Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lazzari, Roberta (2008) Ruolo del sistema endocannabinoide nella cirrosi biliare primitiva. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Endocannabinoid system (EC) has emerged as a crucial mediator in a variety of pathophysiological conditions. A cannabinoid agonist (WIN5521-2) has been shown to increase the pruritus threshold in cholestatic rats. Moreover, in the course of chronic cholangiopaties hepatic progenitor cells are activated constituting a neuroendocrine compartment regulated by different agents including neuropeptides. Aims: 1. To evaluate whether the EC system is activated in PBC; 2. To evaluate if genetic variations in human cannabinoid-specific receptor genes (CB1 and CB2) might cause a different phenotypic expression of the disease in terms of association with pruritus. Methods: 1) Morphological study: CB1 and CB2 receptors were characterized in biopsy specimens of 2 normal human liver and 9 PBC (IV stage) by immunohistochemistry. CB1 and CB2 mRNA expression was also assayed through RT-PCR in liver samples. 2) Genetic study: the following groups of subjects have been enrolled: 68 consecutive PBC Italian pts, 84 PBC pts residents in USA; 70 controls, matched for sex, age, and geographical area with the Italian PBC pts. Genomic DNA was extracted from peripheral venous blood leucocytes with standard method. PCR was used to amplify the coding regions of the CB1 and CB2 genes with specific primers. Results: in PBC, CB1 was markedly expressed in hepatocytes, biliary epithelial cells and in Kupffer cells; conversely, in control livers was virtually absent. CB2 was markedly expressed in hepatocytes and in biliary epithelial cells, in CBP.
The variability of mRNA expression of CB1 and CB2 receptors, that are expressed in liver samples both CBP, both in normal liver, makes it impossible to prove a transcriptional iper-regulation of CB1 and CB2 receptors during cholestatic disease (CBP).
CB1 polymorphism (1359 G/A) was present in 26.5% of Italian PBC pts, in 22.9% of healthy controls, and in 27.4% of an US PBC series (p=n.s.). CB2 polymorphism (188-189 AA/GG) was present in 24.4% vs 30.4% of Italian and US PBC respectively, and in 28% of Italian controls (p=n.s.) Stratifying the PBC patients according to pruritus there was no difference in either Italian and US series in the distribution of CB1 and CB2 mutation in patients with or without pruritus. CB1 SNP (1359 G/A) was correlated with CBP histologic evolution (p=0,05) and with response to treatment with UDCA (p=0,028).
Conclusions: EC system is up-regulated in PBC and CB1 SNP (1359 G/A) seems to correlate with the evolution of the disease, in terms of reduced effectiveness of UDCA therapy in slowing the rate of progression of the disease, but this system probably exert a role regulating metabolic homeostasis.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Floreani, Annarosa
Data di deposito della tesi:30 Gennaio 2008
Anno di Pubblicazione:30 Gennaio 2008
Parole chiave (italiano / inglese):Sistema endocannabinoide, cirrosi biliare primitiva, immunoistochimica, sequenziamento genico
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/12 Gastroenterologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chirurgiche Gastroenterologiche "Pier Giuseppe Cevese"
Codice ID:913
Depositato il:28 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Selmi C, Invernizzi P, keeffe E, Coppel R, Podda M, Rossaro L, Ansari A, Gershwin E. Epidemiology and pathogenesis of primary biliary cirrhosis. J Clin Gastroeneterol. 2004;38:264-71. Cerca con Google

2. Kaplan MM. Primary biliary cirrhosis. N Engl J Med. 1996;335:1570-80. Cerca con Google

3. Howel D, Fischbacher CM, Bhopal RS, Gray J, Metcalf JV, James OF. An exploratory population-based case-control study of primary biliary cirrhosis. Hepatology 2000;31:1055-60. Cerca con Google

4. Dahlan Y, Smith L, Simmonds D, Jewell LD, Wanless I, Heathcote EJ, Bain VG. Pedriatic onset primary biliary cirrhosis. Gastroenterology 2003;125:1476-79. Cerca con Google

5. Floreani A, Ostuni PA, Ferrara F, Guido M. Primary biliary cirrhosis:when and whydoes the disease develop? Dig Liv Dis 2006;38: 272-75. Cerca con Google

6. Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from yhe United States. Hepatology 2001;33:16-21. Cerca con Google

7. Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U and Meier PT et al. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2004; 39:779-791. Cerca con Google

8. Kita H, Nalbandian G, Keeffe E, Coppel R, Gershwin E. Pathogenesis of primary biliary cirrhosis. Clin Liver Dis 2003;7:821-39. Cerca con Google

9. Kaplan MM and Gershwin ME. Primary biliary cirrhosis. N Engl J Med. 2005 Sep 22;353(12):1261-73. Review. No abstract available. Erratum in: N Engl Med. 2006 Jan 19;354(3):313. Cerca con Google

10. Selmi C, Mayo MJ, Bach N, Ishibashi H, invernizzi P, Gish RG, Gordon SC, Wright HI, wieban B, Podda M, Gershwin ME,.Orimary biliary cirrhosis in monozygotic and dizygotic twins:genetics, epigenetics and environment. Gastroenterology 2004;127:485-92 Cerca con Google

11. Invernizzi P, Battezzati PM, Crosignani A, Perego F, Morabito A, Fe Arias AE, Scalamogna M, Zuin M, Podda M. Peculial HLA polymorphisms in Italian patients with primary biliary cirrhosis. J Hepatol 2003;38:401-6. Cerca con Google

12. Tanaka A, Borchers AT, Ishibashi H, ansari AA, Keen CL, Gershwin ME. Genetic and familial considerations of primary biliary cirrhosis. Am J Gastroenterol 2001; 96:8-15. Cerca con Google

13. Invernizzi P, Selmi C; Mackay IR, Podda M, Gershwin ME. From bases to basis: linking genetics to causation in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2005;3:401-10. Cerca con Google

14. Springer JE, Cole DE, Rubin LA, Cauch-Dudek K, Harewood L, Evrovski J, Peltekova VD, Heathcote EJ. Vitamin D-receptor genotypes as independent genetic predictors of decreased bone mineral density in primary biliary cirrhosis. Gastroenterology 2000;118:145-151 Cerca con Google

15. Leuschner U. Primary biliary cirrhosis: presentation and diagnosis. Clin Liver Dis 2003;7:741-58. Cerca con Google

16. Heathcote EJ. Management of Primary Biliary Cirrhosis. Hepatology 2000;31:1005-13. Cerca con Google

17. Bergasa NV. Pruritus and fatigue in primary biliary cirrhosis. Clin Liver Dis. 2003;7:879-900. Cerca con Google

18. Bergasa NV, Jones EA. The pruritus of cholestasis. Clin Liver Dis. 1998;2:391-403. Cerca con Google

19. Goldblatt J, James OFW, Jones DEJ. Grip strength and subjective fatigue in patient with primary biliary cirrhosis. JAMA 2001;285:2196-7. Cerca con Google

20. Serviddio G, Pereda J, pallardò FV, Carretero J, Borras C, Cutrin J, Vandemiale G, Poli G, Vina J, Sastre J. Ursodeoxicholic acid protects against secondary biiliary cirrhosis in rats by preventing mithochondrial oxidative stress. Hepatology 2004;39:711-720. Cerca con Google

21. Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis 2004;8:67-81. Cerca con Google

22. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol. 1999;58:315-348. Cerca con Google

23. Mechoulam R, Gaoni Y. A total synthesis of dl-?1-tetrahydrocannabinol, the active constituent of hashish. J Am Chem Soc. 65;87:3274-3275 Cerca con Google

24. Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 1998;21:521-528. Cerca con Google

25. Cota D, Woods SC. The role of the endocannabinoid system in the regulation of energy homeostasis. Curr Opin Endocrinol Diabetes. 2005;12:338-351. Cerca con Google

26. De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: a general view and latest additions. Br J Pharmacol. 2004;141:765-774. Cerca con Google

27. Devane WA, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1-4. Cerca con Google

28. Mechoulam R., Ben-Shabat S., Hanus L., et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptor. Biochem Pharmacol. 1995; 50:83-90. Cerca con Google

29. Di Marzo V, Fontana A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot Essent Fatty Acids. Jul 1995;53(1):1-11. Cerca con Google

30. Sugiura T, Kodaka T, Nakane S, et al. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. Jan 29 1999;274(5):2794-2801. Cerca con Google

31. Huang SM, Bisogno T, Marcello T, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, and Di Marzo V. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 1999: 8400–8405, 2002. Cerca con Google

32. Facci L., Dal Toso R., Romanello S., Buriani A., Skaper S.D. & Leon,A. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc. Natl. Acad. Sci. U.S.A. 1995: 394: 277?281. Cerca con Google

33. B.F. Cravatt, O. Prospero-Garcia, G. Siuzdak, N.B. Gilula, S.J. Henriksen, D.L. Boger and R.A. Lerner , Chemical characterization of a family of brain lipids that induce sleep. Science 268 (1995), pp. 1506–1509. Cerca con Google

34. Heather B Bradshaw and J Michael Walker. The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005 February; 144(4): 459–465. Cerca con Google

35. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;96:678-682. Cerca con Google

36. Piomelli D. The molecular logic of endocannabinoid signaling. Nature Rev. 2003;4:873-88 Cerca con Google

37. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994). Cerca con Google

38. Cadas, H., di Tomaso, E. & Piomelli, D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J. Neurosci. 17, 1226–1242 (1997). Cerca con Google

39. Higgs, H. N. & Glomset, J. A. Identification of a phosphatidic acidpreferring phospholipase A1 from bovine brain and testis. Proc. Natl Acad. Sci. USA 91, 9574–9578 (1994). Cerca con Google

40. Pete, M. J., Ross, A. H. & Exton, J. H. Purification and properties of phospholipase A1 from bovine brain. J. Biol. Chem. 269, 19494–19500 (1994). Cerca con Google

41. Beltramo, M. et al. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277, 1094–1097 (1997). Cerca con Google

42. Hillard, C. J., Edgemond, W. S., Jarrahian, A. & Campbell, W. B. Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J. Neurochem. 69, 631–638 (1997). Cerca con Google

43. Deutsch DG, Ueda N, Yamamoto S. The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot Essent Fatty Acids. 2002;66:201-210. Cerca con Google

44. Matias I, Bisogno T, Di Marzo V. Endogenous cannabinoids in the brain and peripheral tissues: regulation of their levels and control of food intake. Int J Obesity. 2006;30:S7-S12. Cerca con Google

45. Baldwin J.M., Schertler G.F. and. Unger V.M. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-proteincoupled receptors. J. Mol. Biol. 1997; 272:144–164. Cerca con Google

46. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561-564. Cerca con Google

47. Huang, C. C., Lo, S. W. & Hsu, K. S. Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J. Physiol. 532, 731–748 (2001). Cerca con Google

48. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006;27:73-100. Cerca con Google

49. Kawamura Y, Fukaya M, Maejima T et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci. 2006;26:2991-3001. Cerca con Google

50. Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999). Cerca con Google

51. Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol, 2001: 134(3):563-70 Cerca con Google

52. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993:365;61-64. Cerca con Google

53. Demuth DG, Molleman A. Cannabinoid signaling. Life Sci. 2006;78:549- 563. Cerca con Google

54. Felder CC, Glass M (1998) Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 38:179–200 Cerca con Google

55. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol, 2007:152: 1092–1101 Cerca con Google

56. Horvath G, Kekesi G, Nagy E, Benedek G. The role of TRPV1 receptors in the antinociceptive effect of anandamide at spinal level. Pain, (2008), Vol. 134, No. 3. pp. 277-284. Cerca con Google

57. Gadzicki D, Müller-Vahl K, Stuhrmann M. A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene. Molec Cell Probes 1999;13:321-3. Cerca con Google

58. Schmidt LG, Samochowiec J, Finckh U, Fiszer-Piosik E, Horodnicki J, Wendel B, Rommelspacher H & Hoehe MR. Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. Drug and Alcohol Dependence 2002: 65. Cerca con Google

59. Jack C. Sipe,1 Nathalie Arbour,2 Alexandra Gerber, and Ernest Beutler. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. Journal of Leukocyte Biology Volume 78, July 2005 Cerca con Google

60. Osei-Hyiaman D, DePetrillo M, Pacher P et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005;1298-1305. Cerca con Google

61. N Mendez-Sanchez , D Zamora-Valdes , R Pichardo-Bahena , B Barredo- Prieto , G Ponciano-Rodriguez , L Bermejo-Martínez , N C Chavez-Tapia , H A Baptista-González , M Uribe. Endocannabinoid receptor CB2 in nonalcoholic fatty liver disease. Liver Int. 2007 Mar ;27 (2):215-9 17311616 Cerca con Google

62. Grenard P, Julien B, Tran-Van-Nhieu J, Li L, Ledent C, Mallat A, et al. Reduced liver fibrosis in CB1 receptor knockout mice. J Hepatol 2004; 40(Suppl 1):8. Cerca con Google

63. Julien B, Grenard P, Teixeira-Clerc F et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005; 128: 742– 55. Cerca con Google

64. Teixeira-Clerc F, Julien B, Grenard P, Tran Van NhieuJ, Deveaux V, Li L, Serriere Lanneau V, Ledent C, Mallat A, Lotersztajn S. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 2006;12:671-676. Cerca con Google

65. Mallat A, Teixeira-Clerc F, Deveaux V, Lotersztajn S .Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases. Expert Opinion on Therapeutic Targets, March 2007, Vol. 11, No. 3, Pages 403-409 Cerca con Google

66. Bergasa Nora V. The pruritus of cholestasis. Journal of Hepatology Volume 43, Issue 6, December 2005, Pages 1078-1088 Cerca con Google

67. Dvorak M, Watkinson A, McGlone F. and Rukwied R. Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. Inflamm. res. 52 (2003) 238–245. Cerca con Google

68. Gingold A.R.; Bergasa N.V. The cannabinoid agonist WIN 55, 212-2 increases nociception threshold in cholestatic rats: implications for the treatment of the pruritus of cholestasis. Life Sciences, Volume 73, Number 21, 10 October 2003 , pp. 2741-2747(7). Cerca con Google

69. Alvaro D., Mancino M., Glaser S., Gaudio E., Marzioni M., Francis H., Alpini G. Proliferating Cholangiocytes: A Neuroendocrine Compartment in the Diseased Liver. Gastroenterology, 2007: Volume 132, Issue 1, Pages 415-431 Cerca con Google

70. Marzioni M., Alpini G., Saccomanno S., De Minicis S., Glaser S., Francio H., Trozzi L., Venter J., Orlando F., Fava G.. Endogenous Opioids Modulate the Growth of the Biliary Tree in the Course of Cholestasis. Gastroenterology, 2006, Volume 130, Issue 6, Pages 1831-1847. Cerca con Google

71. Jones EA, Bergasa NV. The pruritus of cholestasis: from bile acids to opiate agonists. Hepatology 1990:11:884-87. Cerca con Google

72. Bergasa NV, Jones EA. The pruritus of cholestasis. Clin Liver Dis. 1998;2:391-403 Cerca con Google

73. Leuschner U. Primary biliary cirrhosis: presentation and diagnosis. Clin Liver Dis 2003;7:741-58 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record