Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pezzato, Luca (2016) PLASMA ELECTROLYTIC OXIDATION COATINGS ON LIGHT ALLOYS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione pubblicata
7Mb

Abstract (inglese)

This thesis summarizes the work carried out during the three-year Ph.D in Industrial Engineering and involve the study and characterization of coatings obtained on light alloys with the technique known as Plasma Electrolytic Oxidation (PEO). PEO process is, from the practice point of view, similar to the traditional anodic oxidation process as it's based on the electrochemical growth of a protective oxide layer on a metal surface. Compared with the traditional anodizing, PEO process works at higher currents and higher voltages, thus modifying the characteristics of the obtained layer. In recent years the importance of PEO process is increasing both in the research and in the industrial world. In fact the potentiality of the coatings obtained with this type of process are higher than those of the coatings obtained with the traditional techniques of chemical conversion or anodizing. However, the relatively high cost and some problems related to the process (in particular the need of a post treatment to ensure galvanic corrosion) have now slowed to the widespread use on an industrial scale. So the scientific research on one hand is looking for new solutions to further improve the properties of the coatings, in order to justify the higher costs, on the other is trying to modify the existing process to reduce the above-mentioned costs.
The obtained results explained in this thesis have allowed an expansion in the knowledge regarding the PEO coatings and in particular to move towards greater industrial development of the technique. In fact new process parameters that permit to reduce the total time for the obtainment of good PEO coatings maintaining good corrosion resistance were found, especially working with higher current densities if compared with the ones reported in literature. Moreover the addiction of molybdenum and lanthanum salts as additives in the electrolyte used in the PEO process, has permitted to improve the performances of the coating in terms of corrosion resistance. The addiction of graphite nanoparticles and silver particles has permitted to obtain respectively coatings with improved corrosion and wear resistance and coatings with an intrinsic antimicrobial effect. PEO process was also successfully applied on steels.

Abstract (italiano)

Questo lavoro di tesi riassume il lavoro svolto durante i tre anni di dottorato in Ingegneria Industriale e riguarda lo studio e la caratterizzazione di rivestimenti ottenuti mediante la tecnica denominata Plasma Electrolytic Oxidation (PEO) su leghe leggere. Il processo PEO è, dal punto di vista operativo, molto simile ai tradizionali processi di ossidazione anodica in quanto si basa sulla crescita per via elettrochimica di uno strato di ossido protettivo sulla superficie del metallo. Rispetto al tradizionale processo di anodizzazione il processo PEO lavora però a correnti e voltaggi più elevati, modificando così le caratteristiche dello strato ottenuto. Il processo PEO sta assumendo negli ultimi anni sempre maggiore rilevanza sia nell'ambito della ricerca che in quello industriale. Le potenzialità, infatti, dei rivestimenti ottenuti con questo tipo di processo sono molto più elevate rispetto a quelle dei rivestimenti ottenibili con le tradizionali tecniche di conversione chimica o di anodizzazione. Tuttavia il costo abbastanza elevato ed alcune problematiche relative al processo ne hanno per ora frenato la diffusione su larga scala a livello industriale. Dal punto di vista della ricerca scientifica quindi, da un lato si stanno cercando nuove soluzioni che consentano di migliorare ulteriormente le proprietà dei rivestimenti, in modo da giustificare i costi più elevati, dall'altro si stanno cercando delle variazioni al processo che consentano di ridurre i costi sopracitati.
I risultati ottenuti durante il dottorato di ricerca e descritti in questo lavoro di tesi hanno permesso di ampliare le conoscenze inerenti i rivestimenti PEO e in particolare di procedere verso un maggiore sviluppo industriale della tecnica. Infatti è stata sviluppata una nuova sequenza di parametri di processo, basata sul lavorare ad elevate densità di corrente, che permette di ottenere rivestimenti di ottima qualità con tempi inferiori rispetto a ciò che viene attualmente realizzato. Inoltre l'aggiunta di sali di molibdeno e lantanio, come additivi dell'elettrolita usato nel processo PEO, ha permesso di incrementare notevolmente la resistenza a corrosione dei rivestimenti in modo tale da consentire la realizzazione di componenti a più alto valore aggiunto. L'aggiunta di nanoparticelle di grafite ha permesso di ottenere rivestimenti con buona resistenza a corrosione e ad usura. L'inserimento di altre tipologie di additivi (particelle d'argento) ha poi permesso di conferire proprietà battericide al rivestimento. Infine la tecnica PEO è stata anche con successo applicata agli acciai basso legati aprendo un importante filone di sviluppo a livello tecnologico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Dabalà, Manuele
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA, DEI MATERIALI E MECCANICA
Data di deposito della tesi:26 Gennaio 2016
Anno di Pubblicazione:26 Gennaio 2016
Parole chiave (italiano / inglese):Plasma Electrolytic Oxidation, PEO, leghe di magnesio, leghe di alluminio, acciai, corrosione, rivestimenti, SEM, XPS, SIMS, magnesium alloys, aluminum alloys, corrosion, coatings, steels, oxide ceramic coating
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/21 Metallurgia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:9154
Depositato il:21 Ott 2016 15:24
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Li Q, Linag J, Wang Q. Plasma Electrolytic Oxidation coatings on lightweight metals, Modern Surface Engineering Treatments, Chapter 4, 75-99 Cerca con Google

[2] Surface Engineering of Light Alloys, Chapters 5 and 6, 110-180, Woodhead Publishing Limited, 2010 Cerca con Google

[3] Wernick S, Pinner R, Sheasby PG. The surface treatment and finishing of aluminum and its alloys, 5th edn; 1987, Teddington, Finishing Publications Ltd. Cerca con Google

[4] Henley V F. Anodic oxidation of aluminium and its alloys, 1982, Oxford, Pergamon Press. Cerca con Google

[5] Walsh F C, Low C T J, Wood R J K, Stevens K T, Archer J, Poeton A R, Ryder A. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of the Institute of Metal Finishing, 2009; 87: 122–135. Cerca con Google

[6] Patel J L, Saka N. Microplasmic coatings, Am Ceram Soc Bull, 2001; 80: 27–29 Cerca con Google

[7] Chigrinova N M, Chigrinova V E, Kukharev A A. Formation of coatings by anodic microarc oxidation and their operation in thermally-stressed assemblies, Powder Metallurgy and Metal Ceramics, 2001; 40: 213–220 Cerca con Google

[8] Atroshchenko E S, Chufistov O E, Kazantsev I A, Kamyshanskii S I. Formation of structure and properties of coatings developed by microarc oxidizing on parts fabricated from aluminum alloys, Metal Science and Heat Treatment, 2000; 42: 411–415 Cerca con Google

[9] Hirohata Y, Nakamura T, Aihara Y, Hino T. Dependence of surface oxidation on hydrogen absorption and desorption behaviors of Ti6al4V alloy, J Nucl Mater, 1999; 266–269, 831–836 Cerca con Google

[10] Günterschultze A, Betz H. Die electronenstromung in isolatoren bei extremen feldstarken, Z Phys, 1934; 91: 70–96 Cerca con Google

[11] Mcniell W, Gruss L L (1966), US Patent, 3293158 Cerca con Google

[12] Mcniell W, Nordbloom G F (1958),US Patent, 2854390 Cerca con Google

[13] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. Plasma electrolysis for surface engineering, Surf Coat Tecn, 1999; 122: 73-93 Cerca con Google

[14] Duradzhy V N, Parsadanyan A S. Metal Heating in Electrolytic Plasma, Shtiintsa Kishinev, 1988 Cerca con Google

[15] Tchernenko V I, Snezhko L A, Papanova I I. Coatings by Anodic Spark Electrolysis, Khimiya Leningrad, 1991 Cerca con Google

[16] Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films, Electrochim Acta, 1977; 22: 1077-1082 Cerca con Google

[17] Monterro J, Fernandez M, Albella J M. Pore formation during the breakdown process in anodic Ta2O5 films, Electrochim Acta, 1987; 32: 171-174 Cerca con Google

[18] Krysmann W, Kurze P, Dittrich K H, Schneider H G. Process characteristics and parameters of Anodic Oxidation by spark discharge (ANOF), Cryst Res Technol, 1984; 19: 973-979 Cerca con Google

[19] Snizhko L O, Yerokhin A L, Pilkington A, Gurevina N L, Misnyankin D O, Leyland A, Matthews A. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim Acta, 2004; 49: 2085-2095 Cerca con Google

[20] Cao F H, Lin L Y, Zhang Z, Zhang J Q, Cao C N. Environmental friendly plasma electrolytic oxidation of AM60magnesium alloy and its corrosion re-sistance, Trans Nonferrous Met Soc China, 2008; 18: 240-247 Cerca con Google

[21] Martin J, Melhem A, Shchedrina I, Duchanoy T, Nominè A, Henrion G, Czerwiec T, Belmonte T. Effects of electrical parameters on plasma electrolytic oxidation of aluminium, Surf Coat Technol, 2013; 221: 70-76 Cerca con Google

[22] Li J Z, Shao Z C, Tian Y W, Kang F D, Zhai Y C. Application of microarc oxidation for Al、Mg, Ti and their alloys, Corrosion Science and Protection Technology , 2004; 16: 218–221 Cerca con Google

[23] He J, Cai Q Z, Luo H H, Yu L and Wei B K. Influence of silicon on growth process of plasma electrolytic oxidation coating on al-Si alloy, J Alloys Compd, 2009; 471:395-399 Cerca con Google

[24] Shin K R, Ko Y G, Shin D H. Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation, Journal of Alloys and Compounds, 2011; 509:478–481 Cerca con Google

[25] Becerik D A, Ayday A, Kumruoğlu L C, Kurnaz S C, Őzel A. The Effects of Na2SiO3 Concentration on the Properties of Plasma Electrolytic Oxidation Coatings on 6060 Aluminum Alloy, JMEPEG, 2012; 21:1426–1430 Cerca con Google

[26] Forno A D, Bestetti M. Effect of the electrolytic solution composition on the perform‐ ance of micro-arc anodic oxidation films formed on AM60B magnesium alloy, Surface and Coatings Technology, 2010; 205: 1783–1788 Cerca con Google

[27] Shi X L, Wang Q L, Wang F S, Ge S R, Effects of electrolytic concentration on properties of micro-arc film on Ti6Al4V alloy, Mining Science and Technology, 2009; 19: 20– 224 Cerca con Google

[28] Hussein R O, Nie X, Northwood D O. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure, Surface and Coatings Technology, 2010; 205: 1659–1667 Cerca con Google

[29] Yang Y, Wu H. Effects of Current Frequency on the Microstructure and Wear Resist‐ ance of Ceramic Coatings Embedded with SiC Nano-particles Produced by Micro-arc Oxidation on AZ91D Magnesium Alloy, Journal of Material Science Technology, 2010; 26: 865–871 Cerca con Google

[30] Khan R H U, Yerokhin A, Li X, Dong H, Matthews A. Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration, Surface and Coatings Technology, 2010; 205: 1679–1688 Cerca con Google

[31] Huang P, Wang F, Xu K W, Han Y. Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surface and Coatings Technology, 2007; 201: 5168 -5171 Cerca con Google

[32] Liang J, Guo B G, Tian J, Liu H W, Zhou J F, Xu T. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy, Applied Surface Science, 2005; 252: 345–351 Cerca con Google

[33] Blawert C, Heitmann V, Dietzel W, Nykyforchyn H M, Klapkiv M D. Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys, Surface and Coatings Technology, 2007; 201: 8709–8714 Cerca con Google

[34] Blawert C, Heitmann V, Dietzel W, Nykyforchyn H M, Klapkiv M D. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys, Surface and Coatings Technology, 2005; 200: 68–72 Cerca con Google

[35] Curran J, Clyne T W.Porosity in plasma electrolytic oxide coatings, Acta Materialia, 2006; 54:1985–1993 Cerca con Google

[36] Popova N E, Popova S S and Povolotskii E G. Proceedings of the All- Russian Conf ‘Electrochemistry of Membranes and Processes in Thin Ion-conducting Films on Electrodes’, ECHM-99, 1999, 68 Cerca con Google

[37] Liang J, Hu l, Hao J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes, Applied Surface Science, 2007; 253: 4490–4496 Cerca con Google

[38] Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson G E. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corrosion Science, 2008; 50: 1744–1752 Cerca con Google

[39] Liang J, Bala Srinivasan P, Blawert C, Störmer M, Dietzel W. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochimica Acta, 2009; 54: 3842–3850 Cerca con Google

[40] Liang J, Hu L, Hao J. Improvement of corrosion properties of micro arc oxidation coating on magnesium alloy by optimizing current density parameters, Applied Surface Science, 2007; 253: 6639–6645 Cerca con Google

[41] Bala Srinivasan P, Liang J, Blawert C, Störmer M, Dietzel W. Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy, Applied Surface Science, 2009; 255: 4212–4218 Cerca con Google

[42] Bala Srinivasan P, Blawert C, Störmer M, Dietzel W. Characterization of tribological and corrosion behavior of plasma electrolytic oxidation coated AM50 magnesium alloy, Surface Engineering, 2009, 26:340-346 Cerca con Google

[43] Blawert C, Dietzel W, Ghali E, Song G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Advanced Engineering Materials, 2006; 8: 511-533 Cerca con Google

[44] Yerokhin A L, Nie X, Leyland A, Matthews A. Characterization of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surf Coat Technol, 2000; 130: 195–206 Cerca con Google

[45] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, Sinebrukhov S L, gordienko P S, Iwatsubo S and Matsui A. Composition and adhesion of protective coatings on aluminum, Surf Coat Technol, 2001; 145: 146–151 Cerca con Google

[46] Huang P, Xu K W, Han Y. Character and Mechanism of the Film by Microarc Oxidation on Titanium alloy, Rare Metal Mat Eng, 2003; 32: 272–275 Cerca con Google

[47] Wang Y M, Jiang B L, Lei T Q, Guo L X. Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose, Appl Surf Sci, 2005; 246: 214–221 Cerca con Google

[48] Wang Y M, Lei T Q, Jiang B L , Guo L X. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate containing solution, Appl Surf Sci, 2004; 233: 258–267 Cerca con Google

[49] Khan R H U, Yerokhin A L, Pilkington T, Leyland A, Matthews A. Residual stresses in plasma electrolytic oxidation coatings on al alloy produced by pulsed unipolar current, Surf Coat Technol, 2005; 200: 1580–1586 Cerca con Google

[50] Guan Y J, Xia Y , Xu F T. Interface fracture property of PEO ceramic coatings on aluminum alloy, Surf Coat Technol, 2008; 202: 4204–4209 Cerca con Google

[51] Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide coatings containing Ca and P, J Biomed Mater Res, 1995; 29: 65–72 Cerca con Google

[52] Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide coatings containing Ca and P by hydrothermal treatment, J Biomed Mater Res, 1995; 29: 1071–1079 Cerca con Google

[53] Ishizawa H, Ogino M. Hydrothermal deposition of hydroxyapatite on anodic titanium oxide coatings containing Ca and P, J Mater Sci, 1999; 34: 5893–5898 Cerca con Google

[54] Li L H, Kong Y M, Kim H W. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 2004; 25: 2867–2875 Cerca con Google

[55] Zhu X L, Kim K H, Jeong Y S. Anodic oxide films containing Ca and P of titanium biomaterial, Biomaterials, 2001; 22: 2199–2206 Cerca con Google

[56] Zhu X L, Ong L G, Kim S Y, Kim K H. Surface characteristics and structure of anodic oxide films containing Ca and P on titanium implant material, J Biomed Mater Res, 2002; 60: 333–338 Cerca con Google

[57] Song W H, Jun Y K, Han Y, Hong S H. Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 2004; 25: 3341–3349 Cerca con Google

[58] Sun J F, Han Y, Cui K. Microstructure and apatite-forming ability of the MAO-treated porous titanium, Surf Coat Technol, 2008; 202: 4248–4256 Cerca con Google

[59] Gray J E, Luan B. Protective coatings on magnesium and its alloys- A critical Review, Journal of Alloys and Compounds, 2002; 336: 88-113 Cerca con Google

[60] Curran J A, Clyne T W. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesiu’, Surf Coat Technol, 2005; 199: 177–183 Cerca con Google

[61] Curran J A, Kalkanc H, Magurova Y, Clyne T W. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications, Surf Coat Technol, 2007; 201: 8683–8687 Cerca con Google

[62] Ghasemi A, Raja V S, Blawert C, Dietzel W, Kainer K U. Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf Coat Technol, 2008; 202: 3513–3518 Cerca con Google

[63] Mizutani Y, Kim S J, Ichino R, Okido M. Anodizing of Mg Alloys in Alkaline Solutions, Surf Coat Technol, 2003; 143: 169–170 Cerca con Google

[64] Olbertz B. Jahrbuch Oberflächentechnik,1989; 45: 262–273 Cerca con Google

[65] Khaselev O, Yahalom J. Constant voltage Anodizing of Mg-Al alloys in KOH-Al(OH)3 solutions, J Electrochem Soc, 1998; 145: 190-193 Cerca con Google

[66] Khasalev O, Weiss D, Yahalom J. Structure and composition of anodic film formed on binary Mg-Al alloy in KOH-aluminate solution under continuous sparking, Corros Sci, 2001; 43: 1295-1307 Cerca con Google

[67] Zozulin A J, Bartak D E. Anodized coatings for magnesium alloys, Met Finishing, 1994; 92: 39-44 Cerca con Google

[68] Shrestha S, Sturgeon A, Shashkov P, Shatrov A. Improved corrosion performances of AZ91D magnesium alloy coated with KeroniteTM process, Magn Technol, 2002; TMS 2002, 283–287 Cerca con Google

[69] Blawert C, Heitmann V, Dietzel W, Nykyforchyn H M, Klapkiv M D. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys ,Surf Coat Technol, 2005; 200: 68-72 Cerca con Google

[70] Wang G G, Stewart K, Berkmortel J, Skar I. SAE Paper 2001-01-0421, SAE 2001, 397–405 Cerca con Google

[71] Srinivasan P B, Blawert C, Dietzel W. Dry sliding wear behaviour of plasma electrolytic oxidation coated AZ91 cast magnesium alloy, Wear 2009, 2009; 266: 1241–1247 Cerca con Google

[72] Chen F, Zhou H, Chen C, Xia Y J. Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation, Progress in Organic Coatings, 2009; 64: 264–267 Cerca con Google

[73] Tian J, Luo Z Z, Qi S K, Sun X J, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy, Surface and Coatings Technology, 2002; 154: 1–7 Cerca con Google

[74] Ross P N, MacCulloch J A, Esdaile R J. 20th Int. Die Casting Congress and Exp. Cleveland, USA, Nov. 1–4, 1999,p. 213–218, Paper-Nr. T99-063 Cerca con Google

[75] http://www.magnesium.co.nz/Magnesium/ Vai! Cerca con Google

[76] Moulder J F, Stickle W F, Sobol P E, Bomben K D, Chastain J (1992) Handbook of X-Ray Photoelectron Spectroscop. Perkin Elemer Corp, Eden Prairie, MN Cerca con Google

[77] X-ray Photoelectron Spectroscopy Database 20, Version 3.0, National Institute of Standards and Technology, Gaithersburg Cerca con Google

[78] http://srdata.nist.gov/XPS Vai! Cerca con Google

[79] Glisenti A, Frasson A, Galenda A, Natile M M. Au/CeO2 Supported Nanocatalysts: Interaction with Methanol, Nanoscie Nanotechn Letters 2, 2010; 3: 213-219 Cerca con Google

[80] Natile M M, Tomaello F, Glisenti A. WO3/CeO2 nanocomposite powders; synthesis, characterization, and reactivity, Chem Mater, 2006; 18: 3270-3280 Cerca con Google

[81] Teterin Y A, Teterin A Y, Lebedev A M, Utkin I O. The XPS spectra of Cerium compounds containing oxygen, J Electron Spectr Rel Phenom, 1998; 88-91: 275-279 Cerca con Google

[82] Wang S, Qiao Z, Wang W, Qian Y. XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis, J Alloys Compd, 2000; 305: 121-124 Cerca con Google

[83] D. A. Shirley, Phys Rev B, 1972; 55, 4709. Cerca con Google

[84] Guo H L, Huan C, Xing Q W,Hua P, Gu L Z, Bin Z, Heon J L,Si Z Y. Effect of additives on structure and corrosion resistance of plasma electrolytic oxidation coatings on AZ91D magnesium alloy in phosphate based electrolyte Surf Coat Technol, 2010; 205: 36-40 Cerca con Google

[85] Sreekanth D,Rameshbabu N,Venkateswarlu K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation, Ceram Int, 2012; 38:4607-4615 Cerca con Google

[86] Duan H, Yan C, Wang F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochim Acta, 52 : 3785-3793 Cerca con Google

[87] Junghoon L,Yonghwan K, Wonsub C (2012) Effect of Ar bubbling during plasma electrolytic oxidation of AZ31B magnesium alloy in silicate electrolyte, Appl Surf Sci, 2007; 259: 454-459 Cerca con Google

[88] Li W, Li C, Wen F. Characterization of Plasma Electrolytic Oxidation Films Formed on AZ31 Magnesium Alloys by Different Voltage Parameters, Adv Mat Res, 2011; 168-170: 1203-1208 Cerca con Google

[89] Hussein R O, Northwood D O, Nie X. The Influence of Pulse Timing and Current Mode on the Microstructure and Corrosion Behaviour of a Plasma Electrolytic Oxidation (PEO) Coated AM60B Magnesium Alloy, J Alloy Compd, 2012; 541: 41-48 Cerca con Google

[90] Kazanski B, Kossenko A, Zinigrad M, Lugovskoy A. Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Appl Surf Sci, 2013; 287: 461-466 Cerca con Google

[91] Ma C, Zhang M, Yuan Y, Jing X, Bai X. Tribological behavior of plasma electrolytic oxidation coatings on the surface of Mg-8Li-1Al alloy, Tribol Int, 2012; 47: 62-68 Cerca con Google

[92] Gun K Y, Seok L E, Hyuk S D. Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: Microstructural characteristics and electrochemical responses, J Alloy Compd, 2014; 586: 356-361 Cerca con Google

[93] Ma C, Lu Y, Sun P, Yuan Y, Jing X, Zhang M. Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte, Surf Coat Technol, 2011; 206: 287–294 Cerca con Google

[94] Felker D L, Sherwood P M A. Magnesium Phosphate (Mg3(PO4)2) by XPS, Surf Sci Spectra, 2002; 9: 83-90 Cerca con Google

[95] Cai J, Cao F, Chang L, Zheng J, Zhang J, Cao C. The preparation and corrosion behaviours of MAO coating on AZ91D with rare earth conversion precursor film, Appl Surf Sci, 2011; 257: 3804-3811 Cerca con Google

[96] Jianzhong L, Yanwen T, Zuoxing C, Zenqi H. Effect of rare earths on the microarc oxidation of a magnesium alloy, Rare Metals, 2008; 27: 20-54 Cerca con Google

[97] Salaman S A, Ichino R, Okido M. Improvement of corrosion resistance of AZ91 Mg alloy by anodizing with co-precipitation of cerium oxide, Transactions of Nonferrous metals society of China, 2009; 19: 883-886 Cerca con Google

[98] Lim T S, Ryu H S, Hong S H. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation, Corros Sci, 2012; 62: 104-111 Cerca con Google

[99] Laleh M, Kargar F, Sabour Rouhaghdam A. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy, Journal of rare earths, 2012; 30: 1293-1297 Cerca con Google

[100] Armour A W, Robitaille R D. Corrosion inhibition by sodium molybdate, J Chem Technol Biot, 1979; 29: 619-628 Cerca con Google

[101] Stranick M A, NACE 8, 1985, 1-380 Cerca con Google

[102] Lopez-Garrityz O, Frankel G S. Corrosion inhibition of aluminum alloy 2024-T3 by sodim molybdate, J Electrochem Soc, 2014; 161: C95-C106 Cerca con Google

[103] Bi-Lan L, Jin-Tang L, Gang K. Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel, Corros Sci, 2008; 50: 962-967 Cerca con Google

[104] Feng L, Guo-Xi L, Jing Z, Gui-Hong G. Molybdate-doped copolymer coatings for corrosion prevention of stainless steels, J Appl Polym Sci, 2014; 131 Cerca con Google

[105] Brunelli K, Magrini M, Dabalà M. Method to improve corrosion resistance of AA5083 by cerium based conversion coating and anodic polarization in molybdate solution, Corr Eng Sci Technol, 2012; 47: 224-232 Cerca con Google

[106] Yingwu Y, You Z, Chunmei Z, Yuxiang H, Chunxia Z. Preparation and corrosion resistance properties of molybdate conversion coatings containing SiO2 nanoparticles, J Electrochem Soc, 2013; 160: C185-C188 Cerca con Google

[107] Yingwu Y, You Z, Liang H. Corrosion behavior of molybdate conversion coatings on AZ31 magnesium alloy in NaCl solution, Anti-Corros Method M, 2013; 60: 307-311 Cerca con Google

[108] Zhao C M, Yao Y W, Zhou Y. T I Met Finish, 2013; 91:330-335 Cerca con Google

[109] Sun P, Lu Y, Yuan Y, Jing X, Zhang M. Preparation and characterization of duplex PEO/ MoC coatings on Mg-Li alloys, Surf Coat Technol, 2011; 205: 4500-4506 Cerca con Google

[110] Li Z J, Yuan Y ,Jing X Y. Comparison of plasma electrolytic oxidation coatings on Mg-Li alloy formed in molybdate/silicate and aluminate/silicate composite electrolytes, Materials and Corrosion, 2014; 65: 493-501 Cerca con Google

[111] Xiajun W, Xiangdong L, Yongzhen L, Chunxia H, Yuehe D. Effects of Ce (III) on rate of formation and phase composition of ceramic coating formed on surface of ZAlSi12CuMg1 by microarc oxidation, Journal of rare earths,2007; 25: 82-85 Cerca con Google

[112] Liu J, Lu Y, Jing X, Yuan Y, Zhang M. Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containing silica sol Materials and Corrosion, 2009; 60: 865-870 Cerca con Google

[113] Blawert C, Heitmann V, Dietzel W, Nykyforchyn H M, Klapkiv M D Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys, Surf Coat Technol, 2007 201: 8709-8714 Cerca con Google

[114] Dehnavi V, Shoesmith D W , Li Luan B, Yari M, Yang Liu X, Rohani S. Corrosion properties of plasma electrolytic oxidation coatings on aluminum alloys-The effect of the PEO process stage, Mat Chem Phy, 2015; 161: 49-58 Cerca con Google

[115] Sreekanth D, Rameshbabu N , Venkateswarlu K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation, Ceramics Intern, 2012; 38: 4607-4615 Cerca con Google

[116] Kang L, Gao J, Xu H R, Zhao S Q, Chen H, Wu P H. Epitaxial Mg2SiO4 thin films with a spinel structure grown on Si substrates, J Cryst Growth, 2006; 297: 100–104 Cerca con Google

[117] Yoo B, Shin K R, Hwang D Y, Lee D H, Shin D H. Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation, Appl Surf Sci, 2010; 256: 6667-6672 Cerca con Google

[118] Martinez S, Metikosˇ-hukovic M. A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors J Appl Electrochem, 2003; 33: 1137-1142 Cerca con Google

[119] Lebrini M, Lagrenee M, Vezin H, Traisnel M, Bentiss F. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds, Corros Sci, 2007; 49: 2254-2269 Cerca con Google

[120] Snizhko L O, Yerokhin A L, Pilkington A, Gurevina N L, Misnyankin D O, Leyland A, Matthews A. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim Acta, 2004; 49: 2085-2095 Cerca con Google

[121] Pezzato L, Brunelli K, Gross S, Magrini M, Dabalà M. Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys, J Appl Electrochem, 2014; 118: 867-879 Cerca con Google

[122] Wannaparhun S, Seal S, Desai V. Surface chemistry of Nextel-720, alumina and Nextel-720/alumina ceramic matrix composite (CMC) using XPS–A tool for nano-spectroscopy, Appl Surf Sci, 2002; 185: 183–196 Cerca con Google

[123] Sunding M F, Hadidi K, Diplas S, Løvvik O M, Norby T E, Gunnæs A E. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures, J Electron Spectrosc Relat Phenom, 2011; 184: 399-409 Cerca con Google

[124] Montemor M F, Simões A M,Carmezim M J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection, Appl Surf Sci, 2007; 253: 6922–6931 Cerca con Google

[125] Mu W, Han Y. Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation, Surface and Coatings Technology, 2008; 202: 4278–4284 Cerca con Google

[126] Matykina E, Arrabal R, Monfort F, Skeldon P, Thompson G E. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Applied Surface Science, 2008; 255: 2830–2839 Cerca con Google

[127] Aliofkhazraei M, Rouhaghdam A S, Shahrabi T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation, Surface and Coatings Technology, 2010; 205: S41–S46 Cerca con Google

[128] Aliofkhazraei M, Rouhaghdam A S. Fabrication of functionally gradient nanocompo‐ Cerca con Google

site coatings by plasma electrolytic oxidation based on variable duty cycle, Applied Surface Science, 2012; 258: 2093–2097. Cerca con Google

[129] Wu X H, Qin W, Guo Y, Xie Z Y. Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate–graphite, Applied Surface Science, 2008; 254: 6395–6399. Cerca con Google

[130] Mu M, Zhou X J, Xiao Q, Liang J, Huo X D, Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy, Applied Surface Science, 2012; 258: 8570–8576 Cerca con Google

[131] Mu M, Liang J, Zhou X J, Xiao Q. One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties, Surface and Coatings Technology, 2013; 214: 124–130 Cerca con Google

[132] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid and Interface Science, 2004; 275: 177–182 Cerca con Google

[133] Prabhu S, Poulose E K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, International Nano Letters, 2012 Cerca con Google

[134] Yin L, Cheng Y, Espinasse B, Colman B P, Auffan M, Wiesner M, Jerome Rose, Liu J, Bernhardt E S. More than the Ions: The Effects of Silver Nanoparticles on Lolium Multiflorum, Environ Sci Technol, 2011; 45 Cerca con Google

[135] Chernousova S, Epple M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Angew Chem Int Ed, 2013; 52: 1636 - 1653 Cerca con Google

[136] Wesley Alexander J. History of the Medical Use of Silver, Surgical Infection, 2009; 10 Cerca con Google

[137] Young-Ki J, Byung H K, Geunhwa J. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi, Plant Disease, 2009; 10 Cerca con Google

[138] Gokdeniz N, Asli K. The antifouling performance of gelcoats containing biocides and silver ions in seawater environment, J Coat Technol Res, 2010; 7: 139–143 Cerca con Google

[139] Liu T, Dong Y, He T, Guo N, Zhang F. Films with nanosilvers improve biocorrosion resistance of aluminium in sea water, Surface Engineering, 2014; 30: 6-10 Cerca con Google

[140] Knetsch M L W, Koole L H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles, Polymers, 2011; 3: 340-366 Cerca con Google

[141] Meletisa E I, Nie X, Wang F L, Jiang J C. Electrolytic plasma processing for cleaning and metal-coating of steel surfaces, Surf Coat Tecnol, 2002; 149: 245-251 Cerca con Google

[142] Wang Y, Jiang Z, Yao Z, Tang H. Microstructure and corrosion resistance of ceramic coating on carbon steel prepared by plasma electrolytic oxidation, Surf Coat Tecnol, 2010; 204:1685-1688 Cerca con Google

[143] Wang Y, Jiang Z, Yao Z. Preparation and properties of ceramic coating on Q235 carbon steel by plasma electrolytic oxidation, Curr Appl Phy, 2009; 9: 1067-1071 Cerca con Google

[144] Wang Y, Jiang Z, Yao Z. Microstructure, bonding strength and thermal shock resistance of ceramic coatings on steels prepared by plasma electrolytic oxidation, Appl Surf Sci, 2009; 256: 650-656 Cerca con Google

[145] Abuali Galedari S, Mousavi Kohei M. Characterization of Oxide Film Formed on Ck45 Steel by Plasma Electrolytic Oxidation Method, Journal of Mechanical research and application, 2012; 4: 57-61 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record