Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Vicenzutti, Andrea (2016) Innovative Integrated Power Systems for All Electric Ships. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (PhD Thesis) - Altro
15Mb

Abstract (inglese)

Nowadays, in the large ships the electric propulsion solution is a viable alternative to the mechanical one. In fact, at present the latter is limited only to ships with peculiar requirements, such as the need of a high cruise speed or use of specific fuels. The use of electric propulsion, paired with progressive electrification of onboard loads, led to the birth of the All Electric Ship (AES) concept. An AES is a ship where all onboard loads (propulsion included) are electrically powered by a single power system, called Integrated Power System (IPS). The IPS is a key system in an AES, thus requiring both accurate design and management. Indeed, in AES electricity powers almost everything, highlighting the issue of guaranteeing both the proper Power Quality and Continuity of Service. The design of such a complex system has been conventionally done considering all the single components separately, to simplify the process. However, such practice leads to poor performance, integration issues, and oversizing. Moreover, the separate design procedure affects heavily system's reliability, due to the difficulty in assessing the effect on the ship of a fault in a single subsystem. For these reasons, a new design process is needed, able to consider the effect of all components and subsystems on the system, thus improving the ship design's most important drivers: efficiency, effectiveness, reliability, and cost saving.
Therefore, the aim of the research has been to obtain a new design methodology, applicable to the AES’ IPS, which is able to consider the systems as a whole, with all its internal interdependencies. The results of such research are depicted in this thesis work, as a sub-process to be integrated into IPS’s design process.
In this thesis, a wide review of the state of the art is done, to allow understanding the context, why such innovative process is needed, and which innovative techniques can be used as an aid in design. Each point is discussed focusing on the aim of this thesis, thus presenting topics, bibliography, and personal evaluations tailored to direct the reader to comprehend the impact of the proposed design process.
In particular, after a first chapter dedicated to the introduction of All Electric Ships, in which are described how such ships have evolved, and what are the most impacting applications, a reasoned discussion on the conventional ship-design process is given in the second chapter. In addition to that, an in-depth analysis of the IPS design is done, to explain the context in which the proposed innovative design process has to be integrated. Several examples of issues coming from the conventional design process are given, to motivate the proposal of a new design process. Not only the above mentioned design issues, but also the upcoming introduction of innovative distribution systems onboard ships and the recent emergence of new requirements, whose impact on IPS is significant, are motivations calling for a new design process. Due to that, an excursus of both these two topics is given in the third chapter, referring to recent literature and research activities.
Chapter four is dedicated to the description of the tools that will be used to build the innovative design process. The first part is dedicated to dependability theory, which is able to give a systematic and coherent approach to the determination of faults effects on complex systems. Through dependability theory and its techniques, it is possible: to assess the effect of single components faults on the overall system; to assess all the possible causes of a given system failure; to evaluate mathematical figures related to the system in order to compare different design solutions; and to define where the designer must intervene to improve the system. The second part of the fourth chapter is dedicated to power system’s software simulators and hardware in the loop testing. In particular, the use of such systems as an aid in designing power systems is discussed, to allow comprehending why such tools have been integrated in the innovative design process developed.
The fifth chapter is dedicated to the developed design process. Discussion is presented on how such process work, how it should be integrated in ship design process, and which is the impact it have on the design. In particular, the developed procedure implies both the application of dependability theory techniques (in particular Failure Tree Analysis), and the simulation of the dynamic behavior of the power system through a mathematical model of the system tailored on electromechanical transients.
Finally, to demonstrate the applicability of the proposed procedure, in chapter six a case of study has been analyzed: the IPS of a Dynamic Positioned Offshore Oil & Gas drillship. This has been done due to the stringent requirements these ships have, whose impact on power system’s design is significant. The analysis of the IPS done through the Fault Tree Analysis technique is presented (though using a simplified detail level), followed by the calculation of several dependability indexes. Such results, together with applicable rules and regulations, have been used to define the input data for simulations, carried out using a mathematical model of the IPS built on purpose. Simulations outcomes have been used in turn to evaluate the dynamic processes bringing the system from relevant faults to failure, in order to improve the system’s response to the fault events.

Abstract (italiano)

Oggigiorno, nelle grandi navi la propulsione elettrica è una valida alternativa a quella meccanica. Infatti, attualmente quest'ultima è limitata solo alle navi con requisiti particolari, quali la necessità di una elevata velocità di crociera o l’uso di combustibili specifici. L'uso della propulsione elettrica, in coppia con la progressiva elettrificazione dei carichi di bordo, ha portato alla nascita del concetto di All Electric Ship (AES). Una AES è una nave in cui tutti i carichi di bordo (propulsione inclusa) sono alimentati da un unico sistema elettrico, chiamato Sistema Elettrico Integrato (Integrated Power System - IPS). L'IPS è un sistema chiave in una AES, per cui richiede una progettazione ed una gestione accurata. In effetti, in una AES tale sistema alimenta quasi tutto, mettendo in evidenza il problema di garantire sia la corretta Power Quality, sia la continuità del servizio. La progettazione di un sistema così complesso viene convenzionalmente fatta considerando i singoli componenti separatamente, per semplificare il processo. Tuttavia tale pratica può portare a prestazioni ridotte, problemi di integrazione e sovradimensionamento. Come se non bastasse, la procedura di progettazione separata influisce pesantemente sull'affidabilità del sistema, a causa della difficoltà nel valutare l'effetto sulla nave di un guasto in un singolo sottosistema. Per questi motivi è necessario un nuovo processo di progettazione in grado di considerare l'effetto di tutti i componenti e sottosistemi del sistema, consentendo così di migliorare i più importanti driver applicati nella progettazione di una nave: efficienza, efficacia, affidabilità e riduzione dei costi.
Date queste premesse, l'obiettivo della ricerca era di ottenere una nuova metodologia di progettazione applicabile al sistema elettrico integrato delle AES, in grado di considerare il sistema nel suo insieme, comprese tutte le sue interdipendenze interne. Il risultato di tale ricerca è descritto in questo lavoro di tesi, e consiste in un sub-processo che dovrà essere integrato nel processo di progettazione convenzionale del sistema elettrico integrato.
In questa tesi viene effettuata un'ampia rassegna dello stato dell'arte, per consentire la comprensione del contesto, del perché tale processo innovativo è necessario e quali tecniche innovative possono essere utilizzate come un aiuto nella progettazione. Ogni punto è discusso concentrandosi sullo scopo di questa tesi, presentando così argomenti, bibliografia, e valutazioni personali volte ad indirizzare il lettore a comprendere l'impatto del processo di progettazione proposto.
In particolare, dopo un primo capitolo dedicato all’introduzione delle AES in cui sono descritte come tali navi si sono evolute e quali sono le applicazioni più impattanti, si effettua una discussione ragionata sul processo di progettazione convenzionale delle navi, contenuta nel secondo capitolo. In aggiunta a questo viene effettuata un'analisi approfondita del processi di progettazione dell’IPS, per spiegare il contesto in cui il processo di progettazione innovativo deve essere integrato. Alcuni esempi di problemi derivanti dal processo di progettazione tradizionale sono dati, per motivare la proposta di un processo nuovo. In aggiunta ai problemi dovuti alla progettazione, altre motivazioni portano alla necessità di un rinnovato processo di progettazione, quali l'imminente introduzione di sistemi di distribuzione innovativi a bordo nave e la recente comparsa di nuovi requisiti il cui impatto sull’IPS è significativo. Per questo, un excursus su questi due temi è fatto nel terzo capitolo, con riferimento alle più recenti fonti letterarie e ricerche.
Il quarto capitolo è dedicato alla descrizione degli strumenti che verranno utilizzati per costruire l'innovativo processo di progettazione. La prima parte del capitolo è dedicata alla teoria della fidatezza (dependability), in grado di dare un approccio sistematico e coerente alla determinazione degli effetti guasti sui sistemi complessi. Attraverso la teoria della fidatezza e le sue tecniche è possibile: determinare l'effetto sul sistema dei guasti ai singoli componenti; valutare tutte le possibili cause di un dato evento di avaria; valutare alcuni indici matematici relativi al sistema, al fine di confrontare diverse soluzioni progettuali; definire dove e come il progettista deve intervenire per migliorare il sistema. La seconda parte del quarto capitolo è dedicata ai software per la simulazione del comportamento dell’IPS ed ai test hardware-in-the-loop. In particolare viene discusso l'uso di tali sistemi come aiuto nella progettazione di sistemi di potenza, per permettere di comprendere perché tali strumenti sono stati integrati nel processo di progettazione sviluppato.
Il quinto capitolo è dedicato al processo di progettazione sviluppato nel corso della ricerca. Viene discusso come tale processo funziona, come dovrebbe essere integrato nel processo di progettazione convenzionale, e qual è l'impatto che esso ha sulla progettazione. In particolare, la procedura sviluppata implica sia l'applicazione delle tecniche proprie della teoria della fidatezza (in particolare la Failure Tree Analysis), sia la simulazione del comportamento dinamico dell’IPS attraverso un modello matematico del sistema tarato sui transitori elettromeccanici.
Infine, per dimostrare l'applicabilità della procedura proposta, nel sesto capitolo viene analizzato un caso di studio: l'IPS di una nave da perforazione offshore oil & gas dotata di posizionamento dinamico. Questo caso di studio è stato scelto a causa dei requisiti molto stringenti di questa classe di navi, il cui impatto sul progetto dell’IPS è significativo. Viene presentata l'analisi dell’IPS tramite la tecnica di Fault Tree Analysis (anche se con un livello di dettaglio semplificato), seguita dal calcolo di diversi indici di affidabilità. Tali risultati, unitamente a norme e regolamenti vigenti, sono stati utilizzati per definire i dati di input per le simulazioni, effettuate utilizzando un modello matematico dell’IPS costruito appositamente. I risultati delle simulazioni hanno consentito di valutare come il sistema dinamicamente si porta all’avaria a partire dai guasti rilevanti, e pertanto di proporre soluzioni migliorative.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sulligoi, Giorgio
Correlatore:Menis, Roberto
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:25 Gennaio 2016
Anno di Pubblicazione:25 Gennaio 2016
Parole chiave (italiano / inglese):Integrated Power System, Marine Power Systems, All Electric Ships, Dynamic Positioning Vessels, Ship design, Dependability, Fault Tree Analysis, Simulations, Electromechanical Transients, Design process
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/33 Sistemi elettrici per l'energia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:9112
Depositato il:06 Ott 2016 15:04
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G. Sulligoi, "All electric ships: present and future after 20 years of research and technical achievements," Electrical Engineering Research Report, 2011. Cerca con Google

[2] J. Hansen and F. Wendt, "History and State of the Art in Commercial Electric Ship Propulsion, Integrated Power Systems, and Future Trends," Proceedings of the IEEE, vol. 103, no. 12, pp. 2229-2242, Dec. 2015. Cerca con Google

[3] A. Vicenzutti, D. Bosich, G. Giadrossi and G. Sulligoi, "The Role of Voltage Controls in Modern All-Electric Ships: Toward the all electric ship.," IEEE Electrification Magazine, vol. 3, no. 2, pp. 49-65, june 2015. Cerca con Google

[4] M. Cupelli, F. Ponci, G. Sulligoi, A. Vicenzutti, C. Edrington, T. El-mezyani and A. Monti, "Power Flow Control and Network Stability in an All-Electric Ship," Proceedings of the IEEE, vol. 103, no. 12, pp. 2355-2380, Dec. 2015. Cerca con Google

[5] E. Skjong, E. Rodskar, M. Molinas, T. Johansen and J. Cunningham, "The Marine Vessel’s Electrical Power System: From its Birth to Present Day," Proceedings of the IEEE, vol. 103, no. 2, pp. 2410-2424, Dec. 2015. Cerca con Google

[6] R. Hepburn, "Why a naval architect likes an electric ship," in Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on, Ischia, Italy, 11-13 June 2008. Cerca con Google

[7] T. McCoy, "Integrated Power Systems—An Outline of Requirements and Functionalities for Ships," Proceedings of the IEEE, vol. 103, no. 12, pp. 2276-2284, Dec. 2015. Cerca con Google

[8] International Maritime Organization, SOLAS Consolidated Edition, IMO, 2014. Cerca con Google

[9] C. Craig and M. Islam, "Integrated Power System Design for Offshore Energy Vessels and Deepwater Drilling Rigs," Industry Applications, IEEE Transactions on, vol. 48, no. 4, pp. 1251-1257, July-Aug 2012. Cerca con Google

[10] G. Lipardi, L. Piva, L. Piegari, E. Tironi, R. Lamedica, A. Ruvio, G. Sulligoi and A. Vicenzutti, "Electric loads characterization in an aircraft carrier with ring-bus distribution system," in Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015 International Conference on, Aachen, DE, March 2015. Cerca con Google

[11] "IEEE Recommended Practice for Electric Installations on Shipboard," IEEE Std 45-2002, pp. 1-272, Oct. 9 2002. Cerca con Google

[12] "Electrical installations in ships," IEC 60092. Cerca con Google

[13] "Part 6: Control, Electrical, Refrigeration and Fire," Lloyd's Register, Rules and Regulations for the Classification of Ships, July 2015. Cerca con Google

[14] T. Lauvdal, "Power Management System With Fast Acting Load Reduction For DP Vessels," in Dynamic Positioning Conference, 17-18 Oct. 2000. Cerca con Google

[15] D. E. Wilkes, "Power Management and Blackout Prevention," in Dynamic Positioning Conference, 18-19 Sept. 2001. Cerca con Google

[16] M. Al-Mulla and N. Seeley, "Distributed generation control in islanded industrial facilities: A case study in power management systems," in PCIC Europe 2010 Conference Record, San Antonio, TX, USA, 15-17 June 2010. Cerca con Google

[17] K. Nicholson, R. Doughty, L. Mane, G. Miranda and F. Pulaski, "Cost effective strategies for industrial electric power management systems," in Petroleum and Chemical Industry conference, 1998. Industry Applications Society 45th Annual, 28-30 Sep 1998. Cerca con Google

[18] D. E. Wilkes, "Dynamic Positioning Incidents Resulting From Inadequate Power Systems Analysis," in Dynamic Positioning Conference, 17-18 Sept. 2002. Cerca con Google

[19] N. Doerry, J. Amy and C. Krolick, "History and the Status of Electric Ship Propulsion, Integrated Power Systems, and Future Trends in the U.S. Navy," Proceedings of the IEEE, vol. 103, no. 12, pp. 2243-2251, Dec. 2015. Cerca con Google

[20] H. Shatto and D. Phillips, "Reliability and Risk Analysis - Failure Modes and Effects Analysis (FMEAs)," in Dynamic Positioning Conference, 21-22 Oct. 1997. Cerca con Google

[21] R. B. Andersen and I. Haukaas, "Challenges of Protection and Control System Verification on DP3 vessels with Focus on Ride Through Fault and Blackout," in Dynamic Positioning Conference, 15-16 Oct. 2013. Cerca con Google

[22] "Guide for Dynamic Positioning Systems," American Bureau of Shipping, November 2013 (Updated July 2014). Cerca con Google

[23] "Rules for Classification of Ships - Part 6 Chapter 7 - Newbuilding - Special equipment and systems - Additional class: Dynamic Positioning Systems," Det Norske Veritas, July 2013. Cerca con Google

[24] "MSC/Circ. 645 - Guidelines for Vessels with Dynamic Positioning Systems," International Maritime Organization - IMO, 6 June 1994. Cerca con Google

[25] A. Kallah, "Electrical Power Plant and Thruster Systems Design Considerations for Dynamically Positioned Vessels," in Dynamic Positioning Conference, 21-22 Oct. 1997. Cerca con Google

[26] "Rules for Building and Classing Mobile Offshore Drilling Units - Part 4 - Machinery and Systems," American Bureau of Shipping, 2015. Cerca con Google

[27] T. Nordtun, "Machinery Systems for DP Vessels with Increased Efficiency and Reliability," in Dynamic Positioning Conference, 7-8 Oct. 2008. Cerca con Google

[28] B. Cheater, P. Lammers and J. v. Keep, "Low Loss Concept Comparison Study," in Dynamic Positioning Conference, 12-13 Oct. 2010. Cerca con Google

[29] International Group of Authorities (Editor: Thomas Lamb), Ship Design and Construction, The Society of Naval Architects and Marine Engineers, 2003. Cerca con Google

[30] M. Baret, C. Ferrero, D. Giulivo, A. Vicenzutti, D. Bosich, G. Sulligoi, M. Giuliano and L. Piva, "Amerigo Vespucci: Retrofitting of propulsion and generation systems on the italian training's tall ship," in Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014 International Symposium on, Ischia, IT, 18-20 June 2014. Cerca con Google

[31] M. Altosole, M. Figari, C. Ferrero, V. Giuffra and L. Piva, "Propulsion retrofitting of the tall ship Amerigo Vespucci: Automation design by simulation," in Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2014 International Symposium on, Ischia, IT, 18-20 June 2014. Cerca con Google

[32] V. Bucci, A. Marinò and I. Juricic, "Integrated ship design: Automated Generation of Production Deliverables with New Generation Shipbuilding CAD Systems," in Conference on Computer Applications and Information Technology in the Maritime Industries, Hamburg, DE, April 2013. Cerca con Google

[33] J. Chalfant, "Early-Stage Design for Electric Ship," Proceedings of the IEEE, vol. 103, no. 12, pp. 2252-2266, Dec. 2015. Cerca con Google

[34] J. Chalfant, M. Ferrante and C. Chryssostomidis, "Design of a notional ship for use in the development of early-stage design tools," in Electric Ship Technologies Symposium (ESTS), 2015 IEEE, Old Town Alexandria, VA, USA, 21-24 June 2015. Cerca con Google

[35] C. C. P. Mandel, "A Design Methodology for Ships and other Complex Systems," Philosophical Transactions of the Royal Society A, vol. 273, no. 1231, pp. 85-98, 5 Sept. 1972. Cerca con Google

[36] G. Buja, A. da Rin, R. Menis and G. Sulligoi, "Dependable design assessment of Integrated Power Systems for All Electric Ships," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2010, Bologna, IT, 19-21 Oct. 2010. Cerca con Google

[37] J. Warwick, "Electrical Systems Analysis," in Dynamic Positioning Conference, 21-22 Oct. 1997. Cerca con Google

[38] J. Prousalidis, P. Mouzakis, E. Sofras, D. Muthumuni and O. Nayak, "On studying the power supply quality problems due to thruster start-ups," in Electric Ship Technologies Symposium, 2009. ESTS 2009. IEEE, Baltimore, MD, USA, 20-22 April 2009. Cerca con Google

[39] G. Sulligoi, A. Vicenzutti, M. Chiandone, D. Bosich and V. Arcidiacono, "Generators electromechanical stability in shipboard grids with symmetrical layout: Dynamic interactions between voltage and frequency controls," in 3-5 Oct. 2013, Palermo, IT, AEIT Annual Conference, 2013. Cerca con Google

[40] C. Rivetta, G. Williamson and A. Emadi, "Constant power loads and negative impedance instability in sea and undersea vehicles: statement of the problem and comprehensive large-signal solution," in Electric Ship Technologies Symposium, 2005 IEEE, 25-27 July 2005. Cerca con Google

[41] A. Rahimi, G. Williamson and A. Emadi, "Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads," Vehicular Technology, IEEE Transactions on, vol. 59, no. 2, pp. 650-661, Feb. 2010. Cerca con Google

[42] G. Sulligoi, D. Bosich, G. Giadrossi, L. Zhu, M. Cupelli and A. Monti, "Multiconverter Medium Voltage DC Power Systems on Ships: Constant-Power Loads Instability Solution Using Linearization via State Feedback Control," Smart Grid, IEEE Transactions on, vol. 5, no. 5, pp. 2543-2552, Sept. 2014. Cerca con Google

[43] A. Kwasinski and C. Onwuchekwa, "Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads," Power Electronics, IEEE Transactions on, vol. 26, no. 3, pp. 822-834, March 2011. Cerca con Google

[44] "IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships," IEEE Std 1709-2010, 2010. Cerca con Google

[45] K.-N. Areerak, S. Bozhko and G. Asher, "Stability analysis and modelling of AC-DC system with mixed load using DQ-transformation method," in Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on, June 30 2008-July 2 2008. Cerca con Google

[46] A. Emadi, "Modeling of power electronic loads in AC distribution systems using the generalized State-space averaging method," Industrial Electronics, IEEE Transactions on, vol. 52, no. 5, pp. 992-1000, Oct. 2004. Cerca con Google

[47] P. Heskes, J. Myrzik and W. Kling, "Power electronic loads with negative differential impedance in a low voltage distribution system," in Electricity Distribution - Part 1, 2009. CIRED 2009. 20th International Conference and Exhibition on, 8-11 June 2009. Cerca con Google

[48] B. Wen, D. Boroyevich, P. Mattavelli, Z. Shen and R. Burgos, "Experimental verification of the Generalized Nyquist stability criterion for balanced three-phase ac systems in the presence of constant power loads," in Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, 15-20 Sept. 2012. Cerca con Google

[49] R. Burgos, D. Boroyevich, F. Wang, K. Karimi and G. Francis, "On the Ac stability of high power factor three-phase rectifiers," in Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 12-16 Sept. 2010. Cerca con Google

[50] G. Sulligoi, A. Vicenzutti, V. Arcidiacono and Y. Khersonsky, "Voltage Stability in Large Marine Integrated Electrical and Electronic Power Systems," in Petroleum and Chemical Industry Technical Conference (PCIC), 2015 IEEE, Houston, TX, USA, 5-7 Oct. 2015. Cerca con Google

[51] D. F. Phillips, "Classic Single Point Failures of Redundant DP Systems," in Dynamic Positioning Conference, 13-14 Oct. 1998. Cerca con Google

[52] S. Leeb, J. Kirtley, W. Wichakool, Z. Remscrim, C. Tidd, J. Goshorn, K. Thomas, R. Cox and R. Chaney, "How Much DC Power Is Necessary?," Journal of the American Society of Naval Engineers, vol. 122, no. 2, pp. 79-92, 2010. Cerca con Google

[53] N. Doerry and J. Amy, "Functional decomposition of a medium voltage DC integrated power system," in ASNE Shipbuilding in Support of the Global War on Terrorism Conference, Biloxi, MS, USA, 14-17 April 2008. Cerca con Google

[54] A. Vicenzutti, D. Bosich and G. Sulligoi, "MVDC power system voltage control through feedback linearization technique: Application to different shipboard power conversion architectures," in Electric Ship Technologies Symposium (ESTS), 2013 IEEE, Arlington, VA, USA, 22-24 April 2013. Cerca con Google

[55] D. Bosich, "Medium Voltage DC integrated power systems for large all electric ships. [Ph.D. thesis]," 2014. Cerca con Google

[56] T. Ericsen, "The ship power electronic revolution: Issues and answers," in Petroleum and Chemical Industry Technical Conference, 2008. PCIC 2008. 55th IEEE, Cincinnati, OH, USA, 22-24 Sept. 2008. Cerca con Google

[57] "IEEE Standard for Power Electronics Open System Interfaces in Zonal Electrical Distribution Systems Rated Above 100 kW," IEEE Std 1826-2012, June 2012. Cerca con Google

[58] J. Momoh and L. Mili, Operation and Control of Electric Energy Processing Systems, IEEE Press Series on Power Engineering, Wiley, 2010. Cerca con Google

[59] G. Sulligoi, A. Vicenzutti, E. Tironi, M. Corti, R. Lamedica, A. Ruvio, G. Lipardi and L. Piva, "Naval smart grid: Integrated Power System for all electric naval vessels with control and reliability characteristics," in AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 2014, Trieste, IT, 18-19 Sept. 2014. Cerca con Google

[60] "Clad in Controversy," IEEE Spectrum, vol. 8, 2013. Cerca con Google

[61] D. Witt, D. Helfers and Y. Young, "Comparative Study of Power Generation and Energy Storage Modules for Support of High Energy Weapons," Naval Engineers Journal, vol. 124, no. 2, pp. 74-77, 2012. Cerca con Google

[62] Y. Khersonsky, M. Islam and K. Peterson, "Challenges of Connecting Shipboard Marine Systems to Medium Voltage Shoreside Electrical Power," Industry Applications, IEEE Transactions on, vol. 43, no. 3, pp. 838-844, May-june 2007. Cerca con Google

[63] K. Peterson, P. Chavdarian, M. Islam and C. Cayanan, "Tackling ship pollution from the shore," Industry Applications Magazine, IEEE, vol. 15, no. 1, pp. 56-60, Jan.-Feb. 2009. Cerca con Google

[64] G. Sulligoi, D. Bosich, R. Pelaschiar, G. Lipardi and F. Tosato, "Shore-to-Ship Power," Proceedings of the IEEE, vol. 103, no. 12, pp. 2381-2400, Dec. 2015. Cerca con Google

[65] "IEC/ISO/IEEE Utility Connections in Port--Part 1: High Voltage Shore Connection (HVSC) Systems--General requirements," IEC/ISO/IEEE 80005-1:2012, July 2012. Cerca con Google

[66] A. Vicenzutti, F. Tosato, G. Sulligoi, G. Lipardi and L. Piva, "High voltage ship-to-shore connection for electric power supply support in landing operations: An analysis," in Electric Ship Technologies Symposium (ESTS), 2015 IEEE, Old Town Alexandria, VA, USA, 21-24 June 2015. Cerca con Google

[67] "Short-circuit currents in d.c. auxiliary installations in power plants and substations - Part 1: Calculation of short-circuit currents," IEC 61660-1:1997, 1997. Cerca con Google

[68] A. Vicenzutti, E. De Din and G. Sulligoi, "Transient short circuit analysis in DC on-board distribution systems fed by synchronous generators through 6-pulse diode rectifiers," in Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015 International Conference on, Aachen, DE, 3-5 March 2015. Cerca con Google

[69] A. Vicenzutti, F. Tosato, E. De Din and G. Sulligoi, "Studies on asymmetrical short circuit currents in shipboard medium voltage direct current distribution systems fed by AC generators," in Electric Ship Technologies Symposium (ESTS), 2015 IEEE, Old Town Alexandria, VA, USA, 21-24 June 2015. Cerca con Google

[70] J. L. Ramseur, "Deepwater Horizon Oil Spill: Recent Activities and Ongoing Developments," Congressional Research Service, April 17, 2015. Cerca con Google

[71] V. Nelson, "Fault-tolerant computing fundamental concepts," Computer, vol. 23, no. 7, pp. 19-25, June 1990. Cerca con Google

[72] N. Leveson, Safeware - System Safety and Computers, Addison-Wesley, 1995. Cerca con Google

[73] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic concepts and taxonomy of dependable and secure computing," Dependable and Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11-33, Jan.-March 2004. Cerca con Google

[74] M. Al-Kuwaiti, N. Kyriakopoulos and S. Hussein, "A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability," Communications Surveys & Tutorials, IEEE, vol. 11, no. 2, pp. 106-124, Second Quarter 2009. Cerca con Google

[75] E. O. S. Hansen, "DP Dependability," in Dynamic Positioning Conference, 11-12 Oct. 2011. Cerca con Google

[76] "IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems," IEEE Std 493-2007, June 2007. Cerca con Google

[77] A. Chowdhury and D. Koval, Power Distribution Systems Reliability – practical methods and applications, IEEE Press Series on Power Engineering - Wiley, 2009. Cerca con Google

[78] R. Menis, A. da Rin, A. Vicenzutti and G. Sulligoi, "Dependable design of All Electric Ships Integrated Power System: Guidelines for system decomposition and analysis," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, Bologna, IT, 16-18 Oct. 2012. Cerca con Google

[79] R. Eriksen, J. Harms and R. McDonnell, "Assessing the reliability of DP systems for deepwater drilling vessels," in Dynamic Positioning Conference, 12-13 Oct. 1999. Cerca con Google

[80] "Guidance on Failure Modes & Effects Analyses (FMEAs)," IMCA - The International Marine Contractors Association, April 2002. Cerca con Google

[81] M. D. Quilici, "DP System Reliability - Quantitative vs. Qualitative Analysis," in Dynamic Positioning Conference, 12-13 Oct. 1999. Cerca con Google

[82] W. Lee, D. Grosh, F. Tillman and C. Lie, "Fault Tree Analysis, Methods, and Applications - A Review," Reliability, IEEE Transactions on, Vols. R-34, no. 3, pp. 194-203, Aug. 1985. Cerca con Google

[83] Y.-Y. Hong, L.-H. Lee and H.-H. Cheng, "Reliability Assessment of Protection System for Switchyard Using Fault-Tree Analysis," in Power System Technology, 2006. PowerCon 2006. International Conference on, 22-26 Oct. 2006. Cerca con Google

[84] U.S. Nuclear Regulatory Commission, "NUREG-0492 - Fault Tree Handbook". Cerca con Google

[85] SAE, "Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment," Std. ARP4761. Cerca con Google

[86] U.S.A. Department of Defense, "Electronic Reliability Design Handbook," Military Handbook MIL-HDBK-338B. Cerca con Google

[87] "Fault Tree Analysis (FTA)," IEC 61025, 2006-12. Cerca con Google

[88] R. Menis, A. da Rin, A. Vicenzutti and G. Sulligoi, "All electric ship dependable design: integrated power system analysis using dynamic reliability block diagram," in IMaeEST Marine Electrical and Control Systems Safety Conference (MECSS), Amsterdam, NL, 9 Oct. 2013. Cerca con Google

[89] F. Crawley and B. Tyler, HAZOP: Guide to best practice - Guidelines to best practice for the process and chemical industries, Elsevier, 2015. Cerca con Google

[90] "Hazard and operability studies (HAZOP studies) - Application guide," IEC 61882:2001, 2001. Cerca con Google

[91] A. Munn, "Common Problems and Recent Trends with HAZOPs," in IChemE Symposium Series n° 155, 2009. Cerca con Google

[92] A. da Rin, "Integrated Power Systems in All Electric Ships: Dependability Oriented Design. [Ph.D. thesis]," 2014. Cerca con Google

[93] A. Mokashi, J. Wang and A. Vermar, "A study of reliability-centered maintenance in maritime operations," Elsevier - Marine Policy, 2002. Cerca con Google

[94] C. M. Milkie and A. N. Perakis, "Statistical Methods for Planning Diesel Engine Overhauls in the U. S. Coast Guard," Naval Engineers Journal, vol. 116, no. 2, pp. 31-42, 2004. Cerca con Google

[95] C. Dong, C. Yuan, Z. Liu and X. Yan, "Marine Propulsion System Reliability Research Based on Fault Tree Analysis," Advanced Shipping and Ocean Engineering, vol. 2, no. 1, pp. 27-33, March 2013. Cerca con Google

[96] R. Cornes and T. R. Stockton, "FMEA as an Integral Part of Vessel Design and Construction: Producing a Fault Tolerant DP Vessel," in Dynamic Positionong Conference, 13-14 OCt. 1998. Cerca con Google

[97] R. Menis, A. da Rin, G. Sulligoi and A. Vicenzutti, "All electric ships dependable design: Implications on project management," in AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 2014, Trieste, IT, 18-19 Sept. 2014. Cerca con Google

[98] M. Chiandone, A. da Rin, R. Menis, G. Sulligoi and A. Vicenzutti, "Dependable oriented design of complex integrated power systems on ships," in Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015 International Conference on, Aachen, DE, 3-5 March 2015. Cerca con Google

[99] "Mobile and fixed offshore units - Electrical installations - Part 5: Mobile units," IEC 61892-5. Cerca con Google

[100] G. Sulligoi, D. Bosich, T. Mazzuca and L. Piva, "The FREMM simulator: A new software tool to study electro-mechanic dynamics of the shipboard integrated power system," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, Bologna, IT, 16-18 Oct. 2012. Cerca con Google

[101] T. A. Johansen and A. J. Sørensen, "Experiences with HIL Simulator Testing of Power Management Systems," in Dynamic Positioning Conference, 13-14 Oct. 2009. Cerca con Google

[102] G. Sulligoi, D. Bosich, A. Vicenzutti, L. Piva, G. Lipardi and T. Mazzuca, "Studies of electromechanical transients in FREMM frigates integrated power system using a time-domain simulator," in Electric Ship Technologies Symposium (ESTS), 2013 IEEE, Arlington, VA, USA, 22-24 April 2013. Cerca con Google

[103] D. Bosich, M. Filippo, D. Giulivo, G. Sulligoi and A. Tessarolo, "Thruster motor start-up transient in an all-electric cruise-liner: Numerical simulation and experimental assessment," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, Bologna, IT, 16-18 Oct. 2012. Cerca con Google

[104] T. Lauvdal, "Optimizing and Evaluating the Performance of Power and Thruster Plant in DP Vessels with an Integrated Vessel Simulator," in Dynamic Positioning Conference, 17-18 Oct. 2000. Cerca con Google

[105] J. Langston, M. Sloderbeck, M. Steurer, D. Dalessandro and T. Fikse, "Role of hardware-in-the-loop simulation testing in transitioning new technology to the ship," in Electric Ship Technologies Symposium (ESTS), 2013 IEEE, Arlington, VA, USA, 22-24 April 2013. Cerca con Google

[106] M. Cupelli, M. de Paz Carro and A. Monti, "Hardware in the loop implementation of linearizing state feedback on MVDC ship systems and the significance of longitudinal parameters," in Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015 International Conference on, Aachen, DE, 3-5 March 2015. Cerca con Google

[107] M. Cupelli, M. de Paz Carro and A. Monti, "Hardware in the Loop implementation of a disturbance based control in MVDC grids," in Power & Energy Society General Meeting, 2015 IEEE, 26-30 July 2015. Cerca con Google

[108] M. Andrus, M. Steurer, C. Edrington, F. Bogdan, H. Ginn, R. Dougal, E. Santi and A. Monti, "Real-time simulation-based design of a power-hardware-in-the-loop setup to support studies of shipboard MVDC issues," in Electric Ship Technologies Symposium, 2009. ESTS 2009. IEEE, 20-22 April 2009. Cerca con Google

[109] R. Marconato, Electric Power Systems, Milan: CEI - Italian Electrotechnical Committee, 2002. Cerca con Google

[110] K. Marouani, H. Guendouz, B. Tabbache, F. Khoucha and A. Kheloui, "Experimental investigation of an emulator "Hardware In the Loop" for electric naval propulsion system," in Control & Automation (MED), 2013 21st Mediterranean Conference on, 25-28 June 2013. Cerca con Google

[111] M. van der Borst and H. Schoonakker, "An overview of PSA importance measures," Elsevier Reliability Engineering & System Safety, vol. 72, pp. 241-245, 2001. Cerca con Google

[112] The Maersk group, "Maersk Energy," [Online]. Available: http://www.maersk.com/en/industries/energy. [Accessed 06 01 2016]. Vai! Cerca con Google

[113] Center for Catastrophic Risk Management (CCRM), University of California - Berkeley, "Final Report on the Investigation of the Macondo Well Blowout," Deepwater Horizon Study Group, March 1, 2011. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record