Google

[56] S. Lissandron, “Analysis of the dynamics of the distribution network - e.g. analysis of the variability of loads and DERs,” Nov 2014, internal report for Institute for Automation of Complex Power Systems (RWTH Aachen University) on research activity for IDE4L European Project (www.ide4l.eu). Vai! Cerca con Google

[57] J. Slootweg and W. Kling, “Impacts of distributed generation on power system transient stability,” in 2002 IEEE Power Engineering Society Summer Meeting, vol. 2, July 2002, pp. 862–867. Cerca con Google

[58] M. Reza, D. Sudarmadi, F. Viawan, W. Kling, and L. van der Sluis, “Dynamic stability of power systems with power electronic interfaced DG,” in 2006 IEEE PES Power Systems Conference and Exposition (PSCE 2006), Oct 2006, pp. 1423–1428. Cerca con Google

[59] T. Alquthami, H. Ravindra, M. Faruque, M. Steurer, and T. Baldwin, “Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E,” in 2010 North American Power Symposium (NAPS), Sept 2010. Cerca con Google

[60] M. Ilić, M. Cvetkovic, K. Bachovchin, and Q. Liu, “Modeling, analysis and control design complexities in future electric energy systems,” in 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Sept 2012, pp. LS2b.3–1–LS2b.3–6. Cerca con Google

[61] A. Emhemed, P. Crolla, and G. Burt, “Using real-time simulation to assess the impact of a high penetration of LV connected microgeneration on the wider system performance during severe low frequency,” in IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, Cerca con Google

Nov 2011, pp. 3755–3760. Cerca con Google

[62] S. Buso and T. Caldognetto, “Rapid prototyping of digital controllers for microgrid inverters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 440–450, June 2015. Cerca con Google

[63] R. D. Middlebrook, “Input filter considerations in design and application of switching regulators,” in Proceedings of IEEE Industry Applications Society Annual Meeting, 1976, pp. 366–382. Cerca con Google

[64] S. Vesti, T. Suntio, J. Oliver, R. Prieto, and J. Cobos, “Impedance-based stability and transient-performance assessment applying maximum peak criteria,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2099–2104, May 2013. Cerca con Google

[65] M. Belkhayat, “Stability criteria for AC power systems with regulated loads,” Ph.D. dissertation, Purdue University, 1997. Cerca con Google

[66] A. G. J. MacFarlane and I. Postlethwaite, “The generalized Nyquist stability criterion and multivariable root loci,” International Journal of Control, vol. 25, no. 1, pp. 81–127, 1977. Cerca con Google

[67] L. Harnefors, M. Bongiorno, and S. Lundberg, “Input-admittance calculation and shaping for controlled voltage-source converters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3323–3334, Dec 2007. Cerca con Google

[68] M. Cespedes and J. Sun, “Impedance modeling and analysis of grid-connected voltage-source converters,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1254–1261, March 2014. Cerca con Google

[69] E. Möllerstedt and B. Bernhardsson, “Out of control because of harmonics - An analysis of the harmonic response of an inverter locomotive,” IEEE Control Systems, vol. 20, no. 4, pp. 70–81, Aug 2000. Cerca con Google

[70] “ENTSO-E Network code for Requirements for Grid Connection Applicable to all Generators,” March 8th, 2013. Cerca con Google

[71] pr TS 50549-1, “Requirements for the connection of generators above 16 A per phase - Part 1: Connection to the LV distribution system (CLC TC 8X),” Status: approval stage. Cerca con Google

[72] pr TS 50549-2, “Requirements for the connection of generators above 16 A per phase - Part 2: Connection to the MV distribution system (CLC TC 8X),” Status: approval stage. Cerca con Google

[73] R. Sgarbossa, S. Lissandron, P. Mattavelli, R. Turri, and A. Cerretti, “Analysis of ∆P − ∆Q area of uncontrolled islanding in low voltage grids with PV generators,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2014, pp. 5667–5674. Cerca con Google

[74] S. Lissandron, R. Sgarbossa, L. Dalla Santa, P. Mattavelli, R. Turri, and A. Cerretti, “Impact of non-simultaneous P/f and Q/V grid code requirements on PV inverters on unintentional islanding operation in distribution network,” in 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), June 2015. Cerca con Google

[75] R. Walling and N. Miller, “Distributed generation islanding-implications on power system dynamic performance,” in 2002 IEEE Power Engineering Society Summer Meeting, vol. 1, July 2002, pp. 92–96. Cerca con Google

[76] Z. Ye, A. Kolwalkar, Y. Zhang, P. Du, and R. Walling, “Evaluation of anti-islanding schemes based on nondetection zone concept,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1171–1176, Sept 2004. Cerca con Google

[77] F. Noor, R. Arumugam, and M. Vaziri, “Unintentional islanding and comparison of prevention techniques,” in Proceedings of the 37th Annual North American Power Symposium (2005), 2005, pp. 90–96. Cerca con Google

[78] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. Wiley-IEEE Press, 2011, ch. 5. Cerca con Google

[79] I. Balaguer, H.-G. Kim, F. Peng, and E. Ortiz, “Survey of photovoltaic power systems islanding detection methods,” in 2008 IECON 34th Annual Conference of IEEE Industrial Electronics, Nov 2008, pp. 2247–2252. Cerca con Google

[80] R. Kunte and W. Gao, “Comparison and review of islanding detection techniques for distributed energy resources,” in 2008. NAPS ’08. 40th North American Power Symposium, 2008, pp. 1–8. Cerca con Google

[81] D. Reigosa, F. Briz, C. Charro, P. Garcia, and J. Guerrero, “Active islanding detection using high-frequency signal injection,” IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1588–1597, Sept 2012. Cerca con Google

[82] H. Zeineldin, E. El-Saadany, and M. Salama, “Impact of DG interface control on islanding detection and nondetection zones,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1515–1523, July 2006. Cerca con Google

[83] A. Ghaderi and M. Kalantar, “Investigation of influential factors on passive islanding detection methods of inverter based distributed generation,” in 2011 2nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Feb 2011, pp. 217–222. Cerca con Google

[84] O. Raipala, A. Mäkinen, S. Repo, and P. Järventausta, “The effect of different control modes and mixed types of DG on the non-detection zones of islanding detection,” in CIRED 2012 Workshop Integration of Renewables into the Distribution Grid, May 2012, pp. 1–4. Cerca con Google

[85] H. Zeineldin and M. Salama, “Impact of load frequency dependence on the NDZ and performance of the SFS islanding detection method,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 139–146, Jan 2011. Cerca con Google

[86] B. Bahrani, H. Karimi, and R. Iravani, “Nondetection zone assessment of an active islanding detection method and its experimental evaluation,” IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 517–525, April 2011. Cerca con Google

[87] “IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems,” IEEE Std 1547.1-2005, pp. 1–62, July 2005. Cerca con Google

[88] D. Salles, W. Freitas, J. Vieira, and B. Venkatesh, “A practical method for nondetection zone estimation of passive anti-islanding schemes applied to synchronous distributed generators,” IEEE Transactions on Power Delivery, vol. 30, no. 5, pp. 2066–2076, Oct 2015. Cerca con Google

[89] J. Bruschi, F. Cadoux, B. Raison, Y. Bésanger, and S. Grenard, “Impact of new european grid codes requirements on anti-islanding protections: a case study,” in 23rd International Conference and Exhibition on Electricity Distribution (CIRED 2015), June 2015. Cerca con Google

[90] L. A. C. Lopes and Y. Zhang, “Islanding detection assessment of multi-inverter systems with active frequency drifting methods,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 480–486, Jan 2008. Cerca con Google

[91] A. Cerretti, G. Scrosati, and L. Consiglio, “Upgrade of ENEL MV network automation to improve performances in presence of faults and to deal DG,” in 21st International Conference and Exhibition on Electricity Distribution (CIRED 2011), June 2011. Cerca con Google

[92] “Load representation for dynamic performance analysis [of power systems],” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 472–482, 1993. Cerca con Google

[93] S. Lissandron, R. Sgarbossa, L. Dalla Santa, P. Mattavelli, R. Turri, and A. Cerretti, “∆P − ∆Q area assessment of temporary unintentional islanding with P/f and Q/V droop controlled PV generators in distribution networks,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2015, pp. 1968–1975. Cerca con Google

[94] S.-K. Chung, “Phase-locked loop for grid-connected three-phase power conversion systems,” IEE Proceeding on Electric Power Applications, vol. 147, no. 3, pp. 213–219, May 2000. Cerca con Google

[95] V. Kaura and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 58–63, Jan 1997. Cerca con Google

[96] R. Caldon, M. Coppo, R. Sgarbossa, L. Sgarbossa, and R. Turri, “Risk of unintentional islanding in LV distribution networks with inverter-based DGs,” in 2013 48th International Universities Power Engineering Conference (UPEC), 2013, pp. 1–6. Cerca con Google

[97] DIgSILENT Power Factory 14.0 Manual, www.digsilent.de. Vai! Cerca con Google

[98] K. Tomiyama, S. Ueoka, T. Takano, I. Iyoda, K. Matsuno, K. Temma, and J. Paserba, “Modeling of load during and after system faults based on actual field data,” in 2003 IEEE Power Engineering Society General Meeting, vol. 3, July 2003. Cerca con Google

[99] D. Dong, J. Li, D. Boroyevich, P. Mattavelli, I. Cvetkovic, and Y. Xue, “Frequency behavior and its stability of grid-interface converter in distributed generation systems,” in 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2012, pp. 1887–1893. Cerca con Google

[100] S. Lissandron and P. Mattavelli, “A controller for the smooth transition from grid-connected to autonomous operation mode,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2014, pp. 4298–4305. Cerca con Google

[101] Y.-R. Mohamed and A. Radwan, “Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 352–362, 2011. Cerca con Google

[102] S.-H. Hu, C.-Y. Kuo, T.-L. Lee, and J. Guerrero, “Droop-controlled inverters with seamless transition between islanding and grid-connected operations,” in 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 2196–2201. Cerca con Google

[103] Y. A. R. I. Mohamed, H. Zeineldin, M. Salama, and R. Seethapathy, “Seamless formation and robust control of distributed generation micro-grids via direct voltage control and optimized dynamic power sharing,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1283–1294, Cerca con Google

Mar 2012. Cerca con Google

[104] A. Kahrobaeian and Y.-R. Mohamed, “Interactive distributed generation interface for flexible micro-grid operation in smart distribution systems,” IEEE Transactions on Sustainable Energy, vol. 3, no. 2, pp. 295–305, Apr 2012. Cerca con Google

[105] J. Guerrero, J. Vasquez, J. Matas, M. Castilla, and L. de Vicuña, “Control strategy for flexible microgrid based on parallel line-interactive UPS systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 726–736, 2009. Cerca con Google

[106] T. Vandoorn, B. Meersman, J. D. Kooning, and L. Vandevelde, “Transition from islanded to grid-connected mode of microgrids with voltage-based droop control,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2545–2553, 2013. Cerca con Google

[107] B. Ren, X. Tong, S. Tian, and X. Sun, “Research on the control strategy of inverters in the micro-grid,” in 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010, pp. 1–4. Cerca con Google

[108] F. Gao and M. Iravani, “A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation,” IEEE Transactions on Power Delivery, vol. 23, no. 2, pp. 850–859, April 2008. Cerca con Google

[109] Z. Liu, J. Liu, and Y. Zhao, “A unified control strategy for three-phase inverter in distributed generation,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1176–1191, March 2014. Cerca con Google

[110] C. Cho, J.-H. Jeon, J.-Y. Kim, S. Kwon, K. Park, and S. Kim, “Active synchronizing control of a microgrid,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3707–3719, Dec 2011. Cerca con Google

[111] K. Tan, X. Peng, P. So, Y. Chu, and M. Chen, “Centralized control for parallel operation of distributed generation inverters in microgrids,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1977–1987, Dec 2012. Cerca con Google

[112] J.-H. Jeon, J.-Y. Kim, H.-M. Kim, S.-K. Kim, C. Cho, J.-M. Kim, J.-B. Ahn, and K.-Y. Nam, “Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid,” IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 2919–2929, Dec Cerca con Google

2010. Cerca con Google

[113] L. Meegahapola, D. Robinson, A. Agalgaonkar, S. Perera, and P. Ciufo, “Microgrids of commercial buildings: Strategies to manage mode transfer from grid connected to islanded mode,” IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1337–1347, Oct 2014. Cerca con Google

[114] G. Azevedo, F. Bradaschia, M. Cavalcanti, F. Neves, J. Rocabert, and P. Rodriguez, “Safe transient operation of microgrids based on master-slave configuration,” in 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 2191–2195. Cerca con Google

[115] S. Mishra, D. Ramasubramanian, and P. Sekhar, “A seamless control methodology for a grid connected and isolated PV-diesel microgrid,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4393–4404, Nov 2013. Cerca con Google

[116] M. Delghavi and A. Yazdani, “A unified control strategy for electronically interfaced distributed energy resources,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 803–812, 2012. Cerca con Google

[117] N. Pogaku, M. Prodanovic, and T. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007. Cerca con Google

[118] M. Hassan and M. Abido, “Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 755–769, 2011. Cerca con Google

[119] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, and T. Green, “Energy management in autonomous microgrid using stability-constrained droop control of inverters,” IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2346–2352, Sept 2008. Cerca con Google

[120] Z. Zeng, H. Yang, and R. Zhao, “Study on small signal stability of microgrids: A review and a new approach,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4818–4828, 2011. Cerca con Google

[121] “National instruments’ webpage,” 2013, www.ni.com. Vai! Cerca con Google

[122] S. Lissandron, L. Dalla Santa, P. Mattavelli, and B. Wen, “Experimental validation for impedance-based small-signal stability analysis of single-phase interconnected power systems with grid-feeding inverters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015. Cerca con Google

[123] M. Cespedes and J. Sun, “Renewable energy systems instability involving grid-parallel inverters,” in 24th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2009), Feb 2009, pp. 1971–1977. Cerca con Google

[124] S. Acevedo and M. Molinas, “Power electronics modeling fidelity: Impact on stability estimate of micro-grid systems,” in 2011 IEEE PES Innovative Smart Grid Technologies Asia (ISGT), Nov 2011. Cerca con Google

[125] J. Sun and Z. Bing, “Input impedance modeling of single-phase PFC by the method of harmonic linearization,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2008), Feb 2008, pp. 1188–1194. Cerca con Google

[126] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075–3078, Nov 2011. Cerca con Google

[127] J. Huang, “AC/DC power system small-signal impedance measurement for stability analysis,” Ph.D. dissertation, Missouri University of Science and Technology, 2009. Cerca con Google

[128] J. Huang, K. Corzine, and M. Belkhayat, “Single-phase AC impedance modeling for stability of integrated power systems,” in IEEE ESTS 2007 Electric Ship Technologies Symposium, May 2007, pp. 483–489. Cerca con Google

[129] H. Wang, W. Mingli, and J. Sun, “Analysis of low-frequency oscillation in electric railways based on small-signal modeling of vehicle-grid system in dq frame,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5318–5330, Sept 2015. Cerca con Google

[130] A. Paice and M. Meyer, “Rail network modelling and stability: the input admittance criterion,” in 14th Int. Symp. Math. Theory Netw. Syst., Perpignan, France, 2000. Cerca con Google

[131] M. Jansson, A. Danielsson, J. Galic, K. Pietiläinen, and L. Harnefors, “Stable and passive traction drives,” in Proceedings of IEEE Nordic Power and Industrial Electronics Conference, 2004. Cerca con Google

[132] S. Danielsen, O. B. Fosso, M. Molinas, J. A. Suul, and T. Toftevaag, “Simplified models of a single-phase power electronic inverter for railway power system stability analysis–development and evaluation,” Electric Power Systems Research, vol. 80, no. 2, pp. 204–214, 2010. Cerca con Google

[133] C. Heising, M. Oettmeier, V. Staudt, A. Steimel, and S. Danielsen, “Improvement of low-frequency railway power system stability using an advanced multivariable control concept,” in 35th Annual Conference of IEEE Industrial Electronics (IECON ’09), Nov 2009, pp. 560–565. Cerca con Google

[134] L. Harnefors, “Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2239–2248, Aug 2007. Cerca con Google

[135] J. Kwon, X. Wang, C. Bak, and F. Blaabjerg, “Harmonic instability analysis of single-phase grid connected converter using harmonic state space (HSS) modeling method,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2015, pp. 2421–2428. Cerca con Google

[136] N. M. Wereley, “Analysis and control of linear periodically time varying systems,” Ph.D. dissertation, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1991. Cerca con Google

[137] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Analysis of D-Q small-signal impedance of grid-tied inverters,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 675–687, Jan 2016. Cerca con Google

[138] B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 26–38, Jan 2016. Cerca con Google

[139] S. Lissandron, L. Dalla Santa, P. Mattavelli, and B. Wen, “Validation of impedance-based small-signal stability analysis for single-phase grid-feeding inverters with PLL,” in 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), June Cerca con Google

2015. Cerca con Google

[140] X. Wang, F. Blaabjerg, and W. Wu, “Modeling and analysis of harmonic stability in an ac power-electronics-based power system,” IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6421–6432, Dec 2014. Cerca con Google

[141] C. Zhang, X. Wang, and F. Blaabjerg, “Analysis of phase-locked loop influence on the stability of single-phase grid-connected inverter,” in 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), June 2015. Cerca con Google

[142] V. Caliskan, G. C. Verghese, and A. Stankovic, “Multifrequency averaging of DC/DC converters,” IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 124–133, Jan 1999. Cerca con Google

[143] L. Fangcheng, L. Jinjun, Z. Bin, Z. Haodong, and H. Ul, “General impedance/admittance stability criterion for cascade system,” in 2013 IEEE ECCE Asia Downunder (ECCE Asia), June 2013, pp. 422–428. Cerca con Google

[144] M. Jaksic, D. Boroyevich, R. Burgos, Z. Shen, I. Cvetkovic, and P. Mattavelli, “Modular interleaved single-phase series voltage injection converter used in small-signal dq impedance identification,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2014, pp. 3036–3045. Cerca con Google

[145] J. Huang, K. Corzine, and M. Belkhayat, “Small-signal impedance measurement of power-electronics-based ac power systems using line-to-line current injection,” IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 445–455, Feb 2009. Cerca con Google

[146] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409, Oct 2006. Cerca con Google

[147] R. Santos Filho, P. Seixas, P. Cortizo, L. Torres, and A. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2923–2932, Aug 2008. Cerca con Google

[148] D. Zmood, D. Holmes, and G. Bode, “Frequency-domain analysis of three-phase linear current regulators,” IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 601–610, Mar 2001. Cerca con Google

[149] D. Zmood and D. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 814–822, May 2003. Cerca con Google

[150] “IDE4L European project’ webpage,” 2014, www.ide4l.eu. Vai! Cerca con Google

[151] H. K. Khalil, Nonlinear Systems, 3rd ed., 2002, pp. 423–434. Cerca con Google

[152] T. V. Cutsem and C. Vournas, Voltage Stability of Electric Power Systems. Springer Science and Business Media, 1998. Cerca con Google

[153] T. Esram and P. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439–449, June 2007. Cerca con Google

[154] S. Lissandron, A. Costabeber, and P. Mattavelli, “A generalized method to analyze the small-signal stability for a multi-inverter islanded grid with droop controllers,” in 15th European Conference on Power Electronics and Applications (EPE 2013), 2013, pp. 1–10. Cerca con Google

[155] M. Marwali, J.-W. Jung, and A. Keyhani, “Stability analysis of load sharing control for distributed generation systems,” IEEE Transactions on Energy Conversion, vol. 22, no. 3, pp. 737–745, 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record