Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account


Full text disponibile come:

PDF Document

Abstract (english)

Our research project was designed to analyze the inter-play between aging, chronic lung injury, lung microbiome and exposure to air pollutants. The project was divided into four parts:
1) systematic review of the literature about the role of non-invasive biomarkers in detecting the acute respiratory effects of traffic-related air pollution;
2) retrospective/prospective study of the possible predictors of carbon particles accumulation in the airways macrophages;
3) prospective evaluation of the effect of smoking and/or disease (COPD) on microbial colonization of the lung;
4) prospective study about the effects of traffic-related air pollution and cigarette smoke on lung aging.
The first part was a systematic review of the literature on the use of samples obtained in a non-invasive way aimed to study the short-term effects of urban traffic-related air pollution on the respiratory system. Although subjects with COPD have been generally considered to be at higher risk for the adverse effects of air pollutants, these patients have been recruited only in a few studies [1-4]. According Manney et al. [1], an increase of nitrates and nitrites in exhaled breath condensate (EBC) is associated with a large exposure to particles in subjects with COPD and asthma, with no differences between the two diseases. FeNO measurements yielded conflicting results: one study found a association with PM2.5 in subjects with COPD, but not with asthma [2], while in another study [3], FeNO levels resulted to be associated with PM pollution in participants with asthma but not in those with COPD. According to Gong et al. [4] cellularity of induced sputum in COPD patients is not affected by particles exposure. More research is thus required to clarify the effect of air pollution related to acute traffic in people who suffer from lung diseases other than asthma. The acute effects on respiratory disease are difficult to be attributed to a particular pollutant in most surveys with environmental exposure [5]. Further research are warranted to promote a better standardization of methods for pollutants monitoring. In real life conditions, 'unexposed' subjects do not exist and the difference between the minimum and maximum levels of air pollution is often less than three times [6]. When planning observational studies, a baseline for levels of inflammatory markers in individuals exposed to low levels of pollutants should be established to be able to detect an effect at higher exposures.
The second part of our project aimed to investigate the determinants of the accumulation of carbon particles in the cytoplasm of airway macrophages obtained from induced sputum. Three groups of subjects were enrolled: patients suffering from COPD, healthy smokers and non-smoking healthy controls. Exposure to cigarette smoke, to indoor and outdoor air pollution, and occupational exposure was quantified with a dedicated questionnaire. This analysis aimed to control potential confounders to make a correct evaluation of the personal exposure to air pollution. The most important predictors of the black carbon (BC) load in airway macrophages resulted to be the presence of COPD and urban traffic exposure, while smoking did not show any significant association. Traffic exposure in the previous year of the visit (measured as the number of equivalent vehicles) was correlated with the carbon load. In addition, in COPD the carbon particles accumulation did not resulted to be correlated with the degree of obstruction nor with the degree of neutrophilic inflammation of the airways. In conclusion , quantification of BC in macrophages is suitable for assessing traffic exposure, although further studies are needed to assess macrophage function in patients with and without disease and to evaluate the biological effects of the individual carbon load. The third part aimed to non-invasively assess the differential role of cigarette smoke and smoke-associated chronic airflow limitation on airways bacterial colonization. The molecular identification of the pulmonary microbiota in three groups of subjects was carried out. Phyla and genera present in each subject and in each group were identified. It was then calculated α and β diversity index to evaluate the differences in bacterial composition intra sample and between samples of the same group, respectively. The composition of phyla in stable COPD patients was similar to that found in earlier research based on the use of bronchial brushing and bronchoalveolar lavage with the advantage that our number of sequence reading was much higher than those previously analyzed. It was also observed that subjects with COPD who received corticosteroids showed a lower abundance of bacteria of genus Prevotella and greater abundance of Veillonella genus compared to untreated subjects. Smokers have an increased relative number of Neisseria and Bergeyella genera, and a decreased relative number of Streptococcus and Rothia genera compared to non-smokers. Our results suggested that cigarette smoking may cause a decrease in the relative abundance of species, regardless of the development of chronic airflow limitation, thus influencing the composition of the lung microbiome. Molecular analysis proved to be indispensable to compare different niches and to identify the most abundant organisms present in different groups. Indeed, traditional culture tests and biochemical assays did not allows phenotypic identification of bacteria. The analysis of the resident microbiota in patients with stable COPD compared to smokers and non-smokers suggested the richness of the microbiota is important for lung health.
In the fourth part of the research a feasibility study of DNA extraction from sputum cells and the respective quantification was performed. The evaluation of lung aging due to urban pollution and cigarette smoke was carried out on both samples of blood and induced sputum and the telomere length will be measured. We expected that the rate of decline in lung function would be associated with the rate of biological aging. We also assumed that aging in white blood cells reflects that of cells coming from induced sputum. We expected that cigarette smoking accelerates the aging of cells in induced sputum when inflammation and exposure to environmental pollution are constant.
In conclusion, the presence of COPD affects both the lung carbon load linked to urban traffic (with the same external exposure of the subjects), and the biodiversity of lung microbial colonization. On the other hand, cigarette smoking has no effect on the content of carbon particles, but acts on the composition of the microbiota.

Abstract (italian)

Il progetto di ricerca nel suo insieme si proponeva di analizzare l’interazione tra danno polmonare cronico, invecchiamento, microbioma polmonare ed esposizione agli inquinanti inalatori. Il proggetto era articola in quattro parti:
1) revisione sistematica della letteratura sul ruolo dei biomarcatori non invasivi nello studio degli effetti respiratori acuti dell’inquinamento associato a traffico;
2) studio retrospettivo/prospettico dei determinanti dell’accumulo delle particelle carboniose nei macrofagi delle vie aree;
3) valutazione prospettica dell’effetto del fumo e/o della malattia (BPCO) sulla colonizzazione microbica a livello polmonare;
4) studio prospettico dell’effetto dell’inquinamento urbano e del fumo di sigaretta sull’invecchiamento polmonare.
La prima parte era un’analisi sistematica della letteratura sull’uso di campioni ottenuti in modo non invasivo per studiare degli effetti a breve termine sul sistema respiratorio dell'inquinamento atmosferico dovuto a traffico urbano. Da questa emerge che, sebbene i soggetti con broncopneumopatia cronica ostruttiva (BPCO) siano stati generalmente considerati a più alto rischio per gli effetti negativi degli inquinanti atmosferici, questi pazienti sono stati reclutati solo in pochi studi [1-4]. Secondo Manney et al. [1], l'aumento di nitrati e nitriti nel condensato dell’aria esalata (EBC) è stato associato con una grossa esposizione di particelle nei soggetti con BPCO e asmatici, senza differenze significative tra le due malattie. Le misure di ossido nitrico esalato (FeNO) in altri due studi hanno dato risultati opposti: uno ha trovato un rapporto con PM2.5 in soggetti con BPCO, ma non con asmatici [2], mentre nell’altro [3], il FeNO è stato associato con livelli di inquinamento da PM nei partecipanti con asma ma non in quelli con BPCO. Secondo Gong et al. [4] la cellularità dell’espettorato indotto in soggetti con BPCO non è influenzata dall’esposizione a particolato. Sono quindi necessarie nuove ricerche volte a chiarire l’effetto dell’inquinamento atmosferico acuto legato al traffico in soggetti che soffrono di malattie polmonari diverse dall’asma. Tuttavia, gli effetti acuti sulla salute sono difficili da attribuire ad un particolare inquinante nella maggior parte delle indagini con esposizione ambientale [5]. Ulteriori ricerche dovrebbero essere dirette a promuovere una migliore standardizzazione dei metodi per monitorare gli inquinanti da traffico. Va ricordato che, in condizioni di vita reale, i soggetti veramente 'non esposti' non esistono e la differenza tra i livelli minimi e massimi di inquinamento atmosferico è spesso meno di tre volte [6]. Dovrebbe essere stabilita, in particolare quando si pianificano studi osservazionali, una base di riferimento per i livelli di marcatori infiammatori in soggetti esposti a bassi livelli di sostanze inquinanti per essere in grado rilevare un effetto con esposizioni più elevate.
Nella seconda parte l’obbiettivo era di indagare i determinanti dell’accumulo di particelle carboniose nel citoplasma dei macrofagi delle vie aeree ottenuti dall’espettorato indotto. A tale scopo si sono arruolati tre gruppi di soggetti: affetti da BPCO, fumatori sani e controlli non fumatori sani. Tramite questionario è stata valutata la loro esposizione a fumo passivo di sigaretta, a inquinamento indoor, a inquinamento dell’aria negli spostamenti quotidiani e all’esposizione professionale. Questa analisi ha permesso di controllare i potenziali fattori confondenti per poter eseguire una corretta analisi dell’esposizione personale a inquinamento dell’aria. Si è osservato come i maggiori determinanti del contenuto di black carbon (BC) nei macrofagi delle vie aeree siano la presenza di BPCO e l'esposizione al traffico urbano, mentre non è stato dimostrato un ruolo dell'abitudine al fumo di sigaretta. L’esposizione a traffico (misurato come numero di veicoli equivalenti) era correlata con il carico di particelle carboniose. Inoltre, per quanto concerne la BPCO, l'accumulo di particelle carboniose non risulta correlato con il grado di ostruzione né con il grado di infiammazione neutrofila delle vie aeree. La quantificazione di BC nei macrofagi risulta adatta a valutare l’esposizione a traffico, anche se sono necessari ulteriori studi sulla funzionalità dei macrofagi nei soggetti con e senza malattia e una valutazione degli effetti biologici sul singolo individuo dovuti all’accumulo di BC.
Nella terza parte si è proposto di valutare, in modo non invasivo, il ruolo differenziale del fumo di sigaretta e della limitazione cronica del flusso aereo associata a fumo sulla colonizzazione batterica delle vie aeree. È stata quindi effettuata l’identificazione molecolare del microbiota polmonare residente nei 3 gruppi di soggetti. Sono stati identificati i phyla e i generi presenti in ciascun soggetto e in ogni gruppo. Sono stati poi calcolati gli indici di diversità α e β per valutare rispettivamente le differenze di composizione batterica intra campione e tra campioni dello stesso gruppo. La composizione in phyla nei pazienti BPCO stabili è risultata essere simile a quella trovata nelle precedenti ricerche basate sull'utilizzo di brushing bronchiale e broncolavaggio, con il vantaggio che il nostro numero di letture di sequenza è molto più alto di quelli precedentemente analizzati. Inoltre si è osservato che i soggetti con BPCO che ricevevano corticosteroidi mostravano una scarsa abbondanza di batteri di genere Prevotella e un’abbondanza maggiore di batteri di genere Veillonella rispetto ai soggetti non trattati. I fumatori rispetto ai non fumatori hanno un numero relativo aumentato dei generi Neisseria e Bergeyella, mentre è diminuito per i generi Streptococcus e Rothia. I risultati suggeriscono che il fumo di sigaretta possa indurre una diminuzione dell’abbondanza relativa di specie, indipendentemente dallo sviluppo della limitazione cronica al flusso aereo, influenzando così la composizione del microbioma polmonare. L’analisi molecolare si è rivelata indispensabile per confrontare nicchie diverse e identificare organismi più abbondanti presenti in un gruppo rispetto ad un altro, cosa che l’identificazione fenotipica dei batteri, ottenuta tramite i tradizionali esami colturali e saggi biochimici non consentiva. L'analisi del microbiota residente nei pazienti con BPCO stabile rispetto ai fumatori e soggetti non fumatori suggerisce che la ricchezza del microbiota è importante per la salute polmonare.
Per svolgere l’ultima parte della ricerca è stato fatto uno studio di fattibilità dell’estrazione del DNA da cellule dell’espettorato e relativa quantificazione. La valutazione dell’invecchiamento polmonare dovuto ad inquinamento urbano e a fumo di sigaretta sarà effettuata sia su campioni di sangue che di espettorato misurando la lunghezza dei telomeri. Ci si aspetta che il tasso di declino della funzione polmonare sia associato al tasso di invecchiamento biologico. Tra risultati attesi ipotizziamo anche che l'invecchiamento nei leucociti del sangue rispecchi quello delle cellule dell'espettorato indotto. A parità di infiammazione e di esposizione all'inquinamento ambientale, ci si aspetta che il fumo di sigaretta acceleri l'invecchiamento delle cellule dell'espettorato indotto.
In conclusione, la presenza di BPCO influenza sia il carico di particelle carboniose nel polmone legate al traffico urbano (a parità di esposizione esterna dei soggetti), sia la biodiversità della colonizzazione microbica polmonare. Viceversa, il fumo di sigaretta non ha effetti sul contenuto di particelle carboniose, ma agisce sulla composizione del microbiota.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Lotti, Marcello
Supervisor:Maestrelli, Piero
Ph.D. course:Ciclo 28 > Scuole 28 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:27 January 2016
Anno di Pubblicazione:27 January 2016
Key Words:BPCO macrofagi microbioma particolato telomeri
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/44 Medicina del lavoro
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:9089
Depositato il:07 Nov 2016 16:29
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1) Manney S, Meddings CM, Harrison RM, Mansur AH, Karakatsani A, Analitis A, Katsouyanni K, Perifanou D, Kavouras IG, Kotronarou N, de Hartog JJ, Pekkanen J, Hämeri K, ten Brink H, Hoek G, Ayres JG. Association between exhaled breath condensate nitrate + nitrite levels with ambient coarse particle exposure in subjects with airways disease. Occup Environ Med. 2012; 69(9): 663-9. Cerca con Google

2) Adamkiewicz G, Ebelt S, Syring M, Slater J, Speizer FE, Schwartz J, Suh H, Gold DR. Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax. 2004;59(3):204-9. Cerca con Google

3) Zuurbier M, Hoek G, Oldenwening M, Meliefste K, van den Hazel P, Brunekreef B. Respiratory effects of commuters' exposure to air pollution in traffic. Epidemiology. 2011;22(2):219-27. Cerca con Google

4) Gong H, Linn WS, Terrell SL et al. Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhal Toxicol 2004; 16:731–44. Cerca con Google

5) Nwokoro C, Ewin C, Harrison C, et al. Cycling to work in London and inhaled dose of black carbon. Eur Respir J 2012;40(5):1091–7. Cerca con Google

6) Kunzli N, Perez L, Rapp R. Air quality and health. European Respiratory Society booklet. 2010:23-27. Cerca con Google

7) Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008 ; 151(2):362-7. Cerca con Google

8) Sunyer J, Basagana X. Particles, and not gases, are associated with the risk of death in patients with chronic obstructive pulmonary disease. Int J Epidemiol 2001; 30:1138–40. Cerca con Google

9) Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011. http://www.goldcopd.it. Vai! Cerca con Google

10) Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532-55. Cerca con Google

11) Schwartz J, Dockery DW. Increased mortality in Philadelphia with daily air pollution concentrations. Am Rev Respir Dis 1992; 145:600–4. Cerca con Google

12) Sunyer J, Schwartz J, Tobias A, Macfarlane D, Garcia J, Anto JM. Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am J Epidemiol 2000; 151:50–6. Cerca con Google

13) Sapkota AR, Berger S, Vogel TM. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect. 2010 Mar; 118(3): 351-6. Cerca con Google

14) El Ahmer OR, Essery SD, Saadi AT, Raza MW, Ogilvie MM, Weir DM, Blackwell CC. The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells. FEMS Immunol Med Microbiol. 1999; 23(1): 27-36. Cerca con Google

15) Murin S, Bilello KS. Respiratory tract infections: another reason not to smoke. Cleve Clin J Med. 2005; 72(10): 916-20. Cerca con Google

16) Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman FD, Collman RG. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010; 5(12): e15216. Cerca con Google

17) Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res. 2011; 166(2): 99-110. Cerca con Google

18) British Lung Foundation. Air pollution and your lungs. 2009. Available at: http://www.blf.org.uk/Page/Outdoor-Air-Pollution (Last accessed 16 December 2013). Vai! Cerca con Google

19) D’Amato G, Cecchi L, D’Amato M, Liccardi G. Urban air pollution and climate change as environmental risk factor of respiratory allergy: an update. J Investig Allergol Clin Immunol 2010; 20:95–102. Cerca con Google

20) Laumbach RJ, Kipen HM. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution. J Allergy Clin Immunol 2012; 129:3–11. Cerca con Google

21) Pope CA, Ezzati M, Dockery DW. Fineparticulate air pollution and life expectancy in the United States. N Engl J Med 2009; 360:376–86. Cerca con Google

22) Nicholson PJ, Cullinan P, Taylor AJ, Burge PS, Boyle C. Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup Environ Med 2005; 62:290–9. Cerca con Google

23) Nathan RA, Eccles R, Howarth PH, Steinsv_ag SK, Togias A. Objective monitoring of nasal patency and nasal physiology in rhinitis. J Allergy Clin Immunol 2005; 115:S442–59. Cerca con Google

24) Koren HS, Devlin RB. Human upper respiratory tract responses to inhaled pollutants with emphasis on nasal lavage. Ann N Y Acad Sci 1992; 641:215–24. Cerca con Google

25) Nightingale JA, Rogers DF, Barnes PJ. Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 1999; 54: 1061–9. Cerca con Google

26) Olin AC, Stenfors N, Tor_en K et al. Nitric oxide (NO) in exhaled air after experimental ozone exposure in humans. Respir Med 2001; 95:491–5. Cerca con Google

27) Steerenberg PA, Nierkens S, Fischer PH et al. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch Environ Health 2001; 56:167–74. Cerca con Google

28) Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L et al. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City school children. Environ Health Perspect 2008; 116:832–8. Cerca con Google

29) Renzetti G, Silvestre G, D’Amario C et al. Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children. Pediatrics 2009; 123:1051–8. Cerca con Google

30) Larsson BM, Grunewald J, Sk€old CM et al. Limited airway effects in mild asthmatics after exposure to air pollution in a road tunnel. Respir Med 2010; 104:1912–8. Cerca con Google

31) Mudway IS, Blomberg A, Frew AJ, Holgate ST, Sandstr€om T, Kelly FJ. Antioxidant consumption and repletion kinetics in nasal lavage fluid following exposure of healthy human volunteers to ozone. Eur Respir J 1999; 13:1429–38. Cerca con Google

32) Gomes EC, Stone V, Florida-James G. Impact of heat and pollution on oxidative stress and CC16 secretion after 8 km run. Eur J Appl Physiol 2011; 111:2089–97. Cerca con Google

33) Romieu I, Barraza-Villarreal A, Escamilla-Nu~nez C et al. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 2008; 121:903–9. Cerca con Google

34) Corradi M, Alinovi R, Goldoni M et al. Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol Lett 2002; 134:219–25. Cerca con Google

35) Mills NL, Robinson SD, Fokkens PH et al. Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect 2008; 116:709–15. Cerca con Google

36) Hubbard HF, Sobus JR, Pleil JD, Madden MC, Tabucchi S. Application of novel method to measure endogenous VOCs in exhaled breath condensate before and after exposure to diesel exhaust. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3652–8. Cerca con Google

37) Hussain S, Laumbach R, Coleman Jet al. Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J Occup Environ Med 2012; 54:1186–91. Cerca con Google

38) McCreanor J, Cullinan P, Nieuwenhuijsen MJ et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007;357:2348–58. Cerca con Google

39) Zhang JJ, McCreanor JE, Cullinan P et al. Health effects of real-world exposure to diesel exhaust in persons with asthma. Res Rep Health Eff Inst 2009; 138:5–123. Cerca con Google

40) Martins PC, Valente J, Papoila AL et al. Airways changes related to air pollution exposure in wheezing children. Eur Respir J 2012; 39:246–53. Cerca con Google

41) Epton MJ, Dawson RD, Brooks WM et al. The effect of ambient air pollution on respiratory health of school children: a panel study. Environ Health 2008; 7:16. Cerca con Google

42) Folino AF, Scapellato ML, Canova C et al. Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. Eur Heart J 2009; 30:1614–20. Cerca con Google

43) Maestrelli P, Canova C, Scapellato ML et al. Personal exposure to particulate matter is associated with worse health perception in adult asthma. J Investig Allergol Clin Immunol 2011; 21:120–8. Cerca con Google

44) Rundell KW, Caviston R. Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects. J Strength Cond Res 2008; 22:2–5. Cerca con Google

45) Liu L, Poon R, Chen L et al. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009; 117:668–74. Cerca con Google

46) Manney S, Meddings CM, Harrison RM et al. Association between exhaled breath condensate nitrate + nitrite levels with ambient coarse particle exposure in subjects with airways disease. Occup Environ Med 2012; 69:663–9. Cerca con Google

47) Rava M, Varraso R, Decoster B et al. Plasma and exhaled breath condensate nitrite-nitrate level in relation to environmental exposures in adults in the EGEA study. Nitric Oxide 2012; 27:169–75. Cerca con Google

48) Dompeling E, Rosias PPR, Jobsis Q. Exhaled breath condensate sample collection: standards and open issues. Eur Respir Mon 2010; 49:152–61. Cerca con Google

49) Corradi M, Gergelova P, Mutti A. Use of exhaled breath condensate to investigate occupational lung diseases. Curr Opin Allergy Clin Immunol 2010; 10:93–8. Cerca con Google

50) American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 2005; 171:912–30. Cerca con Google

51) Newson EJ, Krishna MT, Lau LC, Howarth PH, Holgate ST, Frew AJ. Effects of short-term exposure to 0.2 ppm ozone on biomarkers of inflammation in sputum, exhaled nitric oxide, and lung function in subjects with mild atopic asthma. J Occup Environ Med 2000; 42:270–7. Cerca con Google

52) Frampton MW, Utell MJ, Zareba W et al. Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 2004; 126:1–47; discussion 49–63. Cerca con Google

53) Gong H Jr, Linn WS, Clark KW et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol 2008; 20:533–45. Cerca con Google

54) Behndig AF, Larsson N, Brown JL et al. Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma. Thorax 2011; 66:12–9. Cerca con Google

55) Cattoni I, Guarnieri G, Tosetto A et al. Mechanisms of decrease in fractional exhaled nitric oxide during acute bronchoconstriction. Chest 2013; 143:1269–76. Cerca con Google

56) Fischer PH, Steerenberg PA, Snelder JD, van Loveren H, van Amsterdam JG. Association between exhaled nitric oxide, ambient air pollution and respiratory health in school children. Int Arch Occup Environ Health 2002; 75:348–53. Cerca con Google

57) Koenig JQ, Jansen K, Mar TF et al. Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect 2003; 111:1625–9. Cerca con Google

58) Koenig JQ, Mar TF, Allen RW et al. Pulmonary effects of indoor- and outdoor- generated particles in children with asthma. Environ Health Perspect 2005; 113:499–503. Cerca con Google

59) Mar TF, Jansen K, Shepherd K, Lumley T, Larson TV, Koenig JQ. Exhaled nitric oxide in children with asthma and short-term PM2.5 exposure in Seattle. Environ Health Perspect 2005; 113:1791–4. Cerca con Google

60) Delfino RJ, Staimer N, Gillen D et al. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 2006; 114:1736–43. Cerca con Google

61) Holguin F, Flores S, Ross Z et al. Traffic-related exposures, airway function, inflammation, and respiratory symptoms in children. Am J Respir Crit Care Med 2007; 176:1236–42. Cerca con Google

62) Murata A, Kida K, Hasunuma H et al. Environmental influence on the measurement of exhaled nitric oxide concentration in school children: special reference to methodology. J Nippon Med Sch 2007; 74:30–6. Cerca con Google

63) Allen RW, Mar T, Koenig J et al. Changes in lung function and airway inflammation among asthmatic children residing in a woodsmokeimpacted urban area. Inhal Toxicol 2008; 20:423–33. Cerca con Google

64) Lin W, Huang W, Zhu T et al. Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Beijing Olympics. Environ Health Perspect 2011; 119:1507–12. Cerca con Google

65) Sarnat SE, Raysoni AU, Li WW et al. Air pollution and acute respiratory response in panel of asthmatic children along the U.S.-Mexico border. Environ Health Perspect 2012; 120:437–44. Cerca con Google

66) Berhane K, Zhang Y, Linn WS et al. The effect of ambient air pollution on exhaled nitric oxide in the Children’s Health Study. Eur Respir J 2011; 37:1029–36. Cerca con Google

67) Delfino RJ, Staimer N, Tjoa T et al. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 2010; 21:892–902. Cerca con Google

68) Adar SD, Adamkiewicz G, Gold DR, Schwartz J, Coull BA, Suh H. Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environ Health Perspect 2007; 115:507–12. Cerca con Google

69) Jansen KL, Larson TV, Koenig JQ et al. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect 2005; 113:1741–6. Cerca con Google

70) Strak M, Boogaard H, Meliefste K et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med 2010; 67:118–24. Cerca con Google

71) Klepczy_nska Nystr€om A, Svartengren M, Grunewald J et al. Health effects of a subway environment in healthy volunteers. Eur Respir J 2010; 36:240–8. Cerca con Google

72) Klepczynska-Nystr€om A, Larsson BM, Grunewald J et al. Health effects of a subway environment in mild asthmatic volunteers. Respir Med 2012; 106:25–33. Cerca con Google

73) Jacobs L, Nawrot TS, de Geus B et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health 2010; 9:64. Cerca con Google

74) Weichenthal S, Kulka R, B_elisle P et al. Personal exposure to specific volatile organic compounds and acute changes in lung function and heart rate variability among urban cyclists. Environ Res 2012; 118:118–23. Cerca con Google

75) Khatri SB, Holguin FC, Ryan PB, Mannino D, Erzurum SC, Teague WG. Association of ambient ozone exposure with airway inflammation and allergy in adults with asthma. J Asthma 2009; 46:777–85. Cerca con Google

76) Van Amsterdam JG, Verlaan BP, Van Loveren H et al. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health 1999; 54:331–5. Cerca con Google

77) Graveland H, Van Roosbroeck SA, Rensen WM, Brunekreef B, Gehring U. Air pollution and exhaled nitric oxide in Dutch schoolchildren. Occup Environ Med 2011; 68:551–6. Cerca con Google

78) Szefler SJ, Wenzel S, Brown R et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol 2012; 129:S9–23. Cerca con Google

79) Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 1998; 85:653–66. Cerca con Google

80) Paggiaro PL, Chanez P, Holz O et al. Sputum induction. Eur Respir J Suppl 2002; 37:3s–8s. Cerca con Google

81) Pizzichini E, Pizzichini MM, Leigh R, Djukanovi_c R, Sterk PJ. Safety of sputum induction. Eur Respir J Suppl 2002; 37:19s–23s. Cerca con Google

82) Quirce S, Lemi_ere C, de Blay F et al. Noninvasive methods for assessment of airway inflammation in occupational settings. Allergy 2010; 65:445–58. Cerca con Google

83) Hiltermann JT, Lapperre TS, van Bree L et al. Ozone induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new non-invasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 1999; 27:1448–54. Cerca con Google

84) Arjomandi M, Schmidlin I, Girling P, Boylen K, Ferrando R, Balmes J. Sputum induction and bronchoscopy for assessment of ozone-induced airway inflammation in asthma. Chest 2005; 128:416–23. Cerca con Google

85) Ratto J, Wong H, Liu J et al. Effects of multiday exposure to ozone on airway inflammation as determined using sputum induction. Environ Health Perspect 2006; 114:209–12. Cerca con Google

86) Hernandez ML, Lay JC, Harris B et al. Atopic asthmatic subjects but not atopic subjects without asthma have enhanced inflammatory response to ozone. J Allergy Clin Immunol 2010; 126:537–44. Cerca con Google

87) Nightingale JA, Maggs R, Cullinan P et al. Airway inflammation after controlled exposure to diesel exhaust particulates. Am J Respir Crit Care Med 2000; 162:161–6. Cerca con Google

88) Nordenh€all C, Pourazar J, Blomberg A, Levin JO, Sandstr€om T, Adelroth E. Airway inflammation following exposure to diesel exhaust: study of time kinetics using induced sputum. Eur Respir J 2000; 15:1046–51. Cerca con Google

89) Nordenh€all C, Pourazar J, Ledin MC, Levin JO, Sandstr€om T, Adelroth E. Diesel exhaust enhances airway responsiveness in asthmatic subjects. Eur Respir J 2001; 17:909–15. Cerca con Google

90) Gong H Jr, Sioutas C, Linn WS. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient particles in metropolitan Los Angeles. Res Rep Health Eff Inst 2003; 118:1–36; discussion 37–47. Cerca con Google

91) Alexis NE, Lay JC, Zeman K et al. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol 2006; 117:1396–403. Cerca con Google

92) Bosson J, Pourazar J, Forsberg B, Adelroth E, Sandstr€om T, Blomberg A. Ozone enhances the airway inflammation initiated by diesel exhaust. Respir Med 2007; 101:1140–6. Cerca con Google

93) Chimenti L, Morici G, Paterno A et al. Environmental conditions, air pollutants, and airway cells in runners: a longitudinal field study. J Sports Sci 2009; 27:925–35. Cerca con Google

94) Kulkarni NS, Prudon B, Panditi SL, Abebe Y, Grigg J. Carbon loading of alveolar macrophages in adults and children exposed to biomass smoke particles. Sci Total Environ 2005; 345:23–30. Cerca con Google

95) Fullerton DG, Jere K, Jambo K et al. Domestic smoke exposure is associated with alveolar macrophage particulate load. Trop Med Int Health 2009; 14:349–54. Cerca con Google

96) Kulkarni N, Pierse N, Rushton L, Grigg J. Carbon in airway macrophages and lung function in children. N Engl J Med 2006; 355:21–30. Cerca con Google

97) Grigg J, Kulkarni N, Pierse N, Rushton L, O’Callaghan C, Rutman A. Blackpigmented material in airway macrophages from healthy children: association with lung function and modeled PM10. Res Rep Health Eff Inst 2008; 134:1–23. Cerca con Google

98) Jacobs L, Emmerechts J, Mathieu C et al. Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect 2010; 118:191–6. Cerca con Google

99) WHO. Outdoor air pollution (2013). Available at : http://www.who.int/phe/health_topics/outdoorair/en. Vai! Cerca con Google

100) Lee LY, Widdicombe JG. Modulation of airway sensitivity to inhaled irritants: role of inflammatory mediators. Environ Health Perspect 2001;109 Suppl 4:585–9. Cerca con Google

101) Artíñano B, Salvador P, Alonso DG, Querol X, Alastuey A. Influence of traffic on the PM10 and PM2,5 urban aerosol fractions in Madrid (Spain). Sci Total Environ 2004;334-335:111–23. Cerca con Google

102) Kocbach A, Johansen BV, Schwarze PE, Namork E. Analytical electron microscopy of combustion particles: a comparison of vehicle exhaust and residential wood smoke. Sci Total Environ 2005;346(1-3):231–43. Cerca con Google

103) Fireman EM, Lerman Y, Ganor E, et al. Induced sputum assessment in New York City firefighters exposed to World Trade Center dust. Environ Health Perspect 2004;112(15):1564–9. Cerca con Google

104) Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol 2008;167(3):280–6. Cerca con Google

105) Karita K, Yano E, Jinsart W, Boudoung D, Tamura K. Respiratory symptoms and pulmonary function among traffic police in Bangkok, Thailand. Arch Environ Health 2001;56(5):467–70. Cerca con Google

106) Brauer M, Avila-Casado C, Fortoul TI, Vedal S, Stevens B, Churg A. Air pollution and retained particles in the lung. Environ Health Perspect 2001;109(10):1039–43. Cerca con Google

107) ARPAV, Relazione Regionale della Qualità dell’Aria, http://www.arpa.veneto.it/, 2014 Vai! Cerca con Google

108) Brugge D, Lane K, Padró-Martínez LT, et al. Highway proximity associated with cardiovascular disease risk: the influence of individual-level confounders and exposure misclassification. Environ Health 2013;12(1):84. Cerca con Google

109) Hart JE, Rimm EB, Rexrode KM, Laden F. Changes in traffic exposure and the risk of incident myocardial infarction and all-cause mortality. Epidemiology 2013;24(5):734–42. Cerca con Google

110) Wilker EH, Mostofsky E, Lue S-H, et al. Residential proximity to high-traffic roadways and poststroke mortality. J Stroke Cerebrovasc Dis 2013;22(8):e366–72. Cerca con Google

111) Miranda ML, Edwards SE, Chang HH, Auten RL. Proximity to roadways and pregnancy outcomes. J Expo Sci Environ Epidemiol 2013;23(1):32–8. Cerca con Google

112) Nuvolone D, Della Maggiore R, Maio S, et al. Geographical information system and environmental epidemiology: a cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health. Environ Health 2011;10:12. Cerca con Google

113) Lindgren A, Stroh E, Montnémery P, Nihlén U, Jakobsson K, Axmon A. Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr 2009;8:2. Cerca con Google

114) Provincia di Padova, NET Engineering, Piano Provinciale Viabilità, www.provincia.pd.it, 2012. Vai! Cerca con Google

115) Kalappanavar NK, Vinodkumar CS, Gouli C, et al. Carbon particles in airway macrophage as a surrogate marker in the early detection of lung diseases. Int J Occup Environ Med 2012;3(2):68–75. Cerca con Google

116) Becker BS, Soukup J. Coarse(PM(2.5–10)), fine(PM(2.5)), and ultrafine air pollution particles induce/increase immune costimulatory receptors on human blood-derived monocytes but not on alveolar macrophages. J. Toxicol. Environ. Health 2003;66:847–859. Cerca con Google

117) Miyata R, van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol 2011;257(2):209–26. Cerca con Google

118) Sethi S. Chronic obstuctive pulmonary disease and infection. Disruption of the microbiome? Ann Am Thorac Soc. 2014; 11: S43-7. Cerca con Google

119) Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008; 359(22): 2355-65. Cerca con Google

120) Han MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease. Thorax 2012; 67 (5): 456-63. Cerca con Google

121) Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11(1): 31-46. Cerca con Google

122) Murray PR Microbiologia, Edises, Milano, Italia 2000; 7-8. Cerca con Google

123) Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res. 2011; 166(2): 99-110. Cerca con Google

124) Rivas R, Velázquez E, Zurdo-Piñeiro JL, Mateos PF, Martínez Molina E. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J Microbiol Methods. 2004; 56(3): 413-26. Cerca con Google

125) Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004; 17(4): 840-62. Cerca con Google

126) Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011; 38(3): 95-109. Cerca con Google

127) Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011 Feb 22;6(2):e16384. Cerca con Google

128) Cabrera-Rubio R, Garcia-Núñez M, Setó L, Antó JM, Moya A, Monsó E, Mira A. Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol. 2012 Nov;50(11):3562-8. Cerca con Google

129) Galiana A, Aguirre E, Rodriguez JC, Mira A, Santibañez M, Candela I, Llavero J, Garcinuño P, López F, Ruiz M, Garcia-Pachon E, Royo G. Sputum microbiota in moderate versus severe patients with COPD. Eur Respir J. 2014 Jun;43(6):1787-90. Cerca con Google

130) Millares L, Ferrari R, Gallego M, Garcia-Nuñez M, Pérez-Brocal V, Espasa M, Pomares X, Monton C, Moya A, Monsó E. Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2014 Jul;33(7):1101-11. Cerca con Google

131) Garcia-Nuñez M, Millares L, Pomares X, Ferrari R, Pérez-Brocal V, Gallego M, Espasa M, Moya A, Monsó E. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol. 2014 Dec;52(12):4217-23. Cerca con Google

132) Aguirre E, Galiana A, Mira A, Guardiola R, Sánchez-Guillén L, Garcia-Pachon E, Santibañez M, Royo G, Rodríguez JC. Analysis of microbiota in stable patients with chronic obstructive pulmonary disease. APMIS. 2015 May;123(5):427-32. Cerca con Google

133) Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011 Oct 15;184(8):957-63. Cerca con Google

134) Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013 Oct;10(10):996-8. Cerca con Google

135) Wang, Q, G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 73(16):5261-7. Cerca con Google

136) Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis Nucl. Acids Res. 42(Database issue):D633-D642. Cerca con Google

137) Jost, Lou. The relation between evenness and diversity. Diversity 2.2 (2010): 207-232. Cerca con Google

138) Hill, Mark O. Diversity and evenness: a unifying notation and its consequences. Ecology 54.2 (1973): 427-432. Cerca con Google

139) Pielou, Evelyn C. The measurement of diversity in different types of biological collections. Journal of theoretical biology 13 (1966): 131-144. Cerca con Google

140) Whittaker, Robert Harding. Vegetation of the Siskiyou mountains, Oregon and California. Ecological monographs 30.3 (1960): 279-338. Cerca con Google

141) Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–40. Cerca con Google

142) Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25. Cerca con Google

143) Rogers GB, Daniels TW, Tuck A, Carroll MP, Connett GJ, David GJ, Bruce KD. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med. 2009 Apr 15;9:14. Cerca con Google

144) Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure on host-bacterial pathogen interactions. Eur Respir J. 2012 Feb;39(2):467-77. Cerca con Google

145) Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO. Disordered microbial communities in asthmatic airways. PLoS One. 2010 Jan 5;5(1):e8578. Cerca con Google

146) Bittar F, Richet H, Dubus JC, Reynaud-Gaubert M, Stremler N, Sarles J, Raoult D, Rolain JM. Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One. 2008 Aug 6;3(8):e2908. Cerca con Google

147) Rouzé A, Cottereau A, Nseir S. Chronic obstructive pulmonary disease and the risk for ventilator-associated pneumonia. Curr Opin Crit Care. 2014 Oct;20(5):525-31. Cerca con Google

148) Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013 Feb;131(2):346-52. Cerca con Google

149) Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10):e47305. Cerca con Google

150) Park H, Shin JW, Park SG, Kim W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One. 2014 Oct 16;9(10):e109710. Cerca con Google

151) Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM; Lung HIV Microbiome Project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013 May 15;187(10):1067-75. Cerca con Google

152) Lee CC, Middaugh NA, Howie SR, Ezzati M. Association of secondhand smoke exposure with pediatric invasive bacterial disease and bacterial carriage: a systematic review and meta-analysis. PLoS Med. 2010 Dec 7;7(12):e1000374. Cerca con Google

153) Shukla SK, Paustian DL, Stockwell PJ, Morey RE, Jordan JG, Levett PN, Frank DN, Reed KD. Isolation of a fastidious Bergeyella species associated with cellulitis after a cat bite and a phylogenetic comparison with Bergeyella zoohelcum strains. J Clin Microbiol. 2004 Jan;42(1):290-3. Cerca con Google

154) Romani Vestman N, Chen T, Lif Holgerson P, Öhman C, Johansson I. Oral Microbiota Shift after 12-Week Supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; A Randomized Control Trial. PLoS One. 2015 May 6;10(5):e0125812. Cerca con Google

155) Curtis JL, Freeman CM, Hogg JC. The immunopathogenesis of chronic obstructive pulmonary disease: insights from recent research. Proc Am Thorac Soc. 2007 Oct 1;4(7):512-21. Cerca con Google

156) Sim K., Cox M.J., Wopereis H., Martin R., Knol J., Li M.-S., Cookson W.O.C.M., Moffatt M.F., Kroll J.S. Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. PLoS ONE 2012;7:e32543. Cerca con Google

157) Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., GlocknerF.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.2012;41:e1. Cerca con Google

158) Klappenbach J.A., Saxman P.R., Cole J.R., Schmidt T.M. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181-184. Cerca con Google

159) Santamaria M, Fosso B, Consiglio A, De Caro G, Grillo G, Licciulli F, Liuni S, Marzano M, Alonso-Alemany D, Valiente G, Pesole G. Reference databases for taxonomic assignment in metagenomics. Brief Bioinform. 2012 Nov;13(6):682-95. Cerca con Google

160) Segal LN, Rom WN, Weiden MD. Lung microbiome for clinicians. New discoveries about bugs in healthy and diseased lungs. Ann Am Thorac Soc. 2014 Jan;11(1):108-16. Cerca con Google

161) Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J. 2013; 280(14): 3180-93. Cerca con Google

162) Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM: Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 2004, 101:17312-17315. Cerca con Google

163) Aviv A: Telomeres and human aging: facts and fibs. Sci Aging Knowledge Environ 2004; 204: pe43. Cerca con Google

164) Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD: Obesity, cigarette smoking, and telomere length in women. Lancet 2005; 366: 662-664. Cerca con Google

165) Oikawa S, Kawanishi S: Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 1999; 453:365-368. Cerca con Google

166) Hoxha M, Dioni L, Bonzini M, Pesatori AC, Fustinoni S, Cavallo D, Carugno M, Albetti B, Marinelli B, Schwartz J, Bertazzi PA, Baccarelli A. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health. 2009; 8: 41. Cerca con Google

167) von Zglinicki T: Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27: 339-344. Cerca con Google

168) Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ: White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 2003; 23: 842-846. Cerca con Google

169) Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A: Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 2007; 165: 14-21. Cerca con Google

170) Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH: Telomere shortening in atherosclerosis. Lancet 2001; 358: 472-473. Cerca con Google

171) Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009 Feb;37(3):e21. Cerca con Google

172) Saferali A, Lee J, Sin DD, Rouhani FN, Brantly ML, Sandford AJ. Longer telomere length in COPD patients with α1-antitrypsin deficiency independent of lung function. PLoS One. 2014 Apr 24;9(4):e95600. Cerca con Google

173) Rutten EP, Gopal P, Wouters EF, Franssen FM, Hageman GJ, Vanfleteren LE, Spruit MA, Reynaert NL. Various mechanistic pathways representing the ageing process are altered in COPD. Chest. 2015 Jun 11. Cerca con Google

174) Houben JM, Mercken EM, Ketelslegers HB, Bast A, Wouters EF. Telomere shortening in chronic obstructive pulmonary disease. Respir Med 2009; 103: 230–236. Cerca con Google

175) Holz O, Zu¨hlke I, Jaksztat E, Mu¨ ller KC, Welker L. Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J 2004;24: 575–579. Cerca con Google

176) Morla´ M, Busquets X, Pons J, Sauleda J, MacNee W. Telomere shortening in smokers with and without COPD. Eur Respir J 2006; 27: 525–528. Cerca con Google

177) Albrecht E, Sillanpaa E, Karrasch S, Alves AC, Codd V. Telomere length in circulating leukocytes is associated with lung function and disease. Eur Respir J 2013: Dec 5. Cerca con Google

178) van Eeden SF, Sin DD Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respiration 2008; 75: 224–238. Cerca con Google

179) Kido T, Tamagawa E, Bai N, Suda K, Yang HH, et al. Particulate matter induces translocation of IL-6 from the lung to the systemic circulation. Am J Respir Cell Mol Biol 2011; 44: 197–204. Cerca con Google

180) Daniali L, Benetos A, Susser E, Kark JD, Labat C, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013; 4: 1597. Cerca con Google

181) Kerstjens HA, Rijcken B, Schouten JP, Postma DS: Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax 1997, 52:820–827. Cerca con Google

182) Walters MS, De BP, Salit J, Buro-Auriemma LJ, Wilson T, Rogalski AM, Lief L, Hackett NR, Staudt MR, Tilley AE, Harvey BG, Kaner RJ, Mezey JG, Ashbridge B, Moore MA, Crystal RG. Smoking accelerates aging of the small airway epithelium. Respir Res. 2014;15:94. Cerca con Google

183) Lee J, Sandford AJ, Connett JE, Yan J, Mui T, Li Y, Daley D, Anthonisen NR, Brooks-Wilson A, Man SF, Sin DD. The relationship between telomere length and mortality in chronic obstructive pulmonary disease (COPD). PLoS One. 2012;7(4):e35567. Cerca con Google

184) Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014 Mar 13;10(3):e1004191. Cerca con Google

185) Shan M, Yang X, Ezzati M, Chaturvedi N, Coady E, Hughes A, Shi Y, Yang M, Zhang Y, Baumgartner J. A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging. Environ Res. 2014;135:165-72. Cerca con Google

186) Shaw JG, Vaughan A, Dent AG, O'Hare PE, Goh F, Bowman RV, Fong KM, Yang IA. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2014;6(11):1532-47. Cerca con Google

187) Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis. 2015 ;10:995-1013. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record