Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Torregrossa, Rossella (2008) Studio delle basi genetiche del rene con midollare a spugna, una rara nefropatia malformativa. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
1357Kb

Abstract (english)

Medullary sponge kidney (MSK) is a rare renal disorder characterized by cystic anomalies of precalyceal ducts, nephrocalcinosis, renal stones and nephronic tubule dysfunctions. Its pathogenesis has yet to be elucidated, but its association with different renal and extra-renal malformative conditions supports the idea of a developmental disorder and its involvement in familial cases shows the role of genetic factors. To date, no genetic study has been conducted. The working hypothesis is that genes regulating renal embryogenesis are good candidates to play a role in the pathogenesis of the disease. Particularly, GDNF and RET genes are necessary for the developing nephro-urological system and their expression is finely regulated during embryogenesis, so mutations of these genes may be important. This study investigated whether they may be really considered disease-causing genes or disease-susceptibility genes, which should modify the expression of key genes of the nephrogenetic process, in MSK patients.
A well characterized population of 50 Venetian nephrolitiasic unrelated patients, all of them affected with MSK diagnosed by intravenous urography, was collected. All cases were sporadic. A mutation analysis of all exons and exon-intron boundaries of both GDNF and RET genes was performed using direct DNA sequencing and RFLP approaches. Association and expression studies were also conducted to define the role of the identified mutations.
Seven patients had GDNF variants in heterozygosity: a complex allele, constituted by the novel -45G>C and IVS3+18G>A nucleotide substitutions in the 5' UTR, an allele with the intronic mutation IVS3+18G>A alone and the R93W mutation in the coding region, previously described as a disease-susceptibility allele in Hirschsprung disease, congenital central hypoventilation syndrome and phaeocromocytoma and often identified in association with mutations in other genes, including RET. Both the first two alleles showed a frequency below 1% in a Venetian general population and they were never found in a specific control population constituted by individuals who had recurrent calcium nephrolithiasis but not MSK. Investigating the family history, three of these cases were discovered to be indeed familial cases of MSK and the sequence variants were found to co-segregate with the disease in the pedigrees, except for the R93W mutation. An involvement of the RET gene also was hypothesized to be responsible for MSK phenotype in the last case. GDNF gene expression was evaluated in the renal tissue of one MSK patient with the intronic variant resulting, however, not significantly different from control samples. Therefore, it was impossible to characterize further the effects of the identified mutation.
No mutations but several single nucleotide polymorphisms (SNPs), already described, were found in the RET gene in MSK patients. Functionally important polymorphisms of the promoter as well as the coding region were focused. The G allele of SNP c2307 T>G in exon 13 showed a frequency different from the control sample (p=0.006). The particular haplotype AA at the -5 and -1 RET promoter SNP loci, never found in controls, also was observed in one patient. The analysis of the genotype frequencies of the promoter revealed that the A/A genotype of SNP-5 was represented in controls but not in MSK patients, while the G/A genotype showed a statistically significant overrepresentation in MSK patients (p=0.040). No AC/AC genotype at the RET promoter SNP loci was identified in MSK patients.
Moreover, the AG haplotype composed by alleles at two SNPs in the coding region (c2071 G>A in exon 11 and c2712 C>G in exon 15) was found in homozygosity in three patients and only in heterozygosity in controls (p=0.024). These SNPs were observed to co-segregate as AG and GC haplotypes, but the anomalous GG haplotype was identified in homozygosity in two patients.
Reconstructing RET haplotypes using the most significant SNPs in the pedigrees of the probands with GDNF mutations, one was identified recurrent and often associated with MSK and GDNF mutations. This also could explain the familial case without R93W/MSK co-segregation.
These data suggest that GDNF gene variants and specific RET haplotypes may be highly associated with MSK phenotype and may have, alone or in association, a potential pathogenicity at least in a subset of MSK patients, demonstrating for the first time that genetic determinants are involved in the pathogenesis of the disease.



Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Anglani, Franca
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEFROLOGIA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:Rene con midollare a spugna - Disordine dello sviluppo - Fattori genetici - Gene GDNF - Gene RET
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/03 Genetica medica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Mediche e Chirurgiche
Codice ID:912
Depositato il:14 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Pesce C, Colombo B, Nicolini E, Spata F, Cappellari F. [Medullary sponge kidney with severe renal function impairment: a case report]. Pediatr Med Chir. 1995; 17(1):65-7. Cerca con Google

2. Gambaro G, Favaro S, D'Angelo A. Risk for renal failure in nephrolithiasis. Am J Kidney Dis. 2001; 37(2):233-43. Cerca con Google

3. Osther PJ, Mathiasen H, Hansen AB, Nissen HM. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney. Urol Int. 1994; 52(3):126-30. Cerca con Google

4. Pabico RC, McKenna BA, Freeman RB. Renal tubular dysfunction in patients with cystic disease of the kidneys. Urology. 1998; 51(5A Suppl):156-60. Cerca con Google

5. Yagisawa T, Kobayashi C, Hayashi T, Yoshida A, Toma H. Contributory metabolic factors in the development of nephrolithiasis in patients with medullary sponge kidney. Am J Kidney Dis. 2001; 37(6):1140-3. Cerca con Google

6. Macedo CS, Riyuzo MC, Bastos HD, Morcelli J. [Medullary sponge kidney, nephrolithiasis, hypercalciuria and hyperuricosuria in a child. Report of a case and follow-up]. J Pediatr (Rio J). 1996; 72(2):106-8. Cerca con Google

7. Gupta S, Shanbag P, Vaidya M. Medullary sponge kidney. Indian J Pediatr. 2002; 69(12):1091-2. Cerca con Google

8. Kasap B, Soylu A, Oren O, Türkmen M, Kavukçu S. Medullary sponge kidney associated with distal renal tubular acidosis in a 5-year-old girl. Eur J Pediatr. 2006; 165(9):648-51. Cerca con Google

9. Dell' Adami G, Meneghini C. [The spongy kidney: first instance of the disease in brothers.] Arch Ital Urol. 1954; 27(2):81-9. Cerca con Google

10. Copping GA. Medullary sponge kidney: its occurrence in a father and daughter. Can Med Assoc J. 1967; 96(10):608-11. Cerca con Google

11. Kuiper JJ. Medullary sponge kidney in three generations. N Y State J Med. 1971; 71(22):2665-9. Cerca con Google

12. Klemme L, Fish AJ, Rich S, Greenberg B, Senske B, Segall M. Familial ureteral abnormalities syndrome: genomic mapping, clinical findings. Pediatr Nephrol. 1998; 12(5):349-56. Cerca con Google

13. Cameron S. Medullary Sponge Kidney. In: Oxford Textbook of Clinical Nephrology, 3rd Edition (Ed. A.M. Davison, J.S. Cameron, J-P Grünfeld, C. Ponticelli, E.Ritz, C.G. Winearls, C. van Ypersele). Oxford: University Press. 2004; 2495-501. Cerca con Google

14. Choyke PL, Siegel MJ, Oz O, Sotelo-Avila C, DeBaun MR. Nonmalignant renal disease in pediatric patients with Beckwith-Wiedemann syndrome. AJR Am J Roentgenol. 1998; 171(3):733-7. Cerca con Google

15. Beetz R, Schofer O, Riedmiller H, Schumacher R, Gutjahr P. Medullary sponge kidneys and unilateral Wilms tumour in a child with Beckwith-Wiedemann syndrome. Eur J Pediatr. 1991; 150(7):489-92. Cerca con Google

16. Chesney RW, Kaufman R, Stapleton FB, Rivas ML. Association of medullary sponge kidney and medullary dysplasia in Beckwith-Wiedemann syndrome. J Pediatr. 1989; 115:761-4. Cerca con Google

17. West PM, Love DR, Stapleton PM, Winship IM. Paternal uniparental disomy in monozygotic twins discordant for hemihypertrophy. J Med Genet. 2003; 40(3):223-6. Cerca con Google

18. Kerr DN, Warrick CK, Hart-Mercer J. A lesion resembling medullary sponge kidney in patients with congenital hepatic fibrosis. Clin Radiol. 1962; 13:85-91. Cerca con Google

19. Torres VE, Erickson SB, Smith LH, Wilson DM, Hattery RR, Segura JW. The association of nephrolithiasis and autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1988; 11(4):318-25. Cerca con Google

20. Gambaro G, Feltrin GP, Lupo A, Bonfante L, D'Angelo A, Antonello A. Medullary sponge kidney (Lenarduzzi-Cacchi-Ricci disease): a Padua Medical School discovery in the 1930s. Kidney Int. 2006; 69(4):663-70. Cerca con Google

21. Lambrianides AL, John DR. Medullary sponge disease in horseshoe kidney. Urology. 1987; 29(4):426-7. Cerca con Google

22. Gambaro G, Fabris A, Citron L, Tosetto E, Anglani F, Bellan F, Conte M, Bonfante L, Lupo A, D'Angelo A. An unusual association of contralateral congenital small kidney, reduced renal function and hyperparathyroidism in sponge kidney patients: on the track of the molecular basis. Nephrol Dial Transplant. 2005; 20(6):1042-7. Cerca con Google

23. Maschio G, Tessitore N, D'Angelo A, Fabris A, Corgnati A, Oldrizzi L, Loschiavo C, Lupo A, Valvo E, Gammaro L, Rugiu C. Medullary sponge kidney and hyperparathyroidism--a puzzling association. Am J Nephrol. 1982; 2(2):77-84. Cerca con Google

24. Diouf B, Ka EH, Calender A, Giraud S, Diop TM. Association of medullary sponge kidney disease and multiple endocrine neoplasia type IIA due to RET gene mutation: is there a causal relationship? Nephrol Dial Transplant. 2000; 15(12):2062-3. Cerca con Google

25. Pohl M, Bhatnagar V, Mendoza SA, Nigam SK. Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. Kidney Int. 2002; 61(1):10-9. Cerca con Google

26. Saxén L, Sariola H, Lehtonen E. Sequential cell and tissue interactions governing organogenesis of the kidney. Anat Embryol (Berl). 1986; 175(1):1-6. Cerca con Google

27. Saxén L, Sariola H. Early organogenesis of the kidney. Pediatr Nephrol. 1987; 1(3):385-92. Cerca con Google

28. Schedl A, Hastie ND. Cross-talk in kidney development. Curr Opin Genet Dev. 2000; 10(5):543-9. Cerca con Google

29. Sampogna RV, Nigam SK. Implications of gene networks for understanding resilience and vulnerability in the kidney branching program. Physiology (Bethesda). 2004; 19:339-47. Cerca con Google

30. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992; 232(2):194-201. Cerca con Google

31. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development. 2004; 131(7):1449-62. Cerca con Google

32. Costantini F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation. 2006; 74(7):402-21. Cerca con Google

33. Vainio S, Lin Y. Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet. 2002; 3(7):533-43. Cerca con Google

34. Sariola H, Sainio K. The tip-top branching ureter. Curr Opin Cell Biol. 1997; 9(6):877-84. Cerca con Google

35. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays. 2006; 28(2):117-27. Cerca con Google

36. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001; 12(4):361-73. Cerca con Google

37. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005; 16(4-5):441-67. Cerca con Google

38. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993; 119(4):1005-17. Cerca con Google

39. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996; 54(1):95-105. Cerca con Google

40. Bouchard M. Transcriptional control of kidney development. Differentiation. 2004; 72(7):295-306. Cerca con Google

41. Esquela AF, Lee SJ. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol. 2003; 257(2):356-70. Cerca con Google

42. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000; 127(7):1387-95. Cerca con Google

43. Grieshammer U, Le Ma , Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004; 6(5):709-17. Cerca con Google

44. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004; 5(6):441-50. Cerca con Google

45. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005; 8(2):229-39. Cerca con Google

46. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000; 105(7):863-73. Cerca con Google

47. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development. 2004; 131(14):3401-10. Cerca con Google

48. Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999; 13(12):1601-13. Cerca con Google

49. Maeshima A, Vaughn DA, Choi Y, Nigam SK. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev Biol. 2006; 295(2):473-85. Cerca con Google

50. Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G, Pachnis V. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development. 1999; 126(12):2785-97. Cerca con Google

51. Hu J, Shima H, Nakagawa H. Glial cell line-derived neurotropic factor stimulates sertoli cell proliferation in the early postnatal period of rat testis development. Endocrinology. 1999; 140(8):3416-21. Cerca con Google

52. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci. 2003; 116(Pt 19):3855-62. Cerca con Google

53. Pepicelli CV, Kispert A, Rowitch DH, McMahon AP. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997; 192(1):193-8. Cerca con Google

54. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003; 130(14):3175-85. Cerca con Google

55. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994; 367(6461):380-3. Cerca con Google

56. Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996; 382(6586):70-3. Cerca con Google

57. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996; 382(6586):73-6. Cerca con Google

58. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996; 382(6586):76-9. Cerca con Google

59. Srinivas S, Wu Z, Chen CM, D'Agati V, Costantini F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development. 1999; 126(7):1375-86. Cerca con Google

60. Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M. A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol. 2004; 24(18):8026-36. Cerca con Google

61. Wilkinson DG, Bailes JA, McMahon AP. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell. 1987; 50(1):79-88. Cerca con Google

62. Andrews KL, Betsuyaku T, Rogers S, Shipley JM, Senior RM, Miner JH. Gelatinase B (MMP-9) is not essential in the normal kidney and does not influence progression of renal disease in a mouse model of Alport syndrome. Am J Pathol. 2000; 157(1):303-11. Cerca con Google

63. Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M. Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet. 1996; 13(3):370-3. Cerca con Google

64. King JA, Marker PC, Seung KJ, Kingsley DM. BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol. 1994; 166(1):112-22. Cerca con Google

65. Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF. Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int. 2001; 60(1):147-55. Cerca con Google

66. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development. 1999; 126(3):547-54. Cerca con Google

67. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000; 277(3):643-9. Cerca con Google

68. Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, Grisaru S, Bush KT, Nigam S, Rosenblum ND, Sukhatme VP, Cantley LG. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A. 2001; 98(22):12509-14. Cerca con Google

69. Lelongt B, Makino H, Dalecki TM, Kanwar YS. Role of proteoglycans in renal development. Dev Biol. 1988; 128(2):256-76. Cerca con Google

70. Barasch J, Yang J, Qiao J, Tempst P, Erdjument-Bromage H, Leung W, Oliver JA. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest. 1999; 103(9):1299-307. Cerca con Google

71. Pohl M, Sakurai H, Bush KT, Nigam SK. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am J Physiol Renal Physiol. 2000; 279(5):F891-900. Cerca con Google

72. Sakurai H, Nigam SK. Transforming growth factor-beta selectively inhibits branching morphogenesis but not tubulogenesis. Am J Physiol. 1997; 272(1 Pt 2):F139-46. Cerca con Google

73. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol. 2004; 266(2):285-98. Cerca con Google

74. Takayama H, LaRochelle WJ, Sabnis SG, Otsuka T, Merlino G. Renal tubular hyperplasia, polycystic disease, and glomerulosclerosis in transgenic mice overexpressing hepatocyte growth factor/scatter factor. Lab Invest. 1997; 77(2):131-8. Cerca con Google

75. Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol. 1997; 188(2):235-47. Cerca con Google

76. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997; 124(13):2659-70. Cerca con Google

77. Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994; 372(6507):679-83. Cerca con Google

78. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999; 99(4):377-86. Cerca con Google

79. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999; 126(24):5771-83. Cerca con Google

80. Arnold A, Shattuck TM, Mallya SM, Krebs LJ, Costa J, Gallagher J, Wild Y, Saucier K. Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res. 2002; 17 Suppl 2:N30-6. Cerca con Google

81. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993; 260(5111):1130-2. Cerca con Google

82. Schindelhauer D, Schuffenhauer S, Gasser T, Steinkasserer A, Meitinger T. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1. Genomics. 1995; 28(3):605-7. Cerca con Google

83. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990; 6:597-641. Cerca con Google

84. Butte MJ. Neurotrophic factor structures reveal clues to evolution, binding, specificity, and receptor activation. Cell Mol Life Sci. 2001; 58(8):1003-13. Cerca con Google

85. Springer JE, Seeburger JL, He J, Gabrea A, Blankenhorn EP, Bergman LW. cDNA sequence and differential mRNA regulation of two forms of glial cell line-derived neurotrophic factor in Schwann cells and rat skeletal muscle. Exp Neurol. 1995; 131(1):47-52. Cerca con Google

86. Cristina N, Chatellard-Causse C, Manier M, Feuerstein C. GDNF: existence of a second transcript in the brain. Brain Res Mol Brain Res. 1995; 32(2):354-7. Cerca con Google

87. Grimm L, Holinski-Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M. Analysis of the human GDNF gene reveals an inducible promoter, three exons, a triplet repeat within the 3'-UTR and alternative splice products. Hum Mol Genet. 1998; 7(12):1873-86. Cerca con Google

88. Woodbury D, Schaar DG, Ramakrishnan L, Black IB. Novel structure of the human GDNF gene. Brain Res. 1998; 803(1-2):95-104. Cerca con Google

89. Baecker PA, Lee WH, Verity AN, Eglen RM, Johnson RM. Characterization of a promoter for the human glial cell line-derived neurotrophic factor gene. Brain Res Mol Brain Res. 1999; 69(2):209-22. Cerca con Google

90. Springer JE, Mu X, Bergmann LW, Trojanowski JQ. Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol. 1994; 127(2):167-70. Cerca con Google

91. Schaar DG, Sieber BA, Sherwood AC, Dean D, Mendoza G, Ramakrishnan L, Dreyfus CF, Black IB. Multiple astrocyte transcripts encode nigral trophic factors in rat and human. Exp Neurol. 1994; 130(2):387-93. Cerca con Google

92. Ashley CT Jr, Warren ST. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995; 29:703-28. Cerca con Google

93. Sehgal A, Patil N, Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol. 1988; 8(8):3160-7. Cerca con Google

94. Pugh BF, Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990; 61(7):1187-97. Cerca con Google

95. Thiele DJ. Metal-regulated transcription in eukaryotes. Nucleic Acids Res. 1992; 20(6):1183-91. Cerca con Google

96. Dalton TP, Li Q, Bittel D, Liang L, Andrews GK. Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem. 1996; 271(42):26233-41. Cerca con Google

97. Christy BA, Lau LF, Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988; 85(21):7857-61. Cerca con Google

98. Suter-Crazzolara C, Baecker PA, Johnson RM, Unsicker K. Characterization of a human GDNF gene-promoter (poster abstract). Abstr Soc Neurosci. 1997; 23:90. Cerca con Google

99. Matsushita N, Fujita Y, Tanaka M, Nagatsu T, Kiuchi K. Cloning and structural organization of the gene encoding the mouse glial cell line-derived neurotrophic factor, GDNF. Gene. 1997; 203(2):149-57. Cerca con Google

100. Tanaka M, Ito S, Kiuchi K. Novel alternative promoters of mouse glial cell line-derived neurotrophic factor gene. Biochim Biophys Acta. 2000; 1494(1-2):63-74. Cerca con Google

101. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985; 42(2):581-8. Cerca con Google

102. Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene. 1989; 4(12):1519-21. Cerca con Google

103. Pasini B, Hofstra RM, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, Ceccherini I, Patrone G, Priolo M, Buys CH, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995; 11(9):1737-43. Cerca con Google

104. Takahashi M, Cooper GM. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol. 1987; 7(4):1378-85. Cerca con Google

105. Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M, Takahashi M. The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci. 2005; 96(3):143-8. Cerca con Google

106. Kwok JB, Gardner E, Warner JP, Ponder BA, Mulligan LM. Structural analysis of the human ret proto-oncogene using exon trapping. Oncogene. 1993; 8(9):2575-82. Cerca con Google

107. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002; 3(5):383-94. Cerca con Google

108. Saarma M. GDNF - a stranger in the TGF-beta superfamily? Eur J Biochem. 2000; 267(24):6968-71. Cerca con Google

109. Munnes M, Patrone G, Schmitz B, Romeo G, Doerfler W. A 5'-CG-3'-rich region in the promoter of the transcriptionally frequently silenced RET protooncogene lacks methylated cytidine residues. Oncogene. 1998; 17(20):2573-83. Cerca con Google

110. Andrew SD, Delhanty PJ, Mulligan LM, Robinson BG. Sp1 and Sp3 transactivate the RET proto-oncogene promoter. Gene. 2000; 256(1-2):283-91. Cerca con Google

111. Tahira T, Ishizaka Y, Itoh F, Sugimura T, Nagao M. Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene. 1990; 5(1):97-102. Cerca con Google

112. Myers SM, Eng C, Ponder BA, Mulligan LM. Characterization of RET proto-oncogene 3' splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene. 1995; 11(10):2039-45. Cerca con Google

113. Carter MT, Yome JL, Marcil MN, Martin CA, Vanhorne JB, Mulligan LM. Conservation of RET proto-oncogene splicing variants and implications for RET isoform function. Cytogenet Cell Genet. 2001; 95(3-4):169-76. Cerca con Google

114. Runeberg-Roos P, Saarma M. Neurotrophic factor receptor RET: structure, cell biology, and inherited diseases. Ann Med. 2007;:1-9. Cerca con Google

115. Plaza-Menacho I, Burzynski GM, de Groot JW, Eggen BJ, Hofstra RM. Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet. 2006; 22(11):627-36. Cerca con Google

116. Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V, Kraus MH, Di Fiore PP, Fusco A, Santoro M. Molecular heterogeneity of RET loss of function in Hirschsprung's disease. EMBO J. 1996; 15(11):2717-25. Cerca con Google

117. Lantieri F, Griseri P, Ceccherini I. Molecular mechanisms of RET-induced Hirschsprung pathogenesis. Ann Med. 2006; 38(1):11-9. Cerca con Google

118. Manié S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 2001; 17(10):580-9. Cerca con Google

119. Sasaki A, Kanai M, Kijima K, Akaba K, Hashimoto M, Hasegawa H, Otaki S, Koizumi T, Kusuda S, Ogawa Y, Tuchiya K, Yamamoto W, Nakamura T, Hayasaka K. Molecular analysis of congenital central hypoventilation syndrome. Hum Genet. 2003; 114(1):22-6. Cerca con Google

120. Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000; 37(11):817-27. Cerca con Google

121. Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol. 2006; 155(5):645-53. Cerca con Google

122. Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, López-Alonso M, Hernández A, Wright FA, Antiñolo G, Eng C. RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease. J Med Genet. 2000; 37(8):572-8. Cerca con Google

123. Smigiel R, Lebioda A, Patkowski D, Czernik J, Dobosz T, Pesz K, Kaczmarz M, Sasiadek MM. Single nucleotide polymorphisms in the RET gene and their correlations with Hirschsprung disease phenotype. J Appl Genet. 2006; 47(3):261-7. Cerca con Google

124. de Pontual L, Pelet A, Trochet D, Jaubert F, Espinosa-Parrilla Y, Munnich A, Brunet JF, Goridis C, Feingold J, Lyonnet S, Amiel J. Mutations of the RET gene in isolated and syndromic Hirschsprung's disease in human disclose major and modifier alleles at a single locus. J Med Genet. 2006; 43(5):419-23. Cerca con Google

125. Pusch CM, Sasiadek MM, Blin N. Hirschsprung, RET-SOX and beyond: the challenge of examining non-mendelian traits. Int J Mol Med. 2002; 10(4):367-70 (Review). Cerca con Google

126. Trang H. [Ondine syndrome or central congenital hypoventilation syndrome]. Rev Prat. 2006; 56(2):125-8. Cerca con Google

127. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Libroia A, Lips CJ, Lombardi G, Mannelli M, Pacini F, Ponder BA, Raue F, Skogseid B, Tamburrano G, Thakker RV, Thompson NW, Tomassetti P, Tonelli F, Wells SA Jr, Marx SJ. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001; 86(12):5658-71. Cerca con Google

128. Carlomagno F, Melillo RM, Visconti R, Salvatore G, De Vita G, Lupoli G, Yu Y, Jing S, Vecchio G, Fusco A, Santoro M. Glial cell line-derived neurotrophic factor differentially stimulates ret mutants associated with the multiple endocrine neoplasia type 2 syndromes and Hirschsprung's disease. Endocrinology. 1998; 139(8):3613-9. Cerca con Google

129. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996; 54(1):95-105. Cerca con Google

130. Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996; 14(3):341-4. Cerca con Google

131. Salomon R, Attié T, Pelet A, Bidaud C, Eng C, Amiel J, Sarnacki S, Goulet O, Ricour C, Nihoul-Fékété C, Munnich A, Lyonnet S. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996; 14(3):345-7. Cerca con Google

132. Ivanchuk SM, Myers SM, Eng C, Mulligan LM. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet. 1996; 5(12):2023-6. Cerca con Google

133. Amiel J, Salomon R, Attié T, Pelet A, Trang H, Mokhtari M, Gaultier C, Munnich A, Lyonnet S. Mutations of the RET-GDNF signaling pathway in Ondine's curse. Am J Hum Genet. 1998; 62(3):715-7. Cerca con Google

134. Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003; 33(4):459-61. Cerca con Google

135. Woodward ER, Eng C, McMahon R, Voutilainen R, Affara NA, Ponder BA, Maher ER. Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL. Hum Mol Genet. 1997; 6(7):1051-6. Cerca con Google

136. Bahuau M, Pelet A, Vidaud D, Lamireau T, LeBail B, Munnich A, Vidaud M, Lyonnet S, Lacombe D. GDNF as a candidate modifier in a type 1 neurofibromatosis (NF1) enteric phenotype. Med Genet. 2001; 38(9):638-43. Cerca con Google

137. Ginalski JM, Spiegel T, Jaeger P. Use of low-osmolality contrast medium does not increase prevalence of medullary sponge kidney. Radiology. 1992; 182(2):311-4. Cerca con Google

138. Sancandi M, Griseri P, Pesce B, Patrone G, Puppo F, Lerone M, Martucciello G, Romeo G, Ravazzolo R, Devoto M, Ceccherini I. Single nucleotide polymorphic alleles in the 5' region of the RET proto-oncogene define a risk haplotype in Hirschsprung's disease. J Med Genet. 2003; 40(9):714-8. Cerca con Google

139. Gil L, Azañedo M, Pollán M, Cristobal E, Arribas B, García-Albert L, García- Sáiz A, Maestro ML, Torres A, Menárguez J, Rojas JM. Genetic analysis of RET, GFR alpha 1 and GDNF genes in Spanish families with multiple endocrine neoplasia type 2A. Int J Cancer. 2002; 99(2):299-304. Cerca con Google

140. Fitze G, Appelt H, König IR, Görgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A, Roesner D, Schackert HK. Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Hum Mol Genet. 2003; 12(24):3207-14. Cerca con Google

141. den Dunnen JT and Antonarakis SE. Mutation Nomenclature Extensions and Suggestions to Describe Complex Mutations: A Discussion. Hum Mutat. 2000; 15:7-12. Cerca con Google

142. Merril CR, Goldman D, Sedman SA, Ebert MH. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981; 211(4489):1437-8. Cerca con Google

143. Del Prete D, Forino M, Gambaro G, D'Angelo A, Baggio B, Anglani F. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens. Exp Nephrol. 1998; 6(6):563-7. Cerca con Google

144. Elisei R, Cosci B, Romei C, Bottici V, Sculli M, Lari R, Barale R, Pacini F, Pinchera A. RET exon 11 (G691S) polymorphism is significantly more frequent in sporadic medullary thyroid carcinoma than in the general population. J Clin Endocrinol Metab. 2004; 89(7):3579-84. Cerca con Google

145. Robledo M, Gil L, Pollán M, Cebrián A, Ruíz S, Azañedo M, Benitez J, Menárguez J, Rojas JM. Polymorphisms G691S/S904S of RET as genetic modifiers of MEN 2A. Cancer Res. 2003; 63(8):1814-7. Cerca con Google

146. Pasini B, Ceccherini I, Romeo G. RET mutations in human disease. Trends Genet. 1996; 12(4):138-44. Cerca con Google

147. Borrego S, Sáez ME, Ruiz A, Gimm O, López-Alonso M, Antiñolo G, Eng C. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J Med Genet. 1999; 36(10):771-4. Cerca con Google

148. Lesueur F, Corbex M, McKay JD, Lima J, Soares P, Griseri P, Burgess J, Ceccherini I, Landolfi S, Papotti M, Amorim A, Goldgar DE, Romeo G. Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. J Med Genet. 2002; 39(4):260-5. Cerca con Google

149. Leviev I, Negro F, James RW. Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler Thromb Vasc Biol. 1997; 17(11):2935-9. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record