Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Righetti, Giulia (2016) Application of innovative refrigerants with low environmental impact for refrigeration and thermal control. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione aggiornata
15Mb

Abstract (inglese)

After a brief introduction on the global warming effect and on the measures that have been adopted to limit it, this thesis is focused on low GWP refrigerants and, above all, on HFOs, which have been studied during two phase flow in several operating test conditions. To cover a great portion of the existing devices, four heat exchangers have been investigated: a tube in tube heat exchanger, a Brazed Plate Heat Exchanger (BPHE), a roll-bond type heat exchanger, and a Finned Heat Pipe Heat Exchanger (HPFHE).
In Chapter 2 the four experimental test rigs used to collect experimental data are explained and the data reduction processes used to analyze the recorded data are shown.
In Chapter 3 all the experimental data points collected are presented, critically discussed, and compared against some existing correlations. In addition, new analytical procedures are proposed to evaluate the heat transfer coefficient and the pressure drop during vaporization and condensation inside BPHEs respectively. Furthermore a new computational procedure to calculate the heat capacity and the heat transfer coefficients of a HPFHE is presented.
In Chapter 4, the experimental data obtained with different fluids under the same working conditions are grouped and compared to highlight the refrigerant effect on the global performance of the heat exchangers.
Finally some performance evaluation criteria to discriminate the best refrigerants on the basis of thermophysical properties and to select the ones that perform better in terms of heat transfer and pressure drops are presented.

Abstract (italiano)

Il Capitolo 1 si apre con una breve introduzione riguardante la questione, purtroppo sempre attuale, dell’impatto ambientale dovuto all’attività umana e del surriscaldamento globale, facendo rifermento alle misure adottate negli anni per limitarlo. In seguito viene posta attenzione sul tema dei fluidi refrigeranti a basso impatto ambientale – e dunque a basso indice GWP – e in special modo sulle applicazioni in cui sussiste uno scambio termico bifase. Con l’interesse e lo scopo di coprire il maggior numero di casistiche adottate nella tecnica applicativa, la tesi approfondisce quattro tipi diversi di scambiatore di calore: uno scambiatore tubo in tubo, uno scambiatore a piastre, un evaporatore di tipo roll-bond e un recuperatore a tubi di calore.
Il Capitolo 2 comprende la descrizione degli impianti sperimentali e dei procedimenti di elaborazione dei dati ottenuti.
Il Capitolo 3, invece, presenta tutti i dati sperimentali acquisiti nel corso di questa tesi suddivisi per tipologia di scambiatore di calore, ne riporta un commento critico e li confronta con modelli e correlazioni presenti in letteratura. Inoltre vengono proposti due nuovi modelli basati su dati sperimentali per stimare i coefficienti di scambio termico durante i processi di vaporizzazione e di condensazione di refrigeranti all’interno di scambiatori a piastre. Viene altresì illustrata una procedura di calcolo che permette di ottenere il calore scambiato da un recuperatore a tubi di calore e i coefficienti di scambio termico del fluido operativo all’interno degli stessi tubi di calore.
Il Capitolo 4, infine, riporta un confronto tra dati sperimentali ottenuti nelle medesime condizioni operative con diversi fluidi refrigeranti che mette in luce l’effetto del fluido stesso sulle prestazioni dello scambiatore. Inoltre, per ogni scambiatore, vengono adottati ed implementati dei criteri di valutazione delle prestazioni dei soli refrigeranti sulla base delle proprietà termofisiche e delle prove sperimentali condotte. In tal modo è possibile racchiudere in un unico indice l’effetto combinato del refrigerante su coefficiente di scambio termico e su perdite di carico. Tale discussione può guidare nella scelta di un nuovo fluido, scelta che al giorno d’oggi, inserita all’interno di uno scenario che esige la tutela dell’ambiente e del clima, sta diventando di fondamentale importanza.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zilio, Claudio
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:27 Gennaio 2016
Anno di Pubblicazione:27 Gennaio 2016
Parole chiave (italiano / inglese):refrigeranti a basso indice GWP / low GWP refrigerants, scambio termico bifase / two phase flow, scambiatori di calore / heat exchangers
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/10 Fisica tecnica industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:9151
Depositato il:21 Ott 2016 16:35
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abadi G.B., Yun E., Kim K.C., 2016. Flow boiling characteristics of R134a and R245fa mixtures in a vertical circular tube, Experimental Thermal and Fluid Science, 72, pp. 112–124. Cerca con Google

Abd El-Baky M.A., Mohamed M.M., 2007. Heat pipe heat exchanger for heat recovery in air conditioning, Applied Thermal Engineering, 27, pp. 795–801. Cerca con Google

Agarwal R., Hrnjak P., 2015. Condensation in two phase and desuperheating zone for R1234ze(E), R134a and R32 in horizontal smooth tubes, International Journal of Refrigeration, 50, pp. 172–183. Cerca con Google

AHRI Standard 410–2001, 2001. Forced-circulation air-cooling and air-heating coils, AHRI, Arlington, VA, USA. Cerca con Google

Akash B.A., Said S.A., 2003. Assessment of LPG as a possible alternative to R-12 in domestic refrigerator, Energy Conversion Management, 44, pp. 381–388. Cerca con Google

Akers W.W., Deans H.A., Crosser O.K., 1959, Condensing heat transfer within horizontal tubes, Chemical Engineering Program Symposium series vol. 55, pp. 171–176. Cerca con Google

Almeida I.M.G., Barbosa C.R.F, Fontes F.A.O., 2010. Thermodynamic and hermophysical assessment of hydrocarbons application in household refrigerator. Thermal Engineering, 9 (01–02), pp. 19–27. Cerca con Google

Alsaad M.A., Hammad M.A., 1998.The application of Propane/Butane mixture for domestic refrigerators. Applied Thermal Engineering, 18 (9–10), pp. 911–918. Cerca con Google

Amalfi R.L., Vakili-Farahani F., Thome J.R., 2016. Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database, International Journal of Refrigeration, 61, pp. 166–184. Cerca con Google

ANSI/ASHRAE Standard 33–2000, 2000. Method of testing forced circulation air cooling and air heating coils, ASHRAE, Atlanta, GA, USA. Cerca con Google

Anwar Z., Palm B., Khodabandeh R., 2015. Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions, Experimental Thermal and Fluid Science, 66, pp. 137–149. Cerca con Google

ASHRAE 15-2013 – Safety Standard for Refrigeration Systems and Designation and Classification of Refrigerants. Cerca con Google

ASHRAE 34-2013 – Designation and Safety Classification of Refrigerants. Cerca con Google

ASHRAE Handbook Fundamentals, 1989. Fitting loss coefficients, 32.27–32.52. Cerca con Google

Ayub Z.H., 2003. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators, Heat Transfer Engineering, 24, pp. 3–16. Cerca con Google

Baba D., Nakagawa T., Koyama S., 2012. Flow boiling heat transfer and pressure drop of R1234ze(E) and R32 in horizontal micro-fin tube. Proceedings of the 14th International Refrigeration and Air-Conditioning Conference at Purdue, West Lafayette, IN, July 16–19, 2012. Cerca con Google

Bella B., Kaemmer N., Brignoli R., Zilio C., 2014. Energy Efficiency of a Chiller Using R410A or R32, 15th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA. Cerca con Google

Belman-Flores J.M., Barroso-Maldonado J.M., Rodríguez-Muñoz A.P., Camacho-Vázquez G., 2015. Enhancements in domestic refrigeration, approaching a sustainable refrigerator – A review. Renewable and Sustainable Energy Reviews, 51, pp. 955–968. Cerca con Google

Berger E., Heimel M., Almbauer R., Lang W., 2012. 1D heat exchanger simulation to capture the cycling transients of domestic refrigeration appliances working with R600a. International Refrigeration and Air Conditioning Conference at Purdue, July 16–19, 2012, West Lafayette, IN, USA. Cerca con Google

Bezrodnyi M.K., Moklyak V.F., 1986. Heat transfer during condensation in vertical closed thermosyphons, Journal of Energy Physics, 51 (1), pp. 53–758. Cerca con Google

Björk E., Palm B., Nordenberg J., 2010. A thermographic study ofthe on-off behavior of an all-refrigerator, Applied Thermal Engineering, 30, pp. 194–1984. Cerca con Google

Bolaji B.O., 2010. Experimental study of R152a and R32 to replace R134a in a domestic refrigerator Energy, 35, pp. 3793–3798. Cerca con Google

Bolaji B.O., Huan Z., 2013. ozone depletion and global warming: Case for the use of natural refrigerant – a review, Renewable and Sustinable Energy Reviews, 18, pp. 49–54. Cerca con Google

Brown J.S., Zilio C., Brignoli R., Cavallini A., 2012. Heat transfer and pressure drop penalization terms (exergy losses) during flow boiling of refrigerants, International Journal of Energy research, 37, pp. 1669–1679. Cerca con Google

Brown J.S., Zilio C., Brignoli R., Cavallini A., 2014. Thermophysical properties and heat transfer and pressure drop performance potentials of hydrofluoro-olefins, hydrochlorofluoro-olefins, and their blends, HVAC&R Research, 20(2), pp. 203–220. Cerca con Google

Brown J.S., Zilio C., Cavallini A., 2009. The fluorinated olefin R-1234ze(Z) as a high-temperature heat pumping refrigerant, International Journal of Refrigeration, 32, pp. 1412–1422. Cerca con Google

Calm J.M., 2008. The next generation of refrigerants- Historical review, considerations, and outlook, International Journal of Refrigeration, 31, pp. 1123–1133. Cerca con Google

Calm J.M., Didion D.A., 1998. Trade-offs in refrigerant selections–past, present, and future. Refrigerants for the 21st Century, International Journal of Refrigeration, 21 (4), pp. 308–321. Cerca con Google

Cavallini A., Brown J.S., Del Col D., Zilio C., 2010. In tube condensation performance of refrigerants considering penalization terms (exergy losses) for heat transfer and pressure drop, International Journal of Heat and Mass Transfer, 53, pp. 2885–2896. Cerca con Google

Cavallini A., Brown J.S., Zilio C., 2012. Thermophysical Properties, Heat Transfer, and Pressure Drop of HFOs, ASHRAE/NIST Refrigerants Conference. Cerca con Google

Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., 2001a. Reduction of Global Warming Impact in the HP/AC Industry by Employing New HFC Refrigerants, Clima 2000, Napoli 2011. Cerca con Google

Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., 2001b. Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube, International Journal of Refrigeration, 24, pp. 73–87. Cerca con Google

Cavallini A., Del Col D., Doretti L., Matkovic M., Rossetto L., Zilio C., Censi G., 2006. Condensation in Horizontal Smooth Tubes: A new Heat Transfer Model for Heat Exchanger Design, Heat Transfer Engineering, 27 (8), pp. 31–38. Cerca con Google

Cavallini A., Del Col D., Doretti L., Rossetto L., Longo G.A., 2000. Condensation Heat Transfer of New Refrigerants: Advantages of High Pressure Fluids, International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, Paper 480. Cerca con Google

Cavallini A., Del Col D., Mancin S., Rossetto L., 2009. Condensation of pure and near-azeotropic refrigerants in microfin tubes: A new computational procedure, International Journal of Refrigeration, 32, pp. 162–174. Cerca con Google

Chang F.L., Hung Y.M., 2014. The coupled effects of working fluid and solid wall on thermal performance of micro heat pipes, International Journal of Heat and Mass Transfer, 73, pp. 76–87. Cerca con Google

Chen J.C., 1963. A correlation for boiling heat transfer to saturated fluid in convective flow, ASME Paper 63-HT-34. Cerca con Google

Chen J.C., 1966. Correlation for boiling heat transfer to saturated fluids in convective flow , Process Design and Development, 5, pp. 322–329. Cerca con Google

Chen S.J., Reed J.G., Tien C.L., 1984. Reflux condensation in a two phase closed thermosyphon. International Journal of Heat and Mass Transfer, 27 (9), pp. 1587–1594. Cerca con Google

Chien N.B., Oh J.T., Saito J.K., 2012. Heat transfer coefficient and pressure drop during evaporation of R1234yf, R134a and R22 in horizontal circular small tubes. Proceedings of the 3rd Workshop on Refrigerant Charge Reduction in Refrigerating Systems, Valencia, Spain, October 25–26, 2012. Cerca con Google

Chien N.B., Vu P.Q., Choi K.I., Oh J.T., 2015. Heat Transfer Characteristics of R32, R410A and R1234yf During Evaporation Inside Horizontal Minichannel, ICR 2015, August 16 - 22 - Yokohama, Japan, Paper 282. Cerca con Google

Choi K.I., Chien N.B., Oh J.T., 2013. Heat Transfer Coefficient during Evaporation of R-1234yf, R-134a, and R-22 in Horizontal Circular Small Tubes, Advances in Mechanical Engineering, Article ID 132397. Cerca con Google

Cieslinski J.T., Fiuk A., 2013. Heat transfer characteristics of a two-phase thermosyphon heat exchanger, Applied Thermal Engineering, 51, pp. 112–118. Cerca con Google

Claesson J., 2005. Correction of logarithmic mean temperature difference in a compact brazed plate evaporator assuming heat flux governed flow boiling heat transfer coefficient, International Journal of Refrigeration, 28, pp. 573–578. Cerca con Google

Colbourne D., Suen K.O., 2015. Comparative evaluation of risk of a split air conditioner and refrigerator using hydrocarbon refrigerants, International Journal of Refrigeration, 59, pp. 295–303. Cerca con Google

Cooper M.G., 1984. Heat flows rates in saturated pool boiling - a wide ranging examination using reduced properties, Advanced in Heat Transfer. Academic Press, Orlando, Florida, pp. 157–239. Cerca con Google

Costa-Patry E., Olivier J., Thome J.R., 2012. Heat transfer characteristics in a copper micro-evaporator and flow pattern-based prediction method for flow boiling in microchannels, Frontiers in Heat and Mass Transfer, 3, article 013002. Cerca con Google

da Silva L.W., Melo C., Pereira R.H., 1999. Heat transfer characteristics of roll-bond evaporators.20th IIR International Congress of Refrigeration. Sydney, Australia. Cerca con Google

Del Col D., Azzolin M., Bortolin S., 2014. Two-Phase Flow and Heat Transfer of a Non-Azeotropic Mixture inside a Single Microchannel, International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, Paper 2556. Cerca con Google

Del Col D., Bortolato M., Azzolin M., Bortolin S., 2015a. Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants, International Journal of Refrigeration, 50, pp. 87–103. Cerca con Google

Del Col D., Bortolin S., Torresin D., Cavallini A., 2013b. Flow boiling of R1234yf in a 1 mm diameter channel. International Journal of Refrigeration, 36(2), pp. 353–362. Cerca con Google

Del Col D., Bortolin, S., Rossetto, L., 2013a. Convective boiling inside a single circular microchannel, International Journal of Heat and Mass Transfer, 67, pp. 1231–1245. Cerca con Google

Del Col D., Rossato M., Chinellato F., Muzzolon A., Rossetto L., 2015b. Flow Boiling Of R32 Inside A Brazed Plate Heat Exchanger, International Congress of Refrigeration, ICR 2015, August 16 - 22 - Yokohama, Japan. Cerca con Google

Del Col D., Torresin D., Cavallini A., 2010. Heat transfer and pressure drop during condensation of the lowGWPrefrigerantR1234yf, International Journal of Refrigeration, 33(7), pp. 1307–18. Cerca con Google

Devotta S., Kulkarni M.M., 1996. Use of hydrocarbon blends in Indian Household Refrigerators. Proceedings of the International Conference on Ozone Protection Technologies, Washington DC, USA, pp. 367–376. Cerca con Google

Diani A., Mancin S., Cavallini A., Rossetto L., 2015c. R1234ze(E) Flow Boiling Heat Transfer And Pressure Drop Inside a 2.4 mm Microfin Tube, ICR 2015, August 16 - 22 - Yokohama, Japan, Paper 549. Cerca con Google

Diani A., Mancin S., Doretti L., Rossetto L., 2015b. Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam, International Journal of Multiphase Flow, 76, pp. 111–121. Cerca con Google

Diani A., Mancin S., Rossetto L., 2014. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube, International Journal of Refrigeration, 47, pp. 105–119. Cerca con Google

Diani A., Mancin S., Rossetto L., 2015a. Flow boiling heat transfer of R1234yf inside a 3.4 mm ID microfin tube, Experimental Thermal and Fluid Science, 66, pp. 127–136. Cerca con Google

Diani A., Rossetto L., 2015. Vaporization inside a mini microfin tune: experimental results and modeling, 3rd UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference, Journal of Physics: Conference Series 655, pp. 012032. Cerca con Google

Ding G., Hu H., Huang X., Deng B., Gao Y., 2009. Experimental investigation and correlation of two-phase frictional pressure drop of R410A–oil mixture flow boiling in a 5 mm microfin tube, International Journal of Refrigeration, 32, pp. 150–161. Cerca con Google

Dittus F.W. , Boelter L. M.K., 1930. Heat transfer in automobile radiator of the tubular type, University of California Publications in Engineering, vol. 2, no. 13, pp. 443–461. Cerca con Google

Djordjedvić E.M. , Kabelac S., Šerbanović S.P., 2007. Mean heat transfer coefficient and pressure drop during the evaporation of 1,1,1,2 tetrafluoroethane (R-134a) in a plate heat exchanger, Journal of Chemical Serbian Society, 72, pp. 833–846. Cerca con Google

Djordjedvić E.M., Kabelac S., Šerbanović S.P., 2008. Heat transfer coefficient and pressure drop during refrigerant R134a condensation in a plate heat exchanger, Chemical Papers of the Serbian Society of Science, 62, pp. 78–85. Cerca con Google

Djordjević E.M., Kabelac S., 2008. Flow Boiling of R134a and Ammonia in a Plate Heat Exchanger. International Journal of Heat and Mass Transfer, 51, pp. 6235–6242. Cerca con Google

Domanski P.A., Brown J S., Jaehyeok H., Wojtusiak J., McLinden M.O., 2014. A thermodynamic analysis of refrigerants: Performance limits of the vapor compression cycle, International Journal of Refrigeration, 38, pp. 71–79. Cerca con Google

Donowski, V.D., Kandlikar, S.G., 2000. Correlating evaporation heat transfer coefficient of refrigerant R134a in a plate heat exchanger, Engineering Foundation Conference on Pool and Flow Boiling, Alaska. Cerca con Google

Dutto T., Blaise J.C., Benedic T., 1991. Performances of brazed plate heat exchanger set in heat pump, Proceedings of the 18th International Congress of Refrigeration, Montreal, Canada, pp. 1284–1288. Cerca con Google

Ejarn, 2015. Retrieved from https://www.ejarn.com/news.asp?ID=30295. Vai! Cerca con Google

El-Morsi M., 2015. Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators. Energy 86, pp. 344–353. Cerca con Google

Engelhorn H.R., Reinhart A.M., 1990. Investigations on heat transfer in a plate evaporator. Chemical Engineering Process, 28, 143–146. Cerca con Google

EPA ,U.S. Environmental Protection Agency, 2012. Acceptable Substitutes for CFC-114 and CFC-11 in Chillers and Other Refrigerants. Retrieved from www.epa.gov/ozone/snap/ refrigerants/lists/114cent.html. Vai! Cerca con Google

Esen M., 2004. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants, Solar Energy, 76, pp. 751–757. Cerca con Google

Esen M., Esen H., 2005. Experimental investigation of a two-phase closed thermosyphon solar water heater, Solar Energy 79, pp. 459–468. Cerca con Google

Fang X., 2013. A new correlation of flow boiling heat transfer coefficients based on R134a data, International Journal of Heat and Mass Transfer, 66, pp. 279–283. Cerca con Google

Fang X., Li G., Li D., Xu Y., 2015. An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under Earth’s gravity and hypergravity, International Journal of Heat and Mass Transfer, 87, pp. 399–408. Cerca con Google

Fatouh M., El Kafafy M., 2006a. Assessment of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators, Energy Conversion and Management 47, pp. 2644–2658. Cerca con Google

Fatouh M., El Kafafy M., 2006b. Experimental evaluation of a domestic refrigerator working with LPG, Applied Thermal Engineering, 26, pp. 1593–1603. Cerca con Google

Feldman A., Marvillet C., Lebouché M., 2000. Nucleate and convective boiling in plate fin heat exchangers, International Journal of Heat and Mass Transfer, 43, pp. 3433–3442. Cerca con Google

Fernando P., Palm B., Lundqvist P., Granryd E., 2004. Propane heat pump with low refrigerant charge: Design and laboratory tests, International Journal of Refrigeration 27 pp. 761–773. Cerca con Google

Forster H.K., Zuber N., 1955. Dynamics of Vapor Bubbles and Boiling Heat Transfer, American Institute of Chemical Engineers Journal, 1, pp. 531-535. Cerca con Google

Friedel L., 1979. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, European Two-Phase Group Meeting, Ispra, Italy, Paper E2. Cerca con Google

Fujii T., 1991. Theory of Laminar Film Condensation. Springer Berlin, pp. 75–81, 83–87. Cerca con Google

Fukuda S., Kondou C., Takata N., Koyama S., 2014. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps, International Journal of Refrigeration, 40, pp. 161–173. Cerca con Google

Fukuda S., Zhang H., Takata N., Matsumoto T., Koyama S., 2015. Condensation of R1234ze(Z) inside a vertical plate-fin heat exchanger, ICR 2015, August 16 - 22 - Yokohama, Japan, Paper 361. Cerca con Google

Gigiel A., 2004, Safety testing of domestic refrigerators using flammable refrigerants, International Journal of Refrigeration, 27, pp. 621–628. Cerca con Google

Goetzler W., Sutherland T., Rassi M., Burgos J., 2014. Research & Development Roadmap for Next Generation Low Global Warming Potential Refrigerants, US Department of Energy Efficiency and Renewable Energy. Cerca con Google

Gorenflo D., 1993. Pool boiling, VDI Heat Atlas, Dusseldorf, Germany. Cerca con Google

Grauso S., Mastrullo R., Mauro A.W., Thome J.R., Vanoli G.P., 2013a. Flow pattern map, heat transfer and pressure drops during evaporation of R-1234ze(E) and R134a in a horizontal, circular smooth tube: Experiments and assessment of predictive methods, International Journal of Refrigeration, 36(2), pp. 478–491. Cerca con Google

Grauso S., Mastrullo R., Mauro A.W., Vanoli G.P., 2013b. Flow boiling of R410A and CO2 from low to medium reduced pressures in macro channels: Experiments and assessment of prediction methods, International Journal of Heat and Mass Transfer, 56, pp. 107–118. Cerca con Google

Gray D.L., Webb R.L., 1986. Heat transfer and friction correlations for plate finned-tube heat exchangers having plain fins, Proceeding 8th International Journal of Heat Transfer Conference IHTC-8, 6, pp. 2745–2750. Cerca con Google

Greco A., Vanoli G.P., 2005. Flow-boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube, International Journal of Refrigeration, 28, pp. 872–880. Cerca con Google

Grooten M.H.M., van der Geld C.W.M., 2009. Predicting Heat Transfer In Long, R-134a Filled Thermosyphons, Journal of Heat Transfer, 131 (5), pp. 51–61. Cerca con Google

Gross U., 1992. Reflux condensation heat transfer inside a closed thermosyphon, International Journal of Heat and Mass Transfer, 35 (2), pp. 279–294. Cerca con Google

Gungor K.E. , Winterton R.H.S., 1986. A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer, 29 (3), pp. 351–358. Cerca con Google

Guo P., Ciepliski D.L., Besant R.W., 2011. A testing and HVAC design methodology for air-to-air heat pipe heat exchangers, HVAC&R Research, 4, pp. 3–26. Cerca con Google

Guo W., Nutter D.W., 2009. An experimental study of axial conduction through a thermosyphon pipe wall, Applied Thermal Engineering, 29 (17–18), pp. 3536–3541. Cerca con Google

Hammed M.A., Alsaad M.A., 1999. The use of hydrocarbon mixtures as refrigerants in domestic refrigerators, Applied Thermal Engineering, 19, pp. 1181–1189. Cerca con Google

Han D., Lee K., Kim Y., 2003. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations, Applied Thermal Engineering, 23, pp. 1209–1225. Cerca con Google

Han H., Cui X., Zhu Y., Sun S., 2014. A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP), International Journal of Thermal Sciences, 82, pp. 138–147. Cerca con Google

Han X., Li P., Yuan X., Wang Q., Chen G., 2013. The boiling heat transfer characteristics of the mixture HFO-1234yf/oil inside a micro-fin tube, International Journal of Heat and Mass Transfer, 67, pp. 1122–1130. Cerca con Google

Hassan M.A.M., 2013. Investigation of performance of heat pipe as heat exchanger using alternative refrigerants, Journal of Energy Engineering, 139, pp. 18–24. Cerca con Google

Hayes N., Jokar A., 2009. Study of carbon dioxide condensation in chevron plate exchangers, ASHRAE–D–RP–1394. Cerca con Google

He M.G., Li T.C., Liu Z.G., Zhang Y., 2005. Testing of the mixing refrigerant HFC152a/HFC125 in domestic refrigerator, Applied Thermal Engineering, 25, pp. 1169–1181. Cerca con Google

Hermes C.J.L., Melo C., Negrão C.O.R., 2008. A numerical simulation model for plate-type, roll-bond evaporators. International Journal of Refrigeration, 31, pp. 335–347. Cerca con Google

Hodnebrog Ø., Etminan M., Fuglestvedt J.S., Marston G., Myhre G., Nielsen C.J., Shine K.P., Wallington T J., 2013. Global Warming Potentials and Radiative Efficiencies of Halocarbons and Related Compounds: A Comprehensive Review, Reviews of Geophysics, 51 (2), pp. 300-378. Cerca con Google

Hossain M.A., Onaka Y., Hasan M.M., Miyara A., 2013. Heat transfer during evaporation of R1234ze(E), R32, R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube. International Journal of Refrigeration, 36(2), pp. 465–77. Cerca con Google

Hossain M.A., Onaka Y., Miyara A., 2012. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A, International Journal of Refrigeration, 35(4), pp. 927–38. Cerca con Google

HSE 2014. http://www.hse.gov.uk/statistics/sources.htm. Vai! Cerca con Google

Hsieh Y.Y, Lin T.F., 2002. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger, International Journal of Heat and Mass Transfer 45, pp.1033–1044. Cerca con Google

Hsieh Y.Y., Chiang L.J., Lin T.F., 2002. Subcooled Flow Boiling Heat Transfer of R134a and the Associated Bubble Characteristics in a Vertical Plate Heat Exchanger, International Journal of Heat and Mass Transfer, 45, pp. 1791–1806. Cerca con Google

Hsieh Y.Y., Lin T.F., 2003. Evaporation Heat Transfer and Pressure Drop of Refrigerant R410A Flow in a Vertical Plate Heat Exchanger, Journal of Heat Transfer, 125, pp. 852–857. Cerca con Google

Hu H., Ding G., Wang K., 2008a. Heat transfer characteristics of R410A–oil mixture flow boiling inside a 7mm straight microfin tube, International Journal of Refrigeration, 31, pp. 1081–1093. Cerca con Google

Hu H., Ding G., Wang K., 2008b. Measurement and correlation of frictional two-phase pressure drop of R410A/POE oil mixture flow boiling in a 7 mm straight micro-fin tube, Applied Thermal Engineering, 28, pp. 1272–1283. Cerca con Google

Huang J., Sheer T.J., Bailey-McEwan M., 2012. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators, International Journal of Refrigeration, 35, pp. 325–335. Cerca con Google

Huo X., Chen L., Tian Y.S., Karayiannis T.G., 2004. Flow boiling and flow regimes in small diameter tubes, Applied Thermal Engineering, 24, pp. 1225–1239. Cerca con Google

Imura H., Kusuda H., Ogata J., Miyazaki T., Sakmoto N., 1979. Heat transfer in two-phase closed-type thermosyphons, HTJR 8, pp. 41–53. Cerca con Google

Jafari D., Franco A., Filippeschi S., Di Marco P., 2016.Two-phase closed thermosyphons: A review of studies and solar applications, Renewable and Sustainable Energy Reviews, 53, pp. 575–593. Cerca con Google

Japkise D., 1973. Advances in thermosyphon technology, Advances in heat transfer, 3, pp. 3–91. Cerca con Google

Jassim E.W., Newell, T.A., Chato, J.C., 2006. Refrigerant Pressure Drop in Chevron and Bumpy Style Flat Plate Heat Exchangers. Experimental Thermal and Fluid Science, 30, pp. 213–222. Cerca con Google

Jokar A., Hosni M.H., Eckels S.J., 2006. Dimensional Analysis on the Evaporation and Condensation of Refrigerant R-134a in Minichannel Plate Heat Exchangers, Applied Thermal Engineering, 26, pp. 2287–2300. Cerca con Google

Jouhara H., Ezzuddin H., 2013. Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A, Energy, 61, pp. 128–138. Cerca con Google

Joybari M.M., Hatamipour M.S., Rahimi A., Modarres F.G., 2013. Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system, International Journal of Refrigeration, 36, pp. 1233–1243. Cerca con Google

Jun, D., Kim Y., Ko Y., Song K., 2003. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, International Journal of Refrigeration, 26, pp. 240–248. Cerca con Google

Jung D.S., Kim C.B., Song K., Park B., 2000. Testing of propane/isobutane mixture in domestic refrigerators, International Journal of Refrigeration, 23, pp. 517–527. Cerca con Google

Jung Y.K., Kim H.J., Lee H.S., Yong-Sung Lee Y.S., 2014. Heat Transfer and Pressure Drop Characteristics of Plate Heat Exchanger of R22 and R32, Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea. Cerca con Google

Jung, D., Kim, ANh, K., Park, J., 2004. Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes, International Journal of Refrigeration, 27, pp. 202–206. Cerca con Google

Jung, D., Kim, Y., Ko, Y., Song, K., 2003. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, International Journal of Refrigeration, 26, pp. 240–248. Cerca con Google

Karber K.M., Abdelaziz O., Vineyard E.A., 2012. Experimental performance of R-1234yf and R-1234ze as drop-in replacements for R-134a in domestic refrigerators, International Refrigeration and Air Conditioning Conference at Purdue, July 16–19, 2012, West Lafayette, IN, USA. Cerca con Google

Kays W.M., London A.L., 1984. Compact Heat Exchangers, third ed., Krieger Publishing Company, Malabar, FL, USA. Cerca con Google

Kedzierski M.A., Park K.J., 2013. Horizontal Convective Boiling of R134a, R1234yf/R134a, and R1234ze(E) within a Micro-Fin Tube with Extensive Measurement and Analysis Details, NIST Technical Note 1807. Cerca con Google

Kew P.A., 1982. Heat pumps for industrial waste heat recovery e a summary of required technical and economic criteria. Heat Recovery Systems, 2 (3), pp. 283–296. Cerca con Google

Kim S.M., Mudawar I., 2013. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling, International Journal of Heat and Mass Transfer, 58, pp. 718–734. Cerca con Google

Kim S.M., Mudawar I., 2014a. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows, International Journal of Heat and Mass Transfer, 77, pp. 627–652. Cerca con Google

Kim S.M., Mudawar I., 2014b. Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows, International Journal of Heat and Mass Transfer, 77, pp.74–97. Cerca con Google

Kline S.J., McClintock F.A., 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, pp. 3–8. Cerca con Google

Kondou C., BaBa D., Mishima F., Koyama S., 2013c. Flow boiling of non-azeotropic mixture R32/R1234ze(E) in horizontal microfin tubes, International Journal of Refrigeration, 36, pp. 2236–2378. Cerca con Google

Kondou C., Mishima F., Liu J.F., Koyama S., 2014a. Condensation and Evaporation of R744/R32/R1234ze(E) Flow in Horizontal Microfin Tubes, International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, Paper 1448. Cerca con Google

Kondou C., Mishima F., Liu J.F., Koyama S., 2014b. Condensation and Evaporation of R134a, R1234ze(E) and R1234ze(Z) Flow in Horizontal Microfin Tubes at Higher Temperature, International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, Paper 1446. Cerca con Google

Kumar, H., 1984. The plate heat exchanger: construction and design. Institute of Chemical Engineering Symposium Series. Cerca con Google

Kundu A., Kumar R., Gupta A., 2014a. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube, Experimental Thermal and Fluid Science, 57, pp. 344–352. Cerca con Google

Kundu A., Kumar R., Gupta A., 2014b. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube, Experimental Thermal and Fluid Science, 57, pp. 344–352. Cerca con Google

Kundu A., Kumar R., Gupta A., 2014c. Comparative experimental study on flow boiling heat transfer characteristics of pure and mixed refrigerants, International Journal of Refrigeration, 45, pp. 136–147. Cerca con Google

Kuo W.S., Lie Y.M., Hsieh Y.Y., Lin T.F., 2005. Condensation heat transfer and pressure drop of refrigerant R410A flow in a vertical plate heat exchanger, International Journal of Heat and Mass Transfer, 48, pp. 5205–5220. Cerca con Google

Lazarek G.M., Black S.H., 1982. Evaporative heat transfer pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer, 25, pp. 945–960. Cerca con Google

Lee H.S., Kim H.J., Cha S.W., Moon D.S., 2014. Performance Characteristics of Seawater Heat Pump Using R32/R152a Mixed Refrigerant, Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea. Cerca con Google

Leighton D., Hwang Y., Radermacher R., 2012. Modeling of household refrigerator performance with LGARs, ASHRAE Winter Conference, Chicago, IL, USA. Cerca con Google

Lemmon E.W., Huber M.L., McLinden M.O., 2013. NIST Standard Reference Database23: Reference fluid Thermodynamic and Transport Properties – Refprop Version 9.1, NIST, Gaithersburgh, MD. Cerca con Google

Li M., Dang C., Hihara E., 2012. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: Part I. Experimental investigation, International Journal of Heat Mass Transfer, 55(13–14), pp. 3437–3446. Cerca con Google

Liu Z., Winterton R.H.S., 1991. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer, 34, pp. 2759–2766. Cerca con Google

Longo G.A., 2008. Refrigerant R134a condensation heat transfer and pressure drop inside a small brazed plate heat exchanger, International Journal of Refrigeration, 31, pp.780–789. Cerca con Google

Longo G.A., 2009. R410A condensation inside a commercial brazed plate heat exchanger, Experimental Thermal and Fluid Science, 33, pp. 284–291. Cerca con Google

Longo G.A., 2010a. Heat transfer and pressure drop during HFC refrigerant saturated vapor condensation inside a brazed plate heat exchanger, International Journal of Heat and Mass Transfer, 53, pp. 1079–1087. Cerca con Google

Longo G.A., 2010b. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger, International Journal of Refrigeration, 33, pp. 944–953. Cerca con Google

Longo G.A., 2011. The effect of vapor super-heating on hydrocarbon refrigerant condensation inside a brazed plate heat exchanger, Experimental Thermal and Fluid Science, 35, pp. 978–985. Cerca con Google

Longo G.A., 2012a. Hydrocarbon refrigerant vaporization inside a brazed plate heat exchanger, ASME Journal of Heat Transfer, 134, pp. 101801-101810. Cerca con Google

Longo G.A., 2012b. Vaporization of the low GWP refrigerant HFO1234yf inside a brazed plate heat exchanger, International Journal of Refrigeration, 35, pp. 952–961. Cerca con Google

Longo G.A., Gasparella A., 2007a. Heat transfer and pressure drop during HFC refrigerant vaporization inside a brazed plate heat exchanger, International Journal of Heat and Mass Transfer 50, pp. 5194–5203. Cerca con Google

Longo G.A., Gasparella A., 2007b. HFC-410A Vaporization inside a Commercial Brazed Plate Heat Exchanger, Experimental Thermal and Fluid Science, 32, pp. 107–116. Cerca con Google

Longo G.A., Gasparella A., 2007c. Refrigerant R134a Vaporization Heat Transfer and Pressure Drop inside a Small Brazed Plate Heat Exchanger, International Journal of Refrigeration, 30, pp. 821–830. Cerca con Google

Longo G.A., Gasparella A., Sartori R., 2004. Experimental Heat Transfer Coefficients During Refrigerant Vaporization and Condensation inside Herringbone-Type Plate Heat Exchangers with Enhanced Surfaces. International Journal of Heat and Mass Transfer, 47, pp. 4125–4136. Cerca con Google

Longo G.A., Zilio C., 2013. Condensation of the low GWP refrigerant HFC1234yf inside a brazed plate heat exchanger, International Journal of Refrigeration, 36, pp. 612–621. Cerca con Google

Lukitobudi A.R., Akbarzadeh A., Johnson A.W., Hendy P., 1995. Design, construction and testing of a thermosyphon heat exchanger for medium temperature heat recovery in bakeries. Heat Recovery Systems,15, pp. 481–91. Cerca con Google

MacGregor R.W., Kew P.A., Reay D.A., 2013. Investigation of low Global Warming Potential working fluids for a closed two-phase thermosyphon, Applied Thermal Engineering, 51, pp. 917–925. Cerca con Google

Makhnatch P., Khodabandeh R., 2014. The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant, The 6th International Conference on Applied Energy -ICAE2014. Cerca con Google

Manavela Chiapero E., Fernandino M., Dorao C.A., Experimental results on boiling heat transfer coefficient, frictional pressure drop and flow patterns for R134a at a saturation temperature of 34 °C, International Journal of Refrigeration, 40, pp. 317–327. Cerca con Google

Mancin S., Del Col D., Rossetto L., 2010. Partial condensation of R407C and R410A refrigerants inside a plate heat exchanger, Experimental Thermal and Fluid Science, 36 (2011), 149–157. Cerca con Google

Mancin S., Del Col D., Rossetto L., 2011. Partial condensation of R407C and R410A refrigerants inside a plate heat exchanger, Experimental Thermal Fluid Science, 36, pp. 149–157. Cerca con Google

Mancin S., Del Col D., Rossetto L., 2012. Condensation of superheated vapor of R410A and R407C inside plate heat exchangers: experimental results and simulation procedure, International Journal of Refrigeration, 35, pp. 2003–2013. Cerca con Google

Mancin S., Del Col D., Rossetto L., 2013. R32 partial condensation inside a brazed plate heat exchanger, International Journal of Refrigeration, 36, pp. 601–611. Cerca con Google

Mancin S., Diani A., Rossetto L., 2014. R134a flow boiling heat transfer and pressure drop inside a 3.4 mm ID microfin tube, 68th Conference of the Italian Thermal Machines Engineering Association, ATI2013. Cerca con Google

Mancin S., Diani A., Vezzù S., Rossetto L., 2015. Flow Boiling Heat Transfer Of R1234yf on a Microparticle Coated Copper Surface, ICR 2015, August 16 - 22 - Yokohama, Japan, Paper 564. Cerca con Google

Margat, L., Thonon, B., Tadrist, L., 1997. Heat transfer and two phase flow characteristics during convective boiling in a corrugated channel. Compact Heat Exchangers For The Process Industry. Begell House. Cerca con Google

Martinez F.J.R., Plasencia M.A.A., Gomez E.V., Diez F.V., Martin R.H., 2003. Design and experimental study of mixed energy recovery system, heat pipe and indirect evaporative equipment for air conditioning, Energy and Buildings, 35, pp. 1021–1030. Cerca con Google

Mathur G.D., 1996. Enhancing performance of an air conditioning system with a two-phase heat recovery loop retrofit, Proceeding of the Intersociety Energy Conversion Engineering Conference, USA, pp. 2027–2032. Cerca con Google

Mathur, G.D., 1997. Performance enhancement of existing air conditioning systems, Proceeding of the Intersociety Energy Conversion Engineering Conference, USA, pp. 1618–1623. Cerca con Google

McAdams W.H., 1954. Heat Transmission, third ed., McGraw-Hill, New York. Cerca con Google

McLinden M.O., 1990. Optimum refrigerants for non-ideal cycles: an analysis employing corresponding states. USNC/IIR Purdue Refrigeration Conference and ASHRAE Purdue CFC Conference, West Lafayette, IN. Cerca con Google

McLinden M.O., Didion D.A., 1987. CFCs: quest for alternatives. ASHRAE Journal, 29 (12), pp.32–42. Cerca con Google

McLinden M.O., Kazakov A.F., Brown J.S., Domanski P.A, 2014. A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants, International Journal of Refrigeration, 38, pp. 80–92. Cerca con Google

Meena P., Rittidech S., Poomsa-ad N., 2007. Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems, Applied Energy, 84, pp. 363–373. Cerca con Google

Midgley Jr. T., 1937. From the periodic table to production. Industrial and Engineering Chemistry 29 (2), pp. 239–244. Cerca con Google

Mishima K., Hibiki T., 1996. Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes, International Journal of Multi-phase Flow, 22 (4), pp.703–712. Cerca con Google

Mishkinis D., Ochterbeck J. M., 2003. V Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators” Minsk, Belarus , September 8-11, 2003. Cerca con Google

Mitrovic, J., 2000. Effects of vapour superheating and condensate subcooling on laminar film condensation. Journal of Heat Transfer, 122, pp. 192–196. Cerca con Google

Mohanraj M., 2013. Energy performance assessment of R430A as a possible alternative refrigerant to R134a in domestic refrigerators, Energy for Sustainable Development Journal, 17, pp. 471–476. Cerca con Google

Mohanraj M., Jayaraj S., Muraleedharan C., 2007. Improved energy efficiency of a domestic refrigerator retrofitted with hydrocarbon refrigerant mixture (HC290/HC600a) as drop in substitute, Energy for Sustainable Development, 11, pp. 29–33. Cerca con Google

Mohanraj M., Jayaraj S., Muraleedharan C., 2009a. Environment friendly alternatives to halogenated refrigerants- A review, International Journal of Greenhouse Gas Control, 3, pp. 108–119. Cerca con Google

Mohanraj M., Jayaraj, S., Muraleedharan, C., Chandrasekar, P., 2009b. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator, International Journal of Thermal Science, 48, pp.1036–1042. Cerca con Google

Moreno G., Narumanchi S., King C., 2011. Pool boiling heat transfer characteristics of HFO-1234yf with and without microporous enhanced surfaces. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition (IMECE2011), Denver, CO, November 11–17, 2011. Cerca con Google

Mortada S., Zoughaib A., Arzano-Daurelle C., Clodic D., 2012. Boiling heat transfer and pressure drop ofR-134a and R-1234yf in minichannels for low mass fluxes, International Journal of Refrigeration, 35(4), pp. 962–973. Cerca con Google

Mota-Babiloni A., Navarro-Esbrì J., Barragàn-Cervera A., Molés F., Peris B., 2015. Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems, International Journal of Refrigeration, 52, pp. 21 –31. Cerca con Google

Mota-Babiloni A., Navarro-Esbrí J., Molés F., Barragán Cervera Á., Peris B., Verdú G., 2015. A review of refrigerant R1234ze(E) recent investigations, Applied Thermal Engineering, http://dx.doi.org/doi: 10.1016/j.applthermaleng.2015.09.055. Vai! Cerca con Google

Muley A., Manglik R.M., 1999. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates, ASME Journal of Heat Transfer, 121, pp. 110–121. Cerca con Google

Müller-Steinhagen H., Heck, K., 1986. A simple friction pressure drop correlation for two-phase flow in pipes, Chemical Engineering and Processing: Process Intensification, 20, pp. 297–308. Cerca con Google

Nagata R., Nii N., Kondou C., Koyama S., 2015. Pool Boiling Heat Transfer Of Low GWP Refrigerants R1234ze(E), R1234ze(Z) and R1233zd(E) on a Horizontal Plane Tube, ICR 2015, August 16 - 22 - Yokohama, Japan, Paper 112. Cerca con Google

Noie S.H., 2005. Heat transfer characteristics of a two-phase closed thermosyphon, Applied Thermal Engineering, 25, pp. 495–506. Cerca con Google

Noie-Baghban S., Majideian G., 2000. Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals, Applied Thermal Engineering, 20, pp. 1271–82. Cerca con Google

Nusselt W., 1916. Die oberflachenkondensation des wasserdampfes, Z. Ver. Dt Ing. 60, pp. 541–575. Cerca con Google

Oh H.K., Son C.H., 2011. Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter, Applied Thermal Engineering, 31, pp. 163–172. Cerca con Google

Oh J.T., Choi K.I., Saito K., Jeong J.S., Oh H.K., 2012. Comparison of heat transfer coefficient during evaporation of natural refrigerants and R1234yf in horizontal small tubes. Proceedings of the 10th IIR Gustav Lorentzen Conference on Natural Working Fluids (GL2012), Delft, The Netherlands, June 25–27, 2012. Cerca con Google

Ong K.S., 2014. Review of heat pipe heat exchangers for enhanced dehumidification and cooling in air conditioning systems, International Journal of Low-Carbon Technologies Advance Access,0, pp. 1–8. Cerca con Google

Ouazia B., 2001. Evaporation Heat Transfer and Pressure Drop of HFC-R134a inside a Plate Heat Exchanger. ASME International Mechanical Engineering Congress and Exposition, IMECE2001/PID-25613, New York, NY, pp.115–123. Cerca con Google

Padilla M., Revellin R., Bonjour J., 2012. Two-phase flow visualization and pressure drop measurements of HFO-1234yf and R-134a refrigerants in horizontal return bends, Experimental Thermal and Fluid Science, 39(5), pp. 98–11. Cerca con Google

Padilla M., Revellin R., Haberschill P., Bensafi A., Bonjour J., 2011. Flow regimes and two-phase pressure gradient in horizontal straight tubes: Experimental results for HFO-1234yf, R-134a and R-410A. Experimental Thermal and Fluid Science, 35(6), pp. 1113–1126. Cerca con Google

Padilla M., Revellin R., Wallet J., Bonjour J., 2013. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends, International Journal of Heat and Fluid Flow, 40, pp. 116–134. Cerca con Google

Padovan A., Del Col D., Rossetto L., 2011. Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures, Applied Thermal Engineering, 31, pp. 3814–3826. Cerca con Google

Palm B., 2007. Refrigeration systems with minimum charge of refrigerant. Applied Thermal Engineering, 27, pp. 1693–1701. Cerca con Google

Palm B., 2008. Hydrocarbons as refrigerants in small heat pump and refrigeration systems – A review, International Journal of Refrigeration, 31, pp. 552–563. Cerca con Google

Palm B., Claesson J., 2006. Plate heat exchangers: calculation methods for single and two-phase flow, Heat Transfer Engineering, 27, pp. 88–98. Cerca con Google

Palmer S.C., Payne W.V., Domanski P.A., 2000. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger, NIST IR 6541. Cerca con Google

Park C.Y., Hrnjak P.S., 2007. CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube, International Journal of Refrigeration ,30 (2007), pp. 166–178. Cerca con Google

Park J.E., Vakili-Farahani R., Consolini L., Thome J.R., 2011. Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa, Experimental Thermal and Fluid Science, 35(3), pp. 442–54. Cerca con Google

Park J.H., Kim Y.S., 2004. Evaporation Heat Transfer and Pressure Drop Characteristics of R134a in the Oblong Shell and Plate Heat Exchanger. KSME International Journal, 18, pp. 2284–2293. Cerca con Google

Park K.J., Jung D., 2010. Nucleate boiling heat transfer coefficients of R1234yf on plain and low fin surfaces. International Journal of Refrigeration, 33(3), pp.553–557. Cerca con Google

Park K.J., Kang D.G., Jung D., 2011. Condensation heat transfer coefficients of R1234yf on plain, low fin, and Turbo-C tubes, International Journal of Refrigeration, 34(1), pp. 317–21. Cerca con Google

Pelletier, O., Palm, B., 1997. Boiling of Hydrocarbons in Small Plate Heat Exchangers. International Institute of Refrigeration, Commission B1, College Park, USA. Cerca con Google

Poggi F., Macchi-Tejeda H., Leducq D., Bontemps A., 2008. Refrigerant charge in refrigerating systems and strategies of charge reduction, International Journal of Refrigeration, 31, pp. 353–370. Cerca con Google

Porkhial S., Khastoo B., Saffar-Avval M., 2004. Transient response of dry expansion evaporator in household refrigerators. Applied Thermal Engineering, 24, pp. 1465–1480. Cerca con Google

Qiu J., Zhang H., Yu X., Qi Y., Lou J., Wang X., 2015. Experimental investigation of flow boiling heat transfer and pressure drops characteristic of R1234ze(E), R600a, and a mixture of R1234ze(E)/R32 in a horizontal smooth tube, Advances in Mechanical Engineering, 7(9), pp. 1–12. Cerca con Google

Quiben J.M., Thome J.R., 2007. Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: Diabatic and adiabatic experimental study, International Journal of Heat and Fluid Flow, 28, pp. 1049–1059. Cerca con Google

Ramírez-Rivera F., López-Belchí A., Vera-García F., García-Cascales J.R., Illán-Gómez F., 2015. Two phase flow pressure drop in multiport mini-channel tubes using R134a and R32 as working fluids, International Journal of Thermal Sciences, 92, pp. 17–33. Cerca con Google

Rasti M., Aghamiri S.F., Hatamipour, M.S., 2013. Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a, International Journal of Refrigeration, 74, pp. 86–94. Cerca con Google

Rasti M., Hatamipour M.S., Aghamiri S.F., Tavakoli M., 2012. Enhancement of domestic refrigerator's energy efficiency index using a hydrocarbon mixture refrigerant, Measurement, 45, pp. 1807–1813. Cerca con Google

Reay D.A., Harvey A., 2012. The role of heat pipes in intensified unit operations, Applied Thermal Engineering, 57, pp. 147–153. Cerca con Google

Reay D.A., Kew P.A., 2006, Heat Pipes, fifth ed., Butterworth-Heinemann, Oxford. Cerca con Google

Riffat S., Ma X., 2007. Recent developments in heat pipe technology and applications: a review, Int. J. Low Carbon Technology, 2, pp. 162–177. Cerca con Google

Riffat S.B., Gan G., 1998. Determination of effectiveness of heat pipe heat recovery for naturally ventilated buildings, Applied Thermal Engineering, 18 pp. 121–30. Cerca con Google

Rittidech S., Dangeton W., Soponronnarit S., 2005. Closed-ended oscillating heat pipe (CEOHP) air-preheater for energy thrift in a dryer, Applied Energy, 81, pp. 198–208. Cerca con Google

Sabharwall P., Utgikar V., Gunnerson F., 2009. Dimensionless Numbers in Phase-Change Thermosyphon and Heat-Pipe Heat Exchangers, Nuclear Technology, 167 (2), pp. 325–332. Cerca con Google

Saitoh S., Dang C., Nakamura Y., Hihara E., 2011. Boiling heat transfer of HFO-1234yf flowing in smooth small-diameter horizontal tube. International Journal of Refrigeration, 34(8), pp. 1846–1853. Cerca con Google

Sastri, S.R.S., Rao, K.K., 2000. New method for predicting saturated liquid viscosity at temperatures above the normal boiling point, Fluid Phase Equilibria, 175, pp. 311–323. Cerca con Google

Sattar M., Saidur R., Masjuki H., 2007. Performance investigation of domestic refrigerator using pure hydrocarbons and blends of hydrocarbons as refrigerants. Proceedings of World Academy of Science, Engineering and Technology, pp. 223–228. Cerca con Google

Sekhar S.J., Mohanlal D., Renganarayanan S., 2004. Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone friendly HFC134a/HC refrigerant mixture, International Journal of Thermal Sciences, 43, pp. 307–314. Cerca con Google

Shah M.M., 1979. A general correlation for heat transfer during film condensation inside pipes, International Journal of Heat and Mass Transfer, 22, pp. 547–556. Cerca con Google

Shah M.M., 1982. Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Transactions, 88, pp. 185–196. Cerca con Google

Shah R.K., Focke W.W., 1988. Plate heat exchangers and their design theory, Heat Transfer Equipment Design, Hemisphere, Washington, pp. 227–254. Cerca con Google

Shi S.Y., Chen J.P., Grabenstein V., Kabelac S., 2010. Experimental investigation on condensation heat transfer and pressure drop of R134a in a plate heat exchanger, Heat and Mass Transfer, 46, pp. 1177–1185. Cerca con Google

Shin J.Y., Kim M.S., Ro S.T., 1996. Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube, International Journal of Refrigeration, 20(4), pp. 267–275. Cerca con Google

Shiraishi M., Kikuchi K., Yamanishi T., 1981. Investigation of heat transfer characterisics of a two phase closed thermosyphon. Heat recovery systems, 4(1), pp. 287–297. Cerca con Google

Slipcevic, B., 1988. Wärmeü bergang verdampfern in näturlicher stromüng und bemessung von ü berfluteten verdampfern. Handbuch der kältetechnik. Springer, Berlin. Cerca con Google

Srimuang W., Amatachaya P., A review of the applications of heat pipe heat exchangers for heat recovery, Renewable and Sustainable Energy Review, 16, pp. 4303–4315. Cerca con Google

Steiner D., Taborek, J., 1992. Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model, Heat Transfer Engineering, 13, pp. 43–68. Cerca con Google

Stephan, K., Abdelsalam, M., 1980. Heat-transfer correlations for natural-convection boiling. International Journal of Heat and Mass Transfer, 23 (1), pp. 73–87. Cerca con Google

Sukchana T., Jaiboonma C., 2012. Effect of Filling Ratios and Adiabatic Length on Thermal Efficiency of Long Heat Pipe Filled with R-134a, 10th Eco-Energy and Materials Science and Engineering (EMSES2012). Cerca con Google

Sun L., Mishima K., 2009a. An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels International Journal of Heat and Mass Transfer, 52, pp. 5323–5329. Cerca con Google

Sun L., Mishima K., 2009b. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels, International Journal of Multiphase Flow, 35, pp. 47–54. Cerca con Google

Szczukiewicz S., Borhani N., Thome J.R., 2013. Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 ×100 m2 siliconmulti-microchannels, International Journal of Refrigeration, 36(2), pp. 402–413. Cerca con Google

Táboas F., Vallés M., Bourouis M., Coronas A., 2012. Assessment of boiling heat transfer and pressure drop correlations of ammonia/water mixture in a plate heat exchanger, International Journal of Refrigeration, 35, pp. 633 – 644. Cerca con Google

Tashtoush B., Tahat M., Shudeifat M.A., 2002. Experimental study of new refrigerant mixtures to replace R12 in domestic refrigerators, Applied Thermal Engineering, 22, pp. 495–506. Cerca con Google

Thonon B., 1995. Design method for plate evaporators and condensers, in: Proceedings of 1st Int. Conf. Process Intensification for Chemical Industry, BHR Group Conference Series Publication, pp. 149-155. Cerca con Google

Thonon B., Feldman A., Margat L., Marvillet C., 1997. Transition from nucleate boiling to convective boiling in compact heat exchangers, International Journal of Refrigeration, 20, pp. 592–597. Cerca con Google

Tibiriçà C.B., Ribatski G., Thome J.R., 2012. Flow boiling characteristics for R1234ze(E) in 1.0 and 2.2mmcircular channels, Journal of Heat Transfer, 134(2), article 020906. Cerca con Google

Tran T.N., Wambsganss M.W., France D.M., 1996. Small circular and rectangular channel boiling with two refrigerants, International Journal of Multiphase Flow, 22 (3), pp. 485–498. Cerca con Google

Tribbe C., Müller-Steinhagen H., 2010. Gas/Liquid Flow in Plate-and-Frame Heat Exchangers- Part II: Two-Phase Multiplier and Flow Pattern Analysis, Heat Transfer Engineering, 22(1), pp. 12–21. Cerca con Google

Vakili-Farahani F., Agostini B., Thome J.R., 2013. Experimental study on flow boiling heat transfer of multiport tubes with R245fa and R1234ze(E), International Journal of Refrigeration, 36(2), pp.335–52. Cerca con Google

Van Rooyen E., Thome J.R., 2013. Pool boiling data and prediction method for enhanced boiling tubes with R-134a, R-236fa and R-1234ze(E). International Journal of Refrigeration 36(2), pp. 447–55. Cerca con Google

Velders G.J.M., Fahey D.W., Daniel J.S., McFarland M., Andersen S.O., 2009. The large contribution of projected HFC emissions to future climate forcing, Proceedings of the National Academy of Sciences, 106, pp.10949–10954. Cerca con Google

Wan J.W., Zhang J.L., Zhang W.M., 2007. The effect of heat pipe air handling coil on energy consumption in central air conditioning system, Energy and Buildings, 39, pp. 1035–1040. Cerca con Google

Wang C.C., Chi K.Y., Chang C.J., 2000. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation, Int. J. Heat Mass Transfer, 43, pp. 2693–2700. Cerca con Google

Wang J.C.Y., Ma Y., 1987. Condensation heat transfer inside vertical and inclined thermosyphons, Journal of Heat Transfer, Transactions ASME, 113 (3), pp. 777–780. Cerca con Google

Wang L., Dang C., Hihara E., 2012. Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube, International Journal of Refrigeration, 35, pp. 1418–1429. Cerca con Google

Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental Thermal and Fluid Science, 15, pp. 395–405. Cerca con Google

Wattelet J.P., Chato J.C., Christoffersen B.R., et al., 1994. Heat transfer flow regimes of refrigerants in a horizontal-tube evaporator, ACRC TR-55. Cerca con Google

Webb R.L., 1998. Convective condensation of superheated vapor, Journal of Heat Transfer – Trans. ASME, 120, pp. 418–421. Cerca con Google

Wojtan L., Ursenbacher T., Thome J.R, 2005. Investigation of flow boiling in horizontal tubes: Part II — Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes, International Journal of Heat and Mass Transfer, 48, pp. 2970–2985. Cerca con Google

Wongwises S., Chimres N., 2005. Experimental study of hydrocarbon mixtures to replace HFC134a in domestic refrigerators, Energy Conservation and Management, 46, pp.85–100. Cerca con Google

Wu X., Zhu Y., Huang X., 2015. Influence of 0° helix angle micro fins on flow and heat transfer of R32 evaporating in a horizontal mini multichannel flat tube, Experimental Thermal and Fluid Science, 68, pp. 669–680. Cerca con Google

Wu X.P., Johnson P., Akbarzadeh A., 1997. Application of heat-pipe exchangers for humidity control in an air conditioning system, Applied Thermal Engineering, 6, pp. 561–568. Cerca con Google

Würfel R., Ostrowski N., 2004. Experimental investigations of heat transfer and pressure drop during the condensation process within plate heat exchangers of the herringbone-type, International Journal of Thermal Sciences 43, pp. 59–68. Cerca con Google

www.epa.gov, U.S. Environmental Protection Agency, 28/10/2015. Vai! Cerca con Google

www.ozone.unep.org, UNEP Ozone Secretariat, 09/12/2015. Vai! Cerca con Google

Xu Y., Fang X., Li G., Li D., Yuan Y., 1996. An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations International Journal of Heat and Mass Transfer, 92, pp. 1143–1157. Cerca con Google

Yan Y.Y., Lin T.F., 1999. Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger, ASME Journal of Heat Transfer 121, pp. 118–127. Cerca con Google

Yan Y.Y., Lio H.C., Lin T.F., 1999. Condensation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger, International Journal of Heat and Mass Transfer, 42, pp. 993–1006. Cerca con Google

Yana Motta S.F., Vera Becerra E.D., Spatz M.W., 2010. Analysis of LGWP alternatives for small refrigeration (plugin) applications, International Refrigeration and Air Conditioning Conference at Purdue, July 12–15, 2010, West Lafayette, IN, USA. Cerca con Google

Yang F., Yuan X., Lin G., 2003. Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas, Applied Thermal Engineering, 23, pp. 367–72. Cerca con Google

Yau Y.H., 2006. Analysis of enthalpy change with/without a heat pipe heat exchanger in a tropical air conditioning system, International Journal of Energy Research, 30 (15), pp. 1251–1263. Cerca con Google

Yau Y.H., 2008a. The heat pipe heat exchanger: a review of its status and its potential for coolness recovery in tropical buildings, Building Services Engineering Research and Technology, 29, pp. 291–310. Cerca con Google

Yau Y.H., 2008b. The use of a double heat pipe heat exchanger system for reducing energy consumption of treating ventilation air in an operating theatre – a full year energy consumption model simulation, Energy and Buildings, 40, pp. 917–925. Cerca con Google

Yau Y.H., Ahmadzadehtalatapeh M., 2010. A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics, Applied Thermal Engineering, 3, pp. 77–84. Cerca con Google

Yau Y.H., Tucker A.S., 2003. The performance of a wet six-row heat pipe heat exchanger operating in tropical buildings, International Journal of Energy Resources, 27, pp. 187–202. Cerca con Google

Yu C.C., Teng T.P., 2014. Retrofit assessment of refrigerator using hydrocarbon refrigerants, Applied Thermal Engineering, 66, pp. 507-518. Cerca con Google

Yu J., Momoki S., Koyama S., 1999. Experimental study of surface effect on flow boiling heat transfer in horizontal smooth tubes, International Journal of Heat and Mass Transfer, 42, pp. 1909–1918. Cerca con Google

Yuan Y., Lu Y., Bao H., Wang Y., Wang W., Roskilly A.P., 2014. Investigation of a heat pipe heat exchanger integrated with a water spray for the heat recovery from boil exhaust gas, The 6th International Conference on Applied Energy – ICAE2014. Cerca con Google

Zhang H., Shao S., Xu H., Zou H., Tian C., 2015. Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers, Applied Thermal Engineering, 75, 185–192. Cerca con Google

Zhang W., Hibiki T., Mishima K., 2004. Correlation for flow boiling heat transfer in mini-channels, International Journal of Heat and Mass Transfer, 47, pp. 5749–5763. Cerca con Google

Zhang Y., Faghri A., 2008. Advances and Unsolved Issues in Pulsating Heat Pipes, Heat Transfer Engineering, 29(1), pp. 20–44. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record