Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Samardzic, Dijana (2016) In vitro and in vivo study of the role of the mitochondria-shaping protein Opa1 in cancer. [Ph.D. thesis]

Full text disponibile come:

PDF Document (PhD thesis) - Submitted Version

Abstract (italian or english)

Mitochondria are double membrane–enclosed organelles that play a crucial role in ATP production, metabolism, regulation of cellular signaling and amplification of programmed cell death (Wasilewski and Scorrano, 2009). In the process of apoptosis mitochondria release cytochrome c and other cofactors that are required to amplify cell death (Li et al., 1997). The complete release of cytochrome c depends on the changes in the shape and in the ultrastructure of the organelle, since during these processes mitochondrial network undergoes fragmentation, that is accompanied by cristae remodeling and widening of cristae junctions (Frank et al., 2001; Scorrano et al., 2002). Of note, deregulation of apoptosis represents a typical hallmark of cancer, since cancer cells exploit the inhibition of the mitochondrial arm of apoptosis to acquire the malignant phenotype (Thompson, 1995).
Mitochondria are dynamic organelles, and all processes that impinge on the changes in the shape and in the ultrastructure of the organelle are controlled by a regulated action of mitochondria shaping proteins, which represent large GTPases that share structural homology with the dynamin protein family (Dimmer and Scorrano, 2006).
Mitochondrial shape in the steady state is a result of the balanced action of fission and fusion events (Griparic and van der Bliek, 2001). The process of mitochondrial fission is controlled by a synchronized action of a cytosolic protein Drp1 (Dynamin – related protein 1) (Cereghetti et al., 2008), that is recruited to the outer mitochondrial membrane where it binds its adaptors Fis1 (Fission – 1), MFF (Mitochondrial fission factor), Mid49 and Mid51 (Mitochondrial division), and participates in the division of mitochondria (Palmer et al., 2011). Mitochondrial fusion, on the other hand, is a process controlled by mitofusins (Mfn1 and Mfn2), proteins located in the outer mitochondrial membrane, together with the only inner membrane GTPase - Optic Atrophy 1 (Opa1) (Santel and Fuller, 2001; Chen et al., 2003; Cipolat et al., 2004).
In humans, alternative splicing of Opa1 gives rise to 8 mRNA splice variants which further get processed by proteolytic proteases giving rise to 2 long and 3 short forms of Opa1 (Olichon et al., 2007; Duvezin-Caubet et al., 2007).
Opa1 is a multifunctional protein: apart from its function in promoting mitochondrial fusion (Cipolat et al., 2004), it also plays a role in the control of apoptosis by keeping in check the cristae remodeling pathway, by forming multimeric complexes at the cristae junctions, keeping in shape the size of these junctions (Frezza et al., 2006; Cipolat et al., 2006). Another important role of Opa1 is in the control of mitochondrial metabolism, because Opa1 favors the superassembly of respiratory chain complexes into supercomplexes, increasing the efficiency of oxidative phosphorilation (Cogliati et al., 2013). All these functions concur to determine the beneficial outcome of its mild overexpression in vivo, which protects from heart and brain ischaemia, denervation-induced muscular atrophy and fulminant hepatitis (Varanita et al., 2015). Furthermore, it corrects mouse models of primary mitochondrial dysfunction caused by defects in components of the respiratory chain (Civiletto et al., 2015).
However, all these beneficial effects come with a counterpart, since a handful of studies reported that Opa1 is overexpressed in several human cancers where high levels of Opa1 correlated with a worst prognosis and an impaired response to therapy (Fang et al., 2012), while blocking its expression was associated with an induction of the mitochondria - associated apoptotic pathway in the cancer cell and a better clinical outcome (Zhao et al., 2013).
In this Thesis we set out to understand what role does Opa1 play in the acquisition and maintenance of the cancer phenotype, both in cellular and animal models, while reasoning that a possible explanation why we don’t have constitutively high Opa1 levels is the fact that the trade off of Opa1 overexpression could be an increased susceptibility to cancer development/progression.
Well established cell lines, initially deriving from patients diagnosed with diffuse large B cell lymphoma (DLBCL) served as our in vitro model system. DLBCLs are one of the most common adult non-Hodgkin lymphoid malignancies today (Lohr et al., 2012). They are a genetically heterogeneous group of tumors that can be further divided in several subsets, identified by their distinct molecular signatures (Alizadeh et al., 2000). Genome wide arrays and multiple clustering algorithms defined a B cell receptor (BCR)/proliferation cluster (BCR–DLBCL), which displays upregulation of genes encoding BCR signaling components, and an OxPhos cluster (OxPhos–DLBCL) which is enriched in genes involved in mitochondrial oxidative phosphorylation. The OxPhos subset lacks an intact BCR signaling network, suggesting dependence on alternative survival mechanisms, which are not yet defined (Monti et al., 2005; Caro et al., 2012). Since a proteomic approach, aimed at carefully dissecting components of the mitochondrial proteome in the BCR versus OxPhos cell group, identified increased levels of Opa1 in the OxPhos (Danial N, manuscript in preparation), we wished to elucidate what role does Opa1 play in these cancer cell subsets.
In order to test whether Opa1 overexpression contributes to the development and progression of cancer in vivo, we reached out to an already established mouse lymphoma model, the Eµ-myc transgenic mouse (Adams et al., 1985), that we further crossed with a mouse model of controlled Opa1 overexpression that was recently generated in our lab (Cogliati et al., 2013), and the net result of this cross gave rise to the mouse model we used in our study.
In this Thesis we present evidence that Opa1 is increasingly processed in the BCR subset of diffuse large B cell lymphoma, and that mitochondrial morphology, metabolism, and ultrastructure are different between the BCR and the OxPhos DLBCL subsets that display different levels of Opa1. Furthermore, we also show evidence of a marked synergy between Opa1 and c-Myc in doubly transgenic mouse models, where Opa1 overexpression is contributing to the development of, and aggravating cancer in Eμ-Myc transgenic animals. The work performed in this thesis highlights a role for Opa1 in DLBCL features, and tumor progression in vivo. Thus, our data indicate that Opa1 displays oncogenic features and it can be taken into consideration as a novel therapeutic target for cancer treatment.

Abstract (a different language)

I mitocondri sono organelli cellulari che svolgono un ruolo cruciale nella produzione di ATP, nel metabolismo, nella regolazione di segnali cellulari e nell'amplificazione della morte cellulare programmata (Wasilewski e Scorrano, 2009). Nel processo di apoptosi i mitocondri rilasciano citocromo c e altri cofattori necessari ad amplificare la morte cellulare (Li et al., 1997). Il rilascio completo del citocromo c dipende dai cambiamenti nella forma e nell’ultrastruttura dell’organello, poiché durante questi processi la complessa rete mitocondriale subisce frammentazione, accompagnata dall’alterazione strutturale e dall’ampliamento delle giunzioni delle creste mitocondriali (Frank et al, 2001;. Scorrano et al., 2002). Da notare che una mancata o alterata regolazione dell'apoptosi rappresenta una delle caratteristiche tipiche del cancro, poiché le cellule tumorali sfruttano l'inibizione della via apoptotica mitocondriale per acquisire il fenotipo maligno (Thompson, 1995).
I mitocondri sono organelli dinamici. Tutti i processi che incidono sui cambiamenti nella forma e nell’ultrastruttura dell’organello sono controllati dall'azione coordinata di una coorte di proteine chiamate mitochondria-shaping proteins, le quali rappresentano grandi GTPasi che condividono omologia strutturale con la famiglia delle dinamine (Dimmer e Scorrano, 2006).
La forma mitocondriale nello stato stazionario è il risultato dell'azione equilibrata di eventi di fissione e fusione (Griparic e van der Bliek, 2001). Il processo di fissione mitocondriale è controllato dall'azione sincrona di una proteina citosolica Drp1 (Dynamin-related protein 1) (Cereghetti et al, 2008), che viene reclutata sulla membrana mitocondriale esterna dove interagisce con i suoi adattatori Fis1 (Fission - 1), MFF (Mitochondrial Fission Factor), Mid49 e Mid51 (Mitochondrial Division 49 e Mitochondrial Division51) e partecipa alla divisione dei mitocondri (Palmer et al., 2011). La fusione mitocondriale, invece, è un processo controllato dalle Mitofusine (Mfn1 e MFN2) - proteine localizzate nella membrana mitocondriale esterna – e da Optic Atrophy 1 (Opa1), la sola GTPasi responsabile della forma mitocondriale localizzata nella membrana mitocondriale interna (Santel e Fuller, 2001; Chen et al., 2003; Cipolat et al, 2004).
Negli esseri umani, lo splicing alternativo di Opa1 dà luogo a 8 varianti di splicing diverse. Queste varianti di splicing possono essere ulteriormente modificate a livello post-trascrizionale dall’azione di proteasi che danno luogo a 2 forme lunghe e 3 forme brevi di Opa1 (Olichon et al, 2007;. Duvezin-Caubet et al., 2007).
Opa1 è una proteina multifunzionale: indipendentemente dalla sua funzione nel promuovere la fusione dei mitocondri, svolge anche un ruolo nel controllo dell'apoptosi, mantenendo sotto controllo la struttura e la forma delle creste mitocondriali, formando complessi multimerici localizzati alle giunzioni delle creste stesse (Cipolat et al., 2004; Frezza et al, 2006; Cipolat et al, 2006). Un altro ruolo importante di Opa1 è nel controllo del metabolismo mitocondriale, perché favorisce l’associazione dei complessi della catena respiratoria mitocondriale in supercomplessi, aumentando in questo modo l'efficienza della fosforilazione ossidativa (Cogliati et al., 2013). Tutte queste funzioni concorrono a determinare il risultato benefico di una sua lieve sovraespressione in vivo, che, infatti, è protettiva in caso di ischemia cerebrale o cardiaca, atrofia muscolare indotta da denervazione e in caso di epatite fulminante (Varanita et al., 2015). Inoltre, la sovraespressione di OPA1 corregge alcuni modelli murini di disfunzione mitocondriale primaria causata da difetti nei componenti della catena respiratoria (Civiletto et al., 2015).
Tuttavia, tutti questi effetti benefici hanno una controparte negativa. Infatti, alcuni studi hanno mostrato come Opa1 sia sovraespressa in diversi tumori umani, in cui elevati livelli di Opa1 sono correlati ad una peggiore prognosi e una risposta alterata alle terapie anti-tumorali (Fang et al., 2012). Al contrario, la riduzione dell’espressione di Opa1 è stata associata all’induzione di apoptosi nelle cellule tumorali tramite la via mitocondriale e ad un migliore esito clinico (Zhao et al, 2013).
In questa Tesi abbiamo deciso di investigare quale ruolo biologico giochi Opa1 nell'acquisizione e nel mantenimento del fenotipo tumorale, sia in modelli cellulari che animali, ipotizzando che una possibile spiegazione per la mancata sovraespressione costitutiva di Opa1 sia che tale sovraespressione potrebbe essere legata ad un aumento di suscettibilità allo sviluppo e/o progressione di forme tumorali.
Abbiamo utilizzato linee cellulari, derivanti da pazienti con diagnosi di linfoma diffuso a grandi cellule B (DLBCL) come sistema modello in vitro. I linfomi diffusi a grandi cellule B (DLBCL) sono tra le forme più comuni di neoplasie linfoidi non-Hodgkin negli adulti (Lohr et al., 2012). Sono un gruppo geneticamente eterogeneo di tumori che possono essere ulteriormente suddivisi in diversi sottogruppi in base a caratteristiche molecolari distinte (Alizadeh et al., 2000). Attraverso un approccio basato su Genome wide array e molteplici algoritmi di clustering sono stati caratterizzati due gruppi di linfomi: il primo presenta la sovraespressione di geni che codificano per i componenti del recettore delle cellule B – BCR (BCR-DLBCL), il secondo è rappresentato da un gruppo arricchito in geni coinvolti nella fosforilazione ossidativa mitocondriale (OxPhosS-DLBCL). Il sottoinsieme OxPhos manca di una rete intatta di segnalazione a valle del BCR, suggerendo la dipendenza da meccanismi di sopravvivenza alternativi, che non sono stati ancora definiti (Monti et al., 2005; Caro et al, 2012.). Attraverso un approccio di proteomica, volto a comprendere con cura i componenti del proteoma mitocondriale del gruppo BCR nei confronti del gruppo OxPhos, è stato osservato che i livelli di Opa1 nelle cellule OxPhos sono più alti (Danial N, manoscritto in preparazione). Per tale ragione abbiamo voluto chiarire quale ruolo giochi Opa1 in questi sottoinsiemi di cellule di cancro.
Al fine di verificare se la sovraespressione di Opa1 contribuisca allo sviluppo e alla progressione del cancro in vivo, abbiamo utilizzato un modello noto e caratterizzato di linfoma in topo, il topo transgenico Eμ-myc (Adams et al., 1985). I topi Eμ-myc sono stati ulteriormente incrociati con un modello murino di sovraespressione Opa1, recentemente generato nel nostro laboratorio (Cogliati et al., 2013). Il risultato di questo incrocio ha generato il modello di topo che abbiamo usato nel nostro studio.
In questa Tesi presentiamo prove che Opa1 è processata in forme più brevi nel sottoinsieme di DLBCL caratterizzato dalla sovraespressione di componenti del BCR e che, come risultato, la morfologia mitocondriale, il metabolismo e l’ultrastruttura sono diversi tra i sottoinsiemi BCR e OxPhos. Inoltre, mostriamo anche la prova di una marcata sinergia tra Opa1 e c-Myc in modelli murini transgenici, dove la sovraespressione di Opa1 contribuisce e aggrava lo sviluppo di cancro nel modello murino Eμ-Myc. Il lavoro svolto in questa Tesi mette in evidenza un ruolo per Opa1 nel definire le caratteristiche dei linfomi diffusi a grandi cellule B (DLBCL) e nella progressione dei tumori in vivo. In conclusione, i nostri dati indicano che Opa1 mostra caratteristiche pro-oncogeniche e che può essere presa in considerazione come nuovo bersaglio terapeutico per il trattamento del cancro.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Scorrano, Luca
Supervisor:Scorrano, Luca
Data di deposito della tesi:27 January 2016
Anno di Pubblicazione:31 January 2016
Key Words:mitochondria, Opa1, cancer, lymphoma, apoptosis, mouse model, DLBCL
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:9207
Depositato il:21 Oct 2016 17:04
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abramson,J.S. and Shipp,M.A. (2005). Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 106, 1164-1174. Cerca con Google

Acin-Perez,R., Fernandez-Silva,P., Peleato,M.L., Perez-Martos,A., and Enriquez,J.A. (2008). Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529-539. Cerca con Google

Adams,J.M., Harris,A.W., Pinkert,C.A., Corcoran,L.M., Alexander,W.S., Cory,S., Palmiter,R.D., and Brinster,R.L. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533-538. Cerca con Google

Akepati,V.R., Muller,E.C., Otto,A., Strauss,H.M., Portwich,M., and Alexander,C. (2008). Characterization of OPA1 isoforms isolated from mouse tissues. J. Neurochem. 106, 372-383. Cerca con Google

Alexander,C., Votruba,M., Pesch,U.E., Thiselton,D.L., Mayer,S., Moore,A., Rodriguez,M., Kellner,U., Leo-Kottler,B., Auburger,G., Bhattacharya,S.S., and Wissinger,B. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211-215. Cerca con Google

Alexander,W.S., Bernard,O., Cory,S., and Adams,J.M. (1989). Lymphomagenesis in E mu-myc transgenic mice can involve ras mutations. Oncogene 4, 575-581. Cerca con Google

Alizadeh,A.A., Eisen,M.B., Davis,R.E., Ma,C., Lossos,I.S., Rosenwald,A., Boldrick,J.C., Sabet,H., Tran,T., Yu,X., Powell,J.I., Yang,L., Marti,G.E., Moore,T., Hudson,J., Jr., Lu,L., Lewis,D.B., Tibshirani,R., Sherlock,G., Chan,W.C., Greiner,T.C., Weisenburger,D.D., Armitage,J.O., Warnke,R., Levy,R., Wilson,W., Grever,M.R., Byrd,J.C., Botstein,D., Brown,P.O., and Staudt,L.M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511. Cerca con Google

Attardi,G. and Schatz,G. (1988). Biogenesis of mitochondria. Annu. Rev. Cell. Biol. 4, 289-333. Cerca con Google

Bedard,K. and Krause,K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87, 245-313. Cerca con Google

Belenguer,P. and Pellegrini,L. (2013). The dynamin GTPase OPA1: more than mitochondria? Biochim. Biophys. Acta 1833, 176-183. Cerca con Google

Bojarczuk,K., Bobrowicz,M., Dwojak,M., Miazek,N., Zapala,P., Bunes,A., Siernicka,M., Rozanska,M., and Winiarska,M. (2015). B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol. Dis. 55, 255-265. Cerca con Google

Borche,L., Lim,A., Binet,J.L., and Dighiero,G. (1990). Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood 76, 562-569. Cerca con Google

Caro,P., Kishan,A.U., Norberg,E., Stanley,I.A., Chapuy,B., Ficarro,S.B., Polak,K., Tondera,D., Gounarides,J., Yin,H., Zhou,F., Green,M.R., Chen,L., Monti,S., Marto,J.A., Shipp,M.A., and Danial,N.N. (2012). Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547-560. Cerca con Google

Cereghetti,G.M., Stangherlin,A., Martins de,B.O., Chang,C.R., Blackstone,C., Bernardi,P., and Scorrano,L. (2008). Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. U. S. A 105, 15803-15808. Cerca con Google

Chang,C.R. and Blackstone,C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol Chem. 282, 21583-21587. Cerca con Google

Chen,L., Monti,S., Juszczynski,P., Daley,J., Chen,W., Witzig,T.E., Habermann,T.M., Kutok,J.L., and Shipp,M.A. (2008). SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 111, 2230-2237. Cerca con Google

Cheng,S., Coffey,G., Zhang,X.H., Shaknovich,R., Song,Z., Lu,P., Pandey,A., Melnick,A.M., Sinha,U., and Wang,Y.L. (2011). SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 118, 6342-6352. Cerca con Google

Cipolat,S., Martins de Brito O., Dal Zilio B., and Scorrano,L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A 101, 15927-15932. Cerca con Google

Cipolat,S., Rudka,T., Hartmann,D., Costa,V., Serneels,L., Craessaerts,K., Metzger,K., Frezza,C., Annaert,W., D'Adamio,L., Derks,C., Dejaegere,T., Pellegrini,L., D'Hooge,R., Scorrano,L., and De Strooper,B. (2006). Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling. Cell 126, 163-175. Cerca con Google

Civiletto,G., Varanita,T., Cerutti,R., Gorletta,T., Barbaro,S., Marchet,S., Lamperti,C., Viscomi,C., Scorrano,L., and Zeviani,M. (2015). Opa1 overexpression ameliorates the clinical phenotype of two mitochondrial disease mouse models. Cell Metabolism. Cerca con Google

Cogliati,S., Frezza,C., Soriano,M.E., Varanita,T., Quintana-Cabrera,R., Corrado,M., Cipolat,S., Costa,V., Casarin,A., Gomes,L.C., Perales-Clemente,E., Salviati,L., Fernandez-Silva,P., Enriquez,J.A., and Scorrano,L. (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171. Cerca con Google

Collins,T.J., Berridge,M.J., Lipp,P., and Bootman,M.D. (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21, 1616-1627. Cerca con Google

Colombini,M. and Mannella,C.A. (2012). VDAC, the early days. Biochim. Biophys. Acta 1818, 1438-1443. Cerca con Google

Corrado,M., Scorrano,L., and Campello,S. (2012). Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int. J. Cell Biol. 2012, 729290. Cerca con Google

Craxton,A., Chuang,P.I., Shu,G., Harlan,J.M., and Clark,E.A. (2000). The CD40-inducible Bcl-2 family member A1 protects B cells from antigen receptor-mediated apoptosis. Cell Immunol. 200, 56-62. Cerca con Google

Cribbs,J.T. and Strack,S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939-944. Cerca con Google

Dal Porto,J.M., Gauld,S.B., Merrell,K.T., Mills,D., Pugh-Bernard,A.E., and Cambier,J. (2004). B cell antigen receptor signaling 101. Mol. Immunol. 41, 599-613. Cerca con Google

Dalla-Favera,R., Migliazza,A., Chang,C.C., Niu,H., Pasqualucci,L., Butler,M., Shen,Q., and Cattoretti,G. (1999). Molecular pathogenesis of B cell malignancy: the role of BCL-6. Curr. Top. Microbiol. Immunol. 246, 257-263. Cerca con Google

Davidson,W.F., Giese,T., and Fredrickson,T.N. (1998). Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med. 187, 1825-1838. Cerca con Google

Davis,R.E., Ngo,V.N., Lenz,G., Tolar,P., Young,R.M., Romesser,P.B., Kohlhammer,H., Lamy,L., Zhao,H., Yang,Y., Xu,W., Shaffer,A.L., Wright,G., Xiao,W., Powell,J., Jiang,J.K., Thomas,C.J., Rosenwald,A., Ott,G., Muller-Hermelink,H.K., Gascoyne,R.D., Connors,J.M., Johnson,N.A., Rimsza,L.M., Campo,E., Jaffe,E.S., Wilson,W.H., Delabie,J., Smeland,E.B., Fisher,R.I., Braziel,R.M., Tubbs,R.R., Cook,J.R., Weisenburger,D.D., Chan,W.C., Pierce,S.K., and Staudt,L.M. (2010). Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88-92. Cerca con Google

de Brito,O.M. and Scorrano,L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456, 605-610. Cerca con Google

Delettre,C., Griffoin,J.M., Kaplan,J., Dollfus,H., Lorenz,B., Faivre,L., Lenaers,G., Belenguer,P., and Hamel,C.P. (2001). Mutation spectrum and splicing variants in the OPA1 gene. Hum. Genet. 109, 584-591. Cerca con Google

Delettre,C., Lenaers,G., Griffoin,J.M., Gigarel,N., Lorenzo,C., Belenguer,P., Pelloquin,L., Grosgeorge,J., Turc-Carel,C., Perret,E., Astarie-Dequeker,C., Lasquellec,L., Arnaud,B., Ducommun,B., Kaplan,J., and Hamel,C.P. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207-210. Cerca con Google

DeVay,R.M., Dominguez-Ramirez,L., Lackner,L.L., Hoppins,S., Stahlberg,H., and Nunnari,J. (2009). Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793-803. Cerca con Google

Dimmer,K.S. and Scorrano,L. (2006). (De)constructing mitochondria: what for? Physiology. (Bethesda. ) 21, 233-241. Cerca con Google

Donnou,S., Galand,C., Touitou,V., Sautes-Fridman,C., Fabry,Z., and Fisson,S. (2012). Murine models of B-cell lymphomas: promising tools for designing cancer therapies. Adv. Hematol. 2012, 701704. Cerca con Google

Ehses,S., Raschke,I., Mancuso,G., Bernacchia,A., Geimer,S., Tondera,D., Martinou,J.C., Westermann,B., Rugarli,E.I., and Langer,T. (2009). Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187, 1023-1036. Cerca con Google

Fang,H.Y., Chen,C.Y., Chiou,S.H., Wang,Y.T., Lin,T.Y., Chang,H.W., Chiang,I.P., Lan,K.J., and Chow,K.C. (2012). Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells. Hum. Pathol. 43, 105-114. Cerca con Google

Frank,S., Gaume,B., Bergmann-Leitner,E.S., Leitner,W.W., Robert,E.G., Catez,F., Smith,C.L., and Youle,R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515-525. Cerca con Google

Frey,T.G. and Mannella,C.A. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25, 319-324. Cerca con Google

Frezza,C., Cipolat,S., Martins,d.B., Micaroni,M., Beznoussenko,G.V., Rudka,T., Bartoli,D., Polishuck,R.S., Danial,N.N., De Strooper,B., and Scorrano,L. (2006). OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 126, 177-189. Cerca con Google

Gandre-Babbe,S. and van der Bliek,A.M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402-2412. Cerca con Google

Gascoyne,R.D., Adomat,S.A., Krajewski,S., Krajewska,M., Horsman,D.E., Tolcher,A.W., O'Reilly,S.E., Hoskins,P., Coldman,A.J., Reed,J.C., and Connors,J.M. (1997). Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 90, 244-251. Cerca con Google

Gilkerson,R.W., Selker,J.M., and Capaldi,R.A. (2003). The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546, 355-358. Cerca con Google

Griparic,L., Kanazawa,T., and van der Bliek,A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol 178, 757-764. Cerca con Google

Griparic,L., van der Wel,N.N., Orozco,I.J., Peters,P.J., and van der Bliek,A.M. (2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792-18798. Cerca con Google

Guan,K., Farh,L., Marshall,T.K., and Deschenes,R.J. (1993). Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet 24, 141-148. Cerca con Google

Hackenbrock,C.R., Schneider,H., Lemasters,J.J., and Hochli,M. (1980). Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane. Adv. Exp. Med. Biol. 132, 245-263. Cerca con Google

Hanahan,D. and Weinberg,R.A. (2000). The hallmarks of cancer. Cell. 100, 57-70. Cerca con Google

Harder,Z., Zunino,R., and McBride,H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340-345. Cerca con Google

Harris,A.W., Pinkert,C.A., Crawford,M., Langdon,W.Y., Brinster,R.L., and Adams,J.M. (1988). The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J. Exp. Med. 167, 353-371. Cerca con Google

Harris,N.L., Jaffe,E.S., Stein,H., Banks,P.M., Chan,J.K., Cleary,M.L., Delsol,G., De Wolf-Peeters,C., Falini,B., Gatter,K.C., and . (1994). A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361-1392. Cerca con Google

Hartge,P. and Devesa,S.S. (1992). Quantification of the impact of known risk factors on time trends in non-Hodgkin's lymphoma incidence. Cancer Res. 52, 5566s-5569s. Cerca con Google

Herlan,M., Vogel,F., Bornhovd,C., Neupert,W., and Reichert,A.S. (2003). Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781-27788. Cerca con Google

Herrmann,J.M. and Neupert,W. (2003). Protein insertion into the inner membrane of mitochondria. IUBMB Life 55. Cerca con Google

Hwang,S.K., Minai-Tehrani,A., Yu,K.N., Chang,S.H., Kim,J.E., Lee,K.H., Park,J., Beck,G.R., Jr., and Cho,M.H. (2012). Carboxyl-terminal modulator protein induces apoptosis by regulating mitochondrial function in lung cancer cells. Int. J. Oncol. 40, 1515-1524. Cerca con Google

Ishihara,N., Fujita,Y., Oka,T., and Mihara,K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966-2977. Cerca con Google

Jones,B.A. and Fangman,W.L. (1992). Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes. Dev. 6, 380-389. Cerca con Google

Kong,B., Wang,Q., Fung,E., Xue,K., and Tsang,B.K. (2014). p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers. J. Biol. Chem. 289, 27134-27145. Cerca con Google

Koshiba,T., Detmer,S.A., Kaiser,J.T., Chen,H., McCaffery,J.M., and Chan,D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862. Cerca con Google

Kramer,M.H., Hermans,J., Wijburg,E., Philippo,K., Geelen,E., van Krieken,J.H., de,J.D., Maartense,E., Schuuring,E., and Kluin,P.M. (1998). Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92, 3152-3162. Cerca con Google

Kraus,M., Alimzhanov,M.B., Rajewsky,N., and Rajewsky,K. (2004). Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787-800. Cerca con Google

Kroemer,G. (2006). Mitochondria in cancer. Oncogene 25, 4630-4632. Cerca con Google

Kuppers,R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262. Cerca con Google

Kurosaki,T. (2010). B-lymphocyte biology. Immunol. Rev. 237, 5-9. Cerca con Google

Lam,K.P., Kuhn,R., and Rajewsky,K. (1997). In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073-1083. Cerca con Google

Langdon,W.Y., Harris,A.W., Cory,S., and Adams,J.M. (1986). The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47, 11-18. Cerca con Google

Lee,Y.J., Jeong,S.Y., Karbowski,M., Smith,C.L., and Youle,R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001-5011. Cerca con Google

Lenz,G., Davis,R.E., Ngo,V.N., Lam,L., George,T.C., Wright,G.W., Dave,S.S., Zhao,H., Xu,W., Rosenwald,A., Ott,G., Muller-Hermelink,H.K., Gascoyne,R.D., Connors,J.M., Rimsza,L.M., Campo,E., Jaffe,E.S., Delabie,J., Smeland,E.B., Fisher,R.I., Chan,W.C., and Staudt,L.M. (2008). Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676-1679. Cerca con Google

Levine,M.H., Haberman,A.M., Sant'Angelo,D.B., Hannum,L.G., Cancro,M.P., Janeway,C.A., Jr., and Shlomchik,M.J. (2000). A B-cell receptor-specific selection step governs immature to mature B cell differentiation. Proc. Natl. Acad. Sci. U. S. A 97, 2743-2748. Cerca con Google

Li,P., Nijhawan,D., Budihardjo,I., Srinivasula,S.M., Ahmad,M., Alnemri,E.S., and Wang,X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. Cerca con Google

Liu,X., Weaver,D., Shirihai,O., and Hajnoczky,G. (2009). Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 28, 3074-3089. Cerca con Google

Liu,Y.J., Mason,D.Y., Johnson,G.D., Abbot,S., Gregory,C.D., Hardie,D.L., Gordon,J., and MacLennan,I.C. (1991). Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905-1910. Cerca con Google

Lohr,J.G., Stojanov,P., Lawrence,M.S., Auclair,D., Chapuy,B., Sougnez,C., Cruz-Gordillo,P., Knoechel,B., Asmann,Y.W., Slager,S.L., Novak,A.J., Dogan,A., Ansell,S.M., Link,B.K., Zou,L., Gould,J., Saksena,G., Stransky,N., Rangel-Escareno,C., Fernandez-Lopez,J.C., Hidalgo-Miranda,A., Melendez-Zajgla,J., Hernandez-Lemus,E., Schwarz,C., Imaz-Rosshandler,I., Ojesina,A.I., Jung,J., Pedamallu,C.S., Lander,E.S., Habermann,T.M., Cerhan,J.R., Shipp,M.A., Getz,G., and Golub,T.R. (2012). Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. U. S. A 109, 3879-3884. Cerca con Google

Mannella,C.A., Marko,M., Penczek,P., Barnard,D., and Frank,J. (1994). The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech 27, 278-283. Cerca con Google

McQuibban,G.A., Saurya,S., and Freeman,M. (2003). Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537-541. Cerca con Google

Meeusen,S., DeVay,R., Block,J., Cassidy-Stone,A., Wayson,S., McCaffery,J.M., and Nunnari,J. (2006). Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383-395. Cerca con Google

Melchers,F., ten,B.E., Seidl,T., Kong,X.C., Yamagami,T., Onishi,K., Shimizu,T., Rolink,A.G., and Andersson,J. (2000). Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 175, 33-46. Cerca con Google

Monti,S., Savage,K.J., Kutok,J.L., Feuerhake,F., Kurtin,P., Mihm,M., Wu,B., Pasqualucci,L., Neuberg,D., Aguiar,R.C., Dal,C.P., Ladd,C., Pinkus,G.S., Salles,G., Harris,N.L., Dalla-Favera,R., Habermann,T.M., Aster,J.C., Golub,T.R., and Shipp,M.A. (2005). Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851-1861. Cerca con Google

Mori,S., Rempel,R.E., Chang,J.T., Yao,G., Lagoo,A.S., Potti,A., Bild,A., and Nevins,J.R. (2008). Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. Cancer Res. 68, 8525-8534. Cerca con Google

Niemann,C.U. and Wiestner,A. (2013). B-cell receptor signaling as a driver of lymphoma development and evolution. Semin. Cancer Biol. 23, 410-421. Cerca con Google

Olichon,A., Baricault,L., Gas,N., Guillou,E., Valette,A., Belenguer,P., and Lenaers,G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743-7746. Cerca con Google

Olichon,A., Elachouri,G., Baricault,L., Delettre,C., Belenguer,P., and Lenaers,G. (2007a). OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death. Differ. 14, 682-692. Cerca con Google

Olichon,A., Emorine,L.J., Descoins,E., Pelloquin,L., Brichese,L., Gas,N., Guillou,E., Delettre,C., Valette,A., Hamel,C.P., Ducommun,B., Lenaers,G., and Belenguer,P. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171-176. Cerca con Google

Olichon,A., Landes,T., rnaune-Pelloquin,L., Emorine,L.J., Mils,V., Guichet,A., Delettre,C., Hamel,C., mati-Bonneau,P., Bonneau,D., Reynier,P., Lenaers,G., and Belenguer,P. (2007b). Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J. Cell Physiol 211, 423-430. Cerca con Google

Otera,H., Wang,C., Cleland,M.M., Setoguchi,K., Yokota,S., Youle,R.J., and Mihara,K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 191, 1141-1158. Cerca con Google

Palade,G.E. (1952). The fine structure of mitochondria. Anat. Rec. 114, 427-451. Cerca con Google

Palmer,C.S., Osellame,L.D., Laine,D., Koutsopoulos,O.S., Frazier,A.E., and Ryan,M.T. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565-573. Cerca con Google

Pelloquin,L., Belenguer,P., Menon,Y., Gas,N., and Ducommun,B. (1999). Fission yeast Msp1 is a mitochondrial dynamin-related protein. J. Cell Sci. 112. Cerca con Google

Perez-Vera,P., Reyes-Leon,A., and Fuentes-Panana,E.M. (2011). Signaling proteins and transcription factors in normal and malignant early B cell development. Bone Marrow Res. 2011, 502751. Cerca con Google

Perkins,G., Renken,C., Martone,M.E., Young,S.J., Ellisman,M., and Frey,T. (1997). Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119, 260-272. Cerca con Google

Pfanner,N. and Meijer,M. (1997). The Tom and Tim machine. Curr. Biol. 7, R100-R103. Cerca con Google

Pfanner,N. and Wiedemann,N. (2002). Mitochondrial protein import: two membranes, three translocases. Curr Opin Cell Biol 14. Cerca con Google

Pieper,K., Grimbacher,B., and Eibel,H. (2013). B-cell biology and development. J. Allergy Clin. Immunol. 131, 959-971. Cerca con Google

Reed,J.C., Haldar,S., Croce,C.M., and Cuddy,M.P. (1990). Complementation by BCL2 and C-HA-RAS oncogenes in malignant transformation of rat embryo fibroblasts. Mol. Cell Biol. 10, 4370-4374. Cerca con Google

Rhodes,D.R., Yu,J., Shanker,K., Deshpande,N., Varambally,R., Ghosh,D., Barrette,T., Pandey,A., and Chinnaiyan,A.M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6, 1-6. Cerca con Google

Rojo,M., Legros,F., Chateau,D., and Lombes,A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663-1674. Cerca con Google

Sato,M. and Sato,K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141-1144. Cerca con Google

Satoh,M., Hamamoto,T., Seo,N., Kagawa,Y., and Endo,H. (2003). Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482-493. Cerca con Google

Schatz,D.G. and Swanson,P.C. (2011). V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet. 45, 167-202. Cerca con Google

Schrader,M. (2006). Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta 1763. Cerca con Google

Scorrano,L. (2013). Keeping mitochondria in shape: a matter of life and death. Eur. J. Clin. Invest 43, 886-893. Cerca con Google

Scorrano,L., Ashiya,M., Buttle,K., Weiler,S., Oakes,S.A., Mannella,C.A., and Korsmeyer,S.J. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55-67. Cerca con Google

Sesaki,H., Southard,S.M., Yaffe,M.P., and Jensen,R.E. (2003). Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342-2356. Cerca con Google

Shaffer,A.L., Rosenwald,A., and Staudt,L.M. (2002). Lymphoid malignancies: the dark side of B-cell differentiation. Nat. Rev. Immunol. 2, 920-932. Cerca con Google

Shaffer,A.L., III, Young,R.M., and Staudt,L.M. (2012). Pathogenesis of human B cell lymphomas. Annu. Rev. Immunol. 30, 565-610. Cerca con Google

Sidman,C.L., Shaffer,D.J., Jacobsen,K., Vargas,S.R., and Osmond,D.G. (1993). Cell populations during tumorigenesis in Eu-myc transgenic mice. Leukemia 7, 887-895. Cerca con Google

SJOSTRAND,F.S. (1953). Electron microscopy of mitochondria and cytoplasmic double membranes. Nature 171, 30-32. Cerca con Google

Song,Z., Chen,H., Fiket,M., Alexander,C., and Chan,D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol 178, 749-755. Cerca con Google

Song,Z., Ghochani,M., McCaffery,J.M., Frey,T.G., and Chan,D.C. (2009). Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20, 3525-3532. Cerca con Google

Staudt,L.M. (2010). Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect. Biol. 2, a000109. Cerca con Google

Sthoeger,Z.M., Wakai,M., Tse,D.B., Vinciguerra,V.P., Allen,S.L., Budman,D.R., Lichtman,S.M., Schulman,P., Weiselberg,L.R., and Chiorazzi,N. (1989). Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J. Exp. Med. 169, 255-268. Cerca con Google

Strasser,A., Harris,A.W., Bath,M.L., and Cory,S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331-333. Cerca con Google

Suzuki,M., Jeong,S.Y., Karbowski,M., Youle,R.J., and Tjandra,N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334, 445-458. Cerca con Google

Taguchi,N., Ishihara,N., Jofuku,A., Oka,T., and Mihara,K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol Chem. 282, 11521-11529. Cerca con Google

Tatsuta,T. and Langer,T. (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306-314. Cerca con Google

Teng,G. and Papavasiliou,F.N. (2007). Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107-120. Cerca con Google

Thome,M. (2004). CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat. Rev. Immunol. 4, 348-359. Cerca con Google

Tsujimoto,Y. (1989). Stress-resistance conferred by high level of bcl-2 alpha protein in human B lymphoblastoid cell. Oncogene 4, 1331-1336. Cerca con Google

Uhlen,M., Bjorling,E., Agaton,C., Szigyarto,C.A., Amini,B., Andersen,E., Andersson,A.C., Angelidou,P., Asplund,A., Asplund,C., Berglund,L., Bergstrom,K., Brumer,H., Cerjan,D., Ekstrom,M., Elobeid,A., Eriksson,C., Fagerberg,L., Falk,R., Fall,J., Forsberg,M., Bjorklund,M.G., Gumbel,K., Halimi,A., Hallin,I., Hamsten,C., Hansson,M., Hedhammar,M., Hercules,G., Kampf,C., Larsson,K., Lindskog,M., Lodewyckx,W., Lund,J., Lundeberg,J., Magnusson,K., Malm,E., Nilsson,P., Odling,J., Oksvold,P., Olsson,I., Oster,E., Ottosson,J., Paavilainen,L., Persson,A., Rimini,R., Rockberg,J., Runeson,M., Sivertsson,A., Skollermo,A., Steen,J., Stenvall,M., Sterky,F., Stromberg,S., Sundberg,M., Tegel,H., Tourle,S., Wahlund,E., Walden,A., Wan,J., Wernerus,H., Westberg,J., Wester,K., Wrethagen,U., Xu,L.L., Hober,S., and Ponten,F. (2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell Proteomics. 4, 1920-1932. Cerca con Google

Varanita,T., Soriano,M.E., Romanello,V., Zaglia,T., Quintana-Cabrera,R., Semenzato,M., Menabò,R., Costa,V., Civiletto,G., Pesce,P., Viscomi,C., Zeviani,M., Di Lisa,F., Mongillo,M., Sandri,M., and Scorrano,L. (2015). The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. Cell Metabolism 21. Cerca con Google

Vaux,D.L., Cory,S., and Adams,J.M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-442. Cerca con Google

Vogel,F., Bornhovd,C., Neupert,W., and Reichert,A.S. (2006). Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237-247. Cerca con Google

Wasiak,S., Zunino,R., and McBride,H.M. (2007). Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439-450. Cerca con Google

Wasilewski,M. and Scorrano,L. (2009). The changing shape of mitochondrial apoptosis. Trends Endocrinol. Metab 20, 287-294. Cerca con Google

Ye,B.H., Lista,F., Lo,C.F., Knowles,D.M., Offit,K., Chaganti,R.S., and Dalla-Favera,R. (1993). Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747-750. Cerca con Google

Yu,T., Fox,R.J., Burwell,L.S., and Yoon,Y. (2005). Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J. Cell Sci. 118, 4141-4151. Cerca con Google

Zhao,X., Tian,C., Puszyk,W.M., Ogunwobi,O.O., Cao,M., Wang,T., Cabrera,R., Nelson,D.R., and Liu,C. (2013). OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab Invest 93, 8-19. Cerca con Google

Zhivotovsky,B., Orrenius,S., Brustugun,O.T., and Doskeland,S.O. (1998). Injected cytochrome c induces apoptosis. Nature 391, 449-450. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record