Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

D'Aronco, Sara (2016) DHA synthesis during pregnancy and markers of lung injury in infants with acute lung diseases. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2550Kb

Abstract (inglese)

Docosahexaenoic acid (DHA) is an essential constituent of membrane cell phospholipids and a precursor of eicosanoid’s synthesis. During pregnancy, DHA is taken up from the maternal bloodstream and supplied to the fetus by placenta transfer. Maternal DHA intake, metabolism, and transfer are therefore crucial for fetal growth and development. In the first part of this thesis we aimed to evaluate the feasibility of measuring DHA endogenous synthesis in pregnant women using the stable isotope natural abundance approach. Alveolar surfactant is a key player in sustaining lung physiology. It’s well established that lack of surfactant, surfactant inhibition as well as changes in surfactant composition, can seriously compromise gas exchange and may lead to mechanical ventilation support. Thus, in the second part of this thesis we studied surfactant composition during acute lung disease in newborn infants. First we compared term newborns affected by neonatal pneumonia and without lung disease to clarify if surfactant proteins’ changes could have a role in the reduced pulmonary compliance observed in these patients. Finally, we studied if and how histological chorioamnionitis and gestational age affect surfactant composition in pre-term infants affected by RDS.

Abstract (italiano)

L’acido docoesaenoico è un componente essenziale dei fosfolipidi delle membrane cellulari ed un precursore per la sintesi degli eicosanoidi. Durante la gravidanza il passaggio di DHA dalla circolazione materna al feto è mediata dal passaggio trans-placentare. Assunzione, metabolismo materno e transfer placentare del DHA sono quindi fondamentali per la crescita e lo sviluppo del feto. L’obiettivo della prima parte di questa tesi è stato quello di valutare la fattibilità nel misurare la sintesi endogena di DHA durante la gravidanza utilizzando l’approccio dell’abbondanza naturale degli isotopi stabili.
Il surfattante alveolare è di fondamentale importanza nella fisiologia polmonare. E' noto che una carenza di surfattante, una sua inibizione così come dei cambiamenti nella sua composizione, possono compromettere l’efficienza dello scambio gassoso al punto da rendere necessario il supporto della ventilazione meccanica. Nella seconda parte di questa tesi abbiamo quindi studiato la composizione del surfattante nei neonati affetti da malattia polmonare acuta. Prima abbiamo confrontato neonati con polmonite neonatale con neonati privi di patologia polmonare per chiarire il ruolo delle proteine specifiche del surfattante
nella ridotta compliance polmonare che si osserva nella fase acuta della polmonite. Infine
abbiamo studiato come e se età gestazionale ed esposizione alla corioamniosite istologica
influenzano la composizione del surfattante in neonati pretermine affetti da RDS.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cogo, Paola
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE SANITARIA > EMATO-ONCOLOGIA, GENETICA, MALATTIE RARE E MEDICINA PREDITTIVA
Data di deposito della tesi:27 Gennaio 2016
Anno di Pubblicazione:Gennaio 2016
Parole chiave (italiano / inglese):Pregnancy DHA / Surfactant Composition Newborns Acute Lung Disease
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/38 Pediatria generale e specialistica
Struttura di riferimento:Dipartimenti > Dipartimento di Salute della Donna e del Bambino
Codice ID:9216
Depositato il:18 Ott 2016 12:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Graham, D. Y. et al. Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet 1, 1174–1177 (1987). Cerca con Google

2. Weaver, L. T. Stable isotope breath tests. Nutr. Burbank Los Angeles Cty. Calif 14, 826–829 (1998). Cerca con Google

3. Modak, A. S. Stable isotope breath tests in clinical medicine: a review. J. Breath Res. 1, 014003 (2007). Cerca con Google

4. Westerterp, K. R. Body composition, water turnover and energy turnover assessment with labelled water. Proc. Nutr. Soc. 58, 945–951 (1999). Cerca con Google

5. Patterson, B. W. Use of stable isotopically labeled tracers for studies of metabolic kinetics: An overview. Metabolism. 46, 322–329 (1997). Cerca con Google

6. Jones, P. J. & Leatherdale, S. T. Stable isotopes in clinical research: safety reaffirmed. Clin Sci (Lond). 80, 277–280 (1991). Cerca con Google

7. Koletzko, B. et al. The use of stable isotope techniques for nutritional and metabolic research in paediatrics. Early Hum. Dev. 53 Suppl, S77–S97 (1998). Cerca con Google

8. Emken, E. a. Stable isotope approaches, applications, and issues related to polyunsaturated fatty acid metabolism studies. Lipids 36, 965–973 (2001). Cerca con Google

9. Emken, E. a et al. Effect of triacylglycerol structure on absorption and metabolism of isotope-labeled palmitic and linoleic acids by humans. Lipids 39, 1–9 (2004). Cerca con Google

10. O’Leary, M. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988). Cerca con Google

11. Muccio, Z. & Jackson, G. P. Isotope Ratio Mass Spectrometry. Analyst 134, 213–222 (2009). Cerca con Google

12. Meier-Augenstein, W. Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A 842, 351–371 (1999). Cerca con Google

13. Demmelmair, H., Schenck, U. v., Behrendt, E., Sauerwald, T. & Koletzko, B. Estimation of Arachidonic Acid Synthesis in Full Term Neonates Using Natural Variation of 13C Content. J. Paediatr. Gastroenterol. Nutr. 21, 31–36 (1995). Cerca con Google

14. Carnielli, V. P. et al. Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids. Am. J. Clin. Nutr. 86, 1323–1330 (2007). Cerca con Google

15. Finehout, E. J. & Lee, K. H. An introduction to mass spectrometry applications in biological research. Biochem. Mol. Biol. Educ. 32, 93–100 (2004). Cerca con Google

16. Glish, G. L. & Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov. 2, 140–150 (2003). Cerca con Google

17. Brenna, J. T., Corso, T. N., Tobias, H. J. & Caimi, R. J. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom. Rev. 16, 227–258 (1998). Cerca con Google

18. Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486, 219–231 (2000). Cerca con Google

19. Giltay, E. J. et al. Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic acid levels in postmenopausal women. J. Endocrinol. 182, 399–408 (2004). Cerca con Google

20. Burdge, G. C. & Calder, P. C. Dietary alpha-linolenic acid and health-related outcomes: a metabolic perspective. Nutr. Res. Rev. 19, 26–52 (2006). Cerca con Google

21. Burdge, G. C., Jones, A. E. & Wootton, S. a. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br. J. Nutr. 88, 355–363 (2002). Cerca con Google

22. Burdge, G. C. & Wootton, S. a. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 88, 411–420 (2002). Cerca con Google

23. Carnielli, V. P. et al. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr. Res. 40, 169–174 (1996). Cerca con Google

24. Llanos, A. et al. Infants with intrauterine growth restriction have impaired formation of docosahexaenoic acid in early neonatal life: a stable isotope study. Pediatr. Res. 58, 735–740 (2005). Cerca con Google

25. Pawlosky, R. J. et al. Effects of beef- and fish-based diets on the kinetics of n-3 fatty acid metabolism in human subjects. Am J Clin Nutr 77, 565–572 (2003). Cerca con Google

26. Salem, N., Wegher, B., Mena, P. & Uauy, R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci. U. S. A. 93, 49–54 (1996). Cerca con Google

27. Pawlosky, R., Hibbeln, J., Lin, Y. & Salem, N. n-3 Fatty acid metabolism in women. Br. J. Nutr. 90, 993 (2007). Cerca con Google

28. Giltay, E. J., Gooren, L. J. G., Toorians, a. W. F. T., Katan, M. B. & Zock, P. L. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am. J. Clin. Nutr. 80, 1167–1174 (2004). Cerca con Google

29. Schaeffer, L. et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 15, 1745–1756 (2006). Cerca con Google

30. Malerba, G. et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43, 289–299 (2008). Cerca con Google

31. Xie, L. & Innis, S. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J. Nutr. 138, 2222–2228 (2008). Cerca con Google

32. Tanaka, T. et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 5, e1000338 (2009). Cerca con Google

33. Koletzko, B., Lattka, E., Zeilinger, S., Illig, T. & Steer, C. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr 93, 211–219 (2011). Cerca con Google

34. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001). Cerca con Google

35. Godson, C. et al. lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000). Cerca con Google

36. Schwab, J. M. & Serhan, C. N. Lipoxins and new lipid mediators in the resolution of inflammation. Curr. Opin. Pharmacol. 6, 414–420 (2006). Cerca con Google

37. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014). Cerca con Google

38. Wang, C. et al. n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am. J. Clin. Nutr. 84, 5–17 (2006). Cerca con Google

39. Neuringer, M., Anderson, G. J. & Connor, W. E. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu. Rev. Nutr. 8, 517–541 (1988). Cerca con Google

40. SanGiovanni, J. P. & Chew, E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24, 87–138 (2005). Cerca con Google

41. Scott, B. L. & Bazan, N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. U. S. A. 86, 2903–2907 (1989). Cerca con Google

42. Gould, J., Smithers, L. & Makrides, M. The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 97, 531–544 (2013). Cerca con Google

43. Szajewska, H., Horvath, A. & Koletzko, B. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 83, 1337–1344 (2006). Cerca con Google

44. Makrides, M., Duley, L. & Olsen, S. F. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane database Syst. Rev. 19, CD003402 (2006). Cerca con Google

45. Salvig, J. D. & Lamont, R. F. Evidence regarding an effect of marine n-3 fatty acids on preterm birth: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 90, 825–838 (2011). Cerca con Google

46. Larque, E. et al. Omega 3 fatty acids, gestation and pregnancy outcomes. Br. J. Nutr. 107 Suppl , S77–84 (2012). Cerca con Google

47. Saccone, G. & Berghella, V. Omega-3 Long Chain Polyunsaturated Fatty Acids to Prevent Preterm Birth. Obstet. Gynecol. 125, 663–672 (2015). Cerca con Google

48. Horvath, A., Koletzko, B. & Szajewska, H. Effect of supplementation of women in high-risk pregnancies with long-chain polyunsaturated fatty acids on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Br. J. Nutr. 98, 253–259 (2007). Cerca con Google

49. Jans, L. A. W., Giltay, E. J. & Van der Does, A. J. W. The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression. Br. J. Nutr. 104, 1577–1585 (2010). Cerca con Google

50. Krauss-Etschmann, S. et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 85, 1392–1400 (2007). Cerca con Google

51. Hanebutt, F. L., Demmelmair, H., Schiessl, B., Larqué, E. & Koletzko, B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin. Nutr. 27, 685–693 (2008). Cerca con Google

52. Al, M. D. et al. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 74, 55–68 (1995). Cerca con Google

53. Berghaus, T. M., Demmelmair, H. & Koletzko, B. Fatty acid composition of lipid classes in maternal and cord plasma at birth. Eur. J. Pediatr. 157, 763–768 (1998). Cerca con Google

54. Agostoni, C. et al. Whole blood fatty acid composition at birth: from the maternal compartment to the infant. Clin Nutr 30, 503–505 (2011). Cerca con Google

55. Chambaz, J. et al. Essential fatty acids interconversion in the human fetal liver. Biol. Neonate 47, 136–140 (1985). Cerca con Google

56. Larque, E., Demmelmair, H., Berger, B., Hasbargen, U. & Koletzko, B. In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans. J. Lipid Res. 44, 49–55 (2003). Cerca con Google

57. Campbell, F. M., Gordon, M. J. & Dutta-Roy, A. K. Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sci. 63, 235–240 (1998). Cerca con Google

58. Haggarty, P., Ashton, J., Joynson, M., Abramovich, D. R. & Page, K. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta. Biol. Neonate 75, 350–359 (1999). Cerca con Google

59. Haggarty, P., Page, K., Abramovich, D. R., Ashton, J. & Brown, D. Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 18, 635–642 (1997). Cerca con Google

60. Uhl, O., Demmelmair, H., Rueda, R., Campoy, C. & Koletzko, B. Effects of obesity and gestational diabetes mellitus on placental phospholipids. 9, 1–8 (2015). Cerca con Google

61. Bitsanis, D., Ghebremeskel, K., Moodley, T., Crawford, M. A. & Djahanbakhch, O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids 41, 341–346 (2006). Cerca con Google

62. Cetin, I. et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr. Res. 52, 750–755 (2002). Cerca con Google

63. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957). Cerca con Google

64. Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957). Cerca con Google

65. Nkadi, P. O., Merritt, T. A. & Pillers, D.-A. M. An overview of pulmonary surfactant in the neonate: Genetics, metabolism, and the role of surfactant in health and disease. Mol. Genet. Metab. 97, 95–101 (2009). Cerca con Google

66. Berthiaume, Y., Voisin, G. & Dagenais, A. The alveolar type I cells: the new knight of the alveolus? J. Physiol. 572, 609–610 (2006). Cerca con Google

67. Hawgood, S. Pulmonary surfactant apoproteins: a review of protein and genomic structure. Am. J. Physiol. 257, L13–L22 (1989). Cerca con Google

68. Batenburg, J. J. & Haagsman, H. P. The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog. Lipid Res. 37, 235–276 (1998). Cerca con Google

69. Veldhuizen, R., Nag, K., Orgeig, S. & Possmayer, F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1408, 90–108 (1998). Cerca con Google

70. Agassandian, M. & Mallampalli, R. K. Surfactant phospholipid metabolism. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1831, 612–625 (2013). Cerca con Google

71. Numata, M., Chu, H. W., Dakhama, A. & Voelker, D. R. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl. Acad. Sci. U. S. A. 107, 320–325 (2010). Cerca con Google

72. Kuronuma, K. et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J. Biol. Chem. 284, 25488–25500 (2009). Cerca con Google

73. Gómez-Gil, L., Schürch, D., Goormaghtigh, E. & Pérez-Gil, J. Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. Biophys. J. 97, 2736–2745 (2009). Cerca con Google

74. Pérez-Gil, J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim. Biophys. Acta 1778, 1676–1695 (2008). Cerca con Google

75. King RJ, Klaas DJ, Gikas EG, C. J. Isolation of apoproteins from canine surface active material. Am J Physiol 224, 788–795 (1973). Cerca con Google

76. White, R. T. et al. Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 317, 361–363 (1985). Cerca con Google

77. Wu, H. et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest. 111, 1589–1602 (2003). Cerca con Google

78. Korfhagen, T. R. Surfactant protein A (SP-A)-mediated bacterial clearace. SP-A and cystic fibrosis. Am J Respir Cell Mol Biol 25, 668–672 (2001). Cerca con Google

79. Wright, J. R. Immunomodulatory functions of surfactant. Physiol. Rev. 77, 931–962 (1997). Cerca con Google

80. McCormack, F. X. & Whitsett, J. A. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Invest. 109, 707–712 (2002). Cerca con Google

81. Korfhagen, T. R. et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc. Natl. Acad. Sci. U. S. A. 93, 9594–9599 (1996). Cerca con Google

82. Elhalwagi, B. M. et al. Normal surfactant pool sizes and inhibition-resistant surfactant from mice that overexpress surfactant protein A. Am J Respir Cell Mol Biol 21, 380–387 (1999). Cerca con Google

83. LeVine, a M. et al. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J. Immunol. 158, 4336–4340 (1997). Cerca con Google

84. LeVine, a M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940 (2000). Cerca con Google

85. LeVine, A. M. et al. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J. Clin. Invest. 103, 1015–1021 (1999). Cerca con Google

86. LeVine, A. M. et al. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 19, 700–708 (1998). Cerca con Google

87. Linke, M. J. et al. Immunosuppressed surfactant protein A-deficient mice have increased susceptibility to Pneumocystis carinii infection. J. Infect. Dis. 183, 943–52 (2001). Cerca con Google

88. Sano, H. & Kuroki, Y. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol. Immunol. 42, 279–287 (2005). Cerca con Google

89. Ikegami, M. et al. Surfactant metabolism in SP-D gene-targeted mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L468–L476 (2000). Cerca con Google

90. Yoshida, M., Korfhagen, T. R. & Whitsett, J. a. Surfactant protein D regulates NF-kappa B and matrix metalloproteinase production in alveolar macrophages via oxidant-sensitive pathways. J. Immunol. 166, 7514–7519 (2001). Cerca con Google

91. Wert, S. E. et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl. Acad. Sci. 97, 5972–5977 (2000). Cerca con Google

92. Weaver, T. E. Synthesis, processing and secretion of surfactant proteins B and C. Biochim. Biophys. Acta 1408, 173–179 (1998). Cerca con Google

93. Whitsett, J. a, Nogee, L. M., Weaver, T. E. & Horowitz, a D. Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol. Rev. 75, 749–757 (1995). Cerca con Google

94. Pryhuber, G. S. Regulation and function of pulmonary surfactant protein B. Mol. Genet. Metab. 64, 217–228 (1998). Cerca con Google

95. Oosterlaken-Dijksterhuis, M. a, Haagsman, H. P., van Golde, L. M. & Demel, R. a. Interaction of lipid vesicles with monomolecular layers containing lung surfactant proteins SP-B or SP-C. Biochemistry 30, 8276–8381 (1991). Cerca con Google

96. Oosterlaken-Dijksterhuis, M. A., Haagsman, H. P., van Golde, L. M. & Demel, R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry 30, 10965–10971 (1991). Cerca con Google

97. Seeger, W., Grube, C., Gunther, a. & Schmidt, R. Surfactant inhibition by plasma proteins: Differential sensitivity of various surfactant preparations. Eur. Respir. J. 6, 971–977 (1993). Cerca con Google

98. Foster, C. D., Zhang, P. X., Gonzales, L. W. & Guttentag, S. H. In vitro surfactant protein B deficiency inhibits lamellar body formation. Am. J. Respir. Cell Mol. Biol. 29, 259–266 (2003). Cerca con Google

99. Whitsett, J. A. & Weaver, T. E. Hydrophobic surfactant proteins in lung function and disease. N. Engl. J. Med. 347, 2141 – 2148 (2002). Cerca con Google

100. Clark, J. C. et al. Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc. Natl. Acad. Sci. U. S. A. 92, 7794–7798 (1995). Cerca con Google

101. Nogee, L., de Mello, D., Dehner, L. & Colten, H. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 328, 406–410 (1993). Cerca con Google

102. Mulugeta, S. & Beers, M. F. Surfactant protein C: Its unique properties and emerging immunomodulatory role in the lung. Microbes Infect. 8, 2317–2323 (2006). Cerca con Google

103. Glasser, S. W. et al. Pneumonitis and emphysema in sp-C gene targeted mice. J. Biol. Chem. 278, 14291–14298 (2003). Cerca con Google

104. Glasser, S. W. et al. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L64–72 (2009). Cerca con Google

105. Gehrig, K., Morton, C. C. & Ridgway, N. D. Nuclear export of the rate-limiting enzyme in phosphatidylcholine synthesis is mediated by its membrane binding domain. J Lipid Res 50, 966–976 (2009). Cerca con Google

106. Goss, V., Hunt, A. N. & Postle, A. D. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1831, 448–458 (2013). Cerca con Google

107. Lu, Z., Gu, Y. & Rooney, S. Transcriptional regulation of the lung fatty acid synthase gene by glucocorticoid, thyroid hormone and transforming growth factor-beta 1. Biochim Biophys Acta 1532, 213–222 (2001). Cerca con Google

108. Pope, T., Smart, D. & Rooney, S. Hormonal effects on fatty-acid synthase in cultured fetal rat lung; induction by dexamethasone and inhibition of activity by triiodothyronine. Biochim Biophys Acta 959, 169–177 (1988). Cerca con Google

109. Hogan, M., Kuliszewski, M., Lee, W. & Post, M. Regulation of phosphatidylcholine synthesis in maturing type II cells: increased mRNA stability of CTP:phosphocholine cytidylyltransferase. Biochem. J. 314 ( Pt 3, 799–803 (1996). Cerca con Google

110. Mallampalli, R. K., Ryan, A. J., Carroll, J. L., Osborne, T. F. & Thomas, C. P. Lipid deprivation increases surfactant phosphatidylcholine synthesis via a sterol-sensitive regulatory element within the CTP:phosphocholine cytidylyltransferase promoter. Biochem. J. 362, 81–88 (2002). Cerca con Google

111. Mason, R. J. & Voelker, D. R. Regulatory mechanisms of surfactant secretion. Biochim. Biophys. Acta - Mol. Basis Dis. 1408, 226–240 (1998). Cerca con Google

112. Young, S. L., Fram, E. K. & Larson, E. W. Three-dimensional reconstruction of tubular myelin. Experimental lung research 18, 497–504 (1006). Cerca con Google

113. Palaniyar, N., Ikegami, M., Korfhagen, T., Whitsett, J. & McCormack, F. X. Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 129, 109–127 (2001). Cerca con Google

114. Rooney, S. a, Young, S. L. & Mendelson, C. R. Molecular and cellular processing of lung surfactant. FASEB J. 8, 957–967 (1994). Cerca con Google

115. Ikegami, M. Surfactant catabolism. Respirology 11, S24–S27 (2006). Cerca con Google

116. Herting, E., Möller, O., Schiffmann, J. H. & Robertson, B. Surfactant improves oxygenation in infants and children with pneumonia and acute respiratory distress syndrome. Acta Paediatr. 91, 1174–1178 (2002). Cerca con Google

117. Liu, L. et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012). Cerca con Google

118. Singh, V. & Aneja, S. Pneumonia - Management in the Developing World. Paediatr. Respir. Rev. 12, 52–59 (2011). Cerca con Google

119. Harris, M. et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax 66 Suppl 2, ii1–23 (2011). Cerca con Google

120. Jain, S. et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N. Engl. J. Med. 373, 415–427 (2015). Cerca con Google

121. Hallman, M., Spragg, R., Harrell, J. H. & Moser, K. M. Evidence of Lung Surfactant Abnormality in Respiratory Failure. J. Clin. Invest. 70, 673–683 (1982). Cerca con Google

122. Pison, U. et al. Surfactant abnormalities in patients with respiratory failure after multiple trauma. Am. Rev. Respir. Dis. 140, 1033–1039 (1989). Cerca con Google

123. Gregory, T. J. et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J. Clin. Invest. 88, 1976–1981 (1991). Cerca con Google

124. Bernard, G. R. et al. Report of the American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. Intensive Care Med. 20, 225–232 (1994). Cerca con Google

125. Günther, A. et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care Med. 153, 176–184 (1996). Cerca con Google

126. Greene, K. E. et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am. J. Respir. Crit. Care Med. 160, 1843–1850 (1999). Cerca con Google

127. Gunther, A. et al. Surfactant subtype conversion is related to loss of surfactant apoprotein B and surface activity in large surfactant aggregates. Experimental and clinical studies. Am J Respir Crit Care Med 159, 244–251 (1999). Cerca con Google

128. Schmidt, R. et al. Alteration of fatty acid profiles in different pulmonary surfactant phospholipids in acute respiratory distress syndrome and severe pneumonia. Am. J. Respir. Crit. Care Med. 163, 95–100 (2001). Cerca con Google

129. Schmidt, R. et al. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration. Respir. Res. 8, 55 (2007). Cerca con Google

130. Avery, M. & Mead, J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA Am J Dis Child 97, 517–523 (1959). Cerca con Google

131. Dargaville, P. a, South, M. & McDougall, P. N. Surfactant abnormalities in infants with severe viral bronchiolitis. Arch. Dis. Child. 75, 133–136 (1996). Cerca con Google

132. Kerr, M. H. & Paton, J. Y. Surfactant protein levels in severe respiratory syncytial virus infection. Am. J. Respir. Crit. Care Med. 159, 1115–1118 (1999). Cerca con Google

133. LeVine, a M. et al. Surfactant content in children with inflammatory lung disease. Critical care medicine 24, 1062–1067 (1996). Cerca con Google

134. Todd, D. a et al. Surfactant phospholipids, surfactant proteins, and inflammatory markers during acute lung injury in children. Pediatr Crit Care Med 11, 82–91 (2010). Cerca con Google

135. Cogo, P. E. et al. Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two compartment model. Respir. Res. 8, 13 (2007). Cerca con Google

136. Facco, M., Nespeca, M., Simonato, M. & Isak, I. In Vivo Effect of Pneumonia on Surfactant Disaturated-Phosphatidylcholine Kinetics in Newborn Infants. PLoS One 9, 1–11 (2014). Cerca con Google

137. Torresin, M. et al. Exogenous surfactant kinetics in infant respiratory distress syndrome: A novel method with stable isotopes. Am J Respir Crit Care Med 161, 1584–1589 (2000). Cerca con Google

138. Dushianthan, A., Goss, V., Cusack, R., Grocott, M. P. W. & Postle, A. D. Phospholipid composition and kinetics in different endobronchial fractions from healthy volunteers. BMC Pulm. Med. 14, 10 (2014). Cerca con Google

139. Baritussio, A. et al. SP-A, SP-B, and SP-C in surfactant subtypes around birth: reexamination of alveolar life cycle of surfactant. Am J Physiol 266, 436–447 (1994). Cerca con Google

140. Alberti, A. et al. Bronchoalveolar lavage fluid composition in alveolar proteinosis. Early changes after therapeutic lavage. Am J Respir Crit Care Med 154, 817–820 (1996). Cerca con Google

141. Krämer, H. J. et al. ELISA technique for quantification of surfactant protein B (SP-B) in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med. 152, 1540–1544 (1995). Cerca con Google

142. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959). Cerca con Google

143. Cogo, P. E. et al. Simultaneous measurement of the rates of appearance of palmitic and linoleic acid in critically ill infants. Pediatr. Res. 41, 178–182 (1997). Cerca con Google

144. Cogo, P. E. et al. Dexamethasone therapy in preterm infants developing bronchopulmonary dysplasia: effect on pulmonary surfactant disaturated-phosphatidylcholine kinetics. Pediatr. Res. 63, 433–437 (2008). Cerca con Google

145. Bartlett, G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468 (1959). Cerca con Google

146. Dargaville, P. A., South, M., Vervaart, P. & McDougall, P. N. Validity of markers of dilution in small volume lung lavage. Am. J. Respir. Crit. Care Med. 160, 778–784 (1999). Cerca con Google

147. Nogee, L., de Mello, D., Dehner, L. & Colten, H. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 328, 406–410 (1993). Cerca con Google

148. Nogee, L. M. Genetics of the hydrophobic surfactant proteins. Biochim. Biophys. Acta 1408, 323–333 (1998). Cerca con Google

149. Ikegami, M., Falcone, A. & Whitsett, J. a. STAT-3 regulates surfactant phospholipid homeostasis in normal lung and during endotoxin-mediated lung injury. J. Appl. Physiol. 104, 1753–1760 (2008). Cerca con Google

150. Lamonica, G. et al. Pulmonary surfactant synthesis after unilateral lung injury in mice. J. Appl. Physiol. 116, 210–215 (2014). Cerca con Google

151. Friedrich, B. et al. Changes in biochemical and biophysical surfactant properties with cardiopulmonary bypass in children. Crit. Care Med. 31, 284–290 (2003). Cerca con Google

152. Griese, M., Wilnhammer, C., Jansen, S. & Rinker, C. Cardiopulmonary bypass reduces pulmonary surfactant activity in infants. J. Thorac. Cardiovasc. Surg. 118, 237–244 (1999). Cerca con Google

153. Nogee, L. M., Wispe, J. R., Clark, J. C., Weaver, T. E. & Whitsett, J. A. Increased expression of pulmonary surfactant proteins in oxygen-exposed rats. Am J Respir Cell Mol Biol 4, 102–107 (1991). Cerca con Google

154. Woods, E. et al. Surfactant treatment and ventilation effects on surfactant SP-A, SP-B, and SP-C mRNA levels in preterm lamb lungs. Am J Physiol 269, L209–214 (1995). Cerca con Google

155. Epaud, R. et al. Surfactant protein B inhibits endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 28, 373–378 (2003). Cerca con Google

156. de Blic, J. et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. Eur Respir J 15, 217–231 (2000). Cerca con Google

157. Whitsett, J. a., Wert, S. E. & Trapnell, B. C. Genetic disorders influencing lung formation and function at birth. Hum. Mol. Genet. 13, 207–215 (2004). Cerca con Google

158. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014). Cerca con Google

159. DiFiore, J. W. & Wilson, J. M. Lung development. Semin Pediatr Surg 3, 221–232 (1994). Cerca con Google

160. Whitsett, J. a & Weaver, T. E. Alveolar Development and Disease. Am. J. Respir. Cell Mol. Biol. 53, 1–7 (2015). Cerca con Google

161. Maeda, Y., Davé, V. & Whitsett, J. a. Transcriptional control of lung morphogenesis. Physiol. Rev. 87, 219–244 (2007). Cerca con Google

162. Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008). Cerca con Google

163. Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 443–456 (2010). Cerca con Google

164. Jobe, a. H. What is RDS in 2012? Early Hum. Dev. 88, 42–44 (2012). Cerca con Google

165. Manuck, T. et al. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. Am J Obs. Gynecol doi: 10.1016/j.ajog.2016.01.004 (2016). Cerca con Google

166. Floros, J. et al. Surfactant protein (SP) B associations and interactions with SP-A in white and black subjects with respiratory distress syndrome. Pediatr. Int. 43, 567–576 (2001). Cerca con Google

167. Merrill, J. D. & Ballard, R. A. Antenatal hormone therapy for fetal lung maturation. Clin. Perinatol. 25, 983–997 (1998). Cerca con Google

168. Enhörning, G. & Robertson, B. Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics 50, 58–66 (1972). Cerca con Google

169. Lopez, E. et al. Exogenous surfactant therapy in 2013: what is next? Who, when and how should we treat newborn infants in the future? BMC Pediatr. 13, 165 (2013). Cerca con Google

170. Polin, R. a & Carlo, W. a. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics 133, 156–163 (2014). Cerca con Google

171. Jobe, A. H. & Jobe, A. H. Why Surfactant Works for Respiratory Distress Syndrome. Neoreviews 7, 95–106 (2006). Cerca con Google

172. Seidner, S., Pettenazzo, A., Ikegami, M. & Jobe, A. Corticosteroid potentiation of surfactant dose response in preterm rabbits. J. Appl. Physiol. 64, 2366–2371 (1988). Cerca con Google

173. Ikegami, M., Jobe, a H., Seidner, S. & Yamada, T. Gestational effects of corticosteroids and surfactant in ventilated rabbits. Pediatr. Res. 25, 32–37 (1989). Cerca con Google

174. Jobe, A. H., Mitchell, B. R. & Gunkel, J. H. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am J Obs. Gynecol 168, 508–513 (1993). Cerca con Google

175. Kari, M. a et al. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics 93, 730–736 (1994). Cerca con Google

176. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. in American Journal of Respiratory and Critical Care Medicine 163, 1723–1729 (2001). Cerca con Google

177. Northway, W. J., Rosan, R. & Porter, D. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276, 357–368 (1967). Cerca con Google

178. Jobe, A. What is BPD in 2012 and what will BPD become? Early Hum. Dev. 88, S27–28 (2012). Cerca con Google

179. Laughon, M. et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics 123, 1124–1131 (2009). Cerca con Google

180. Watterberg, K. L., Demers, L. M., Scott, S. M. & Murphy, S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97, 210–215 (1996). Cerca con Google

181. Willet, K. et al. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr. Res. 48, 782–788 (2000). Cerca con Google

182. Moss, T. J. M. et al. Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am. J. Respir. Crit. Care Med. 165, 805–811 (2002). Cerca con Google

183. Ammari, A. et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. J. Pediatr. 147, 341–347 (2005). Cerca con Google

184. Bachurski, C. J., Ross, G. F., Ikegami, M., Kramer, B. W. & Jobe, A. H. Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep. Am J Physiol Lung Cell Mol Physiol 280, L279–285 (2001). Cerca con Google

185. Moss, T. J., Nitsos, I., Ikegami, M., Jobe, A. H. & Newnham, J. P. Experimental intrauterine Ureaplasma infection in sheep. Am J Obs. Gynecol 192, 1179–1186 (2005). Cerca con Google

186. Bry, K., Lappalainen, U. & Hallman, M. Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J. Clin. Invest. 99, 2992–2999 (1997). Cerca con Google

187. Arntzen, K. J., Kjøllesdal, A. M., Halgunset, J., Vatten, L. & Austgulen, R. TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J. Perinat. Med. 26, 17–26 (1998). Cerca con Google

188. Thomas, W. & Speer, C. P. Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia - The case in favour. Paediatr. Respir. Rev. 15, 49–52 (2014). Cerca con Google

189. Lowry, O., Rosebrough, N., Farra, A. & Randall, R. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275 (1951). Cerca con Google

190. Bradley, P. P., Priebat, D. a, Christensen, R. D. & Rothstein, G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. The Journal of investigative dermatology 78, 206–209 (1982). Cerca con Google

191. Simonato, M. et al. Surfactant protein B amount and kinetics in newborn infants: an optimized procedure. J. Mass Spectrom. 47, 1415–1419 (2012). Cerca con Google

192. Cogo, P. E. et al. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med. 37, 510–517 (2011). Cerca con Google

193. Kunzmann, S., Collins, J. J. P., Kuypers, E. & Kramer, B. W. Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am. J. Obstet. Gynecol. 208, 429–437 (2013). Cerca con Google

194. Colaizy, T. T., Morris, C. D., Lapidus, J., Sklar, R. S. & Pillers, D.-A. M. Detection of ureaplasma DNA in endotracheal samples is associated with bronchopulmonary dysplasia after adjustment for multiple risk factors. Pediatr. Res. 61, 578–583 (2007). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record