Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Trutalli, Davide (2016) Insight into seismic behaviour of timber shear-wall systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
15Mb

Abstract (inglese)

This Ph.D. dissertation is the result of a three-year research activity focused on structural and seismic engineering applied to innovative timber constructive systems. The main purpose is to give a contribution to international scientific research and current design practice about the seismic behaviour of timber shear-wall systems, which still represent an innovation in the construction industry and are being developed due to their favourable characteristics.
An initial overview on the use of main timber structural systems in seismic-prone areas for low- and medium-rise buildings is provided, within the context of current European seismic code.
The theme of the seismic design of timber shear-wall systems is discussed in the first part, giving close attention to linear and non-linear modelling criteria: various strategies are proposed and main characteristics are highlighted. Basic definitions and concepts proper of the seismic analysis of timber structures are provided. A particular attention is paid to the definition and application of the capacity design approach and the close link with the concept of behaviour factor is emphasized. Finally, the definition of behaviour factor, as product between an “intrinsic” capacity of the structure and a design over-strength value is proposed. This definition allows to characterize the structural systems with their proper dissipative capacity and to evaluate separately the safety reserve introduced by design.
The second part analyses the structural behaviour of the cross-laminated timber (CLT) technology, which represents one of the most common timber structural systems. The concepts of ductility, dissipative capacity, regularity and irregularity applied to CLT system are provided. The seismic response and the dissipative capacity of this system are firstly evaluated via an experimentally based procedure. Then, the evaluation of its intrinsic dissipative capacity is determined via non-linear numerical modelling with the aim of studying the correlation with the construction variables. Results show that the construction design decisions affect the seismic response and dissipative capacity of buildings, as opposed to apply a single behaviour factor value to the whole CLT technology. A statistical analysis applied to numerical results allowed also to propose analytical formulations for the computation of the suitable behaviour factor value for regular buildings. Then, the same analyses carried out on in-elevation non-regular buildings returned a correction factor to account for the reduction in dissipative capacity due to irregularity.
The application of the CLT technology to realize high-rise buildings is presented in the third part, analysing the behaviour of slender buildings with seismic resisting core and perimeter shear walls. The major limitations and drawbacks in realizing these structures in areas characterized by high seismic intensity and their implication in the design are reported.
The final part presents three novel structural systems as alternative to more common technologies, as CLT or platform frame. These innovative systems are characterized mainly by a diffuse dissipative and deformation capacity when subjected to seismic loads, while in CLT system such capacity is concentrated in connection elements. This different response is studied via quasi-static tests and numerical simulations. In detail, two non-glued massive timber shear walls and a mixed steel-timber wall with an innovative bracing system are presented.

Abstract (italiano)

Questa tesi di dottorato è il risultato di tre anni di attività di ricerca in ambito ingegneristico strutturale applicato allo studio di sistemi costruttivi innovativi in legno. Il principale obiettivo è quello di fornire un contributo alla ricerca scientifica internazionale e ai metodi attuali di progettazione in merito alla risposta sismica di sistemi in legno a pareti sismo-resistenti, i quali rappresentano tutt’ora un’innovazione nel settore delle costruzioni e si stanno diffondendo grazie alle loro caratteristiche favorevoli.
Una panoramica iniziale sull’utilizzo dei principali sistemi strutturali in legno in zone sismiche per la realizzazione di edifici bassi o di media altezza viene fornita e contestualizzata nella vigente normativa sismica europea.
La prima parte della tesi affronta il tema della progettazione sismica di sistemi a pareti in legno, con particolare attenzione ai criteri di modellazione lineare e non lineare, proponendo diverse strategie ed evidenziandone le caratteristiche. In questa parte vengono forniti inoltre definizioni e concetti fondamentali propri dell’analisi sismica di strutture in legno. Un’attenzione particolare è riservata alla definizione e applicazione del “capacity design”, sottolineandone lo stretto legame con il concetto di fattore di struttura. Viene proposta infine una definizione del fattore di struttura come prodotto tra una parte intrinseca alla struttura e una sovraresistenza di progetto. Tale definizione permette di caratterizzare i sistemi strutturali con la propria capacità dissipativa e di valutare separatamente la riserva di sicurezza introdotta dalla progettazione.
La seconda parte della tesi analizza il comportamento strutturale della tecnologia X-Lam (CLT), che rappresenta uno dei più comuni sistemi strutturali in legno. In questa parte vengono approfonditi i concetti di duttilità, capacità dissipativa, regolarità e irregolarità applicati al sistema X-Lam. La risposta sismica e la capacità dissipativa di questo sistema sono state preliminarmente valutate tramite una procedura analitico-sperimentale. Modelli numerici non-lineari hanno quindi permesso di valutarne la capacità dissipativa intrinseca in funzione delle variabili costruttive proprie del sistema. I risultati mostrano come le decisioni costruttive in fase di progettazione influenzino la risposta sismica dell’edificio; ciò è in contrasto all’applicazione di un unico valore del fattore di struttura per l’intera tecnologia X-Lam. Un’analisi statistica applicata a tali risultati numerici ha consentito di proporre formulazioni analitiche per il fattore di struttura per edifici regolari in funzione delle caratteristiche dell’edificio stesso. Infine, le stesse analisi condotte su edifici non regolari in altezza hanno fornito un coefficiente per tenere in conto della riduzione di capacità dissipativa a causa dell’irregolarità.
Nella terza parte viene presentata un’applicazione della tecnologia X-Lam per costruire edifici alti, analizzando il comportamento di edifici snelli con nucleo sismo-resistente e pareti aggiuntive perimetrali. Vengono riportati inoltre le principali limitazioni e inconvenienti nel realizzare tali strutture in aree caratterizzate da elevata intensità sismica e le loro implicazioni nella progettazione.
La parte finale descrive e analizza tre sistemi strutturali in legno innovativi, come alternative a tecnologie più comuni, quali X-Lam o platform-frame. Questi sistemi, soggetti ad azioni sismiche, sono caratterizzati da una capacità deformativa e dissipativa diffusa, al contrario del sistema X-Lam in cui tale capacità è concentrata principalmente negli elementi di connessione. Questa risposta differente è studiata attraverso test sperimentali quasi statici e simulazioni numeriche. In dettaglio, sono presentati e analizzati due sistemi a pareti massicce stratificate; realizzate senza l’uso di colla tra gli strati e una parete ibrida acciaio-legno con un sistema innovativo di controvento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Scotta, Roberto
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:26 Gennaio 2016
Anno di Pubblicazione:26 Gennaio 2016
Parole chiave (italiano / inglese):strutture in legno; ingegneria strutturale; ingegneria sismica; progettazione sismica; X-Lam; sistema a telaio leggero; fattore di struttura; modellazione numerica; test sperimentali; sistemi innovativi; strutture ibride; comportamento isteretico; edifici alti / timber structures; structural engineering; seismic engineering; seismic design; cross-laminated timber; light-frame system; behaviour factor; numerical modelling; experimental tests; innovative systems; hybrid structures; hysteresis behaviour; tall buildings
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/09 Tecnica delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:9143
Depositato il:06 Ott 2016 14:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AHC group website. Available online: www.ahc1893.com. Vai! Cerca con Google

ASCE (2010). “Minimum design loads for buildings and other structures”. ASCE 7-10, Washington, DC. Cerca con Google

Asiz, A., and Smith, I. (2011). “Connection System of Massive Timber Elements Used in Horizontal Slabs of Hybrid Tall Buildings”. Journal of Structural Engineering, ASCE. DOI: 10.1061/(ASCE)ST.1943-541X.0000363. Cerca con Google

Assembly and installation manual of KLH Massivholz GmbH. Available online: www.klh.at. Vai! Cerca con Google

Bedon, C., Fragiacomo, M., Amadio, C., and Battisti, A. (2014). “A buckling design approach for ‘Blockhaus’ timber walls under in-plane vertical loads”. In Proceedings of 1st International Network on Timber Engineering Research (INTER), Bath, United Kingdom. Cerca con Google

Bedon, C., Rinaldin, G., and Fragiacomo, M. (2015). “Non-linear modelling of the in-plane seismic behaviour of timber Blockhaus log-walls”. Engineering Structures, 91:112-124, doi: 10.1016/j.engstruct.2015.03.002. Cerca con Google

Bernasconi, A. (2010). “Il materiale XLAM: caratteristiche e prestazioni”. Available online: http://www.promolegno.com. Vai! Cerca con Google

Bhat, P., Azim, R., Popovski, M., and Tannert, T. (2014). “Experimental and numerical investigation of novel steel-timber-hybrid system”. In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Bogensperger, T., Moosbrugger, T., and Silly, G. (2010). “Verification of CLT-plates under loads in plane”. In proceedings of 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Boudreault, F.A., Blais, C., and Rogers, C.A. (2007). “Seismic force modification factors for light-gauge steel-frame - wood structural panel shear walls”. Can. J. Civ. Eng. 34(1): 56-65. Cerca con Google

Brandner, R., and Schickhofer, G. (2014). “Properties of Cross Laminated Timber (CLT) in Compression Perpendicular to Grain”. In proceedings of 1st International Network on Timber Engineering Research (INTER), Bath, United Kingdom, paper INTER/47-12-5. Cerca con Google

Brandner, R., Bogensperger, T., and Schickhofer, G. (2013). “In Plane Shear Strength of Cross Laminated Timber (CLT): Test Configuration, Quantification and Influencing Parameters”. In proceeding of Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada, paper CIB-W18/46-12-2. Cerca con Google

Buchanan, A., Deam, B., Fragiacomo, M., Pampanin, S., and Palermo, A. (2008). “Multi-Storey Prestressed Timber Buildings in New Zealand”. Structural Engineering International, 18(2):166-173. Cerca con Google

Canadian Standards Association (2009). “Engineering design in wood”. Standard O86-09, CSA, Toronto, Canada. Cerca con Google

Casagrande, D., Rossi, S., Sartori, T., and Tomasi, R. (2015). “Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls”. Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2014.12.114. Cerca con Google

Casagrande, D., Rossi, S., Tomasi, R, and Mischi, G. (2015). “A predictive analytical model for the elasto-plastic behaviour of a light timber-frame shear-wall”. Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2015.06.025. Cerca con Google

Ceccotti, A. (2003). “Il manuale del legno strutturale Vol. II”. Mancosu Editore, Roma. Cerca con Google

Ceccotti, A. (2008). “New technologies for construction of medium-rise buildings in seismic regions: the XLAM case”. Structural Engineering International 18(2):156-165. Cerca con Google

Ceccotti, A., and Sandhaas, C. (2010). “A proposal for a standard procedure to establish the seismic behaviour factor q of timber buildings.” In proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Ceccotti, A., Follesa, M., and Lauriola, M.P. (2007). “Le strutture di legno in zona sismica. Criteri e regole per la progettazione ed il restauro”. C.L.U.T. Editrice, Torino. Cerca con Google

Ceccotti, A., Follesa, M., Lauriola, M.P., Sandhaas, C., Minowa, C., Kawai, N., and Yasumura, M. (2006). “Which seismic behaviour factor for multi-storey buildings made of cross-laminated wooden panels?” In proceedings of Meeting 39 of the Working Commission W18-Timber Structures, Florence, Italy, paper CIB 39-15-2. Cerca con Google

Ceccotti, A., Lauriola, M.P., Pinna, M., and Sandhaas, C. (2006). “SOFIE project – cyclic tests on cross-laminated wooden panels.” In proceedings of the 9th World Conference on Timber Engineering (WCTE), Portland, USA. Cerca con Google

Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C. and Kawai, N. (2013). “SOFIE project – 3D shaking table test on a seven-storey full-scale cross-laminated timber building”. Earthquake Engineering & Structural Dynamics 42(13): 2003-2021. Cerca con Google

Cenni di cambiamento. Available online: http://www.cennidicambiamento.it. Vai! Cerca con Google

Chapman, J. (2014). “Integrating cross-laminated timber panels to construct buildings to 20 levels.” In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Chopra, A.K. (1995). “Dynamics of Structures - Theory and Applications to Earthquake Engineering”. Upper Saddle River, NJ, Prentice Hall. Cerca con Google

Cohen, D., Gaston, C., and Kozak, R. (2001). “Influences on Japanese demand for wood products.” ECE/FAO Forest Products Annual Market Review. Cerca con Google

De la Roche, I., Dangerfield, J.A., and Karacabeyli, E. (2003). “Wood Products and Sustainable Construction”. New Zealand Timber Design Journal 12(1):9-13. Cerca con Google

Dickof, C., Stiemer, S.F., Bezabeh, M.A., and Tesfamariam, S. (2014). “CLT–Steel Hybrid System: Ductility and Overstrength Values Based on Static Pushover Analysis”. J. Perform. Constr. Facil., doi:10.1061/(ASCE)CF.1943-5509.0000614. Cerca con Google

DIN 571. Hexagon head wood screws. 2010. Cerca con Google

DM Infrastrutture 14 gennaio 2008 - Norme Tecniche per le Costruzioni - NTC (Italian National Regulation for Construction) (2008). Ministero delle Infrastrutture e dei Trasporti, Rome, Italy. Cerca con Google

Dujic, B., Strus, K., Zarnic, R., and Ceccotti, A. (2010). Prediction of dynamic response of a 7-storey massive XLam wooden building tested on a shaking table”. In proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Dunbar, A., Moroder, D., Pampanin, S., and Buchanan, A.H. (2014). “Timber core-walls for lateral load resistance of multi-storey timber buildings”. In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Dunbar, A., Pampanin, S., and Buchanan, A.H. (2014). “Seismic performance of core-walls for multi-storey timber buildings”. I: Proceedings of NZSEE Conference. Cerca con Google

Dunbar, A., Pampanin, S., Palermo, A., and Buchanan, A.H. (2014). “Seismic design of core-walls for multi-storey timber buildings”. In Proceedings of NZSEE Conference. Cerca con Google

Ellingwood, B.R., Rosowsky, D.V., and Pang, W. (2008). “Performance of light-frame wood residential construction subjected to earthquakes in regions of moderate seismicity”. Journal of Structural Engineering, ASCE, 134(8):1353-1363. Cerca con Google

Elnashai, A.S., and Di Sarno, L. (2008). “Fundamentals of Earthquake Engineering”. Wiley, UK. Cerca con Google

Elnashai, A.S., and Mwafy, A.M. (2002). “Overstrength and force reduction factors of multi-storey reinforced-concrete buildings”. Struct. Des. Tall Build. 11:329-351. Cerca con Google

EN 10025-2 (2004). “Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels.” CEN. Brussels, Belgium. Cerca con Google

EN 12512 (2001). “Timber structures—test methods—cyclic testing of joints made with mechanical fasteners”. CEN. Brussels, Belgium. Cerca con Google

EN 14080 (2002). “Timber structures - Glued laminated timber and glued solid timber – Requirements.” CEN. Brussels, Belgium. Cerca con Google

EN 15480 (1999). “Hexagon washer head drilling screws with tapping screw thread”. CEN, Brussels, Belgium. Cerca con Google

EN 1990 Eurocode (2002). “Basis of structural design”. CEN, Brussels, Belgium. Cerca con Google

EN 1995-1-1 Eurocode 5 (2004). “Design of timber structures, Part 1-1, General: Common rules and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 1998-1-1 Eurocode 8 (2004). “Design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings”. CEN. Brussels, Belgium. Cerca con Google

EN 206 (2013). “Concrete - Specification, performance, production and conformity.” CEN. Brussels, Belgium. Cerca con Google

EN 300 (2006). “Oriented Strand Boards (OSB) – Definitions, classifications and specifications”. CEN, Brussels, Belgium. Cerca con Google

EN 338 (2009).”Structural timber—Strength classes”. CEN. Brussels, Belgium. Cerca con Google

EN ISO 898 (2013). “Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread (ISO 898-1:2013)”. CEN, Brussels, Belgium. Cerca con Google

European Organisation for Technical Assessment (EOTA) (2011). Rotho Blaas WHT hold-downs, European Technical Approval ETA-11/0086, Charlottenlund, Denmark. Cerca con Google

European Organisation for Technical Assessment (EOTA) (2011). Rotho Blaas TITAN Angle Brackets, European Technical Approval ETA-11/0496, Charlottenlund, Denmark. Cerca con Google

Fairhurst, M., Zhang, X., and Tannert, T. (2014). “Nonlinear dynamic analyses of novel timber-steel hybrid system”. In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Fajfar, P. (1996). “Design spectra for the new generation of codes”. In proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico. Cerca con Google

Fajfar, P. (2000). “A nonlinear analysis method for performance based seismic design”. Earthq. Spectra, 16(3):573–592. Cerca con Google

Flaig, M. (2014). “Design of CLT Beams with Rectangular Holes or Notches”. In proceedings of 1st International Network on Timber Engineering Research (INTER), Bath, United Kingdom, paper INTER/47-12-4. Cerca con Google

Flaig, M., and Blass, H.J. (2013). “Shear strength and shear stiffness of CLT-beams loaded in plane”. In proceeding of Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada, paper CIB-W18/46-12-3. Cerca con Google

Flatscher, G., and Schickhofer, G. (2015). “Shaking-table test of a cross-laminated timber structure”. Proceedings of the ICE - Structures and Buildings 168(11):878-888. DOI 10.1680/stbu.13.00086. Cerca con Google

Foliente, G.C. (1996). “Issues in seismic performance testing and evaluation of timber structural systems”. Proceedings of the International Timber Engineering Conference. Vol. 1:29–36. Cerca con Google

Follesa, M. (2015). “Seismic design of timber structures - A proposal for the revision of Chapter 8 of Eurocode 8”. Phd Thesis, Università degli Studi di Cagliari, Italy. Cerca con Google

Follesa, M., Fragiacomo, M., Vassallo, D., Piazza, M., Tomasi, R., Rossi, S., and Casagrande, D. (2015). “A proposal for a new Background Document of Chapter 8 of Eurocode 8”. In proceedings of 2nd International Network on Timber Engineering Research (INTER), Šibenik, Croatia. Cerca con Google

Foschi, R.O., and Bonac, T. (1977). “Load slip characteristic for connections with common nails”. Wood. Sci. Technol. 9(3):118-123. Cerca con Google

Fragiacomo, M. (2013). “Seismic behaviour of Cross-laminated timber buildings: numerical modelling and design provisions”. European Conference on Cross Laminated Timber (CLT), COST Action FP1004, Graz. Edited by Harris, R., Ringhofer, A., and Schickhofer, G. Cerca con Google

Fragiacomo, M., Dujic, B., and Sustersic, I. (2011). “Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions”. Engineering Structures, 33:3043-3053. Cerca con Google

Fujita, K., Hanazato, T., and Sakamoto, I. (2004). “Earthquake response monitoring and seismic performance of five-storied timber pagoda.” In proceedings of the 13th World Conference on Earthquake Engineering (WCEE). Vancouver, Canada. Cerca con Google

Gattesco, N., and Boem, I. (2015). “Seismic performances and behavior factor of post-and-beam timber buildings braced with nailed shear walls”. Engineering Structures 100:674–685. Cerca con Google

Gattesco, N., Boem, I., and Gratton, L. (2015). “Analysis of the behavior of nailed timber frame shear walls through experimental tests and numerical simulations.” In proceedings of ANIDIS, L’Aquila, Italy. Cerca con Google

Gavric, I. (2013). “Seismic behaviour of cross-laminated timber buildings”. Ph.D. thesis, University of Trieste, Italy. Cerca con Google

Gavric, I., Ceccotti, A., and Fragiacomo, M. (2011). “Experimental cyclic tests on cross-laminated timber panels and typical connections”. In proceedings of ANIDIS, Bari, Italy. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2013). “Capacity seismic design of X-LAM wall systems based on connection mechanical properties.” In proceeding of Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada, paper CIB-W18/46-15-2. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2014). “Cyclic behaviour of typical screwed connections for cross-laminated (CLT) structures”. Eur. J. Wood Prod., DOI 10.1007/s00107-014-0877-6. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2015). “Cyclic behaviour of CLT wall systems: experimental tests and analytical prediction models”. Journal of Structural Engineering, ASCE. DOI: 10.1061/(ASCE)ST.1943-541X.0001246. Cerca con Google

Gavric, I., Fragiacomo, M., and Ceccotti, A. (2015). “Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures”. Materials and structures 48:1841-1857. Cerca con Google

Gavric, I., Fragiacomo, M., Popovski, M. and Ceccotti, A. (2014) “Behaviour of cross-laminated timber panels under cyclic loads”. Materials and Joints in Timber Structures 9:689-702. Cerca con Google

Gelfi, P. (2012). “SIMQKE_GR”, Version 2.7. University of Brescia, Italy. Available online: http://dicata.ing.unibs.it/gelfi. Vai! Cerca con Google

Germano, F., Metelli, G., and Giuriani, E. (2015). “Experimental results on the role of sheathing-to-frame and base connections of a European timber framed shear wall”. Construction and Building Materials 80:315–328. Cerca con Google

Girardini, D. (2015). “Static and seismic performances of R.C. shear walls cast into wood chip and cement formworks - Experimental tests, theoretical interpretation and numerical validations”. Ph.D. Thesis, University of Padova, Italy. Cerca con Google

He, M., Li, Z., Lam, F., Ma, R., and Ma, Z. (2013). “Experimental investigation on lateral performance of timber-steel hybrid shear wall systems.” Journal of Structural Engineering, ASCE, Doi: 10.1061/(ASCE)ST.1943-541X.0000855. Cerca con Google

Hristovski, V., Dujic, B., Stojmanovska, M., and Mircevska, V. (2013). “Full-Scale Shaking-Table Tests of XLam Panel Systems and Numerical Verification: Specimen 1”. Journal of Structural Engineering, 139(11):2010-2018. ASCE. Cerca con Google

https://aehistory.wordpress.com. Vai! Cerca con Google

Institute for Research in Construction (2010). “National Building Code”. National Research Council of Canada, Ottawa, Ontario. Cerca con Google

Iqbal, A., Smith, T., Pampanin, S., Fragiacomo, M., Palermo, A., and Buchanan, A.H. (2015). “Experimental Performance and Structural Analysis of Plywood-Coupled LVL Walls”. Journal of Structural Engineering, ASCE, doi: 10.1061/(ASCE)ST.1943-541X.0001383. Cerca con Google

Johansen, K.W. (1949). Theory of timber connections. International Association of bridge and structural Engineering, Bern, p. 249-262. Cerca con Google

Jorissen, A., and Fragiacomo, M. (2011). “General notes on ductility in timber structures”. Engineering Structures, 33:2987-2997. Cerca con Google

Källsner, B., and Girhammar, U.A. (2009). “Analysis of fully anchored light-frame timber shear walls—elastic model”. Materials and Structures, 42:301–320. Cerca con Google

Karacabeyli, E., and Ceccotti, A. (1997). “Seismic force modification factor for design of multi-storey wood-frame platform construction”. In Proceedings of the Meeting 30 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada. Paper CIB-W18/30-15-3. Cerca con Google

Karacabeyli, E., and Douglas, B. (2013). “CLT Handbook”. FPInnovations, U.S. Edition. Cerca con Google

Karakusevic Carson Architects. Available online: http://karakusevic-carson.com/work/bridport-house. Vai! Cerca con Google

Khorasani, Y. (2011). “Feasibility study of hybrid wood steel structures”. Master Thesis, Faculty of Graduate Studies, University of British Columbia, Vancouver. Cerca con Google

Kirkham, W.J., Rakesh G., and Thomas H.M. (2013). “State of the art: Seismic behavior of wood-frame residential structures”. Journal of Structural Engineering, ASCE, DOI: 10.1061/(ASCE)ST.1943-541X.0000861. Cerca con Google

Kohler, J., and Fink, G. (2015). “Aspects of Code Based Design of Timber Structures.” In proceedings of 2nd International Network on Timber Engineering Research (INTER), Šibenik, Croatia. Cerca con Google

Kontio Loghouse. Available online: http://www.kontio.net. Vai! Cerca con Google

Latour, M., and Rizzano, G. (2015). “Cyclic Behavior and Modeling of a Dissipative Connector for Cross-Laminated Timber Panel Buildings”. Journal of Earthquake Engineering, 19(1):137-171, DOI: 10.1080/13632469.2014.948645. Cerca con Google

Li, Z., He, M., Lam, F., Li, M., Ma, R., and Ma, Z. (2014). “Finite element modeling and parametric analysis of timber–steel hybrid structures”. The Structural Design of Tall and Special Buildings 23(14):1045-1063. Cerca con Google

Liu, J., and Lam. F. (2014). “Numerical simulation for the seismic behaviour of mid-rise CLT shear walls with coupling beams”. In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Loo, W.Y., Kun, C., Quenneville, P. and Chouw, N. (2014). “Experimental testing of a rocking timber shear wall with slip-friction connectors”. Earthquake Engineering and Structural Dynamics, 43(11):1621-1639. Cerca con Google

Lowes, L.N., and Altoontash, A. (2003). “Modeling reinforced-concrete beam-column joints subjected to cyclic loading”. Journal of Structural Engineering, 129:1686–1697. Cerca con Google

Muñoz, W., Mohammad, M., Salenikovich, A., and Quenneville, P. (2008). “Need for a harmonized approach for calculations of ductility of timber assemblies”. In Proceedings of Meeting 41 of the Working Commission W18-Timber Structures, St Andrews, Canada, paper CIB-W18/41-15-1. Cerca con Google

Nakahara, K., Hisatoku, T., Nagase, T., and Takahashi, Y. (2000). “Earthquake response of ancient five-story pagoda structure of horyu-ji temple in japan.” In proceedings of 12th World Conference on Earthquake Engineering (WCEE), Auckland, New Zealand. Cerca con Google

NBCC (2010). “National Building Code of Canada”. Institute for Research in Construction, National Research Council of Canada, Ottawa, Ontario. Cerca con Google

NEES website. Available online: https://nees.org/home. Vai! Cerca con Google

Newmark, N.M., and Hall, W.J. (1982). “Earthquake Spectra and Design”. Earthquake Engineering Research Institute, Berkeley, CA. Cerca con Google

OpenSees. “Open System for Earthquake Engineering Simulation” (2009). Pacific Earthquake Engineering Research Center, University of California, Berkeley. Available at http://opensees .berkeley.edu. Vai! Cerca con Google

Pauley, T., and Priestley, M.J.N (1992). “Seismic design of reinforced concrete and masonry buildings”. Wiley Ed. Cerca con Google

Pei, S., Berman, J., Dolan, D., van de Lindt, J., Ricles, J., Sause, J., Blomgren, H-E, Popovski, M., and Rammer, D. (2014). “Progress on the development of seismic resilient tall CLT buildings in the pacific northwest.” In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Pei, S., van de Lindt, J.W., and Popovski, M. (2013). “Approximate R-Factor for Cross-Laminated Timber Walls in Multistory Buildings”. Journal of Architectural Engineering 19(4):245–255. ASCE. Cerca con Google

Piazza, M., Polastri, A., and Tomasi, R. (2011). “Ductility of timber joints under static and cyclic loads”. Proceedings of the ICE - Structures and Buildings 164(2):79–90. Cerca con Google

Piazza, M., Tomasi, R., and Modena, R. (2005). “Strutture in legno. Materiale, calcolo e progetto secondo le nuove normative europee.” Hoepli, Milano. Cerca con Google

Polastri, A., Angeli, A., and Dal Ri, G. (2014). “A new construction system for CLT structures”. In proceedings of World Conference on Timber Engineering WCTE, Quebec City, Canada. Cerca con Google

Polastri, A., Pozza, L., Loss, C., and Smith, I. (2015). “Structural characterization of multi-storey CLT buildings braced with cores and additional shear walls”. In proceedings of 2nd International Network on Timber Engineering Research (INTER), Šibenik, Croatia. Cerca con Google

Polastri, A., Pozza, L., Trutalli, D., Scotta, R., and Smith, I. (2014). “Structural characterization of multi-storey buildings with CLT cores.” In proceedings of the World Conference on Timber Engineering (WCTE), 10-14 August 2014, Quebec City, Canada. Cerca con Google

Popovski, M., and Gavric, I. (2015). “Performance of a 2-Story CLT House Subjected to Lateral Loads”. Journal of Structural Engineering. ASCE. DOI 10.1061/(ASCE)ST.1943-541X.0001315. Cerca con Google

Popovski, M., Pei, S., van de Lindt, J.W., and Karacabeyli, E. (2014). “Force Modification Factors for CLT Structures for NBCC”. Materials and Joints in Timber Structures 9:543-553. Cerca con Google

Popovski, M., Schneider, J. and Schweinsteiger, M. (2010). “Lateral load resistance of Cross-Laminated wood panels”. In proceeding of the 11th World Conference on Timber Engineering (WCTE), Riva del Garda, Italy. Cerca con Google

Pozza, L. (2013). “Ductility and behaviour factor of wood structural systems”. Ph.D. Thesis, University of Padova, Italy. Cerca con Google

Pozza, L., and Scotta, R. (2014). “Influence of wall assembly on behaviour of cross-laminated timber buildings”. Proceedings of the ICE - Structures and Buildings 168(4):275-286. Cerca con Google

Pozza, L., Scotta, R., Polastri, A., and Ceccotti, A. (2012). “Seismic behaviour of wood-concrete frame shear-wall system and comparison with code provisions”. In Proceedings of Meeting 45 of the Working Commission W18-Timber Structures, Växjö, Sweden. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Ceccotti, A., and Polastri, A. (2013). “Analytical formulation based on extensive numerical simulations of behavior factor q for CLT buildings.” In proceedings of meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada. Paper CIB-W18/46-15-5. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Pinna, M., Polastri, A., and Bertoni, P. (2014). “Experimental and Numerical Analyses of New Massive Wooden Shear-Wall Systems.” Buildings 4(3):355-374. MDPI. DOI: 10.3390/buildings4030355. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., and Polastri, A. (2015). “Behaviour factor for innovative massive timber shear walls”. Bulletin of Earthquake Engineering, 13(11):3449-3469. DOI 10.1007/s10518-015-9765-7. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Polastri, A., and Ceccotti, A. (2015). “Concrete-Plated Wooden Shear Walls: Structural Details, Testing, and Seismic Characterization.” Journal of Structural Engineering. ASCE. DOI 10.1061/(ASCE)ST.1943-541X.0001289. Cerca con Google

Pozza, L., Scotta, R., Trutalli, D., Polastri, A., and Smith, I. (2016). “Experimentally based q-factor estimation of cross-laminated timber walls”. Proceedings of the ICE - Structures and Buildings. DOI: 10.1680/jstbu.15.00009. Cerca con Google

Pozza, L., Trutalli, D., Polastri, A., and Ceccotti, A. (2013). “Seismic design of CLT buildings: definition of the suitable q-factor by numerical and experimental procedures.” In proceedings of the Second International Conference ICSA, 24-26 July, Guimaraes, Portugal. Structures and Architecture 9:90–97. DOI: 10.1201/b15267-13. Cerca con Google

Promo_legno website. Available online: http://www.promolegno.com. Vai! Cerca con Google

Rinaldin, G., Amadio, C., and Fragiacomo, M. (2013). “A component approach for the hysteretic behaviour of connections in cross‐laminated wooden structures”. Earthquake Engineering and Structural Dynamics 42:2023-2042. Cerca con Google

Sandhaas, C., Boukes, J., van de Kuilen, J.W.G., and Ceccotti, A. (2009). “Analysis of X-lam panel-to-panel connections under monotonic and cyclic loading.” In proceedings of Meeting 42 of the Working Commission W18-Timber Structures, CIB, Dübendorf, Switzerland, Paper CIB-W18/42-12-2. Cerca con Google

Sarti, F., Palermo, A., and Pampanin, S. (2015). “Quasi-Static Cyclic Testing of Two-Thirds Scale Unbonded Posttensioned Rocking Dissipative Timber Walls”. Journal of Structural Engineering, ASCE. DOI: 10.1061/(ASCE)ST.1943-541X.0001291. Cerca con Google

Schädle P., and Blaß, H.J. (2010). “Earthquake behaviour of modern timber construction systems”. In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Schickhofer, G., Bernasconi, A., and Traetta, G. “Costruzione di edifici di legno.” Promo_legno website. Available online: www.promolegno.com. Vai! Cerca con Google

Scotta, R., Pozza, L., Trutalli, D., Marchi, L., and Ceccotti, A. (2015). “Dissipative connections for squat or scarcely jointed CLT buildings. Experimental tests and numerical validation.” In proceedings of 2nd International Network on Timber Engineering Research (INTER), Šibenik, Croatia. Cerca con Google

Scotta, R., Trutalli, D., Fiorin, L., Pozza, L., Marchi, L., and De Stefani, L. (2015). “Light steel-timber frame with composite and plaster bracing panels. Materials, 8(11):7354-7370. MDPI. DOI 10.3390/ma8115386. Cerca con Google

Seismosoft (2013). SeismoArtif v2.1. (Software). Cerca con Google

Smith, I., and Frangi, A. (2014). “Use of timber in tall multi-storey buildings”. Struct. Eng. Doc. 13, Int. Assoc. Bridge & Struct. Eng., Zurich, Switzerland, 2014. Cerca con Google

Smith, I., Landis, E. and Gong, M. (2003). “Fracture and fatigue in wood”. John Wiley and Sons, Chichester, UK. Cerca con Google

Smith, T., Fragiacomo, M., Pampanin, S., and Buchanan, A.H. (2009). “Construction time and cost for post-tensioned timber buildings”. Proceedings of the ICE - Construction Materials 162(4):141-149. Cerca con Google

SOFIE PROJECT. Available online: www.ivalsa.cnr.it. Vai! Cerca con Google

Stiemer, S., Tesfamariam, S., Karacabeyli, E., and Propovski, M. (2012). “Development of steel-wood hybrid systems for buildings under dynamic loads”. In Proceedings of the 7th International Specialty Conference on Behaviour of Steel Structures in Seismic Areas (STESSA), Santiago, Chile. Cerca con Google

Strand 7 (2005). “Theoretical Manual – Theoretical background to the Strand 7 finite element analysis system”. Available online: http//www.strand7.com/html/docu_theoretical.htm. Vai! Cerca con Google

Sustersic, I., Fragiacomo, M., and Dujic, B. (2011). “Influence of connection properties on the ductility and seismic resistance of multi-storey cross-lam buildings”. In proceeding of Meeting 44 of the Working Commission W18-Timber Structures, CIB, Alghero, Italy, paper CIB-W18/44-15-9. Cerca con Google

Thiel, A. (2013). “ULS and SLS design of CLT and its implementation in the CLTdesigner”. European Conference on Cross Laminated Timber (CLT), COST Action FP1004, Graz. Edited by Harris, R., Ringhofer, A., and Schickhofer, G. Cerca con Google

Thiel, A., Zimmer, S., Augustin, M., and Schickhofer, G. (2013). “CLT and floor vibrations: A comparison of design methods”. In proceeding of Meeting 46 of the Working Commission W18-Timber Structures, CIB, Vancouver, Canada, paper CIB-W18/46-20-1. Cerca con Google

TIMBER BUILDINGS PROJECT – Final report. Available online: http://www.series.upatras.gr/TIMBER_BUILDINGS. Vai! Cerca con Google

Tlustochowicz G., Johnsson H., and Girhammar U.A. (2010). “Beam and post system for non-residential multi-storey timber buildings – horizontal stabilising system”. In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Tlustochowicz G., Kermani, A., and Johnsson H. (2010). “Beam and post system for non-residential multi-storey timber buildings – conceptual framework and key issues”. In Proceedings of the 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy. Cerca con Google

Tomasi, R., and Smith, I. (2014). “Experimental characterization of monotonic and cyclic loading responses of CLT panel-to-foundation angle bracket connections”. Journal of Materials in Civil Engineering, ASCE. DOI: 10.1061/(ASCE)MT.1943-5533.0001144. Cerca con Google

Tonellato, D. (2012). “Seismic response of multi-storey buildings made with cross laminated timber panels – First part”. Master Thesis, University of Padova, Italy. Cerca con Google

TRADA Technology. Stadthaus, Murray Grove, London – Case Study. 2009. Available online: http://www.trada.co.uk. Vai! Cerca con Google

Trutalli, D. (2012). Seismic response of multi-storey buildings made with cross laminated timber panels – Second part”. Master Thesis, University of Padova, Italy. Cerca con Google

Uang, C., and Gatto, K. (2003). “Effects of finish materials and dynamic loading on the cyclic response of woodframe shearwalls”. Journal of Structural Engineering, ASCE, 129(10):1394-1402. Cerca con Google

Uibel, T., and Blass, H.J. (2006). “Load Carrying Capacity of Joints with Dowel Type Fasteners in Solid Wood Panels”. In proceeding of Meeting 39 of the Working Commission W18-Timber Structures, CIB, Florence, Italy, paper CIB-W18/39-7-5 Cerca con Google

Uibel, T., and Blass, H.J. (2007). “Edge Joints with Dowel Type Fasteners in Cross Laminated Timber”. In proceeding of Meeting 40 of the Working Commission W18-Timber Structures, CIB, Bled, Slovenia, paper CIB-W18/40-7-2. Cerca con Google

Uniform Building Code (UBC). (1997). “International Conference of Building Officials”, Whittier, CA. Cerca con Google

Van de Kuilen, J.W.G., Ceccotti, A., Xia, Z., and He, M. (2011). “Very tall wooden buildings with cross laminated timber.” In proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, Procedia Engineering 14:1621-1628. Cerca con Google

Van De Lindt, J. (2004). “Evolution of wood shear wall testing, modeling, and reliability analysis: Bibliography”. Practice Periodical on Structural Design and Construction 9(1):44-53. Cerca con Google

Van de Lindt, J.W., Bahmani, P., Gershfeld, M., Mochizuki, G., Shao, X., Pryor, S.E., Pang, W., Symans, M.D., Tian, J., Ziaei, E., Jennings, E.N., Rammer, D. (2014). “Seismic risk reduction for soft-story wood-frame buildings: test results and retrofit recommendations from the NEES-Soft project”. In proceedings of WCTE, Quebec City, Canada. Cerca con Google

Van de Lindt, J.W., Symans, M.D., Pang, W., Shao, X., and Gershfeld, M. (2012). “The NEES-Soft Project: Seismic Risk Reduction for Soft-Story Woodframe Buildings”. In proceedings of the 15th WCEE, Lisboa. Cerca con Google

Website of KLH UK. Available online: www.klhuk.com. Vai! Cerca con Google

Woodlab website. Available online: http://www.woodlab.info. Vai! Cerca con Google

World's tallest timber building 'tops out' in Melbourne. Available online: www.architectureanddesign.com.au. Vai! Cerca con Google

Yasumura, M. (2012). “Determination of failure mechanism of CLT shear walls subjected to seismic action”. In proceedings of Meeting 45 of the Working Commission W18-Timber Structures, Växjö, Sweden, paper CIB 45-15-3. Cerca con Google

Yasumura, M., Kobayashi, K., Okabe, M., Miyake, T., and Matsumoto, K. (2015). “Full-Scale Tests and Numerical Analysis of Low-Rise CLT Structures under Lateral Loading”. Journal of Structural Engineering. ASCE. DOI 10.1061/(ASCE)ST.1943-541X.0001348. Cerca con Google

Zarnani, P., and Quenneville, P. (2014). “Resistance of Connections in Cross-Laminated Timber (CLT) Under Block Tear-Out Failure Mode”. In proceedings of 1st International Network on Timber Engineering Research (INTER), Bath, United Kingdom, paper INTER/47-7-3. Cerca con Google

Zhang, X., Fairhurst, M., and Tannert, T. (2015). “Ductility Estimation for a Novel Timber–Steel Hybrid System”. Journal of Structural Engineering, ASCE, Doi: 10.1061/(ASCE)ST.1943-541X.0001296. Cerca con Google

Zisi, N. (2009). “The influence of brick veneer on racking behavior of light frame wood shear walls”. Doctoral Thesis, University of Tennessee, Knoxville. Cerca con Google

Zisi, N.V., and Bennett, R.M. (2010). “Shear behavior of corrugated tie connections in anchored brick veneer–wood frame wall systems”. Journal of Materials in Civil Engineering 23(2):120-130. Cerca con Google

Zumbrunnen, P., and Fovargue, J. (2012). “Mid rise CLT buildings – The UK’s experience and potential for AUS and NZ”. In proceedings of the World Conference on Timber Engineering WCTE, 15-19 July, Auckland, NZ. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record