Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Schoech, Alexander (2016) Quality control of freeform parts at elevated temperature. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Ph.D. thesis) - Versione sottomessa
97Mb

Abstract (inglese)

Modern industries operate under high cost pressure coupled with ever increasing demands on their processes and products. Production processes are e.g. increasingly complex while the permitted tolerances, batch sizes and time-to-market times decrease. These partly contradictory trends require sophisticated production processes with advanced strategies for quality assurance and process control. The aim of this work is to analyse such a complex, multi-stage production process, the production of turbine blades, in terms of quality, process adjustment for small batch sizes and cost.
In the considered process, turbine blades are manufactured by forging and are cooled down in calm air to ambient temperature for subsequent machining. This significantly impedes quality control during the process due to the prevailing elevated temperature of workpieces and the consequential need for several hours of cooling before measurements can be performed. Due to small batch sizes, forging of one batch is completed within hours, possibly before quality control at the first produced workpiece takes place. This results in late verification of tolerances when all workpieces are already produced and potentially violate their tolerance limits. After forging, the focus is on verification of dimensional forging tolerances. These asymmetric tolerances allow only for additional material that is to be subsequently removed by machining. Equivalent asymmetry is encountered in the incurred cost, positive deviations increase machining cost while negative deviations cause high cost due to classification as defective.
Analysis of the production process indicated substantial process optimisation opportunities by quality control during the process. However, not only measurements at elevated workpiece temperature have to be performed, also the cooling influence on the workpiece must be predicted to make early conformance statements. This is especially crucial for the thin freeform aerofoil of turbine blades that is subject to complex geometrical distortions during cooling. Additionally, if the process parameters shall be adjusted according to measurement results, appropriate methods to account for asymmetric tolerances and cost are necessary. Adjusting process parameters during the ramp-up of a batch is necessary to setup the process for the specific product. Such adjustments slow down the production, can be costly and may require a considerable period of the production time, especially for small batches. Therefore, a method shall be developed to determine when to stop initial adjustments.
In this work, a multisensor light sectioning coordinate measuring system for dimensional measurements at elevated temperature is presented and discussed. For visualisation and measurand evaluation, an existing heuristic surface reconstruction method is adapted for enhanced surface quality on partly concave freeform workpieces as turbine blades. Its low time complexity enables realtime visualisation during measuring, allowing operators to monitor and qualitatively verify measurement results quickly. Main uncertainty contributors on the system are identified, quantified and, where necessary, corrected. In particular for freeform workpieces, the requirement for improved sensor adjustment is demonstrated. A novel method for sensor adjustment and multisensor registration is proposed, yielding a five times improvement in experiments compared to manual methods.
By the discussed corrections, process adjustment for small batch turbine blade manufacturing becomes feasible. A method to obtain the optimal number of adjustments is available from literature for a specific combination of symmetric cost model and process variation by analytic evaluation of expected cost. A novel formulation and appropriate numerical methods are proposed to evaluate expected cost with arbitrary, possibly asymmetric, cost models and process variation models. Based on this formulation, two generalised criteria when to stop adjustments optimally are presented, each exhibiting distinct advantages for specific application cases. Their performance is compared to a state-of-the-art deadband model for process adjustment, yielding down to 90% lower cost for the evaluated cases if measurements are performed during the adjustment phase only. Eventually, a novel comprehensive framework for process adjustment, incorporating the proposed methods, is discussed.

Abstract (italiano)

Le moderne industrie manifatturiere si trovano ad operare in una condizione di forte stress economico, ma allo stesso tempo con richieste dal mercato sempre più complesse. Ad esempio, se da un lato i processi produttivi aumentano la proprio complessità, dall’altro, le tolleranze richieste, le dimensioni dei lotti e il “time-to-market” si riducono sempre più. Questo andamento, per certi versi contradditorio, richiede l’adozione di processi produttivi sempre più sofisticati e tecniche avanzate per il controllo della qualità e del processo. L’obbiettivo di questo lavoro è di analizzare, in un processo produttivo complesso come quello delle palette per turbina, il controllo qualità e l’ottimizzazione di processo per lotti ridotti col fine di abbassare i costi legati alla produzione. Nel processo in analisi, le palette per turbina vengono forgiate a caldo e poi raffreddate in aria calma fino al raggiungimento della temperatura ambiente in modo da poter essere successivamente lavorate tramite macchine a controllo numerico. Le attuali tecnologie di misura rendono possibile il primo controllo dimensionale solo a valle del completo raffreddamento, che può richiedere fino a diverse ore. Date le dimensioni dei lotti tipicamente ridotte, spesso, la forgiatura di un intero lotto viene completata prima che sia stato possibile verificare la geometria del primo pezzo; ciò implica che potenzialmente può essere prodotto un intero lotto fuori tolleranza. Dopo la fase di forgiatura, il controllo dimensionale viene focalizzato alla ricerca dei sovrametalli, che, nel caso siano superiori al valore imposto in fase di progetto comporteranno un aumento dei costi di lavorazione a macchina, diversamente, qualora siano inferiori, porteranno a scartare il pezzo appena prodotto.
A seguito di queste considerazioni si comprende l’importanza di anticipare la fase di controllo qualità, ma per fare ciò, non solo è importante essere in grado di misura ad elevate temperature occorre anche sviluppare dei modelli per la comprensione degli effetti distorsivi indotti dal raffreddamento così da prevedere la geometria finale. Ciò diventa un punto cruciale per le geometrie sottili e "freeform" che caratterizzano la foglia di una paletta per turbina. Inoltre, per ottimizzare il processo in base ai risultati delle misurazioni, è necessario comprendere le tolleranze e i costi legati all’ottimizzazione. Infatti, l’ottimizzazione dei parametri di processo durante le fasi iniziali di produzione di un lotto, essenziali per la corretta lavorazione di un componente, comportano rallentamenti e conseguenti costi. Lotti di ridotte dimensioni ne vengono maggiormente penalizzati. Di conseguenza è necessario sviluppare una procedura per determinare quando valga la pena fermare il processo di ottimizzazione.
In questo lavoro, un sistema di misura basato sulla triangolazione laser per misura dimensionale di pezzi ad elevata temperatura viene presentato e discusso. Per ragioni di visualizzazione e misurazione, un algoritmo euristico, per la ricostruzione di superfici a partire da nuvole di punti, è stato adattato per superfici libere e concave come quelle che caratterizzano le palette per turbina. Data la rapidità dell’algoritmo è possibile visualizzare la geometria in contemporanea alla misura, permettendo all’operatore di monitorare qualitativamente l’andamento della misura. Le cause di incertezza principali del sistema di misura sono state identificate, quantificate e, se necessario, corrette. In particolare, nel caso di geometrie tipo "freeform", è stata dimostrata l’importanza di una miglior procedura di settaggio dei sensori. Un nuovo metodo per la taratura di sistemi multisensore è stato sviluppato ed è in grado di garantire tempi di settaggio cinque volte inferiori rispetto ai metodi manuali.
Grazie alle correzioni proposte, l’ottimizzazione di processo per piccoli lotti di palette per turbina diventa possibile. Un metodo per la valutazione del numero ottimale di iterazioni durante il processo di ottimizzazione è disponibile in letteratura per una specifica combinazione di cosi asimmetrici e variabilità del processo tramite la valutazione del costo atteso ("expected cost"). Una nuova formulazione e un appropriato approccio numerico sono proposti per valutare i costi attesi con variabilità di processo e modello di costo arbitrari. A partire da queste considerazioni, due criteri generalizzati per decidere quando fermare l’ottimizzazione sono proposti, ognuno con particolari vantaggi in specifiche applicazioni. Le prestazioni di queste procedure sono comparate ad un esistente modello allo stato dell’arte, portando una riduzione dei costi pari al 90% quando le misurazioni vengono effettuate solamente durante la fase di ottimizzazione. Infine, una procedura complessiva per l’ottimizzazione di processo, incorporando i metodi proposti, verrà discussa.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Savio, Enrico
Correlatore:Carmignato, Simone - Keferstein, Claus
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA, DEI MATERIALI E MECCANICA
Data di deposito della tesi:27 Gennaio 2016
Anno di Pubblicazione:27 Gennaio 2016
Parole chiave (italiano / inglese):Forging, Metrology, Laser triangulation, Multisensor data fusion, Setup Adjustment
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:9192
Depositato il:07 Nov 2016 16:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Douglas C. Montgomery. Introduction to statistical quality control. 7th ed. Hoboken, NJ: Wiley, 2013. ISBN: 978-1118146811. Cerca con Google Cerca con Google

[2] JCGM 200:2012. International Vocabulary of Metrology (VIM) – Basic and General Concepts and Associated Terms, 3rd edition: Basic and general concepts and associated terms. Bureau international des poids et mesures, Sèvres, 2012. Cerca con Google Cerca con Google

[3] Albert Weckenmann. Koordinatenmesstechnik: Flexible Strategien für funktionsund fertigungsgerechtes Prüfen. 2., vollständig überarb. Aufl. München: Hanser, 2012. ISBN: 978-3-446-40739-8. Cerca con Google Cerca con Google

[4] Enrico Savio, Leonardo De Chiffre, and Robert Schmitt. “Metrology of freeform shaped parts”. In: CIRP Annals - Manufacturing Technology 56 (2) (2007), pp. 810– 835. Cerca con Google Cerca con Google

[5] ISO 17450-1:2011. Geometrical product specifications (GPS) - General concepts Part 1: Model for geometrical specification and verification. International Organization for Standardization, Geneva, 2011. Cerca con Google Cerca con Google

[6] DIN 58174. Optics and photonics - Specification of freeform surfaces. German Institute for Standardization, Berlin, 2011. Cerca con Google Cerca con Google

[7] X. Jiang, P. J. Scott, and David J. Whitehouse. “Freeform Surface Characterisation - A Fresh Strategy”. In: CIRP Annals - Manufacturing Technology 56 (1) (2007), pp. 553–556. Cerca con Google Cerca con Google

[8] Vijay Kumar Butte and L. C. Tang. “Engineering Process Control: A Review”. In: Handbook of Performability Engineering. Ed. by Krishna B. Misra. Springer London, 2008, pp. 203–223. ISBN: 978-1-84800-130-5. Cerca con Google Cerca con Google

[9] Enrique Del Castillo. “Statistical process adjustment: a brief retrospective, current status, and some opportunities for further work”. In: Statistica Neerlandica 60 (3) (2006), pp. 309–326. Cerca con Google Cerca con Google

[10] Claus P. Keferstein. Fertigungsmesstechnik: praxisorientierte Grundlagen, moderne Messverfahren. 8. Auflage. Wiesbaden: Vieweg + Teubner, 2015. ISBN: 9783-8348-2582-7. Cerca con Google Cerca con Google

[11] Enrico Savio. “A methodology for the quantification of value-adding by manufacturing metrology”. In: CIRP Annals - Manufacturing Technology 61 (1) (2012), pp. 503–506. Cerca con Google Cerca con Google

[12] H. Kunzmann et al. “Productive Metrology - Adding Value to Manufacture”. In: CIRP Annals - Manufacturing Technology 54 (2) (2005), pp. 155–168. Cerca con Google Cerca con Google

[13] Robert J. Hocken and Paulo H. Pereira. Coordinate measuring machines and systems. 2nd ed. Vol. 76. Manufacturing engineering and materials processing. Boca Raton, Fla.: CRC Press, 2012. ISBN: 978-1574446524. Cerca con Google Cerca con Google

[14] PIETRO ROSA TBM srl. Pietro Rosa TBM srl. 2014. URL: http://www. pietrorosatbm.it/ (visited on 01/26/2014). Vai! Cerca con Google Vai! Cerca con Google

[15] Stefania Bruschi and Andrea Ghiotti. “Distortions induced in turbine blades by hot forging and cooling”. In: International Journal of Machine Tools and Manufacture 48 (7-8) (2008), pp. 761–767. Cerca con Google Cerca con Google

[16] Enrico Simonetto et al. “Analysis of X20Cr13 turbine blades distortions at elevated temperatures”. In: AITeM. 2015. Cerca con Google Cerca con Google

[17] Enrico Simonetto et al. “Prediction of Distortions in Hot Forged Martensitic Stainless Steel Turbine Blades by Numerical Simulation”. In: Procedia Manufacturing 1 (2015), pp. 804–813. Cerca con Google Cerca con Google

[18] Andrea Ghiotti et al. “Enhancing the accuracy of high-speed laser triangulation measurement of freeform parts at elevated temperature”. In: CIRP Annals - Manufacturing Technology 64 (1) (2015), pp. 499–502. Cerca con Google Cerca con Google

[19] Zhisong Tian et al. “Dimension measurement of hot large forgings with a novel time-of-flight system”. In: The International Journal of Advanced Manufacturing Technology 44 (1-2) (2009), pp. 125–132. Cerca con Google Cerca con Google

[20] Xian Lu and Raj Balendra. “Temperature-related errors on aerofoil section of turbine blade”. In: Journal of Materials Processing Technology 115 (2) (2001), pp. 240– 244. Cerca con Google Cerca con Google

[21] Hengan Ou and C.G. Armstrong. “Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation”. In: Finite Elements in Analysis and Design 42 (10) (2006), pp. 856–867. Cerca con Google Cerca con Google

[22] Bin Lu et al. “3D die shape optimisation for net-shape forging of aerofoil blades”. In: Materials & Design 30 (7) (2009), pp. 2490–2500. Cerca con Google Cerca con Google

[23] Hengan Ou et al. “Development of a virtual die shape optimisation system for netshape forging of aeroengine components”. In: Steel Res Int 79 (2) (2008), pp. 804– 811. Cerca con Google Cerca con Google

[24] Hengan Ou et al. “Finite element modelling and optimisation of net-shape metal forming processes with uncertainties”. In: Computers & Structures 90-91 (2012), pp. 13–27. Cerca con Google Cerca con Google

[25] ISO 1:2002. Geometrical Product Specifications (GPS) – Standard reference temperature for geometrical product specification and verification. International Organization for Standardization, Geneva, 2002. Cerca con Google Cerca con Google

[26] Dan Trietsch. “The Harmonic Rule for Process Setup Adjustment With Quadratic Loss”. In: Journal of Quality Technology 30 (1) (1998), pp. 75–84. Cerca con Google Cerca con Google

[27] ISO 1101:2012/Cor 1:2013. Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out. International Organization for Standardization, Geneva, 2013. Cerca con Google Cerca con Google

[28] M. M. Dowling et al. “Statistical Issues in Geometric Feature Inspection Using Coordinate Measuring Machines”. In: Technometrics 39 (1) (1997), pp. 3–17. Cerca con Google Cerca con Google

[29] Christian Keck, Matthias Franke, and Heinrich Schwenke. “Werkstückeinflüsse in der Koordinatenmesstechnik (Workpiece Influence in Coordinate Metrology)”. In: tm - Technisches Messen 71 (2-2004) (2004), pp. 81–92. Cerca con Google Cerca con Google

[30] K.D Summerhays et al. “Optimizing discrete point sample patterns and measurement data analysis on internal cylindrical surfaces with systematic form deviations”. In: Precision Engineering 26 (1) (2002), pp. 105–121. Cerca con Google Cerca con Google

[31] P. Pedone, G. Vicario, and D. Romano. “Kriging-based sequential inspection plans for coordinate measuring machines”. In: Applied Stochastic Models in Business and Industry 25 (2) (2009), pp. 133–149. Cerca con Google Cerca con Google

[32] Yueyang Du et al. “Measurement system for hot heavy forgings and its calibration”. In: Optical Measurement Systems for Industrial Inspection VII. SPIE, 2011, 80822Y–80822Y–11. Cerca con Google Cerca con Google

[33] INSTITUT DR. FOERSTER GmbH & Co .KG. 2014. URL: http://www. foerstergroup.de/ (visited on 01/28/2014). Vai! Cerca con Google Vai! Cerca con Google

[34] Prueftechnik Dieter Busch AG. 2014. URL: http://www.pruftechnik. com/ (visited on 01/28/2014). Vai! Cerca con Google Vai! Cerca con Google

[35] Inc. OG Technolgies. 2014. URL: http://www.ogtechnologies.com/ (visited on 01/28/2014). Cerca con Google Vai! Cerca con Google

[36] Danieli Automation. 2014. URL: http://www.dca.it/ (visited on 01/28/2014). Vai! Cerca con Google Vai! Cerca con Google

[37] Minteq International Inc. 2014. URL: http://www.minteq.com/ (visited on 09/03/2015). Vai! Cerca con Google Vai! Cerca con Google

[38] MERMEC S.p.A. 2014. URL: http://www.mermecgroup.com/ (visited on 09/10/2015). Cerca con Google Vai! Cerca con Google

[39] LIMAB. LIMAB: Control by measurement. 2015. URL: http://http://www. limab.com (visited on 09/07/2015). Vai! Cerca con Google Vai! Cerca con Google

[40] NEXTSENSE GmbH. 2015. URL: http://www.nextsense.at (visited on 10/05/2015). Cerca con Google Vai! Cerca con Google

[41] Zumbach Electronic AG. 2015. URL: www.zumbach.com (visited on 01/23/2015). Vai! Cerca con Google Vai! Cerca con Google

[42] Johannes Bernstein. Optisches Multi-Sensor-Messverfahren zur dimensionellen Inline-Messung von Strangprofilen im Fertigungsprozess. Vol. Bd. 23. Berichte aus dem Lehrstuhl Qualitätsmanagement und Fertigungsmeßtechnik, Friedrich-AlexanderUniversität Erlangen-Nürnberg. Aachen: Shaker, 2011. ISBN: 978-3844003451. Cerca con Google Cerca con Google

[43] Yu-cun Zhang et al. “Measurement and control technology of the size for large hot forgings”. In: Measurement 49 (2014), pp. 52–59. Cerca con Google Cerca con Google

[44] Xian-bin Fu, Bin Liu, and Yu-cun Zhang. “An optical non-contact measurement method for hot-state size of cylindrical shell forging”. In: Measurement 45 (6) (2012), pp. 1343–1349. Cerca con Google Cerca con Google

[45] Jun He et al. “Measure dimension of rotating large hot steel shell using pulse laser on PRRR robot”. In: Measurement 45 (7) (2012), pp. 1814–1823. Cerca con Google Cerca con Google

[46] Wei Liu et al. “Fast dimensional measurement method and experiment of the forgings under high temperature”. In: Journal of Materials Processing Technology 211 (2) (2011), pp. 237–244. Cerca con Google Cerca con Google

[47] Youssef Bokhabrine et al. “3D characterization of hot metallic shells during industrial forging”. In: Machine Vision and Applications 23 (3) (2012), pp. 417–425. Cerca con Google Cerca con Google

[48] Youssef Bokhabrine et al. “3D reconstruction of hot metallic surfaces for industrial part characterization”. In: Machine Vision and Applications. Vol. 23. 3. SPIE, 2010, pp. 417–425. Cerca con Google Cerca con Google

[49] S.B Dworkin and T.J Nye. “Image processing for machine vision measurement of hot formed parts”. In: Journal of Materials Processing Technology 174 (1-3) (2006), pp. 1–6. Cerca con Google Cerca con Google

[50] Dirk Stöbener et al. “Distance measurements with laser-triangulation in hot environments”. In: XVII IMEKO World Congress. 2003, pp. 1898–1902. Cerca con Google Cerca con Google

[51] K. Määtta, J. Kostamovaara, and R. Myllylä. “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques”. In: Applied Optics 32 (27) (1993), pp. 5334–5347. Cerca con Google Cerca con Google

[52] Zhenyuan Jia et al. “An improved image acquiring method for machine vision measurement of hot formed parts”. In: Journal of Materials Processing Technology 210 (2) (2010), pp. 267–271. Cerca con Google Cerca con Google

[53] H. Huang, D. Gutchess, and T.-S. Chang. “Imaging Based In-Line Surface Defect Inspection for Bar Rolling: Iron & steel technology conference proceedings”. In: AISTech. 2004, pp. 717–728. Cerca con Google Cerca con Google

[54] Heinrich Schwenke et al. “Optical Methods for Dimensional Metrology in Production Engineering”. In: CIRP Annals - Manufacturing Technology 51 (2) (2002), pp. 685–699. Cerca con Google Cerca con Google

[55] A. Keith Turner. “What’s the Difference Among 2-D, 2.5-D, 3-D and 4-D?” In: Applied Geoscience Forum (1997), p. 54. Cerca con Google Cerca con Google

[56] Jun Zhang et al. “Process adjustment with an asymmetric quality loss function”. In: Journal of Manufacturing Systems 33 (1) (2014), pp. 159–165. Cerca con Google Cerca con Google

[57] ISO 10360-2:2010-06. Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM) – Part 2: CMMs used for measuring linear dimensions. International Organization for Standardization, Geneva, 2010. Cerca con Google Cerca con Google

[58] P. F. Bariani, Stefania Bruschi, and T. Dal Negro. “Prediction of nickel-base superalloys’ rheological behaviour under hot forging conditions using artificial neural networks”. In: Journal of Materials Processing Technology 152 (3) (2004), pp. 395– 400. Cerca con Google Cerca con Google

[59] Badrinarayan K. Belur and Ramana V. Grandhi. “Geometric deviations in forging and cooling operations due to process uncertainties”. In: Journal of Materials Processing Technology 152 (2) (2004), pp. 204–214. Cerca con Google Cerca con Google

[60] S. K. Choi et al. “Optimization of open die forging of round shapes using FEM analysis”. In: Journal of Materials Processing Technology 172 (1) (2006), pp. 88– 95. Cerca con Google Cerca con Google

[61] Jonathan E. Makem, Hengan Ou, and Cecil G. Armstrong. “A virtual inspection framework for precision manufacturing of aerofoil components”. In: ComputerAided Design 44 (9) (2012), pp. 858–874. Cerca con Google Cerca con Google

[62] James A. Polyblank, Julian M. Allwood, and Stephen R. Duncan. “Closed-loop control of product properties in metal forming: A review and prospectus”. In: Journal of Materials Processing Technology 214 (11) (2014), pp. 2333–2348. Cerca con Google Cerca con Google

[63] D. Recker, M. Franzke, and G. Hirt. “Fast models for online-optimization during open die forging”. In: CIRP Annals - Manufacturing Technology 60 (1) (2011), pp. 295–298. Cerca con Google Cerca con Google

[64] Frank M. Gryna and J. M. Juran. Quality planning and analysis: From product development through use. 4th ed. McGraw-Hill series in industrial engineering and management science. Boston: McGraw-Hill, 2001. ISBN: 978-0070393684. Cerca con Google Cerca con Google

[65] Bianca Maria Colosimo, Rong Pan, and Enrique Del Castillo. “Setup adjustment for discrete-part manufacturing processes with asymmetric cost functions”. In: International Journal of Production Research 43 (18) (2005), pp. 3837–3854. Cerca con Google Cerca con Google

[66] D. Xu and S. L. Albin. “Manufacturing start-up problem solved by mixed-integer quadratic programming and multivariate statistical modelling”. In: International Journal of Production Research 40 (3) (2002), pp. 625–640. Cerca con Google Cerca con Google

[67] Harriet Black Nembhard and John R. Birge. “A startup procedure for process industries using a multiple objective nonlinear program”. In: IIE Transactions 30 (4) (1998), pp. 291–300. Cerca con Google Cerca con Google

[68] F. E. Grubbs. “An Optimum Procedure for Setting Machines or Adjusting Processes: (reprint)”. In: Journal of Quality Technology 15 (4) (1983), pp. 186–189. Cerca con Google Cerca con Google

[69] D. Xu and S. L. Albin. Comparison of Partial Least Squares Model and Response Surface Model in Optimizing Batch Settings. 2004. Cerca con Google Cerca con Google

[70] Nirmal Govind et al. An Approach to Multivariate Bounded Process Adjustment. Cerca con Google

[71] Liping Liu et al. “Research on Setup Adjustment Problem with Random Adjustment Error and Unknown Parameters”. In: International Journal of Advancements in Computing Technology (IJACT) 4 (17) (2012), pp. 360–367. Cerca con Google Cerca con Google

[72] Zilong Lian and Enrique Del Castillo. “Setup adjustment under unknown process parameters and fixed adjustment cost”. In: Journal of Statistical Planning and Inference 136 (3) (2006), pp. 1039–1060. Cerca con Google Cerca con Google

[73] Zilong Lian and Vanli, Arda, del Castillo, Enrique. “Setup Adjustment for Asymmetric Cost Functions Under Unknown Process Parameters”. In: Quality Technology and Quantitative Management 11 (4) (2014), pp. 471–489. Cerca con Google Cerca con Google

[74] George Runger, Zilong Lian, and Enrique Del Castillo. “Optimal multivariate bounded adjustment”. In: IIE Transactions 42 (10) (2010), pp. 746–752. Cerca con Google Cerca con Google

[75] S. P. Ladany. “Optimal set-up of a manufacturing process with unequal revenue from oversized and undersized items”. In: Engineering Management Conference. 1995, pp. 428–432. Cerca con Google Cerca con Google

[76] C.-H. Chen and C.-Y. Chou. “Determining the Optimum Manufacturing Target Based on an Asymmetric Quality Loss Function”. In: The International Journal of Advanced Manufacturing Technology 21 (3) (2002), pp. 193–195. Cerca con Google Cerca con Google

[77] Qiu Jin, Shaogang Liu, and Ping Wang. “Optimal tolerance design for products with non-normal distribution based on asymmetric quadratic quality loss”. In: The International Journal of Advanced Manufacturing Technology (2014). Cerca con Google Cerca con Google

[78] C. C. Wu and G. R. Tang. “Tolerance design for products with asymmetric quality losses”. In: International Journal of Production Research 36 (9) (1998), pp. 2529– 2541. Cerca con Google Cerca con Google

[79] Box, G. E. P. and G. M. Jenkins. “Further contributions to adaptive quality control: Simultaneous estimation of dynamics: Non-zero costs”. In: Proceedings of the ISI World Statistics Congresses. Vol. 1963. 1963, pp. 943–974. Cerca con Google Cerca con Google

[80] Stephen V. Crowder. “An SPC Model for Short Production Runs: Minimizing Expected Cost”. In: Technometrics 34 (1) (1992), pp. 64–73. Cerca con Google Cerca con Google

[81] Liping Liu, Yizhong Ma, and Yiliu Tu. “Multivariate setup adjustment with fixed adjustment cost”. In: International Journal of Production Research 51 (5) (2013), pp. 1392–1404. Cerca con Google Cerca con Google

[82] Dan Trietsch. “The Five-Ten Rule: A constrained-Loss Economic Process Adjustment Procedure”. In: Quality Engineering 10 (1) (1997), pp. 85–95. Cerca con Google Cerca con Google

[83] Dan Trietsch. “Process setup adjustment with quadratic loss”. In: IIE Transactions 32 (4) (2000), pp. 299–307. Cerca con Google Cerca con Google

[84] Alexander Schöch et al. “Fast measurement of freeform parts at elevated temperature using laser-triangulation principle”. In: 11th IMEKO TC14 Symposium on Laser Metrology for Precision Measurement and Inspection in Industry, LMPMI. 2014, pp. 174–178. Cerca con Google Cerca con Google

[85] Alexander Schöch et al. “High-Speed Measurement of Complex Shaped Parts at Elevated Temperature by Laser Triangulation”. In: International Journal of Automation Technology 9 (9) (2015), pp. 558–566. Cerca con Google Cerca con Google

[86] Alexander W. Koch. Optische Messtechnik an technischen Oberflächen: Praxisorientierte lasergestützte Verfahren zur Untersuchung technischer Objekte hinsichtlich Form, Oberflächenstruktur und Beschichtung ; mit 4 Tabellen und 418 Literaturstellen. Renningen-Malmsheim: Expert-Verl., 1998. ISBN: 9783816913726. Cerca con Google Cerca con Google

[87] Optris GmbH. 2015. URL: http://www.optris.de (visited on 04/19/2015). Vai! Cerca con Google Vai! Cerca con Google

[88] Z. Zhang. “A flexible new technique for camera calibration”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (11) (2000), pp. 1330–1334. Cerca con Google Cerca con Google

[89] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. 2nd ed. Cambridge, UK and New York: Cambridge University Press, 2003. ISBN: 0521540518. Cerca con Google Cerca con Google

[90] R. Tsai. “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses”. In: IEEE Journal on Robotics and Automation 3 (4) (1987), pp. 323–344. Cerca con Google Cerca con Google

[91] Jeffrey J. McConnell. Computer graphics: Theory into practice. Boston: Jones and Bartlett Publishers, 2006. ISBN: 9780763722500. Cerca con Google Cerca con Google

[92] Luc Van Gool and Gabor Szekely. Computer Vision and Visual Inspection script. 2009. Cerca con Google Cerca con Google

[93] Duane C. Brown. “Close-range camera calibration”. In: Photogrammetric Engineering 37 (8) (1971), pp. 855–866. Cerca con Google Cerca con Google

[94] Klaus Frick and Claudio Wolfer. Camera Calibration Algorithm of a PMM80 System. 2014. Cerca con Google Cerca con Google

[95] H. C. Longuet-Higgins. “A computer algorithm for reconstructing a scene from two projections”. In: Nature 293 (5828) (1981), pp. 133–135. Cerca con Google Cerca con Google

[96] R. B. Fisher and D. K. Naidu. “A Comparison of Algorithms for Subpixel Peak Detection”. In: Image Technology. Ed. by Jorge L. C. Sanz. Springer Berlin Heidelberg, 1996, pp. 385–404. ISBN: 978-3-642-63528-1. Cerca con Google Cerca con Google

[97] Aqsense. 2015. URL: http://www.aqsense.com/ (visited on 02/27/2015). Vai! Cerca con Google Vai! Cerca con Google

[98] AIA Global Association For Vision Information. GigE Visionr Specification. 2013. Cerca con Google Cerca con Google

[99] Albert Weckenmann et al. “Multisensor data fusion in dimensional metrology”. In: CIRP Annals - Manufacturing Technology 58 (2) (2009), pp. 701–721. Cerca con Google Cerca con Google

[100] Yang Chen and Gérard Medioni. “Object modelling by registration of multiple range images”. In: Image and Vision Computing 10 (3) (1992), pp. 145–155. Cerca con Google Cerca con Google

[101] H. von Weingraber. “Über die Eignung des Hüllprofils als Bezugslinie für die Messung der Rauheit”. In: CIRP Annals - Manufacturing Technology 5 (1956), pp. 116– 128. Cerca con Google Cerca con Google

[102] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. “On the shape of a set of points in the plane”. In: IEEE Transactions on Information Theory 29 (4) (1983), pp. 551– 559. Cerca con Google Cerca con Google

[103] X. Jane Jiang and David J. Whitehouse. “Technological shifts in surface metrology”. In: CIRP Annals - Manufacturing Technology 61 (2) (2012), pp. 815–836. Cerca con Google Cerca con Google

[104] Harry Blum and Weiant Wathen-Dunn. “A Transformation for Extracting New Descriptors of Shape”. In: Models for the Perception of Speech and Visual Form (1967), pp. 362–380. Cerca con Google Cerca con Google

[105] B. Delaunay. “Sur la sphere vide.” In: Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7 (1934), pp. 793–800. Cerca con Google Cerca con Google

[106] Chua Chee Kai, Gan G. K. Jacob, and Tong Mei. “Interface between CAD and Rapid Prototyping systems. Part 2: LMI – An improved interface”. In: The International Journal of Advanced Manufacturing Technology 13 (8) (1997), pp. 571– 576. Cerca con Google Cerca con Google

[107] Peter Shirley and Steve Marschner. Fundamentals of computer graphics. 3rd ed. Natick, Mass.: A K Peters/CRC Press, 2009. ISBN: 978-1568814698. Cerca con Google Cerca con Google

[108] Xin Chen and Jie Shen. “A Tetrahedral Mesh Generation Algorithm from Medical Images”. In: 2008 International Symposium on Information Science and Engineering (ISISE). 2008, pp. 414–417. Cerca con Google Cerca con Google

[109] Chandrajit L. Bajaj, Edward J. Coyle, and Kwun-Nan Lin. “Arbitrary Topology Shape Reconstruction from Planar Cross Sections”. In: Graphical Models and Image Processing 58 (6) (1996), pp. 524–543. Cerca con Google Cerca con Google

[110] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. “The power crust”. In: the sixth ACM symposium. Ed. by David C. Anderson and Kunwoo Lee. 2001, pp. 249– 266. Cerca con Google Cerca con Google

[111] F. Bernardini et al. “The ball-pivoting algorithm for surface reconstruction”. In: IEEE Transactions on Visualization and Computer Graphics 5 (4) (1999), pp. 349– 359. Cerca con Google Cerca con Google

[112] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson Surface Reconstruction”. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP ’06. Eurographics Association, 2006, pp. 61–70. ISBN: 3-90567336-3. Cerca con Google Cerca con Google

[113] Jha Kailash. “A New Method for Reconstruction of Smooth Branching Surface from Contours”. In: International Journal of CAD/CAM 12 (1) (2012). Cerca con Google Cerca con Google

[114] Amit Bermano, Amir Vaxman, and Craig Gotsman. “Online reconstruction of 3D objects from arbitrary cross-sections”. In: ACM Transactions on Graphics 30 (5) (2011), pp. 1–11. Cerca con Google Cerca con Google

[115] Robert W. Brown et al. Magnetic resonance imaging: Physical principles and sequence design. Second edition. 2014. ISBN: 978-0471720850. Cerca con Google Cerca con Google

[116] B. G. Bang and F. B. Bang. “Graphic reconstruction of the third dimension from serial electron microphotographs”. In: Journal of Ultrastructure Research 1 (2) (1957), pp. 138–146. Cerca con Google Cerca con Google

[117] Winfried Denk and Heinz Horstmann. “Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure”. In: PLoS biology 2 (11) (2004), e329. Cerca con Google Cerca con Google

[118] Leonardo De Chiffre et al. “Industrial applications of computed tomography”. In: CIRP Annals - Manufacturing Technology 63 (2) (2014), pp. 655–677. Cerca con Google Cerca con Google

[119] Ying-Cheng Chen et al. “A reliable surface reconstruction system in biomedicine”. In: Computer methods and programs in biomedicine 86 (2) (2007), pp. 141–152. Cerca con Google Cerca con Google

[120] Ming-Yu Shih and Din-Chang Tseng. “Versatile surface model reconstruction from serial planar contours”. In: 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2000, pp. 2910–2913. Cerca con Google Cerca con Google

[121] David Meyers, Shelley Skinner, and Kenneth R. Sloan. “Surfaces from contours”. In: ACM Transactions on Graphics 11 (3) (1992), pp. 228–258. Cerca con Google Cerca con Google

[122] E. Keppel. “Approximating Complex Surfaces by Triangulation of Contour Lines”. In: IBM Journal of Research and Development 19 (1) (1975), pp. 2–11. Cerca con Google Cerca con Google

[123] Henry Fuchs, Zvi M. Kedem, and Samuel P. Uselton. “Optimal surface reconstruction from planar contours”. In: Communications of the ACM 20 (10) (1977), pp. 693–702. Cerca con Google Cerca con Google

[124] Soo-Won Chae and Gyu-Min Lee. “Volume triangulation from planar cross sections”. In: Computers & Structures 72 (1-3) (1999), pp. 93–108. Cerca con Google Cerca con Google

[125] H. N. Christiansen and T. W. Sederberg. “Conversion of complex contour line definitions into polygonal element mosaics”. In: SIGGRAPH ’78 Proceedings of the 5th annual conference on Computer graphics and interactive techniques. Ed. by S. H. Chasen and R. L. Phillips. 1978, pp. 187–192. Cerca con Google Cerca con Google

[126] S. Ganapathy and T. G. Dennehy. “A new general triangulation method for planar contours”. In: SIGGRAPH ’82 Proceedings of the 9th annual conference on Computer graphics and interactive techniques. Ed. by R. Daniel Bergeron. 1982, pp. 69–75. Cerca con Google Cerca con Google

[127] Gill Barequet and Micha Sharir. “Piecewise-Linear Interpolation between Polygonal Slices”. In: Computer Vision and Image Understanding 63 (2) (1996), pp. 251– 272. Cerca con Google Cerca con Google

[128] Gill Barequet, Daniel Shapiro, and Ayellet Tal. “History Consideration in Reconstructing Polyhedral Surfaces from Parallel Slices”. In: Proceedings of the 7th Conference on Visualization ’96. VIS ’96. IEEE Computer Society Press, 1996, 149–ff. ISBN: 0-89791-864-9. Cerca con Google Cerca con Google

[129] T. Todd Elvins. “A survey of algorithms for volume visualization”. In: ACM SIGGRAPH Computer Graphics 26 (3) (1992), pp. 194–201. Cerca con Google Cerca con Google

[130] Herb Sutter. “The free lunch is over: A fundamental turn toward concurrency in software”. In: Dr. Dobb’s Journal 30 (3) (2005). Cerca con Google Cerca con Google

[131] Scilab Enterprises. Scilab: Free and Open Source software for numerical computation. Orsay, France, 2012. Cerca con Google Cerca con Google

[132] Inc. The MathWorks. MATLAB Release 2015a. Natick, Massachusetts, United States, 2015. Cerca con Google Cerca con Google

[133] Mark Tratnig et al. “Positional and orientational referencing of multiple light sectioning systems for precision profile measurement”. In: Electronic Imaging 2005. SPIE Proceedings. SPIE, 2005, pp. 74–85. Cerca con Google Cerca con Google

[134] Weiguang Zhang. “Multiresolution three-dimensional measurement system with multiple cameras and light sectioning method”. In: Optical Engineering 49 (12) (2010). Cerca con Google Cerca con Google

[135] GOM - Gesellschaft für Optische Messtechnik mbH. GOM Inspect. 2015. (Visited on 10/06/2015). Cerca con Google Cerca con Google

[136] JCGM 100. Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Bureau international des poids et mesures, Sèvres, 2008. Cerca con Google Cerca con Google

[137] Frank Chen, Gordon M. Brown, and Mumin Song. “Overview of three-dimensional shape measurement using optical methods”. In: Optical Engineering 39 (1) (2000), p. 10. Cerca con Google Cerca con Google

[138] Nikola Vukašinovic, Marjan Korošec, and Jože Duhovnik. “The Influence of Sur-´ face Topology on the Accuracy of Laser Triangulation Scanning Results”. In: Journal of Mechanical Engineering 2010 (1) (2010), pp. 23–30. Cerca con Google Cerca con Google

[139] Simone Carmignato et al. “Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors”. In: Three-Dimensional Imaging Metrology. Vol. 7239. SPIE Proceedings. SPIE, 2009. Cerca con Google Cerca con Google

[140] Alessandro Voltan. “Metrological performance verification of optical coordinate measuring systems”. Dissertation. Padua, Italy: University of Padua, 2010. Cerca con Google Cerca con Google

[141] Tilo Pfeifer and Robert Schmitt. Fertigungsmesstechnik. 3., überarb. und erw. Aufl. München: Oldenbourg, 2010. ISBN: 3486592025. Cerca con Google Cerca con Google

[142] DIN 1333. Presentation of numerical data. German Institute for Standardization, Berlin, 1992. Cerca con Google Cerca con Google

[143] IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic. Piscataway, NJ, USA, 2008. Cerca con Google Cerca con Google

[144] IEC 60751:2008. Industrial platinum resistance thermometers and platinum temperature sensors. International Electrotechnical Commission, Geneva. Cerca con Google Cerca con Google

[145] DIN EN 60751:2009-05. Industrielle Platin-Widerstandsthermometer und PlatinTemperatursensoren (IEC 60751:2008); Deutsche Fassung EN 60751:2008. German Institute for Standardization, Berlin. Cerca con Google Cerca con Google

[146] P. E. Ciddor. “Refractive index of air: new equations for the visible and near infrared”. In: Applied Optics 35 (9) (1996), pp. 1566–1573. Cerca con Google Cerca con Google

[147] Bengt Edlén. “The Refractive Index of Air”. In: Metrologia 2 (2) (1966), pp. 71–80. Cerca con Google Cerca con Google

[148] K. P. Birch and M. J. Downs. “An Updated Edlén Equation for the Refractive Index of Air”. In: Metrologia 30 (3) (1993), p. 155. Cerca con Google Cerca con Google

[149] K. P. Birch and M. J. Downs. “Correction to the Updated Edlén Equation for the Refractive Index of Air”. In: Metrologia 31 (4) (1994), p. 315. Cerca con Google Cerca con Google

[150] J. A. Stone and J. H. Zimmerman. Engineering Metrology Toolbox. 2011. Cerca con Google Cerca con Google

[151] Alessandro Salvadori. “Modellazione degli errori e studio dell’asse di movimentazione per un sistema di misura senza contatto per pezzi ad alta temperatura”. Master’s thesis. Padua, Italy: University of Padua, 2014. Cerca con Google Cerca con Google

[152] F. Cverna. ASM Ready Reference: Thermal properties of metals. ASM Ready Reference Series. ASM International, 2002. ISBN: 9780871707680. Cerca con Google Cerca con Google

[153] Edgar Dietrich and Michael Radeck. Prüfprozesseignung nach VDA 5 und ISO 22514-7. 1. Aufl. Pocket power. München: Hanser, 2015. ISBN: 3446443770. Cerca con Google Cerca con Google

[154] Timothy A. Clarke et al. “Laser-based triangulation techniques in optical inspection of industrial structures”. In: Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection. SPIE Proceedings. SPIE, 1991, pp. 474–486. Cerca con Google Cerca con Google

[155] Schott AG. 2015. URL: www.schott.com (visited on 10/15/2015). Vai! Cerca con Google Vai! Cerca con Google

[156] Inc. Ansys. ANSYS v.15. Cerca con Google Cerca con Google

[157] ISO/TS 23165:2006. Geometrical Product Specifications (GPS) – Guidelines for the Evaluation of Coordinate Measuring Machine (CMM) Test Uncertainty. International Organization for Standardization, Geneva, 2006. Cerca con Google Cerca con Google

[158] Enrico Savio. “Uncertainty in testing the metrological performances of coordinate measuring machines”. In: CIRP Annals - Manufacturing Technology 55 (1) (2006), pp. 535–538. Cerca con Google Cerca con Google

[159] A. K. Sahoo, M. K. Tiwari, and A. R. Mileham. “Six Sigma based approach to optimize radial forging operation variables”. In: Journal of Materials Processing Technology 202 (1-3) (2008), pp. 125–136. Cerca con Google Cerca con Google

[160] Zakaria Allam et al. “Forging Process Control: Influence of Key Parameters Variation on Product Specifications Deviations”. In: Procedia Engineering 81 (2014), pp. 2524–2529. Cerca con Google Cerca con Google

[161] TRANSVALOR S.A. Forge 2011. Cerca con Google Cerca con Google

[162] P. F. Bariani and Stefania Bruschi. “Modelling the forging and post-forging cooling of C70S6 conrods”. In: Journal of Materials Processing Technology 167 (2-3) (2005), pp. 529–535. Cerca con Google Cerca con Google

[163] P. F. Bariani, Stefania Bruschi, and T. Dal Negro. “Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades”. In: International Journal of Machine Tools and Manufacture 44 (9) (2004), pp. 945–951. Cerca con Google Cerca con Google

[164] Albert Weckenmann and M. Rinnagl. “Acceptance of processes: do we need decision rules?” In: Precision Engineering 24 (3) (2000), pp. 264–269. Cerca con Google Cerca con Google

[165] María Villeta et al. “An alternative method to achieve metrological confirmation in measurement process”. In: The 4th Manufacturing Engineering Society International Conference (MESIC 2011). AIP Conference Proceedings. AIP, 2012, pp. 181– 188. Cerca con Google Cerca con Google

[166] María Villeta et al. “New criterion for evaluating the aptitude of measurement systems in process capability determination”. In: The International Journal of Advanced Manufacturing Technology 50 (5-8) (2010), pp. 689–697. Cerca con Google Cerca con Google

[167] Zilong Lian, Bianca Maria Colosimo, and Enrique del Castillo. “Setup Adjustment of Multiple Lots Using a Sequential Monte Carlo Method”. In: Technometrics 48 (3) (2006), pp. 373–385. Cerca con Google Cerca con Google

[168] Enrique Del Castillo, Rong Pan, and Bianca Maria Colosimo. “A unifying view of some process adjustment methods”. In: Journal of Quality Technology 35 (3) (2003), p. 286. Cerca con Google Cerca con Google

[169] Rong Pan and Enrique Del Castillo. “Scheduling methods for the statistical setup adjustment problem”. In: International Journal of Production Research 41 (7) (2003), pp. 1467–1481. Cerca con Google Cerca con Google

[170] Christopher M. Bishop. Pattern recognition and machine learning. Information science and statistics. New York: Springer, 2006. ISBN: 9780387310732. Cerca con Google Cerca con Google

[171] Genichi Taguchi, A. Elsayed, and Thomas C. Hsiang. Quality engineering in production systems. McGraw-Hill series in industrial engineering and management science. New York: McGraw-Hill, 1989. ISBN: 9780070628304. Cerca con Google Cerca con Google

[172] T. Lindeberg. “Scale-space for discrete signals”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (3) (1990), pp. 234–254. Cerca con Google Cerca con Google

[173] Jeffrey C. Lagarias et al. “Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions”. In: SIAM Journal on Optimization 9 (1) (1998), pp. 112–147. Cerca con Google Cerca con Google

[174] Ronald Cools. “Advances in multidimensional integration”. In: Journal of Computational and Applied Mathematics 149 (1) (2002), pp. 1–12. Cerca con Google Cerca con Google

[175] ISO 14253-1:2013. Geometrical product specifications (GPS) - Inspection by measurement of workpieces and measuring equipment – Part 1: Decision rules for proving conformity or nonconformity with specifications. International Organization for Standardization, Geneva, 2013. Cerca con Google Cerca con Google

[176] Denis Choquet, Pierre L’Ecuyer, and Christian Léger. “Bootstrap confidence intervals for ratios of expectations”. In: ACM Transactions on Modeling and Computer Simulation 9 (4) (1999), pp. 326–348. Cerca con Google Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record