Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Biomedicina Comparata e Alimentazione

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE VETERINARIE
CICLO XXVIII

Parassiti intestinali in popolazioni canine,
fecalizzazione ambientale nella città di Padova e rischi per l’uomo

Direttore della Scuola: Ch.mo Prof. Gianfranco Gabai
Supervisore: Ch.mo Prof. Mario Pietrobelli
Co-supervisore: Ch.mo Prof. Antonio Frangipane di Regalbono

Dottorando: dott.ssa Giulia Simonato
Non esistono condizioni ideali in cui scrivere, studiare, lavorare o riflettere, sono solo la volontà, la passione e la testardaggine a spingere un uomo a perseguire il proprio progetto.

Konrad Lorenz
INDICE

<table>
<thead>
<tr>
<th>Sezione</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>I</td>
</tr>
<tr>
<td>Riassunto</td>
<td>III</td>
</tr>
<tr>
<td>Introduzione</td>
<td>V</td>
</tr>
<tr>
<td>Parte generale</td>
<td>1</td>
</tr>
<tr>
<td>Le parassitosi intestinali più comuni del cane</td>
<td>3</td>
</tr>
<tr>
<td>Elminiti</td>
<td>3</td>
</tr>
<tr>
<td>Nematodi</td>
<td>3</td>
</tr>
<tr>
<td>Ascaridi</td>
<td>4</td>
</tr>
<tr>
<td>Ancylostomatidi</td>
<td>12</td>
</tr>
<tr>
<td>Tricocefalì</td>
<td>19</td>
</tr>
<tr>
<td>Cestodi</td>
<td>25</td>
</tr>
<tr>
<td>Famiglia Taenidae - Genere Echinococcus</td>
<td>26</td>
</tr>
<tr>
<td>Famiglia Taenidae - Genere Taenia</td>
<td>34</td>
</tr>
<tr>
<td>Famiglia Dilepididae</td>
<td>36</td>
</tr>
<tr>
<td>Protozoi</td>
<td>39</td>
</tr>
<tr>
<td>Phylum Apicomplexa – Famiglia Eimeriidae</td>
<td>40</td>
</tr>
<tr>
<td>Phylum Apicomplexa – Famiglia Cryptosporidiidae</td>
<td>44</td>
</tr>
<tr>
<td>Phylum Sarcomastigophora – Famiglia Diplomonadida</td>
<td>48</td>
</tr>
<tr>
<td>Fecalizzazione ambientale</td>
<td>55</td>
</tr>
<tr>
<td>Nel mondo</td>
<td>55</td>
</tr>
<tr>
<td>In Italia</td>
<td>57</td>
</tr>
<tr>
<td>Aspetti normativi</td>
<td>59</td>
</tr>
<tr>
<td>Italia</td>
<td>59</td>
</tr>
<tr>
<td>Regolamento della città di Padova</td>
<td>59</td>
</tr>
</tbody>
</table>
Lotta al randagismo...60

Parte sperimentale...61

Materiali e metodi..63

Campionamento..63

Cani di canile...63

Cani di proprietà..66

Campioni ambientali ..67

Aree verdi...68

Aree urbane..70

Interviste ai cittadini..72

Analisi di laboratorio ...75

Esame copromicroscopico..75

Analisi biomolecolari ..75

Estrazione DNA...75

Amplificazione DNA *Giardia duodenalis*...75

Amplificazione DNA *Cryptosporidium* spp...77

Amplificazione contemporanea DNA *Giardia/Cryptosporidium*....................................79

Sequenziamento...79

Analisi dei dati...80

Validazione delle metodiche biomolecolari...81

Controllo interno..81

Sensibilità e specificità..81

Real Time PCR - *Giardia duodenalis* ..81

Real Time PCR - *Cryptosporidium* spp...83

Real Time PCR - *G. duodenalis/Cryptosporidium* spp..86

Risultati..87
Intestinal parasites are common in dogs worldwide and their importance has recently increased for a renewed awareness on the public health relevance that some of them have. For this reason, firstly were detected presence and prevalence of intestinal helminths and protozoa in two different canine populations (shelter-dog and owned-dog) and in canine faecal samples collected in green and urban areas of the city of Padua. Secondly, the canine faecal pollution was evaluated from the point of view of citizen through the administration of questionnaires considering the people’s perception of the health risk related to faecal contamination. Initially, 318 canine faecal samples collected from 8 rescue shelters in the North-eastern Italy, 237 stool samples of owned dogs and 705 environmental stools were analysed by microscopy. Then, 285 shelter-samples, 234 owned-samples and all the environmental faecal samples were submitted to molecular analyses to determine and characterize the isolates of *Giardia duodenalis* and *Cryptosporidium* spp.. Moreover, 521 interviews were submitted to citizens (dog-owners and no dog-owners). Overall prevalence for at least one parasite were 52.5% (n=167/318), 13.9% (n=33/237) and 1.7% (n=13/705) in shelter-dogs (S), in owned-dogs (O) and in environmental stools (E), respectively; *Trichuris vulpis* showed the highest overall prevalence rate (29.2% in S, 5.5% in O, 1.4% in E), followed by *G. duodenalis* (15.1% and 1.1% in S and in E, respectively); whereas *Toxocara canis* (5.1%) was the second most prevalent parasite in O. Prevalence rates of other parasites in O and in E were very low, while in S were detected higher prevalence values for *T. canis* (9.7%), ancylostomatids (8.2%) and *Cystoisospora* spp. (5.7%). Real Time PCR detected *G. duodenalis* in 57.9% (n=165/285) in S, 17.5% (n=41/234) in O and 28.9% (n=204/705) in E. Among positive samples, 79, 19 and 22 isolates were characterised by Nested PCR (β-giardin and/or SSU-rRNA genes) in S, O and E, respectively. The assemblages mainly detected were the host-specific genotypes C and D, while three were identified as the human-specific assemblage B. The prevalence rates detected for *Cryptosporidium* spp. were very low (1.1% in S, 3% in O and 1.7% in E). The isolates from shelters were sequenced as *C. parvum* (COWP gene), one in urban areas was identified as *C. canis*, the others were confirmed as *Cryptosporidium* spp.. Statistical analyses were performed to evaluate risk factors for intestinal parasites in S and for *Giardia* (Real Time PCR results) in O, in relation to canine individual data. Citizens, without differences between dog-owners and no dog-owners, do not know that canine faeces could represent a source of infection for dogs and humans. Although the results describe a relatively
limited risk of dog-originating zoonoses, there is the need to increase the quality of shelter management for health safety of both shelter operators and people involved in pet-adoption and to improve the information and education of people towards a widespread awareness of health risks related to pet-animals, and to reduce canine faecal pollution with intestinal parasites.
RIASSUNTO

I parassiti intestinali sono comuni nei cani in tutto il mondo e la loro importanza è recentemente aumentata per una rinata consapevolezza dell’impatto che alcuni di essi hanno sulla salute pubblica. Per questa ragione, come prima cosa sono state valutate presenza e prevalenza di elminti e protozoi intestinali in due diverse popolazioni canine (di canile e di proprietà) e in campioni fecali raccolti in aree verdi e urbane della città di Padova. Poi, la problematica della contaminazione ambientale da feci canine è stata affrontata anche dal punto di vista del cittadino attraverso la somministrazione di questionari che valutassero la percezione delle persone del rischio per la salute correlato alla fecalizzazione. Quindi, 318 campioni di feci canine raccolti in 8 canili del nord-est Italia, 237 campioni di feci di cani di proprietà e 705 campioni fecali raccolti nell’ambiente sono stati analizzati con tecnica copromicroscopica. Poi, 285 campioni di canile, 234 di proprietà e tutti i campioni ambientali sono stati sottoposti ad indagini biomolecolari per individuare e tipizzare gli isolati di *Giardia duodenalis* e *Cryptosporidium* spp.. Inoltre, sono state rivolte ai cittadini, distinti in proprietari di cani e non proprietari, 521 interviste. Sono risultati positivi ad almeno un parassita il 52,5% (n=167/318) dei cani di canile (C), il 13,9% (n=33/237) dei cani di proprietà (P) e l’1,7% (n=13/705) dei campioni ambientali (A); *Trichuris vulpis* è risultato il parassita con la prevalenza maggiore (29,2% in C, 5,5% in P, 1,4% in A), seguito da *G. duodenalis* (15,1% e 1,1%, rispettivamente in C e in A); mentre *Toxocara canis* (5,1%) è risultato il secondo parassita maggiormente frequente in P. Altri parassiti hanno mostrato in P ed in A valori di prevalenza molto bassi, mentre in C sono stati evidenziati valori maggiori per *T. canis* (9,7%), gli ancylostomatidi (8,2%) e *Cystoisospora* spp. (5,7%). La Real Time PCR ha individuato *G. duodenalis* nel 57,9% (n=165/285) dei campioni in C, nel 17,5% (n=41/234) in P e nel 28,9% (n=204/705) in A. Tra i positivi, sono stati identificati con la Nested PCR (geni β-giardina e/o SSU-rRNA) 79, 19 e 22 campioni rispettivamente di C, P e A. La maggior parte degli assemblaggi identificati erano genotipi ospite-specifici C e D del cane, tre sono stati identificati come assemblaggio B specifico dell’uomo. I valori di prevalenza per *Cryptosporidium* spp. sono risultati molto bassi (1,1% in C, 3% in P e 1,7% in A). Gli isolati del canile sono stati sequenziati come *C. parvum* (gene COWP), uno nelle aree urbane è stato identificato come *C. canis*, gli altri sono stati confermati a livello di genere (*Cryptosporidium* spp.). L’analisi statistica è stata eseguita per valutare possibili fattori di rischio per la presenza di parassiti intestinali in C e di *Giardia* (risultati Real Time PCR) in P in relazione ai dati individuali. I cittadini, senza differenze
Significative tra proprietari e non proprietari, ignoravano che le feci possano rappresentare un fonte di infezione per cani e uomini. Sebbene i risultati descrivano un rischio relativamente limitato di zoonosi che derivano dal cane, esiste la necessità di incrementare la qualità di gestione dei canili per la salute degli operatori che vi lavorano e delle eventuali famiglie adottanti e di migliorare l’informazione e l’educazione delle persone verso una consapevolezza diffusa dei rischi per la salute che sono correlati agli animali da compagnia e nell’ottica di ridurre la contaminazione ambientale da parassiti intestinali.
INTRODUZIONE

Fin dall’antichità il cane è stato compagno dell’uomo nella sua quotidianità. I recenti ritrovamenti di resti fossili di un probabile cane primitivo in una grotta nella Repubblica di Altai in Siberia anticipano, rispetto a quanto creduto finora (circa 16.000 anni fa), il processo di addomesticamento del cane datandolo ad addirittura 33.000 anni fa (Druzhkova et al., 2013). Nella grotta di Altamira, famosa per le pitture rupestri, datate tra i 18.000 e i 14.000 anni fa, tra le mandrie di bisonti, cavalli e animali selvatici c’è anche la raffigurazione di un uomo con accanto un cane (Figura 1).

Figura 1. Pittura rupestre, Altamira (Spagna)

Nella storia i cani hanno da sempre rivestito un ruolo strettamente connesso alla vita umana principalmente come forza lavoro (guardia, caccia, soccorso, trasporto, etc.). Oggi si potrebbero far rientrare tra gli animali “da reddito” anche gli animali “d’affezione” o pet, dove per reddito si intende l’insieme di tutti quei benefici di cui un proprietario può godere come lo svago, la compagnia e l’effetto antidepressivo (Friedmann e Son, 2009). Negli ultimi anni gli animali da compagnia ed i cani in particolare sono diventati parte integrante della famiglia e vengono spesso considerati un’estensione della stessa (Overgaauw et al., 2009). Gli animali che vivono in casa sono un vero e proprio supporto psicologico e, a volte, spingono ad avere uno stile di vita più sano grazie all’esercizio fisico e alla riduzione dello stress psico-fisico (Chomel, 2011). Recenti indagini, inoltre, suggeriscono che l’esposizione e/o il contatto con i
pet dalla nascita fino ai 12 anni di età riducono o non aggravano le forme allergiche di bambini predisposti a sviluppare per familiarità tali patologie, aggiungendo che non vi sono prove scientifiche che affermino il contrario (Lodge et al., 2012).

In Italia oggi si contano circa 14 milioni di pet, di cui quasi 8 milioni sono cani; nella Regione Veneto, in particolare, l’Anagrafe Canina Nazionale ne stima circa 1 milione (ASSALCO, 2015), dati comunque sottostimati per la riluttanza dei proprietari, ancora in parte presente, a far registrare ed identificare il proprio animale.

La condivisione di vita e spazi comuni ha rafforzato sempre più quello che oggi viene definito “human-animal bond” ovvero legame uomo-animale (Overgaaauw et al., 2009), oggi sfruttato anche come strumento di salute, basti pensare alla Pet-therapy o zooterapia. Si tratta di una terapia dolce, basata sulla corretta relazione uomo-animale con valenza terapeutica, riabilitativa, educativa e ludico-ricreativa. Stato e Regioni promuovono attraverso il recente accordo del 25 marzo 2015 (Linee guida nazionali in materia di Pet-therapy) la diffusione di tre tipologie di interventi con gli animali, che rientrano tutte nel concetto di Pet-therapy: le Terapie Assistite con Animali (TAA), l’Educazione Assistita con Animali (EAA) e le Attività Assistite con Animali (AAA). Ma il cane non è solo un animale da compagnia, è impiegato infatti in numerose altre attività che lo portano ad uno stretto rapporto con l’uomo come nell’assistenza a persone disabili oppure nelle operazioni di soccorso o ancora nelle operazioni di tutela della Salute pubblica quando presta servizio sotto le Forze dell’Ordine. La condivisione perciò di spazi e luoghi comuni è sempre più frequente e non sono da sottovalutare gli aspetti sanitari legati a tale convivenza. Il cane infatti può essere fonte di malattia per l’uomo (zoonosi) sia in modo diretto per convivenza stretta sia indiretto per contaminazione di spazi comuni (Paul et al., 2010; Deplazes et al., 2011). Tra le parassitosi di interesse medico a trasmissione per contatto diretto ci sono le ectoparassitosi da acari come la pseudoscabbia, sostenuta da Sarcoptes scabiei var. canis, e la dermatite da Cheyletiella (Moriello, 2003); a trasmissione indiretta ci sono le malattie veicolate dagli artropodi; infine, veicolate attraverso l’ambiente con feci e pelo, ci sono le parassitosi a ciclo oro-fecale (Overgaaauw et al., 2009; da Cunha Amaral et al., 2010; Paoletti et al., 2015), che sono oggetto di questo studio. Nell’ambito di quest’ultimo gruppo, la fecalizzazione ambientale gioca un ruolo fondamentale nella disseminazione, in terreni e acque, di elementi parassitari come uova di elminti, cisti e oocisti di protozoi, potenzialmente pericolosi per l’uomo. Ad oggi, sono numerosi gli studi che si sono occupati di questa problematica sia a livello nazionale sia internazionale individuando tra i parassiti intestinali, comunemente isolati dal cane e potenzialmente trasmissibili, quelli
maggiormente diffusi nell’ambiente. Tra i nematodi sono stati prevalentemente isolati gli ascaridi (*Toxocara* spp.), agenti causali principalmente delle Sindromi da *Larva Migrans* Viscerale e Oculare, gli ancylostomatidi (*Ancylostoma* spp.), in grado di causare nell’uomo la Sindrome da *Larva Migrans* Cutanea, e i trichuridi, di cui *Capillaria* spp. è riconosciuta agente di zoonosi mentre il ruolo di *Trichuris* è ancora dubbio; tra i cestodi sono responsabili di zoonosi gravi i parassiti del genere *Echinococcus*, che sono agenti dell’echinococcosi cistica ed alveolare, mentre agente di zoonosi minore e più rara è *Dipylidium caninum* comunemente diffuso nel cane e nel gatto che può trovare nell’uomo un ospite definitivo accidentale; tra i protozoi, i più diffusi sono i “water-borne pathogens” quali *Giardia duodenalis* e *Cryptosporidium* spp., responsabili entrambi, nella maggior parte dei casi, di sindromi gastro-enteriche (Rabinowitz et al., 2007; Chen et al., 2012).

Nell’ottica del nuovo concetto “One Health - One Medicine”, che propone una visione unica della medicina umana e veterinaria con approcci collaborativi multidisciplinari nella sorveglianza e nel controllo di malattie che interessano sia l’uomo che gli animali domestici e selvatici con l’obiettivo di una Salute comune (Day, 2010), il cane gioca un ruolo importante nella prevenzione delle malattie zoonotiche (Macpherson, 2005; Bingham et al., 2010). Per l’appunto, in questo progetto di Dottorato è stato studiato il ruolo del cane quale reservoir di parassitosi specie-specifiche e parassitosi potenzialmente trasmissibili all’uomo, nonché il suo ruolo nella contaminazione ambientale. Allo scopo sono state indagate diverse popolazioni canine in quanto ciascuna di esse presenta delle peculiarità. La prima popolazione è rappresentata dai cani di canile che, essendo costituita dai soggetti vaganti sul territorio, fornisce un quadro delle parassitosi circolanti fungendo da osservatorio locale; inoltre, i cani di canile possono rappresentare una delle principali fonti di malattia per l’uomo (operatori del canile e famiglia adottante) poiché vivono in condizioni ambientali dove l’elevata densità abitativa, lo stress e la gestione sanitaria, spesso non adeguata, favoriscono la diffusione delle parassitosi (Leonhard et al., 2007; Ortuño e Castellà, 2011). La seconda popolazione indagata è costituita da cani di proprietà, i quali rientrano nel contesto familiare e condividono strettamente gli ambienti quotidiani con i loro proprietari. Come ultima categoria, ma non per questo meno importante, sono stati analizzati campioni di feci canine (cani di proprietà e randagi) raccolti in aree verdi e in aree urbane della città di Padova per valutare l’impatto della fecalizzazione nel contesto cittadino.

Il primo obiettivo è stato quello di determinare la presenza e la prevalenza di parassiti intestinali nelle diverse categorie di campioni, riservando particolare attenzione ad elminti e
protozoi potenzialmente trasmissibili all’uomo. È stata quindi affrontata la problematica della fecalizzazione ambientale, valutando sia il livello di contaminazione del suolo pubblico da parte di agenti parassitari sia la consapevolezza del cittadino relativamente ai rischi sanitari associati.
PARTE GENERALE
LE PARASSITOSI INTESTINALI PIÙ COMUNI DEL CANE

In questo capitolo verranno descritte in dettaglio le malattie parassitarie sostenute da elminti e protozoi intestinali più comunemente isolati dalle feci canine, con particolare attenzione per quelli riconosciuti potenzialmente zoonotici; nella descrizione verranno inclusi anche parassiti non propriamente intestinali ma la cui diagnosi viene effettuata in base alla presenza di uova reperite nelle feci. Verranno, invece, solo brevemente descritti quei parassiti che non hanno un carattere zoonotico e/o che non sono abitualmente presenti nel nostro territorio.

ELMINTI
Gli elminti sono classificati tassonomicamente in due Phylum principali i Nematelminti, ai quali appartengono tutti i nematodi (classe Nematoda), ovvero tutti quegli elminti che morfologicamente hanno l’aspetto di un verme tondo, e i Platelminti, ai quali appartengono tutti i parassiti che hanno un aspetto appiattito e segmentato (classe Cestoda) o non segmentato (classe Trematoda). Tutti i parassiti che verranno descritti appartengono alle prime due classi, Nematoda e Cestoda.

NEMATODI
I nematodi sono parassiti generalmente dalla forma cilindrica e si distinguono in bursati e non bursati. Il maschio dei bursati presenta alla sua estremità terminale un organo copulatorio (bursa), che gli permette di “abbracciare” la femmina durante l’accoppiamento e che risulta discriminante per l’identificazione della specie. In generale i nematodi hanno un aspetto allungato e sezione rotonda e anche gli organi interni hanno un aspetto filamentoso. L’apparato digestivo è tubulare ed inizia con una bocca più o meno semplice, alcuni presentano una capsula buccale dotata o meno di denti che funge da organo di ancoraggio. La maggior parte si nutre di fluidi reperiti nella mucosa, prodotti della digestione dell’ospite e detriti cellulari, altri che vivono nel circolo sanguigno o nei tessuti si nutrono esclusivamente di fluidi corporei. Le dimensioni dei parassiti adulti variano notevolmente nell’ambito delle specie. Sono a sessi separati, i maschi sono più piccoli delle femmine e queste possono rilasciare nell’ambiente uova o larve a seconda se sono ovipare, ovo-vivipare oppure vivipare. Le uova variano enormemente in forma e dimensioni e presentano una parete dallo spessore variabile che risulta fondamentale per la sopravvivenza del parassita nell’ambiente esterno, più è spessa più è resistente. I nematodi presentano durante il loro ciclo vitale 4 mute (L1, L2,
L3, L4, L5 o adulto immaturo) e la forma infestante generalmente è rappresentata dalla larva al terzo stadio di sviluppo (L3). Alcune specie presentano ciclo diretto in cui le prime due mute avvengono all’interno dell’uovo e poi, a seconda della specie, la L3 può schiudere dall’uovo e liberarsi nell’ambiente esterno oppure può restare all’interno di esso fino ad essere ingerita dall’ospite successivo. La L3 quindi, una volta ingerita o penetrata attraverso la cute, infesta direttamente l’ospite definitivo nel quale avvengono le altre due mute fino allo sviluppo degli adulti nella sede di elezione. Altre specie presentano un ciclo indiretto durante il quale le prime due mute avvengono in genere in un ospite intermediario, l’ingestione dell’ospite intermediario o l’inoculazione della L3 da parte di un ospite intermediario vettore (es. zanzare) determina l’infestazione dell’ospite definitivo nel quale la L3 compie due mute fino alla maturazione in adulti nella sede elettiva e concludendo il ciclo vitale.

ASCARIDI

EZIOLOGIA

Phylum: Nematelminti
Classe: Nematoda
Superfamiglia: Ascaridoidea

All’interno della superfamiglia Ascaridoidea le due specie di maggior interesse nel cane sono *Toxocara canis* e *Toxascaris leonina*. Sono nematodi di notevoli dimensioni nell’ordine di 10 cm nei maschi e di 18 cm nelle femmine per *T. canis*, di 7 cm nei maschi e di 10 cm nelle femmine di *T. leonina*. Sono bianco-opachi, privi di capsula buccale e localizzati da adulti nell’intestino tenue del cane e di altri carnivori; si distinguono dalle altre specie di ascaridi per la struttura della testa che presenta ali cefaliche características e per la conformazione dell’estremità distale del maschio. Il maschio di *T. canis* presenta ali caudali e una piccola appendice digitiforme sulla coda a differenza di quello di *T. leonina* la cui coda è semplice. Le femmine sono ovipare e le uova sono leggermente ovoidali, contengono una massa embrionale non differenziata scura e sono particolarmente resistenti nell’ambiente; in condizioni ideali, possono restare infettive anche per molti anni. Le dimensioni delle uova di *T. canis* sono di 75x90 μm e presentano esternamente un guscio spesso, irregolare e finemente granuloso e internamente un contenuto che occupa quasi tutto lo spazio (Figura 2); le uova di *T. leonina*, invece, misurano 72x85 μm, hanno un guscio liscio e al loro interno presentano una massa embrionale indifferenziata più ridotta rispetto alla precedente (Figura 2).
DISTRUZIONE GEOGRAFICA

Gli ascaridi sono parassiti ubiquitari e la loro distribuzione è cosmopolita. Le prevalenze variano enormemente in funzione della popolazione canina monitorata (canili, randagi, proprietà, pet-shop), registrando valori minimi a partire dall’1,2% fino al 30% in tutto il mondo (Overgaauw e Boersema, 1998; Fok et al., 2001; Capelli et al., 2006; Sager et al., 2006; Dubná et al., 2007a; Martinez-Moreno et al., 2007; Katagiri e Oliveira-Sequeira, 2008; Palmer et al., 2008a; Claerebout et al., 2009; Itoh et al., 2009; Little et al., 2009; Bajer et al., 2011; Joffe et al., 2011; Ortuño e Castellà, 2011; Becker et al., 2012; Riggio et al., 2013; Uehlinger et al., 2013; Neves et al., 2014).

CICLO BIOLOGICO

Gli adulti albergano nell’intestino tenue del cane e le femmine rilasciano enormi quantità di uova immature che escano nell’ambiente esterno con le feci dell’ospite (Figura 3). Una volta nell’ambiente, in condizioni di umidità e temperatura ideali, l’embrione contenuto nell’uovo compie due mute e raggiunge lo stadio infestante di L3 (circa 3-4 settimane). La particolare resistenza delle uova permette al parassita di sopravvivere in condizioni estreme anche per lunghi periodi garantendo il proseguimento del ciclo vitale e la sua diffusione nell’ambiente. Perché il ciclo si compia le uova larvate devono essere ingerite dall’ospite definitivo dove nel piccolo intestino schiudono liberando le L3, che penetrano la mucosa intestinale e attraverso il circolo raggiungono prima il fegato poi il polmone dove mutano a L4. Risalgono quindi la trachea e, una volta deglutite, arrivano al piccolo intestino. Questa migrazione avviene nei cuccioli fino ai 2-3 mesi di vita, è sempre più rara in quelli di età superiore ai 3 mesi e cessa completamente sopra i 4-6 mesi. In questi animali la migrazione epato-tracheale delle larve viene sostituita da una migrazione somatica ovvero le L3 attraverso
il circolo si distribuiscono nei tessuti (fegato, polmone, cervello, cuore, muscolo scheletrico e parete dell’apparato gastroenterico) dove rimangono in uno stato di ipobiosi fino a successiva riattivazione in condizioni di stress immunologico o gravidanza.

Nelle femmine gravide le L3 ipobiotiche si riattivano a 3 settimane dal parto e si dividono per raggiungere tre destinazioni. Una parte attraversa la placenta (trasmissione transplacentare) e raggiunge i polmoni del feto dove muta prima della nascita; nei cuccioli appena nati il ciclo si completa con la migrazione delle L4 alla trachea e quindi lo sviluppo dei sub-adulti e degli adulti nell’intestino. Una parte raggiunge la ghiandola mammaria e durante l’allattamento (via galattogena o transmammaria) vengono trasferite ai cuccioli dove raggiungono direttamente l’intestino senza alcuna migrazione. Una parte completa la migrazione nella cagna dando luogo a parassiti adulti a livello intestinale. Una volta infetta, una cagna ospita una quantità sufficiente di larve da infettare tutte le successive cucciolate.

Gli ospiti paratenici (roditori, uccelli, lagomorfi, lombrichi, etc.) giocano un ruolo fondamentale nel mantenimento del parassita nell’ambiente vivo e vitale in quanto in essi il parassita non compie parte del ciclo biologico ma resta in una fase di latenza allo stadio di L3 fino a che non viene ingerito dall’ospite definitivo attraverso la predazione dell’ospite paratenico. I periodi di prepatenza vanno da un minimo di 2-3 settimane nel caso in infestazione pre-natale dei cuccioli fino a 4-5 settimane nel caso di ingestione di uova larvate o di ospiti paratenici.
Il ciclo vitale di *T. leonina* avviene in seguito all’ingestione delle uova larvate o delle L3 presenti nei tessuti degli ospiti paratenici; queste penetrano nella parete intestinale dell’ospite definitivo dove compiono due mute e poi ritornano nel lume dove avviene l’ultima muta. Lo sviluppo ad adulti avviene direttamente nell’intestino e non è presente nessuna fase migratoria né trasmissione verticale (transplacentare e transmammaria). Il periodo di prepatenza è di circa 10-11 settimane.

A differenza di *T. canis*, *T. leonina* non è raro trovarla anche in cani adulti, sebbene sia molto meno diffusa.

EPIDEMIOLOGIA

Le principali fonti di contaminazione ambientale sono i cuccioli al di sotto dei 6 mesi e le cagne in fase di allattamento. In particolare la diffusione e il mantenimento della parassitosi nell’ambiente dipendono dalla complicità di numerosi fattori quali l’alta prolificità delle femmine del parassita che sono in grado di produrre fino a 700 uova per grammo di feci al giorno, l’elevata resistenza delle uova nell’ambiente che consente loro di sopravvivere anche per lunghi periodi, la localizzazione somatica nei tessuti che favorisce infezioni latenti, le modalità di trasmissione transplacentare e transmammaria e, non ultimo, il ruolo degli ospiti paratenici.

In numerosi studi è stato valutato il ruolo del pelo come modalità di trasmissione per contatto diretto all’uomo e come fonte di contaminazione ambientale (Aydenizöz-Ozkayhan et al., 2008; Overgaauw et al., 2009; Keegan e Holland, 2010; Paoletti et al., 2015). In realtà, il contatto diretto con cani che presentano un’infezione patente di *Toxocara* non è considerato un rischio in quanto le uova eliminate immature necessitano di alcune settimane per raggiungere lo stadio infettivo (Deplazes et al., 2011). Inoltre, le uova di *Toxocara* risultano particolarmente adesive al mantello del cane impedendo l’ingestione di un numero sufficiente di uova e per contrarre la parassitosi dovrebbe essere ingerito un enorme quantitativo di pelo (Overgaauw et al., 2009).

Infine non è da sottovalutare il ruolo degli animali selvatici, in particolare della volpe, che frequentando ormai spazi periurbani incrementa la contaminazione ambientale (Deplazes et al., 2011; Traversa et al., 2014).
Patogenesi e sintomi

Nelle infestazioni moderate il processo di migrazione sembra non essere associato ad un apparente danno tissutale e gli adulti a livello intestinale causano processi flogistici blandi associati ad episodi diarreici e di vomito. Nelle infestazioni più importanti la migrazione larvale causa forti danni ai tessuti polmonari con sintomi clinici riferibili a quadri di polmonite ed edema con aumento della frequenza respiratoria, tosse e scolo nasale schiumoso. Le infestazioni massive a livello intestinale sono causa di enteriti mucoidi, occlusioni intestinali parziali o complete con possibilità di evoluzioni rare in intussuscezioni e perforazioni intestinali. Le infestazioni massive prenatali sono causa di morte nel cucciolo di pochi giorni. In generale, i sintomi clinici più comuni sono rappresentati dal caratteristico addome a botte (Figura 4), dovuto alla tensione della parete addominale, da un accrescimento scadente, dall’arruffamento del pelo e da possibili segni neurologici, tra cui crisi epilettiformi, legati al rilascio di cataboliti tossici e sostanze istamino-simili.

Diagnosi

È possibile emettere una diagnosi certa qualora anamnesi e sintomi clinici compatibili con un quadro di ascaridiosi siano associati al ritrovamento dei parassiti adulti nelle feci o nel vomito del cucciolo. Qualora ci fosse solo un sospetto di parassitosi la conferma può avvenire con l’esecuzione dell’esame copromicroscopico con una soluzione ad alto peso specifico che permette di mettere in evidenza la presenza delle uova del parassita (Figura 2). Qualora l’esame risultasse negativo nonostante l’anamnesi suggerisca la presenza della parassitosi è possibile che l’animale sia in una fase di prepatenza, quando i parassiti non avendo ancora raggiunto lo stadio adulto non producono uova. In questi casi è consigliato ripetere l’esame copro-microscopico a distanza di 10-15 giorni.
TERAPIA

I parassiti adulti sono sensibili alla maggior parte dei farmaci antielmintici presenti sul mercato. I più comunemente usati sono il pyrantel pamoato, i derivati benzimidazolici (fenbendazolo e medendazolo), il levamisolo e i lattoni macrociclici (milbemicina, selamectina e moxidectina). In particolare, tra i lattoni macrociclici, la moxidectina risulta efficace anche contro le forme larvali ed immature (L4 e L5) di *T. canis*. Mentre il fenbendazolo, la milbemicina, il pyrantel e la selamectina sono principi attivi maneggevoli e utilizzabili in gravidanza ed in allattamento.

Secondo le linee guida dello European Scientific Counsil Companion Animal Parasites (ESCCAP, 2010), poiché l’infestazione può avvenire prima della nascita e durante tutto l’allattamento, i trattamenti consigliati nei cuccioli dovrebbero iniziare a 2 settimane di vita con antielmintici appropriati e secondo le indicazioni riportate sul prodotto e ripetuti ogni due settimane fino allo svezzamento e poi mensilmente fino ai 6 mesi di età. Le madri dovrebbero essere trattate insieme ai cuccioli poiché possono sviluppare infestazioni patenti nel post-partum e nel corso dell’allattamento. Infestazioni da *T. canis* possono, seppur più raramente, interessare i cani adulti e generalmente sono asintomatiche; considerato che gli ascaridi sono forti produttori di uova e che anche pochi parassiti sono in grado di determinare forti contaminazioni ambientali, è consigliabile il trattamento continuato e regolare dei cani. L’indicazione generale è quella di un trattamento ripetuto almeno 4 volte nel corso dell’anno, in quanto un numero inferiore di trattamenti ha dimostrato di non essere sufficiente per un controllo adeguato. Dato che il periodo di prepatenza di *Toxocara* è di circa 4 settimane, è consigliabile un trattamento mensile in situazioni di rischio, dove i cani vivono a stretto contatto con bambini e/o condividono gli spazi in giardini privati, parchi pubblici e spazi ricreativi in quanto è in grado di controllare efficacemente il rischio di infestazioni patenti.

MALATTIA NELL’UOMO

La toxocariasi non è considerata tra le malattie notificabili ma rappresenta uno delle maggiori problematiche di Sanità pubblica a livello mondiale (Macpherson, 2013). Studi epidemiologici confermano *T. canis* quale parassita zoonosico ubiquitario e maggiormente prevalente (Macpherson, 2013). Indagini sierologiche, condotte principalmente nei bambini, hanno evidenziato in Paesi industrializzati prevalenze dello 0,7% in Nuova Zelanda, del 1,6% in Giappone, del 2,4% in Danimarca, del 7,5% in Australia, del 14% in USA e del 15% in Polonia (Macpherson, 2013). Nei Paesi meno industrializzati sono riportate sieroprevalenze del 12% in Messico (Cortés et al., 2015), del 38,8% a Cuba (Sariego et al., 2012), del 53,5% in Ghana (Kyei
et al., 2015) fino a valori molto elevati del 81% in Nepal e del 93% in La Reunion (Africa) (Macpherson, 2013). In nord Italia, negli anni ‘90 Genchi et al. riportavano una sieroprevalenza del 3,98%, dieci anni più tardi Giacometti et al. (2000) del 4,3% nella città di Ancona e Habluetzel et al. (2003) del 1,7% sempre nella regione Marche. Recentemente Beraldo et al. (2014) in Friuli Venezia Giulia hanno riportato una siero-prevalenza attorno all’8%.

L’uomo può contrarre la toxocariasi per ingestione accidentale di uova larvate oppure di L3 presenti in carni crude o poco cotte di ospiti paratenici e si manifesta in forme diverse in funzione della migrazione che le L3 ingerite compiono (Figura 5).

Il processo di migrazione può interessare uno o più organi (fegato, cuore, cervello, occhio e muscolo) ed in funzione della distribuzione e della quantità di larve in migrazione si possono
presentare quadri più o meno gravi (Overgaauw e van Knapen, 2013). La Sindrome da Larva Migrans Visceralis (LMV) che interessa principalmente i bambini al di sotto dei 3 anni di età raramente è mortale ma si possono osservare febbre, epato- e spleno-megalia, dolorabilità addominale, vomito, diarrea, tosse, asma, anoressia, perdita di peso, affaticamento, segni neurologici, pallore e occasionalmente orticaria (Smith et al., 2009). I bambini, soprattutto quelli molto piccoli al di sotto dei 5 anni di età, sono esposti ad un rischio maggiore per il rapporto di stretto contatto che spesso instaurano con il cane di famiglia e per l’abitudine di giocare con la terra e portare le mani sporche alla bocca (Macpherson, 2013; Cortés et al., 2015). La sindrome da Larva Migrans Ocularis (LMO) interessa solo l’apparato visivo ed è prevalentemente osservata nei bambini. Generalmente è il risultato della migrazione di L3 in un occhio e successiva reazione immunitaria che porta in relazione al tempo di esposizione a lesioni più o meno gravi da un impedimento visivo di tipo meccanico, dovuto alla localizzazione della larva, fino alla formazione di un granuloma che porta nel tempo a distacco retinico e di conseguenza a cecità (Smith et al., 2009; Centers for Disease Control and Prevention, 2011), Figura 6.

![Figura 6. Larva Migrans Oculare](http://vw.bakenkopanimalclinic.co.za/files/Roundworms.pdf)

Le L3 che migrano al sistema nervoso centrale sono responsabili della neurotoxocariosi che si manifesta con meningite, encefalite, mielite e vasculite cerebrale. Le forme di toxocariosi asintomatiche o caratterizzate da sintomi blandi e/o aspecifici, dovute all’esposizione a lungo termine alla migrazione larvale in specifici organi target, vengono definite “toxocariosi noscoste” (Traversa, 2012); nei bambini si presentano con febbre, anoressia, mal di testa, dolorabilità addominale, nausea, vomito, letargia, disordini comportamentali, sintomi respiratori, epatomegalia e linfadenopatia cervicale e negli adulti si manifesta con debolezza, prurito, rash cutaneo, sintomi respiratori e/o dolore addominale (Smith et al., 2009; Macpherson, 2013).
La diagnosi nell’uomo avviene mediante l’utilizzo di test sierologici; generalmente lo screening viene effettuato con tecnica ELISA e la conferma della positività avviene con la tecnica Western Blot. Il trattamento prevede l’utilizzo di derivati benzimidazolici.

PREVENZIONE

Le uova di *Toxocara*, come più volte descritto, sono molto resistenti anche in condizioni ambientali avverse e possono restare infettive per anni. Poiché non esistono metodi pratici per la riduzione dei livelli ambientali delle uova, l’approccio migliore consiste nella prevenzione della contaminazione ambientale. Per poter raggiungere l’obiettivo, dovrebbero essere adottate alcune misure preventive quali il trattamento con principi attivi adeguati dei cani con infezione patente, con particolare attenzione ai cuccioli e alle cagne in lattazione, la raccolta delle feci dei propri cani, soprattutto se in aree pubbliche, l’igiene e l’educazione del cittadino.

ANCYLOSTOMATIDI

EZIOLOGIA

Phylum: Nematelminti
Classe: Nematoda
Superfamiglia: Ancylostomoidea

I nematodi della superfamiglia Ancylostomoidea comprendono specie a diffusione cosmopolita tra cui *Ancylostoma caninum* (zone tropicali e sub-tropicali), *Ancylostoma braziliense* (emisfero australe) e *Uncinaria stenocephala* (Nord America e Nord Europa), che interessano la specie canina.

Questi nematodi sono altresì detti “vermi a uncino” per la presenza di un’estremità cefalica incurvata dorsalmente; sono piccoli vermi biancastri, bursati, ematofagi e gli adulti di *A. caninum* raggiungono i 12 mm nel maschio e i 15-20 mm nella femmina; gli adulti di *A. braziliense* e di *U. stenocephala* hanno dimensioni minori, ovvero il maschio del primo raggiunge i 7,5 mm e la femmina 9-10 mm, maschio e femmina della seconda specie raggiungono rispettivamente i 5-9 mm e i 7-12 mm. Presentano una capsula buccale imbutiforme, abbastanza grande, armata e dotata di strutture di attacco. *A. caninum* presenta tre paia di denti marginali e un paio di denti ventro-laterali (Figura 7); *A. braziliense* ne presenta due paia, mentre *U. stenocephala* presenta unicamente delle placche chitinose taglienti, manca di denti dorsali e presenta un paio di piccoli denti sul margine ventrale della
capsula buccale (Figura 7). Gli adulti albergano nell’intestino tenue del loro ospite, fissati alla mucosa tramite le strutture di attacco appena descritte. Le uova emesse con le feci dell’ospite sono immature e si presentano ellissoidali, incolori, con guscio sottile e contengono al loro interno 6-8 blastomeri (Figura 7). Le uova presentano dimensioni variabili e misurano 56-75 x 34-47 μm in *A. caninum*, 75-95 x 41-45 μm in *A. braziliense* e 65-80 x 40-50 μm in *U. stenocephala*.

DISTRIBUZIONE GEOGRAFICA

Le specie *A. caninum* e *U. stenocephala* hanno diffusione geografica cosmopolita con una lieve differenza di distribuzione; il primo, infatti, sembra esser maggiormente diffuso in zone a clima caldo-tropicale, il secondo invece è tipico di aree con clima più temperato e subartico. In generale, i valori di prevalenza riportati per gli ancylostomatidi in tutto il mondo si aggirano al di sotto del 10% come riportato in Italia da Guardone et al. (2013), Riggio et al. (2013), Zanzani et al. (2014) e Paoletti et al. (2015), in Europa da Sager et al. (2006), Ortuño e Castellà (2011), Dado et al. (2012b) e Becker et al. (2012), in Australia e Giappone rispettivamente da Palmer et al. (2008a) e da Itoh et al. (2009) e negli USA da Little et al. (2009). Sempre in Italia, uno studio epidemiologico condotto in 47 canili del Sud ha evidenziato la presenza di *A. caninum* in 34 di essi con una prevalenza del 72,5% (Rinaldi et al., 2011). In Brasile, studi epidemiologici condotti in contesti diversi e su popolazioni canine differenti hanno riportato valori di prevalenza piuttosto elevati: Katagiri e Oliveira-Sequeira (2008) nello stato di San Paolo hanno isolato *A. caninum* nel 18,4% dei cani di proprietà e nel 56,6% dei cani randagi esaminati, valori confermati nei cani randagi della città di Andradina (Coelho et al., 2011), ed in contesti rurali sono stati riportati valori del 42,2% anche in cani di proprietà (Santos et al., 2012).
CICLO BIOLOGICO

Ancylostoma caninum ha un ciclo diretto (Figura 8) e l’infestazione avviene per ingestione o penetrazione attraverso la cute delle L3 libere nell’ambiente. Le femmine del parassita, localizzate nell’intestino tenue, sono notevolmente prolifiche e possono rilasciare nelle feci anche milioni di uova al giorno. Le uova immature, una volta nell’ambiente, in condizioni di umidità e temperatura ideali, schiudono e le larve evolvono nel terreno allo stadio infestante (L3) in circa 4-5 giorni; possono sopravvivere a lungo, per settimane, soprattutto in ambiente umido. Una volta ingerite, le L3 possono raggiungere direttamente l’intestino dove evolvono ad adulti oppure penetrano la mucosa orale e attraverso il circolo raggiungono i polmoni, risalgono i bronchi e la trachea dove mutano a L4 e con la deglutizione dell’ospite raggiungono l’intestino tenue dove diventano adulti.

Le L3, che penetrano attraverso la cute, vanno a localizzarsi nei follicoli piliferi o nelle ghiandole sebacee, soprattutto nelle regioni toracica e addominale maggiormente a contatto con il suolo quando l’animale è in decubito, oppure negli spazi interdigitali dove la cute è più sottile; raggiungono il circolo e compiono lo stesso percorso delle larve che penetrano nella
mucosa orale. In alcune cagne suscettibili, una volta raggiunti i polmoni le L3 migrano con il circolo alla muscolatura scheletrica dove rimangono in una fase di ipobiosi per riattivarsi a fine gravidanza e migrare alla ghiandola mammaria dalla quale vengono secretate per le 3 settimane successive al parto infestando i cuccioli (Traversa, 2012). È inoltre dimostrato che questo processo di migrazione somatica delle L3 e successiva ipobiosi può verificarsi in soggetti adulti, maschi e femmine; la riattivazione larvale, come descritto per la femmina nell’ultimo terzo di gravidanza, avviene in seguito a situazioni di stress, stati di sofferenza gravi, stati morbosi e trattamenti con corticosteroidi ed è causa di infezioni patenti negli adulti (Traversa, 2012). Un ruolo fondamentale nel mantenimento del ciclo è rappresentato dagli ospiti paratenici (es. roditori) che si infestano anch’essi ingerendo le L3 presenti nel terreno. L’ospite definitivo a sua volta si infesta nutrendosi dell’ospite paratenico che nei muscoli e nei visceri alberga le L3 ipobiotiche. Qualunque sia la via di trasmissione, il periodo di prepatenza di A. caninum varia dai 14 ai 21 giorni.

Il ciclo biologico di U. stenocephala è sovrapponibile a quello di A. caninum. La via di trasmissione principale è quella orale senza processi migratori a livello polmonare. Le L3 sono in grado di penetrare la cute ma dato lo scarso potere penetrante arrestano il loro sviluppo a livello sottocutaneo senza portare a compimento il ciclo biologico. Non sono ancora confermate la via transmammaria e transplacentare. Per U. stenocephala il periodo di prepatenza è di circa 15 giorni.

EPIDEMIOLOGIA

Questa parassitosi colpisce maggiormente i soggetti al di sotto dell’anno di età, in particolare i cuccioli di poche settimane che acquisiscono l’infestazione per via transmammaria, mentre è molto meno frequente nei soggetti più anziani, in virtù del fatto che essi acquisiscono una naturale resistenza con le precedenti infestazioni (Ramírez-Barrios et al., 2004). La temperatura è il fattore limitante per lo sviluppo degli stadi larvali; infatti in zone temperate le stagioni migliori sono primavera e autunno. Nei prati la presenza delle larve tende ad aumentare a luglio fino a raggiungere la massima concentrazione verso settembre.

Le L3 sono sensibili al disseccamento e la loro crescita è migliore in un terreno arieggiato, sabbioso, poroso, erboso, ma anche ossigenato, ricco di humus e di vegetali che le proteggono dalla luce solare; le aree tipiche di infestazione per i cani sono i prati.

L’epidemiologia è influenzata dalle due vie di trasmissione principali, ovvero transmammaria nei cuccioli in lattazione e percutanea o orale dall’ambiente esterno; nei lattanti, in particolare,
l’infestazione si può verificare anche se il soggetto è tenuto in condizioni igieniche ottimali in quanto assume le larve direttamente dalla madre durante l’allattamento. Nell’infestazione da larve di *A. caninum* i soggetti si possono infestare anche ingerendo larve dormienti nei muscoli o nei visceri di ospiti paratenici come i roditori.

PATOGENESI E SINTOMI

L’azione patogena più importante è la sottrazione di sangue che provoca un’anemia acuta o cronica dovuta alle enormi perdite di sangue. È più frequente nei cuccioli infestati per via transmammaria (con quadri di anemia grave tra la seconda e la terza settimana di età) e nei cani al di sotto di un anno di età a causa delle loro scarse riserve di ferro. Nelle infestazioni gravi, in cui si hanno centinaia di parassiti, i cuccioli diventano anemici in breve tempo. Le forme meno gravi, invece, colpiscono soprattutto gli adulti e gli anziani, e sono caratterizzate da un’anemia microcitica ipocromica da carenza di ferro.

Le femmine che hanno subito una sola infestazione possono trasmettere le larve del parassita per via galattogena nei 3 parti successivi. Nei cani sensibilizzati che hanno subito precedenti infestazioni si possono vedere raramente delle lesioni cutanee nei punti di entrata delle larve, soprattutto negli spazi interdigitali, con prurito, nodulini, eczemi umidi e ulcere; la migrazione di un numero cospicuo di larve può essere causa di sintomi respiratori dovuti all’azione traumatica sul parenchima polmonare. I quadri si possono presentare in forma acuta con abbattimento, anemia, disturbi respiratori e diarrea con sangue (melena) e muco, in forma cronica caratterizzata da inappetenza, dimagrimento, anemia ferro-priva e lesioni cutanee.

DIAGNOSI

La diagnosi si basa principalmente sull’anamnesi ambientale (ambiente di vita, frequentazione di aree verdi, etc.), sull’evidenziazione dei segni clinici (presenza di eritema cutaneo, anemia, melena, sintomi respiratori, etc.) e infine sull’esame copro-microscopico (dopo il periodo di prepatenza di 15-20 giorni) mediante ricerca e isolamento delle uova nelle feci con tecnica di sedimentazione e flottazione, utilizzando soluzioni saline o zuccherine ad alto peso specifico.

Nel cane, il riconoscimento delle specie di ancylostomatidi non è particolarmente facile data la somiglianza delle uova; per farlo occorrerebbe una coprocultura, ma non è indispensabile ai fini della terapia. Qualora l’anamnesi e i sintomi suggerissero la presenza della parassitosi e l’esame copromicroscopico non evidenziasse alcun uovo di Ancylostomatide, ci si può trovare di fronte ad una parassitosi latente, ovvero il soggetto potrebbe essere in una fase di
prepatenza; in questa circostanza si suggerisce pertanto la ripetizione dell’analisi a distanza di 1-2 settimane.

TERAPIA

Sono efficienti contro i parassiti adulti i derivati benzimidazolici (albendazolo, mebendazolo, fenbendazolo, febantel), il pyrantel pamoato, il levamisolo, e i lattoni macrociclici come la milbemicina ossima e la moxidectina, efficace anche contro gli stadi larvali. Le linee guida ESCCAP (2010) suggeriscono il trattamento dei cuccioli con principi attivi adeguati a partire dalle due settimane di età e secondo le modalità riportate dal produttore. Contemporaneamente è suggerito il trattamento delle madri e un’adeguata profilassi igienico-sanitaria. Nel caso il trattamento interessa un soggetto adulto in genere è sufficiente un unico trattamento, seguendo correttamente le indicazioni riportate dal produttore del farmaco antielmintico. A scopo preventivo, le linee guida ESCCAP suggeriscono il trattamento antielmintico almeno 4 volte all’anno, soprattutto nei soggetti ritenuti maggiormente a rischio, oppure, in sostituzione alla terapia, si consigliano almeno 4 controlli copromicroscopici all’anno e trattamento solo in caso di positività.

MALATTIA NELL’UOMO

L’infestazione da *A. caninum* e *A. braziliense* è una zoonosi a diffusione endemica, soprattutto in zone tropicali e sub-tropicali (Africa, Sud America, Asia orientale). Le larve infestanti penetrano per via cutanea e migrano nella cute dell’uomo provocando una reazione pruriginosa più o meno intensa, detta *Larva Migrans* Cutanea o dermatite serpiginosa (Heukelbach e Feldmeier, 2008; Bowman et al., 2010; Veraldi et al., 2013). Il parassita ha una diffusione cosmopolita e il principale fattore di rischio è la frequentazione, soprattutto a piedi nudi, di aree contaminate dalle larve (spiagge, aree coperte da vegetazione dove i cani possono vagare liberi, aree gioco per i bambini frequentate da cani). La larva di *A. braziliense*, presente nell’ambiente, penetra e migra nel sottocute provocando tragitti serpiginosi, rossi e tortuosi; quella di *A. caninum* permane per lo più nel punto di ingresso (Figura 9). In entrambi i casi il risultato è un’infiammazione o eritema.

Figura 9. Larva Migrans Cutanea
(http://web.stanford.edu/group/parasites)
multiforme, associata a prurito, in seguito al rilascio di enzimi proteolitici durante la penetrazione e la migrazione larvale, vescicole (contenenti la larva attiva), pustole e papule (Heukelbach e Feldmeier, 2008). Le lesioni possono essere focali o multifocali, localizzate soprattutto sulle parti del corpo che vengono a contatto con il terreno contaminato dalle larve. In quadri di infestazione massiva, le larve possono raggiungere anche lo strato muscolare (miosite localizzata), il parenchima polmonare con polmonite eosinofila e ascessi e, a volte, anche l’occhio (Bowman et al., 2010; Traversa, 2012). Tra le fonti di contagio per l’uomo si annoverano anche l’ingestione di alimenti contaminati dalle larve e la migrazione delle stesse nell’intestino in seguito a penetrazione attraverso la mucosa orale. Nell’intestino però il parassita sembra non riuscire a completare il suo ciclo biologico e a raggiungere la maturità sessuale e pertanto causa delle enteriti eosinofiliche spesso subcliniiche (Bowman et al., 2010).

La diagnosi nell’uomo si basa principalmente sui segni clinici e la terapia viene modulata in funzione della diffusione delle larve. Per la terapia nelle forme locali vengono utilizzati prodotti topici a base di tiabendazolo e nelle forme sistemiche o cutanee diffuse vengono somministrati con successo ivermectina, albendazolo, tiabedazolo (Heukelbach e Feldmeier, 2008; Ferreira et al., 2011; Veraldi et al., 2013).

PREVENZIONE

Per una corretta profilassi sono fondamentali il rispetto e l’attuazione delle norme igienico-sanitarie. Prevenzione e controllo dipendono strettamente dall’attuazione del trattamento dei soggetti con infezione patente, dalla pulizia dei ricoveri e degli ambienti esterni. Il monitoraggio, specie in zone endemiche, ha lo scopo di ridurre la contaminazione ambientale e quindi la diffusione della parassitosi; si basa su controlli periodici mediante esame copromicroscopico, specie nei soggetti più esposti al contagio, ovvero nei cani da caccia, nei cani frequentanti parchi e campi di attività, nelle cagne in gestazione, e nei cuccioli a partire dalle 2-3 settimane di età.

Allo stesso tempo, in contesti come gli allevamenti e i canili, va posta attenzione alla pulizia giornaliera dei ricoveri, dei recinti e degli ambienti (principale fonte di contagio), con la raccolta delle feci e il loro corretto smaltimento in modo da ridurre la contaminazione ambientale.

Essendo l’uomo esposto al rischio di contrarre la parassitosi, si raccomanda di lavarsi accuratamente le mani e di limitare, o comunque tenere sotto controllo, l’accesso degli animali a spiagge, parchi e zone dove la sopravvivenza del parassita è favorita, evitare di camminare a
piedi nudi e di venire a contatto col terreno nelle aree appena citate e, infine, raccomandare ai proprietari il rispetto delle norme vigenti in materia di raccolta e smaltimento delle deiezioni.

TRICOCEFALI

EZIOLOGIA

Phylum: Nematelmniti
Classe: Nematoda
Superfamiglia: Trichuroidea

Ai tricocefali appartengono i generi *Trichuris* e *Capillaria*, nematodi ematofagi ospite-specifici. Le specie che interessano il cane sono *Trichuris vulpis*, una specie molto diffusa con distribuzione cosmopolita, i cui adulti si localizzano a livello di grosso intestino, infissi nella mucosa di cieco e di colon. Questi nematodi sono biancastri, lunghi 4,5-7,5 cm e sono detti “vermi a frusta” per il loro aspetto, in quanto possiedono una parte cefalica allungata, sottile e filamentosa (2/3 della lunghezza totale) e una parte posteriore più allargata e tozza, a manico di frusta per l’appunto. Questi parassiti sono provvisti di un apparato buccale privo di labbra con una struttura allungata simile a uno stiletto che serve per permettere la penetrazione del parassita nella mucosa del grosso intestino, sulla quale esercitano la loro azione ematofaga. La femmina è più lunga del maschio e presenta una vulva a livello della giunzione esofago-intestinale e un apparato riproduttore singolo; il maschio, invece, è sottile, ha un’estremità caudale ricurva verso il basso a spirale e un apparato riproduttore singolo con un solo spicuolo contenuto in una guaina e lungo 8-11 mm. Le uova misurano 85x40 μm e sono giallo-brunastre, “a limone”, con due opercoli simmetrici ai due poli, guscio liscio, non segmentate, contenenti una morula indifferenziata (Figura 10). Sono molto resistenti anche in condizioni ambientali avverse (fino ad alcuni anni) e in ambienti umidi (22°C) maturano in circa 35 giorni. La femmina può deporre fino a 2.000 uova al giorno e il cane si infesta ingerendo uova embrionate.

Al genere *Capillaria* appartiene la specie *Eucoleus aerophilus* (sin. *Capillaria aerophila*) che parassita il sistema respiratorio di cani, gatti, volpi e di altri mammiferi selvatici. Pur non essendo un parassita intestinale, verrà comunque descritto in questo capitolo in quanto la
diagnosi avviene attraverso l’identificazione delle uova con la tecnica copromicroscopica oggetto di questo studio e perché può essere agente di zoonosi. Sono parassiti di color biancastro, molto piccoli (maschi 1,5-2,5 cm, femmine 1,8-3,2 cm), sottili, filamentosi e gli adulti sono infissi nella mucosa di trachea, bronchi, bronchiali, e più raramente coane e seni nasali dell’animale parasitato. I maschi hanno un unico e lungo spiculo con cui si attaccano alla femmina durante la copula. Le uova, per alcuni aspetti, sono simili a quelle di T. vulpis, hanno un colore tendenzialmente più chiaro, sono leggermente più piccole (55x35 μm), con due opercoli non simmetrici ai poli, hanno forma “a botte”, con guscio più rugoso e raggrinzito e contengono una morula indifferenziata (Figura 10). Inoltre, le uova di E. aerophilus non mostrano nessun anello alla loro base mentre quelle di T. vulpis possiedono un ispessimento anulare alla base degli opercoli ai due poli (Traversa, 2011). Come le uova di T. vulpis, quelle di Eucoleus sono particolarmente resistenti e possono sopravvivere per mesi fino a un anno nell’ambiente.

DISTRIBUZIONE GEOGRAFICA

I ticocefali hanno distribuzione cosmopolita e sono ubiquitari nell’ambiente. Anche per questo gruppo di parassiti sono riportate prevalenze variabili in tutto il mondo da valori minimi dello 0,7% a valori del 59,4% in funzione del tipo di popolazione indagata e della località geografica (Capelli et al., 2006; Palmer et al., 2008a; Claerebout et al., 2009; Ortuño e Castellà, 2011; Becker et al., 2012; Itoh et al., 2015). In Italia, in una review (Traversa, 2011) sono stati riportati valori di prevalenza per T. vulpis inferiori al 15% nei cani di proprietà, del 27-60% in cani di canile e in campioni ambientali sono stati segnalati valori variabili dal 2% al 20%. Dati più recenti in aree verdi pubbliche riportano prevalenze per T. vulpis del 5,1% e del 7,7% rispettivamente nelle città di Teramo e Roma e per E. aerophilus dello 0,5% in entrambe le città (Boscolo, 2014).

La capillariosi polmonare è una parassitosi poco conosciuta e sottostimata perché si ritiene che E. aerophilus abbia scarso potere patogeno e che l’infestazione negli animali da affezione sia occasionale. Inoltre anche la difficoltà di fare diagnosi certa sembra influire sull’acquisizione di informazioni esaustive sulla sua diffusione. I dati pubblicati sulla sua distribuzione in Italia, come in altri Paesi, sono piuttosto limitati e solo negli ultimi anni l’interesse verso questa parassitosi è andato via via aumentando, con la comparsa di casi segnalati anche negli animali domestici; le segnalazioni sono comunque in animali selvatici, soprattutto volpi con prevalenze del 7% in Italia (Magi et al., 2009) e dal 22,5% all’88% in Europa (Davidson et al., 2006; Ziadinov
et al., 2010). In Svizzera è riportata una prevalenza nel cane dello 0,8% (Sager et al., 2006), del 0,4% in Germania (Becker et al., 2012), del 5,8% in Romania (Mircean et al., 2012), del 7,3% in Ungheria (Fok et al., 2001) ed in Italia del 2,8% (Traversa et al., 2009).

CICLO BIOLOGICO

Il ciclo biologico di T. vulpis è diretto (Figura 11). I parassiti adulti sono localizzati nel grosso intestino (cieco e colon), con la parte anteriore infissa nella mucosa e il resto fluttuante nel lume; dopo l’accoppiamento le femmine depongono le uova che vengono eliminate immature con le feci dell’ospite nell’ambiente, dove possono resistere anche per anni. Le uova, infatti, sono provviste di una parete spessa che le protegge da essiccamento e temperature sfavorevoli. In condizioni di temperatura e umidità ottimali le larve all’interno dell’uovo maturano a stadio infestante (L1) in 3-4 settimane.

![Diagram of the life cycle of Trichuris vulpis](www.sourceitm.weebly.com/parasites--worms.html)

L’ospite ingerisce le uova embrionate che schiudono nel grosso intestino liberando le L1 che penetrano nelle ghiandole della mucosa del cieco dove subiscono varie mutazioni fino a raggiungere lo stadio di adulti immaturi o L5 in 1-2 mesi. A questo punto, dopo 8-10 giorni circa, esse migrano nel lume dove evolvono a parassiti adulti mantenendo la parte anteriore
infissa nella mucosa. Il periodo di prepatenza è di circa 6-12 settimane. *Eucoleus aerophilus* può presentare un ciclo diretto e un ciclo indiretto qualora intervengano ospiti intermedi facoltativi come i lombrichi terricoli, che ingeriscono le uova presenti nell’ambiente e sviluppano la larva infestante. Le uova come quelle di *T. vulpis* sono emesse nell’ambiente con le feci o con l’espettorato dell’ospite infestato e in 1-2 mesi al loro interno sviluppano le L1 infestanti. L’ospite si infesta ingerendo le uova embrionate o i lombrichi; le larve, dopo la schiusa delle uova, attraversano la mucosa gastroenterica e attraverso il sistema linfatico e circolatorio raggiungono il parenchima polmonare. A questo punto le larve attraversano la parete alveolare e raggiungono le vie aeree, dove si sviluppano in 30-50 giorni fino allo stadio adulto e sessualmente maturo, per poi andare a localizzarsi nella sede definitiva, ovvero infissi nella mucosa di trachea, bronchi, e saltuariamente nei seni e coane nasali. Il periodo di prepatenza per *E. aerophilus* è di 5-6 settimane nel ciclo diretto e di 6 settimane in quello indiretto.

EPIDEMIOLOGIA

T. vulpis è un parassita ubiquitario, a distribuzione cosmopolita con un alto tasso di infestazione nel cane di qualsiasi età ma soprattutto negli adulti. L’assenza di una trasmissione verticale, il suo lungo periodo di prepatenza (6-12 settimane) e l’incapacità stimolare una risposta immunitaria protettiva potrebbe spiegare la maggior prevalenza nei cani adulti rispetto ai cuccioli (Traversa, 2011). L’elevata resistenza delle uova nell’ambiente favorisce la permanenza per lunghi periodi nel terreno garantendo la diffusione in allevamenti e canili (Traversa, 2011). Pertanto è il grado di esposizione all’ambiente contaminato a determinare il grado di infestazione nel cane.

L’infestazione da *E. aerophilus* invece è considerata occasionale in quanto è più frequente in animali selvatici; tuttavia negli ultimi anni sono stati segnalati casi in cani e gatti domestici (Traversa et al., 2010). La possibilità che un cane contragga l’infestazione da *E. aerophilus* dipende dalla contaminazione ambientale, legata all’elevata resistenza delle uova nell’ambiente e al mantenimento del ciclo grazie alla presenza ubiquitaria di eventuali ospiti intermedi facoltativi (es. lombrichi terricoli). Sicuramente un ruolo fondamentale nella contaminazione ambientale è giocato dagli animali selvatici in particolare dalla volpe che frequentando sempre più gli ambienti periurbani favorisce la diffusione di parassitosi (Deplazes et al., 2004; Davidson et al., 2006). La capillariosi polmonare viene frequentemente trascurata a causa del fatto che spesso è asintomatica e che molte volte viene fatta una
diagnosi errata confondendola con *T. vulpis*; una particolarità degna di nota consiste nel fatto che mentre *E. aerophilus* può infestare sia cane che gatto, *T. vulpis* infesta solo il cane e altri canidi (Traversa et al., 2010).

PATOGENESI E SINTOMI

La maggior parte delle infestazioni sono lievi e asintomatiche; tuttavia, in caso di infestazioni gravi, si possono verificare quadri di colite, dovute alla localizzazione sub-epiteliale delle larve e al loro movimento continuo alla ricerca di sangue e fluidi mediante l’apparato buccale. Nei casi più gravi si manifestano enteriti emorragiche caratterizzate da feci con striature di sangue vivo o da diarrea acquosa e/o emorragica. Soltanto le infestazioni massive possono provocare notevoli danni con disturbi dello sviluppo, dimagrimento, letargia, debolezza, anemia, veloce deperimento, atonia intestinale, stipsi e dolorabilità addominale. Talvolta ci può essere una peritiflite con adenere del cieco al peritoneo paretale del fianco destro e in questo caso l’animale manifesta anche dolorabilità localizzata. Tuttavia tali alterazioni di solito sono sempre di lieve entità.

Gli adulti di *E. aerophilus* vista la loro localizzazione sono causa di quadri respiratori. Le lesioni includono stati infiammatori come rinite, tracheite, bronchite, nella maggior parte dei casi, croniche. La parassitosi, anche in questo caso, è spesso asintomatica; i quadri clinici sono piuttosto variabili da sintomi respiratori molto lievi e aspecifici a quadri più importanti di bronchiti con scolo nasale e tosse. Se il numero di parassiti è notevole, si possono formare ascessi multipli nel parenchima polmonare (con conseguente fame d’aria e dispnea grave) fino alla morte per insufficienza respiratoria o broncopolmonite.

DIAGNOSI

Dal momento che l’anamnesi e i segni clinici non sono patognomonici, la diagnosi per tricocefali avviene mediante il ritrovamento delle uova nelle feci attraverso l’esame copromicroscopico. Nel periodo di prepatenza, l’unica conferma può derivare dalla regressione della sintomatologia dopo il trattamento antielmintico. La ricerca delle uova di *E. aerophilus*, oltre che nelle feci, è possibile anche nel lavaggio bronchiale. Le uova dei tricocefali come precedentemente descritto sono molto simili ma le caratteristiche morfometriche sono sufficienti a differenziarle (Traversa, 2011).
TECIA

L’efficacia della terapia è strettamente legata alla corretta diagnosi, in quanto non tutti i principi attivi sono efficaci nei confronti di *E. aerophilus*. In genere, la maggior parte degli antielmintici usati nel cane è attiva nei confronti degli adulti di *T. vulpis*, come per esempio i derivati benzimidazolici (fenbendazolo, febantel, flubendazolo, mebendazolo) ed i lattoni macrociclici (avermectine/milbemicine); tra le milbemicine, la moxidectina è efficace anche contro le forme larvali.

Le informazioni, invece, relative al trattamento della capillariosi polmonare negli animali da affezione sono scarse e riguardano i singoli casi clinici. Tuttavia il farmaco oggi riconosciuto maggiormente efficace per *E. aerophilus* sembra essere la moxidectina.

MALATTIA NELL’UOMO

Il ruolo zoonotico di *T. vulpis* è ancor oggi dibattuto sebbene siano stati descritti alcuni casi di Larva Migrans Viscerale nonché forme di parasitosi intestinali; una review (Traversa, 2011) riporta che nella maggior parte dei casi, la diagnosi si è basata sulle caratteristiche morfometriche delle uova oppure sull’identificazione non completa di porzioni di parassiti adulti, inducendo presumibilmente ad una errata diagnosi di trichurosi umana causata da *T. vulpis*. Va tenuta presente quindi la possibilità di errori diagnostici e la necessità di dovere ancora approfondire il reale potenziale zoonotico di *T. vulpis* (Traversa, 2011).

E. aerophilus, invece, è un vero e proprio agente di zoonosi seppur le infestazioni siano sporadiche e causino la formazione di ascessi che spesso vengono confusi con carcinomi polmonari. L’infestazione nell’uomo può esser caratterizzata da febbre, bronchite, tosse con espettorato catturale, emottisi e dispnea (Traversa et al., 2010).

PREVENZIONE

La profilassi può essere attuata attraverso il trattamento dei cani con infestazione patente e soprattutto attraverso l’igiene ambientale. Data l’elevata resistenza delle uova dei tricocefali è fondamentale rispettare le norme di igiene, pulendo quotidianamente i recinti e i box. Un’altra fonte di rischio per gli allevamenti/canili è rappresentata dall’introduzione di soggetti con infestazione patente o pre-patente, per cui ogni animale di nuova introduzione dovrebbe esser sottoposto ad esame copromicroscopico e a rispettare un periodo di isolamento prima dell’introduzione, tenendo in considerazione la durata del periodo di preparazione. Ad esame
cromicroscopico positivo va associata un’adeguata terapia antielmintica dei soggetti infestati. Nelle aree pubbliche, quali parchi e giardini, va fatto obbligo, come per qualsiasi altra parassitosi, la raccolta e lo smaltimento corretto delle deiezioni; ciò contribuisce sensibilmente a una riduzione del rischio di infestazione sia per l’animale che per l’uomo.

CESTODI

I cestodi sono parassiti appiattiti dorso-ventralmente, il cui corpo è segmentato. Sono ermafroditi in quanto ciascun segmento contiene sia l’apparato riproduttore maschile sia quello femminile. Sono distinti in due ordini principali: Ciclophyllidea e Pseudophyllidea. La maggior parte dei parassiti di interesse veterinario rientra nel primo ordine, ad eccezione dei generi *Diphyllobothrium* e *Spirometra* che appartengono al secondo ordine e che non verranno trattati in questo lavoro in quanto i cani oggetto dello studio non sono soggetti a rischio. I cestodi adulti dell’ordine dei Cyclophyllidea presentano una testa, chiamata scolice, caratterizzata da organi di adesione (quattro ventose) e presenza o meno di una o più corone concentriche dentate da cui la definizione di scolice armato (con uncini) o non armato. Allo scolice segue un collo breve al quale è attaccata una catena (strobila) di segmenti ciascuno dei quali è definito proglottide. Le proglottidi si generano continuamente dalla regione del collo e maturano progressivamente. Un cestode adulto presenta nella sua lunghezza proglottidi immature senza organi sessuali, mature con la presenza di entrambi gli organi riproduttori maschile e femminile, e gravide nelle quali gli organi riproduttori lasciano spazio all’utero ripieno di uova. Le proglottidigrave si staccano dallo strobila e vengono rilasciate con le feci, dove per disfacimento o per fuoriuscita dal poro genitale le uova si liberano nell’ambiente. L’uovo è embrionato e contiene una larva esacanta (presenta sei uncini) ed è chiamato oncosfera. La parete dell’uovo, spessa, scura e striata, è atta a proteggere la larva esacanta ed è chiamata embrioforo. Il ciclo è indiretto con la presenza di uno o più ospiti intermedi. Salvo rare eccezioni, il cestode adulto risiede nel piccolo intestino dell’ospite definitivo. In genere l’uovo viene ingerito dall’ospite intermedio dove l’oncosfera viene liberata dai succhi gastrici ed evolve nel sito di elezione in metacestode. Quest’ultimo assume forme diverse in funzione della specie ed è rappresentato da una forma cistica contenente uno (monosomatica) o più scolici (polisomatica), ciascuno dei quali darà origine ad un parassita adulto una volta ingerito dall’ospite definitivo. Tra le forme monosomatiche vanno ricordati il cisticerco (forma cistica contenente liquido con uno scolice invaginato detto anche protoscolice), lo strobilocerco (forma cistica contenente uno scolice evaginato adeso alla parte mediante una catena di
proglottidi immature), il tetrathyridium (tipico dei cestodi della famiglia Mesocestoididae, caratterizzato da una larva con scolice invaginato) e il cisticercoide (piccola cisti solida contenente uno scolice evaginato che si sviluppa in ospiti intermedi molto piccoli come gli artropodi). Tra le forme polisomatiche sono riconosciute l’idatide ed il coenuro; la prima è una forma cistica ripiena di liquido caratterizzata da una membrana germinativa che produce scolici invaginati liberi di fluttuare nel liquido cistico a dare la così detta sabbia idatidea, la seconda è una cisti a contenuto liquido i cui scolici invaginati restano adesi alla parete.

I cestodi che interessano la specie canina, descritti in questo capitolo, appartengono tutti all’ordine dei Cyclophillidea e si dividono in due famiglie principali: Taenidae, in cui rientrano i generi *Echinococcus* e *Taenia*, e Dilepididae di cui fa parte il genere *Dipylidium*. Il cane è ospite definitivo di *Echinococcus granulosus* e saltuariamente di *E. multilocularis*, entrambi agenti di zoonosi importanti (Deplazes ed Eckert, 2001). Le altre specie di *Taenia* che albergano nel cane non sono agenti di zoonosi, ad eccezione di *Taenia multiceps* e *T. serialis*. La trasmissione delle specie appartenenti alla famiglia Taenidae avviene attraverso l’ingestione di uova del parassita, eliminate nell’ambiente dall’ospite definitivo, che a sua volta si è infestato predando o ingerendo carni/visceri parasitati crudi o poco cotti di animali, ospiti intermedi, parassitati. La relazione predatore-preda è fondamentale nella trasmissione del ciclo ed il cane, suscettibile all’infestazione, gioca un ruolo fondamentale nel ciclo domestico del parassita e nella possibile trasmissione all’uomo (Gottstein et al., 2001). Fortunatamente, le abitudini alimentari nel cane domestico hanno ridotto drasticamente l’incidenza di queste parasitosi. Solo *Dipylidium caninum*, che per ciclo vitale differisce dai precedenti, risulta ancora molto presente nella popolazione canina.

FAMIGLIA TAENIDAE - GENERE Echinococcus

EZIOLOGIA

Phylum: Platelminti
Classe: Cestoda
Famiglia: Taenidae
Genere: *Echinococcus*

L’echinococcosi è una malattia parassitaria cosmopolita causata dalla forma adulta di cestodi appartenenti al genere *Echinococcus*, dal greco *Echinos* ἐχῖνος (guscio spinoso, riccio) e *cóccos* κόκκος (bacca, cocco). Delle 7 specie oggi riconosciute (Romig et al., 2006; Xiao et al., 2005), *E.
Echinococcus granulosus ed E. multilocularis sono quelle che rivestono un ruolo fondamentale nella relazione uomo-animale in quanto sono rispettivamente agenti nell’uomo dell’Echinococcosi Cistica (EC) e dell’Echinococcosi Alveolare (EA). Echinococcus multilocularis prevede un ciclo selvatico e riconosce nella volpe l’ospite definitivo principale, il cane ed il gatto, pur essendo ospiti del parassita, rivestono un ruolo epidemiologico di minore importanza in quanto in essi sono registrate basse prevalenze e l’emissione delle uova del parassita con le feci risulta scarsa (Jenkins et al., 2005; Romig et al., 2006; Reperant et al., 2009).

Echinococcus granulosus rientra tra i cestodi più piccoli degli animali domestici ed è lungo circa 4-7 mm. Il corpo è formato da uno scolice e da tre o quattro proglottidi delle quali la penultima è matura mentre l’ultima è gravida e lunga più della metà dell’interno strobila (Figura 12).

Ogni proglottide è ermafrodita e l’ultima, quando in seguito ad autofecondazione diventa gravida, si stacca e viene emessa nell’ambiente assieme alle feci dell’ospite. Lo scolice è tipico delle tenie ed ogni segmento è fornito di un solo poro genitale. Le uova misurano 30-40 µm e non sono morfologicamente distinguibili da quelle di altri Taeniidae (Figura 12).

DISTRIBUZIONE GEOGRAFICA

Echinococcus granulosus ha una distribuzione mondiale (Figura 14) ed è presente in tutti continenti incluse le zone del circolo polare, quelle temperate, subtropicali e tropicali. Le prevalenze più elevate sono state segnalate in Eurasia (bacino del Mediterraneo, Balcani, Medio Oriente, Asia centrale, Mongolia, Tibet e Xinjiang), Africa (Africa orientale e settentrionale), Australia e Sud America. Nelle zone endemiche, i valori di prevalenza del parassita variano da sparadici ad elevati e solamente pochi Paesi possono ritenersi indenni da

CICLO BIOLOGICO

Il ciclo vitale di Echinococcus è indiretto e coinvolge due ospiti, uno intermedio, di solito un mammifero erbivoro od onnivoro, ed uno definitivo, in genere un canide (Figura 13). Gli adulti risiedono nell’intestino tenue dell’ospite definitivo, fissati con lo scolice alla parete intestinale; questi liberano ciascuno un solo segmento gravido alla settimana, espulso con le feci nell’ambiente esterno, dove si liberano le oncosfere che possono rimanere vitali anche per 1 anno.

Le oncosfere vengono ingerite dall’ospite intermedio, attraversano la parete intestinale grazie ai loro uncini e con il circolo ematico o linfatico si portano al fegato e/o ai polmoni e, occasionalmente ad altri organi, dove molto lentamente, in 6-12 mesi, si sviluppa l’idatide, la forma larvale polisomatica o metacestode, che può raggiungere dimensioni notevoli con diametro di 20 cm o anche più, contenente un fluido all’interno. Al termine della maturazione

Figura 13. Ciclo vitale di Echinococcus granulosus (www.cdc.gov)
cistica, dallo strato più interno della cisti, quello germinativo, si generano le capsule proligere contenenti i protoscolici, che si staccano diffondendo nel liquido idatideo, dando origine alla cosiddetta “sabbia idatidea”. All’interno della cisti si possono originare anche due generazioni di cisti figlie. L’ospite definitivo si infesta ingerendo le cisti idatidee, anche se va ricordato che non tutte le idatidi sono fertili. Il periodo di prepatenza è di 5-7 settimane.

EPIDEMIOLOGIA

Il ciclo di *E. granulosus* è generalmente di tipo rurale-urbano, anche se è riconosciuto un ciclo silvestre, nel quale i ruminanti selvatici fungono da ospiti intermedi e il lupo da ospite definitivo. Nel ciclo rurale-urbano, fonte principale dell’idatidosi umana, il cane si infesta tramite l’ingestione di visceri di ruminanti (soprattutto la pecora) contenenti le idatidi ed i soggetti più a rischio sono i cani da pastore. Nel ciclo silvestre, seppur più di rado, il cane può infettersi con l’ingestione di visceri di ruminanti selvatici parassitati e i soggetti maggiormente esposti al rischio sono i cani da caccia. L’uomo può accidentalmente ingerire oncosfere del parassita presenti sul pelo dei cani o per ingestione di verdura contaminata da feci canine parassitate.

PATOGENESI E SINTOMI

L’azione patogena del parassita adulto nel cane è sostanzialmente nulla. In genere i cani parassitati sono asintomatici. Possono essere infatti presenti migliaia di adulti nell’intestino del cane, senza alcun sintomo clinico. Va ricordato infatti che per quanto riguarda l’azione sottrattiva del parassita, la quantità di sostanze che il cestode sottrae all’ospite è proporzionale alla superficie assorbente. Anche le idatidi nell’ospite intermedio sono generalmente ben tollerate senza provocare sintomi clinici evidenti, tanto da essere spesso dei reperti casuali in ambito di macellazione.

DIAGNOSI

La diagnosi nell’ospite definitivo, con indagini copromicroscopiche, risulta difficile in quanto le uova della famiglia Taenidae (Figura 12) non sono morfologicamente distinguibili e perché la loro eliminazione nelle feci è intermittente. I test per coproantigeni non sono commercialmente disponibili e le indagini biomolecolari che identificano le specie sono eseguite in laboratori specializzati. Si può sospendere la presenza di *Echinococcus* qualora la
positività alle indagini copromicroscopiche avvenisse in aree endemiche, in questo caso il cane deve essere trattato come possibilmente infetto da *Echinococcus*.

T ERAPIA

Il farmaco di prima scelta per il trattamento dell’echinococcosi nel cane è il praziquantel, anche se sono utilizzati altri principi attivi come il fenbendazolo ed il mebendazolo. Una monosomministrazione è sufficiente per l’eliminazione del parassita adulto, anche se in genere è consigliato il trattamento sotto la supervisione di un veterinario in due giorni consecutivi per aumentarne l’efficacia e a seguire lo shampoo per rimuovere ogni possibile uovo adeso al pelo. Da tenere presente che il farmaco non è attivo nei confronti delle uova per cui l’eliminazione delle feci nel post-trattamento è fondamentale per la riduzione della contaminazione ambientale.

MALATTIA NELL’UOMO

L’echinococcosi cistica è una zoonosi, l’uomo funge da ospite intermedio accidentale. È una malattia presente nei contesti rurali dove la macellazione casalinga è un’usanza ancora ben radicata. L’uomo si infesta ingeredo accidentalmente le oncosfere presenti in verdure crude contaminate da feci canine, mani non lavate venute a contatto con terreno contaminato (es. bambini), più raramente attraverso il pelo del cane eliminatore. Come per gli altri ospiti intermedi, la larva esacanta nell’intestino si libera dall’uovo e attraversa la parete intestinale, per raggiungere con il circolo ematico o linfatico il fegato e/o i polmoni o più raramente qualsiasi altro organo (es. cervello,ossa lunghe). Nell’età infantile la localizzazione polmonare è predominante, con il 70% circa dei casi totali, mentre nell’età adulta e senile prevale la localizzazione epatica (70-75%).

In Europa sono riconosciute due forme cliniche nell’uomo, l’EC, causata da *E. granulosus* complex e l’EA, causata da *Echinococcus multilocularis*; tra le due forme, l’EC è senz’altro quella prevalente e probabilmente rappresenta più del 95% dei 2-3 milioni di casi mondiali stimati, di cui 200.000 nuovi casi diagnosticati all’anno. L’EC è una delle più diffuse malattie zoonotiche sebbene non sia geograficamente distribuita in modo uniforme (Figura 14). In Europa e nei Paesi limitrofi, l’EC è altamente endemica in Spagna, Italia, Bulgaria, Romania e Turchia ed è ancora uno dei maggiori problemi economici e di Salute pubblica. Nell’Est Europa, il numero di casi umani di EC è dramaticamente aumentato negli ultimi anni con quadri di elevata endemicità nelle comunità pastorali. Per esempio, uno screening ecografico condotto

Negli organi la presenza della larva provoca la formazione di un granuloma infiammatorio già dopo i primi 2-3 giorni. Nei giorni successivi, si ha la formazione di un vacuolo che circoscrive una cavità contenente liquido. La cisti impiega circa sei mesi per raggiungere le dimensioni di 1 cm, continua a crescere progressivamente di circa 2 mm al mese, raggiungendo anche dimensioni notevoli (10-20 cm).

La fertilità della cisti, cioè la sua capacità di produrre protoscolici, dipende oltre che dalla risposta immunitaria dell’ospite, dal ceppo del parassita e dalla sua specie-specificità. Ad esempio, le cisti che si formano negli ovini, nei quali la fertilità è massima, possono contenere fino a mezzo milione di protoscolici ciascuna. Lo sviluppo delle cisti è lento e la latenza temporale media nell’uomo è stimata intorno ai 5 anni. La sintomatologia compare quando il volume delle cisti è tanto aumentato da comprimere organi vitali. La natura e l’intensità delle manifestazioni cliniche dipendono dal numero di cisti presenti, dalle loro dimensioni,
dall’organo interessato, dall’azione compressiva locale, dalla possibilità che fuoriesca una piccola quantità di liquido, dalla sua eventuale rottura. Frequenti sono i sintomi di tipo allergico (orticaria, prurito, crisi asmatiche, dispnea fino ad edema della glottide e shock anafilattico, accompagnati ad eosinofilia). I sintomi meno gravi sono dovuti alla fuoriuscita di piccole quantità di liquido, contenente proteine di *Echinococcus* fortemente immunogene, dovuto a lesioni sulla parete cistica o per traumi. Un evento di particolare gravità può essere costituito dalla rottura della cisti, con rischio di shock anafilattico e disseminazione sistemica, il più delle volte mortali.

Nell’uomo la diagnosi si basa sull’anamnesi, sulla visita clinica, sulla diagnostica per immagini ed infine sulla conferma mediante test sierologici, come l’emoagglutinazione indiretta, ELISA e Western Blot. L’indagine ecografica è considerata di prima scelta per lo studio dell’addome e dei muscoli. L’Organizzazione Mondiale della Sanità (World Health Organization, Informal Working Group on Echinoccosis, WHO-IWGE) nel 2003 ha approntato una classificazione delle cisti di *Echinococcus* che si basa sul loro stato di attività secondo l’aspetto ecografico. Infine la Tomografia Assiale Computerizzata (TAC) e la Risonanza Magnetica (RM) permettono di valutare con accuratezza le dimensioni, i rapporti ed il contenuto della cavità.

L’EC viene trattata per via sistemica con la somministrazione di benzimidazolici, il principio attivo più utilizzato è l’albendazolo oppure localmente mediante PAIR (Puntura, Aspirazione, Iniezione e Riaspirazione), che consiste in via ecoguidata nell’aspirazione della cisti, nell’iniezione di una sostanza attiva nei confronti del parassita, generalmente alcool etilico, e nella ri-aspirazione del liquido. Infine, in alternativa, qualora il PAIR non sia attuabile, è praticata l’asportazione chirurgica della/e cisti, generalmente preceduta da terapia farmacologica. La scelta della terapia più idonea per il paziente viene valutata sulla base della localizzazione, della possibilità di intervenire chirurgicamente o mediante PAIR, della risposta immunitaria e dello stadio evolutivo della cisti. Nel caso di cisti parzialmente o del tutto involute generalmente si sceglie di non intervenire ma di tenere il paziente sotto stretta osservazione.

Nel 2013 è nato HERACLES, un progetto europeo creato per acquisire nuove informazioni sulla relazione ospite/parassita associata all’epidemiologia, alla manifestazione clinica, all’infettività del parassita, all’immunità dell’ospite, a nuove procedure terapeutiche e a nuovi strumenti per la determinazione, la diagnosi ed il follow-up dell’EC (http://www.heracles-fp7.eu, Casulli,
Nell’ambito di questo progetto è stato costituito il Registro Europeo dell’Echinococcosi Cistica (ERCE).

Per completezza si ricorda anche l’EA. Purtroppo i dati non solo sono scarsi ma sono anche difficili da valutare a causa delle basse prevalenze, che non permettono una realistica ricostruzione dell’epidemiologia. I lunghi periodi asintomatici, che variano da un paziente all’altro, rendono difficile determinare tempo e luogo in cui è avvenuta l’infezione (Romig et al., 2006). L’uomo contrae la parassitosi di solito per consumo dei prodotti del bosco (funghi, mirtilli, fragoline, etc.), imbrattati da feci contaminate. Il metacestode si sviluppa in una serie di piccole cisti interconnesse, cresce come una lesione metastatica che arriva a infiltrare completamente l’organo parassitato. L’organo esclusivamente interessato è il fegato (98-100%), anche se in fase terminale il parassita può colpire anche altri organi (Jenkins et al., 2005). Possono trascorrere 5-15 anni prima di osservare dei sintomi, che compaiono, in genere, nell’ultima fase di infezione quando la maggior parte del fegato è ormai infiltrata dal parassita (Deplazes ed Eckert, 2001).

La diagnosi è principalmente basata sull’identificazione delle lesioni parassitarie attraverso la diagnostica per immagini (ecografia, TAC) e sulla presenza di specifici anticorpi sierici. La terapia è difficile e si ha esito positivo solo quando si ha una diagnosi precoce e tutte le lesioni parassitarie sono rimosse completamente per via chirurgica. Nei pazienti inoperabili la terapia consiste nella somministrazione giornaliera di alti dosaggi di benzimidazolici per molti anni, se non per tutta la vita; spesso il farmaco risulta essere più parassitostatico che parassiciticida (Deplazes ed Eckert, 2001).

PREVENZIONE

Il controllo dell’echinococcosi avviene evitando che il cane abbia accesso a visceri di animali parassitati, attuando controlli frequenti nell’arco dell’anno soprattutto per quei soggetti che sono maggiormente esposti al rischio (es. cani da pastore), in particolare in aree endemiche si consiglia il trattamento con farmaci efficaci ogni 6 settimane (ESCCAP, 2010), confinando il cane per 24-48 ore in modo che sia possibile il recupero e la successiva distruzione delle feci onde evitare la contaminazione ambientale ed interrompere il ciclo del parassita. Ricordiamo che l’echinococcosi/idatidosi è una parassitosi oggetto di notifica, i casi identificati dal servizio veterinario in ambito di macello vanno segnalati e i visceri parassitati vanno sequestrati e distrutti. Visto il ruolo zoonotico del parassita, è fondamentale l’educazione sanitaria.
FAMIGLIA TAENIDAE - GENERE Taenia

EZIOLOGIA

Phylum: Platelminti
Classe: Cestoda
Famiglia: Taenidae
Genere: Taenia

Il genere Taenia annovera numerosi cestodi i cui stadi adulti colonizzano l’intestino tenue di numerosi animali, uomo compreso, e il cui ciclo indiretto prevede il coinvolgimento di ospiti intermedi. La relazione preda-predatore è una condizione essenziale affinché il ciclo vitale si completi, in quanto l’ospite definitivo si infesta con l’ingestione di visceri o carni parassitate di ospiti intermedi mangiate crude o poco cotte. Le specie di seguito riportate sono presenti in contesti prevalentemente rurali e hanno come ospite definitivo i canidi e quindi anche il cane.

Taenia hydatigena

Il parassita adulto presenta uno scolice armato e può raggiungere i 5 metri di lunghezza. Gli ospiti intermedi sono ovini, bovini e suini. Nell’ospite intermedio le oncosfere vengono trasportate attraverso il circolo ematico e dopo una migrazione di 4 settimane si fissano al peritoneo e qui in 4 settimane maturano a metacestode (*Cysticercus tenuicollis*) che può raggiungere un diametro di 8 cm. L’ospite definitivo è il cane, oltre ad altri carnivori selvatici. Il periodo di prepatenza è di circa 2 mesi.

Taenia ovis

Il cestode è lungo fino a 2 metri, armato, i cui ospiti intermedi sono ovi-caprini. La forma larvale *Cysticercus ovis* si localizza principalmente nei tessuti muscolari. Anche questo cestode vede il cane e i canidi selvatici come ospiti definitivi. Il periodo di prepatenza è di 6-9 settimane.

Taenia multiceps (sin. *Multiceps multiceps*)

È lungo fino a 1 metro, armato, i cui ospiti intermedi sono i ruminanti, talvolta equini e suini, eccezionalmente l’uomo. Le oncosfere post-ingestione con il circolo si portano al cervello o al midollo spinale, dove danno origine al metacestode, *Coenurus cerebralis*, responsabile della sindrome clinica neurologica, nota come “cenurosi”. L’ospite definitivo è il cane, oltre ai canidi selvatici. Il periodo di prepatenza è di circa 6 settimane.
Taenia pisiformis
È un cestode che raggiunge i 2 metri, armato, i cui ospiti intermedi sono lagomorfi. Il ciclo biologico è sovrapponibile a quello di *T. hydatigena* e la forma larvale *Cysticercus pisiformis*, grande come un pisello, si localizza a livello peritoneale. Cane e carnivori selvatici sono gli ospiti definitivi e contraggono la teniasi cibandosi di visceri di lagomorfi parasitati dal cisticerco. Il periodo di prepatenza è di circa 2 mesi.

Taenia serialis
Il parassita adulto non raggiunge il metro di lunghezza, in media 0,5-0,7 m. Presenta uno scolice armato, con due corone di uncini ed il metacestode che si sviluppa nel tessuto sottocutaneo o nel connettivo intermuscolare di lagomorfi (ospiti intermedi), e accidentalmente di roditori e uomo, è chiamato *Coenurus serialis*. Anche questo cestode vede il cane e i canidi selvatici come ospiti definitivi.

PATOGENESI E SINTOMI
Le tenie nel cane esercitano azione irritativa e sottrattiva, oltre che occludente se numerose e di elevate dimensioni. La sintomatologia classica prevede diarrea e/o stipsi e dimagrimento dell’ospite.

DIAGNOSI
La diagnosi si basa sull’isolamento delle uova con indagini copromicroscopiche. Come riferito per *E. granulosus*, le uova della famiglia Taenidae sono indistinguibili morfologicamente e la diagnosi risulta difficile anche per l’eliminazione intermittente delle uova.

TERAPIA
La terapia più efficace nei confronti dei cestodi adulti è rappresentata dal praziquantel, anche se sono utilizzati derivati benzimidazolici come il fenbendazolo e il mebendazolo.

MALATTIA NELL’UOMO
La specie qui considerate sono prive di potenziale zoonosico, ad eccezione di *T. multiceps* e di *T. serialis* che eccezionalmente può determinare la cenurosi nell’uomo.
PREVENZIONE

La profilassi come per *Echinococcus* consiste in un’alimentazione adeguata del cane, evitando che ingerisca visceri o carni parassitate crude o poco cotte di ospiti intermedi. A seguito dell’identificazione di soggetti con infezione patente, è necessario il trattamento con farmaci efficienti e successiva eliminazione delle feci per evitare e ridurre la contaminazione ambientale.

FAMIGLIA DILEPIDIDAE

EZIOLOGIA

Phylum: Platelminiti
Classe: Cestoda
Famiglia: Taenidae
Genere: *Dipylidium*

Dipylidium caninum è il cestode che si ritrova più comunemente nel cane e nel gatto. Può arrivare a misurare 80 cm di lunghezza ed è dotato di uno scolice armato, costituito da 4 o 5 file di uncini, e di uno strobilo formato da 80-250 proglottidi (Figura 15). Viene comunemente chiamato “tenia cucumerina”, per la forma allungata delle proglottidi che ricordano i semi del cocomero. L’adulto risiede nell’intestino tenue del cane, in particolare in digiuno ed ileo. Ciascuna proglottide presenta pori genitali doppi così come sono duplici gli organi genitali di entrambi i sessi. Le uova di *D. caninum* vengono emesse all’interno di una capsula ovigera (120-200 μm), che raccoglie all’interno circa una ventina di uova sferiche di 30-35 μm di diametro, contenenti l’embrione esacanto (Figura 15). La capsula ovigera è tipica della specie e facilmente differenziabile dagli altri cestodi del cane soprattutto quando isolata integra.

Figura 15. Capsula ovigera (a sinistra) e forma adulta (a destra) di *Dipylidium caninum* (www.cdc.gov)
DISTRIBUZIONE GEOGRAFICA

Il parassita ha una distribuzione cosmopolita e l'infestazione da *D. caninum* è molto frequente e strettamente associata alla presenza degli ospiti intermedi (pulci e pidocchi). Prevalenze variabili sono riportate in Spagna con valori del 5,1%-13,2% (Martínez-Moreno et al., 2007; Dado et al., 2012b), in Canada *Dipylidium* è stato segnalato nel 2,4-2,8% dei cani controllati (Stull et al., 2007) e valori al di sotto dell’1% sono stati registrati in Ungheria, Brasile, Grecia e Australia (Fok et al., 2001; Oliveira-Sequeira et al., 2002; Papazahariadou et al., 2007; Katagiri e Oliveira-Sequeira, 2008; Palmer et al., 2008a). In Italia uno studio epidemiologico sugli elminti intestinali condotto in canili del Sud Italia, ha messo in evidenza la presenza di *D. caninum* in 31 canili su 47 indagati, con una prevalenza del 65,9% (Rinaldi et al., 2011); indagini condotte recentemente in cani di proprietà hanno evidenziato una prevalenza dell’1,25% nel Centro Italia (Riggio et al., 2013) e del 2,86% nel Nord Italia (Zanzani et al., 2014).

CICLO BIOLOGICO

Il ciclo vitale è indiretto e prevede il coinvolgimento di ospiti intermedi artropodi (pulci e pidocchi). Gli adulti risiedono nell’intestino tenue di cane e gatto e liberano le proglottidi gravide che vengono espulse con le feci dell’ospite (Figura 16).

Figura 16. Ciclo biologico di *Dipylidium caninum*
Sono dotate di potere contrattile e non è raro osservarle muoversi all’interno delle feci o nella zona perineale adese al pelo. Una volta espulse nell’ambiente, le proglottidi liberano le capsule ovigere, che vengono ingerite dall’ospite intermedio: pulci (Ctenocephalides canis, C. felis) o pidocchi (Trichodectes canis), nei quali si sviluppa il cisticercoide, forma larvale monosomatica di Dipylidium. In particolare, solo i pidocchi adulti e le larve delle pulci, dotati di organi per la masticazione, sono in grado di infestarsi; la maturazione del cisticercoide sarà sincrona con la maturazione dell’artropode e richiederà circa 30 giorni. Cane e gatto si infestano ingerendo pulci o pidocchi che ospitano il cisticercoide. Il periodo di prepatenza è di 3 settimane.

EPIDEMIOLOGIA

Poiché il ciclo biologico del parassita è strettamente legato a quello di pulci e pidocchi, i soggetti infestati da questi ectoparassiti sono anche quelli che corrono il maggior rischio di infettarsi con il cestode in questione. In particolare, sono a rischio quei soggetti che vivono a contatto con altri cani o gatti infestati da pulci/pidocchi, in gruppi numerosi (canili o allevamenti), non trattati regolarmente con prodotti insetticidi, in cui le forme di re-infestazione sono ricorrenti.

PATOGENESI E SINTOMI

Spesso gli adulti del parassita non danno una sintomatologia molto evidente e diverse centinaia di parassiti possono essere presenti senza dare disturbi particolari. In funzione dell’entità dell’infestazione possono manifestarsi diarrea, inappetenza, dimagrimento e vomito. L’atteggiamento di leccamento e/o di strofinamento della zona perianale suggeriscono quadri di prurito dovuti alla presenza delle proglottidi attive adese alla zona di interesse.

DIAGNOSI

La presenza di pulci/pidocchi ed il reperimento di proglottidi attive nelle feci o in zona perianale sono segni patognomonici di dipilidiosi. La conferma viene data con l’identificazione attraverso indagine copromicroscopica delle capsule ovigere.

TERAPIA

Il cane che presenta un’infestazione patente da Dipylidium deve essere trattato per la parassitosi intestinale e per l’ectoparassitosi pur non evidente, in quanto la presenza del cestode è strettamente correlata ad una pulicosi/pediculosi latente. Principi attivi efficaci
contro la forma adulta del cestode sono praziquantel e mebendazolo, in genere una singola somministrazione è sufficiente per eliminare il parassita. In caso di infestazioni importanti può essere ripetuto il trattamento a distanza di tre settimane. La terapia antielmintica è efficace solo in associazione di un trattamento insetticida diretto contro le pulci ed i pidocchi presenti sull’animale e nell’ambiente in quanto ricordiamo che, mentre il pidocchio svolge il suo ciclo vitale sull’animale, la pulce allo stadio larvale risiede nell’ambiente.

MALATTIA NELL’UOMO

La malattia nell’uomo è rara ma possibile e riportata in letteratura da alcuni Autori (Rabinowitz et al., 2007; Taylor e Zitzmann, 2011). Le modalità di infestazione sono le medesime degli animali e i più colpiti sono i bambini per l’ingestione accidentale di pulci (Mani e Maguire, 2009). Il cisticercoide evolve a parassita adulto nell’intestino dove si ancora e matura liberando le proglottidi gravide con le feci dell’ospite. Nell’uomo sono segnalati dolore addominale e prurito in zona perianale (Rabinowitz et al., 2007).

PREVENZIONE

La profilassi prevede senz’altro il trattamento delle forme patenti con farmaci efficaci, con raccolta ed eliminazione delle feci, fonte di infestazione per l’ospite intermedio, e trattamento contro gli ectoparassiti regolare a scopo preventivo in modo da evitare forme ricorrenti. Va prestata chiaramente anche molta attenzione alla convivenza con altri cani e/o gatti, e nel caso di positività di un soggetto, andrebbero trattati tutti gli animali (cani e gatti) conviventi.

PROTOZOI

I protozoi appartengono al regno dei Protist i e sono organismi unicellulari eucarioti. I parassiti di nostro interesse rientrano nel Phylum degli Apicomplexa e dei Sarcomastigophora. Al primo gruppo appartengono i protozoi il cui ciclo vitale è prevalentemente intracellularare e presenta fasi sessuate e asessuate, nel secondo gruppo rientrano quei protozoi muniti di flagelli e/o pseudopodi che ne consentono la locomozione. Rientrano nel sub-phylum Apicomplexa numerose famiglie di protozoi, di queste 3 raggruppano i protozoi intestinali del cane: Eimeriidae, a cui appartengono il genere *Eimeria* ed *Isospora*, Cryptosporidiidae, con il genere *Cryptosporidium*, e Sarcocystidae, nella quale rientrano i generi *Sarcocystis* e *Neospora*, che non verranno trattati in questo capitolo per le loro basse prevalenze nel territorio d’indagine, il ruolo apatogeno nel cane e l’assenza di potere zoonotico.
Phylum Apicomplexa – Famiglia Eimeriidae

Eziologia

Phylum: Protista
Subphylum: Apicomplexa
Ordine: Eucoccidiorida
Sub-ordine: Eimeriorina
Famiglia: Eimeriidae
Genere: *Isospora*

La coccidiosi nel cane è causata unicamente dal genere *Cystoisospora* (sin. *Isospora*), in particolare dalle specie *Cystoisospora canis* e *Cystoisospora ohioensis*. Sono parassiti intracellulari e si localizzano nell’epitelio intestinale. Le loro oocisti ovoidali sono morfo-metricamente distinguibili: 38x30 μm *I. canis* e 25x20 μm *I. ohioensis*. Sono caratterizzate da una morula indifferenziata appena espulse con le feci, in condizioni di umidità e temperature ideali, sporulano e all’interno presentano due sporocisti contenenti 4 sporozoiti ciascuna (Figura 17).

Distribuzione Geografica

I coccidi di cani e gatti sono ubiquitari nell’ambiente e le oocisti si trovano nelle feci sia di animali sintomatici che infetti con forme subclinche. Numerosi studi epidemiologici riportano valori inferiori al 15% nei cani di proprietà: 2% nei Paesi Bassi (Claerebout et al., 2009), 3,5% in Brasile (Katagiri e Oliveira-Sequeira, 2008), 4,5% in Giappone (Itoh et al., 2009), 5,2% in Portogallo (Ferreira et al., 2011), 6,4% in Spagna (Martínez-Moreno et al., 2007), 12,5% in USA (Little et al., 2009). Altrettante indagini sono state condotte in cani di canile con prevalenze superiori: 16,4% e 22% in Spagna (Martínez-Moreno et al., 2007; Ortuño e Castellà, 2011), 26,3% nei Paesi Bassi (Claerebout et al., 2009). In Italia, nei cani di proprietà sono state condotte in cani di canile con prevalenze superiori: 6,4% in Veneto e Abbruzzo (Capelli et al., 2006), 7,5% nelle Regioni del Centro (Riggio et al., 2013), 0,97%, 3,70%, 6,98% rispettivamente nelle città di Milano, Bergamo e Brescia (Zanzani et al., 2014).

![Figura 17. Oocisti di *Isospora* spp.](image)
Il ciclo è diretto e i protozoi colonizzano e replicano nel grosso intestino (Figura 18). Le oocisti rappresentano la forma di resistenza del protozoo e vengono espulse con le feci dell’ospite ancora immature. Lo stadio infettante viene raggiunto nell’ambiente in seguito allo loro sporulazione, che dura dai 2 ai 4 giorni in condizioni di umidità, temperatura e ossigenazione ideali. Le oocisti sporulate, una volta ingerite dall’ospite, raggiungono lo stomaco dove vengono rilasciati gli sporozoiti (escistamento) che penetrano nell’enterocita del grosso intestino dove assumono forma rotonda ed evolvono a trofozoita. Dopo alcuni giorni all’interno dell’enterocita avviene la merogonia o riproduzione asessuata durante la quale il trofozoita si divide innumerevoli volte per scissione binaria e si trasforma in meronte, una struttura contenente un elevato numero di organismi nucleati dalla forma allungata chiamati merozoiti. Quando il meronte raggiunge la maturità si rompe portando a rottura anche l’enterocita e liberando i merozoiti, che andranno a colonizzare altri enterociti.

Figura 18. Esempio di ciclo biologico dei coccidi (http://biology.unm.edu/coccidia/lifecycle.jpg)

Questo processo si ripete per una serie di volte fino a che dai merozoiti originano i gameti maschili e femminili dando inizio alla fase di gametogonia o riproduzione sessuata. I gameti
maschili anche detti micro-gameti sono piccoli e flagellati, i gameti femminili detti macro-gameti sono grandi, tondeggianti ed occupano tutto l’enterocita. I microgameti si liberano dalla cellula ospite e fecondano i macrogameti, dando origine allo zigote, dotato di parete cistica (oocisti). Il periodo di preparazione è di circa 10 giorni.

Esiste la possibilità che il cane si inferti predando dei roditori (ospiti paratenici) in cui il protozoo dà origine a forme semicistiche all’interno di fegato, polmone, milza, cervello e linfonodi.

EPIDEMIOLOGIA

PATOGENESI E SINTOMATOLOGIA

I coccidi sono parassiti opportunisti e in concomitanza di cali delle difese immunitarie dell’ospite prendono il sopravvento. Sulla mucosa intestinale, soprattutto in relazione alla densità ed alla localizzazione, determinano una importante azione traumatica e dismetabolica, andando ad alterare significativamente la capacità assorbente della stessa. Nel cucciolo, in particolare, possono dar luogo a gravi sindromi gastroenteriche di difficile controllo clinico, con diarrea acquosa, profusa e nei casi più acuti anche emorragica per la rottura degli enterociti parassitati. Si possono osservare inoltre disidratazione, abbattimento ed ottundimento del sensorio, pelo arruffato e scarso accrescimento. Nei casi meno gravi si osserva diarrea alternata a stitichezza.
DIAGNOSI

I sintomi clinici non sono patognomonici e vanno in diagnosi differenziale con altre forme parassitarie, batteriche e virali che possono dare quadri enterici similari. L’esame copromicroscopico è sufficiente per mettere in evidenza le oocisti.

TERAPIA

In Italia sono registrati numerosi farmaci efficaci contro la coccidiosi, la maggior parte dei quali è rappresentata dalla classe dei sulfamidici tra cui il formosulfatiazolo e la sulfametopirazina, oppure le associazioni di sulfametazina-sulfamerazina-sulfatiazolo, tutte somministrabili per via orale (ESCCAP, 2012). Anche l’associazione di spiramicina e metronidazolo è annoverata tra le terapie efficaci. Queste terapie, in genere, hanno lo svantaggio di prevedere terapie di almeno 20 giorni per debellare la parassitosi. Una nuova molecola che si è dimostrata efficace nell’eliminazione della coccidiosi in tempi più rapidi è il toltrazuril, che nelle formulazioni commerciali viene associato all’emodepside (ESCCAP, 2012).

MALATTIA NELL’UOMO

Essendo strettamente ospite-specifica, *Cystoisospora* non rappresenta un problema di Sanità pubblica.

PROFILASSI

A causa della natura ubiquitaria di questi parassiti, l’eradicazione non è possibile. La contaminazione ambientale, principale fonte di infestazione, può essere contenuta mediante l’applicazione di misure igieniche come la rimozione giornaliera delle feci ed un’accurata pulizia e disinfezione degli spazi frequentati dai cani, là dove è possibile. In canili ed allevamenti, dovrebbero essere scelti, per le zone destinate al ricovero degli animali, pavimenti e pareti resistenti a trattamenti termici (pulizia a vapore) necessari per inattivare le oocisti. Le superfici devono essere lasciate asciugare completamente in quanto questo riduce anche la sopravvivenza delle oocisti nell’ambiente. È molto importante l’igiene del personale addetto agli animali per evitare la diffusione meccanica delle oocisti. Anche un controllo della densità degli animali si può rivelare utile.
PHYLUM APICOMPLEXA — FAMIGLIA CRYPTOSPORIDIIDAE

EZIOLOGIA

Subphylum: Apicomplexa
Ordine: Eucoccidiorida
Sub-ordine: Eimeriorina
Famiglia: Cryptosporidiidae
Genere: *Cryptosporidium*

Cryptosporidium spp. è un protozoo che parassita un enorme numero di specie vertebrate, inclusi uomo, gatto e cane. È un parassita obbligato, intracellulare che generalmente replica nell’epitelio dell’intestino. Il genere oggi comprende almeno 20 specie riconosciute e più di 40 genotipi (Xiao e Fayer, 2008), la maggior parte delle quali sono adattate all’ospite (es. *C. canis* nel cane, *C. felis* nel gatto, *C. hominis* nell’uomo, etc.; Lucio-Forster et al., 2010) anche se non è insolito isolare specie diverse da quelle riconosciute nell’ospite (es. *C. parvum* e *C. muris* nel cane, *C. canis* e *C. felis* nell’uomo; Scorza e Tangtrongsup, 2010). Le oocisti, forma infettante, hanno dimensioni molto ridotte di 4-6µm.

DISTRIBUZIONE GEOGRAFICA

La reale prevalenza della cryptosporidiosi nel cane, così come nel gatto, è difficile da accertare. Recentemente nel cane sono riportate a livello mondiale prevalenze variabili ma con valori che si aggirano attorno al 5-10% come riportato in una review del 2010 (Scorza e Tangtrongsup, 2010). Questi dati sono stati confermati da indagini condotte in Inghilterra dove è stata segnalata una prevalenza dello 0,6% (Batchelor et al., 2008), nella città di Praga dell’1,4% (Dubná et al., 2007b), del 2,8% in Grecia (Papazahariadou et al., 2007), del 2,4-3% in Brasile (Huber et al., 2005; Katagiri e Oliveira-Sequeira, 2008), del 4% in Giappone (Yoshiuchi et al., 2010), del 5% in Iran (Beiromvand et al., 2013), attorno al 9-10% nei Paesi Bassi ed in Canada (Overgaauw et al., 2009; Uehlinger et al., 2013) e in Polonia in canili di cani da slitta. *Cryptosporidium* è stato isolato circa nel 12-13% dei cani (Bajer et al., 2011). Fa eccezione uno studio condotto in cani in Romania con l’applicazione di un test ELISA per la determinazione dei copro-antigeni che ha evidenziato una prevalenza del 52,7% (Titilincu et al., 2010). In Italia indagini epidemiologiche sulla cryptosporidiosi nel cane scarseggiano e i pochi dati disponibili sono compatibili con i valori riportati a livello mondiale. Indagini biomolecolari in cani di proprietà e di canile del sud Italia hanno evidenziato una prevalenza del 3,3% (Giangaspero et
al., 2006), l’uso di kit diagnostici per la determinazione di copro-antigeni ha individuato *Cryptosporidium* nell’1,7% dei campioni di feci canine raccolte lungo le vie di Napoli (Rinaldi et al., 2008) e indagini copromicroscopiche condotte in cani di proprietà e di canile in uno studio recente sempre in sud Italia hanno stimato una prevalenza dello 0,2% (Paoletti et al., 2015).

CICLO BIOLOGICO

Il ciclo di *Cryptosporidium* è diretto (Figura 19) e lo stadio infettante è rappresentato dall’oocisti sporulata, che contiene 4 sporozoiti. A differenza di *Isospora*, la sporulazione avviene nell’intestino, motivo per cui l’autoinfezione è continua. Una volta ingerita dall’ospite, l’oocisti libera gli sporozoiti che aderiscono alla mucosa intestinale, invadono superficialmente l’epitelio ciliato degli enterociti dove si differenziano in trofozoiti e danno inizio alla riproduzione asessuata o schizogonia che produce schizonti di Tipo 1 e 2. I primi contengono 6-8 merozoiti che invadono gli enterociti vicini ricominciando il ciclo, i secondi danno origine a 4 merozoiti che si sospetta siano i fautori della riproduzione sessuata, durante la quale singoli merozoiti danno origine a micro- e macro-gamonti; dai micro-gamonti si dipartono numerosi micro-gameti che si liberano e fecondano ciascun macro-gamonte.

![Figura 19. Ciclo biologico di *Cryptosporidium* spp. (http://milenavillarini.altervista.org)](image-url)
Lo zigote che origina dalla riproduzione sessuata si evolve in due tipi di oocisti che differenziano per sporogonia in 4 sporozoiti, una con parete spessa destinata all’ambiente esterno e una con parete sottile, responsabile delle forme di autoinfezione.

EPIDEMIOLOGIA

Cryptosporidium è un protozoo ubiquitario nell’ambiente e la sua forma infettante è particolarmente resistente e rappresenta il suo punto di forza nel mantenimento del ciclo vitale. La contaminazione ambientale e soprattutto delle fonti d’acqua rappresenta perciò uno dei fattori più importanti nell’epidemiologia della parassitosi. Ricordiamo infatti che le piccole dimensioni e l’elevata resistenza ai fattori chimici favorisce il superamento dei sistemi depurativi dell’acqua, infatti indagini condotte in Scozia e in Inghilterra hanno evidenziato la presenza di *Cryptosporidium* in acque potabili (Nichols et al., 2003, 2010). Inoltre è da ricordare la capacità di dare luogo a forme di autoinfezione che garantiscono una continua produzione di oocisti. Poiché scarsamente patogeno, se non in casi eccezionali, gli animali parassitati sono dei veri e propri reservoir e rappresentano la principale fonte di contaminazione ambientale. Il ciclo diretto e l’immediata infettività delle oocisti, appena espulse, garantiscono una diffusione immediata in contesti in cui gli animali vivono a stretto contatto e sono sottoposti a condizioni stressanti (es. canile).

PATOGENESI E SINTOMATOLOGIA

In cani e gatti i segni clinici di cryptosporidiosi sono generalmente assenti. La maggior parte dei casi sintomatici si presentano con diarrea dovuta allo sviluppo del parassita nell’epitelio, al conseguente danno dei villi intestinali e iperplasia delle cripte. In genere, la cryptosporidiosi si manifesta clinicamente in soggetti di età inferiore ai 6 mesi che non hanno ancora raggiunto un’immunità efficiente oppure in quelli che per ragioni varie sono immunocompromessi.

DIAGNOSI

I sintomi clinici non sono patognomonici e vanno in diagnosi differenziale con altre forme parassitarie, batteriche e virali che possono dare quadri gastroenterici similari. L’esame copromicroscopico non è sufficiente per mettere in evidenza le oocisti in quanto sono molto piccole ed incolori, inoltre nel cane l’eliminazione è limitata rispetto ad altre specie ed intermittente (Scorza e Tangtrongsup, 2010). Colorazioni specifiche come la Ziehl-Neelsen modificata favoriscono l’identificazione dell’oocisti ma non consentono l’identificazione di
specie. Esistono kit commerciali che permettono di individuare i copro-antigeni, però sono allestiti per l’identificazione di \textit{C. parvum} e la negatività del test non esclude la presenza di altre specie. Le indagini biomolecolari oggi risultano le più efficaci in quanto permettono di raggiungere l’identificazione di specie ma al tempo stesso si possono eseguire solo in laboratori specializzati.

\textbf{T\textit{ERAPIA}}

La cryptosporidiosi in cani immunocompetenti di solito si risolve indipendentemente dalla somministrazione di una terapia. Dall’altra parte, soggetti immunocompromessi con sintomatologia clinica sono difficili da trattare. Scorza e Tangtrongsup (2010) segnalano quattro principi attivi (azitromicina, paramomicina, tilosina, nitazoxanide) e relativi protocolli ma i dosaggi e la durata della terapia sono basati su esperienze anedottiche e non sono supportate da studi controllati.

\textbf{MALATTIA NELL’UOMO}

L’uomo può contrarre la cryptosporidiosi ingerendo accidentalmente le oocisti del protozoo a seguito di contaminazione di mani, cibo o acqua. Studi hanno dimostrato che la dose infettante è molto bassa, variabile da 1 a 1000 oocisti (Scorza e Tangtrongsup, 2010). I sintomi più comuni includono diarrea, nausea, vomito, dolore addominale e malessere generale. In soggetti immunodepressi la cryptosporidiosi può diventare sistemica interessando anche pancreas, fegato, dotti biliari e tratto respiratorio. La maggior parte dei casi umani è associata a \textit{C. hominis} e \textit{C. parvum} ma non è insolito isolare da feci umane genotipi specie-specifici dei pet come \textit{C. canis} e \textit{C. felis} (Morgan et al., 2000; Xiao et al., 2001; Pedraza-Díaz et al., 2001; Cama et al., 2003; Bowman e Lucio-Forster, 2010). Comunque, sebbene sia uomo sia gli animali da compagnia possano essere affetti da cryptosporidiosi, il ruolo di cane e gatto nella trasmissione della parassitosi all’uomo sembra essere limitato (Lucio-Forster et al., 2010).

\textbf{PREVENZIONE}

Data la resistenza delle oocisti e la loro ubiquitarietà, la lotta ambientale risulta alquanto inefficace. La prevenzione consta per lo più nell’adozione di buone abitudini che comprendono misure igieniche come lavare le mani prima dei pasti, lavare bene la verdura e bere acqua potabile, nonché la raccolta e lo smaltimento delle deiezioni dei propri animali.
PHYLUM SARCOMASTIGOPHORA — FAMIGLIA DIPLOMONADIDAE

EZIOLOGIA

Phylum: Sarcomastigophora
Sub-phylum: Mastigophora
Ordine: Diplomonadorida
Famiglia: Diplomonadidae
Genere: Giardia

Giardia è un protozoo flagellato a diffusione cosmopolita, si localizza a livello intestinale e rappresenta una delle cause più frequenti di diarrea nell'uomo e negli animali. Ne esistono 6 specie diverse, *G. agilis* (anfibi), *G. muris* e *G. microtii* (roditori), *G. ardeae* e *G. psittaci* (uccelli) e *G. duodenalis* (sin. *G. lamblia* e *G. intestinalis*) isolata da numerosi mammiferi, domestici e selvatici, uomo e cane compresi (Tangtrongsup e Scorza, 2010). Di quest’ultima specie sono stati identificati 8 assemblaggi, dalla lettera A alla lettera H. Gli assemblaggi A e B vengono principalmente isolati in feci umane, C e D sono isolati prevalentemente nel cane, E negli ungulati domestici, F nel gatto, G nel ratto e H nei mammiferi marini (Gaydos et al., 2008; Xiao e Fayer, 2008). Poiché assemblaggi specie-specifici dell’uomo sono stati isolati in feci di animali domestici come il cane ed il gatto (Berrilli et al., 2004; Lalle et al., 2005; Leonhard et al., 2007; Volotão et al., 2007; Upjohn et al., 2010; Paoletti et al., 2011; Dado et al., 2012b; Sotiriadou et al., 2013) e viceversa assemblaggi del cane sono stati isolati da feci umane (Soliman et al., 2011), si ritiene che *G. duodenalis* sia agente di zoonosi, pur essendo ancora sconosciute le modalità con cui avviene la trasmissione (Bowman e Lucio-Forster, 2010; Ryan e Cacciò, 2013).

Giardia duodenalis si localizza nell'intestino tenue ed in particolare sul bordo dei microvilli degli enterociti e nel corso del suo ciclo biologico si presenta in forma cistica che rappresenta la forma di resistenza del protozoo e in forma di trofozoita, ovvero la forma vegetativa che vive nell'intestino. La cisti misura 7-10 μm, ha forma ovale e contiene 4 nuclei, circondati da una parete spessa, che protegge il parassita nell'ambiente esterno (Figura 20). Il trofozoita ha forma a pera, è convesso dorsalmente e sulla superficie ventrale presenta un disco adesivo che gli permette di aderire alla mucosa dell'ospite, dalla quale assume nutrimento per pinocitosi; misura 9-21 x 5-15 μm e presenta 4 coppie di flagelli (2 anteriori, 2 posteriori, 2 caudali e 2 ventrali) importanti per la motilità, 2 nuclei che si trovano nella porzione anteriore e 2 corpi parabasali (Figura 20).
DISTRIBUZIONE GEOGRAFICA

Recentemente è stata condotta una review sistematica con meta-analisi relativa agli studi di prevalenza della giardiosi in campioni fecali di cane (Bouzid et al., 2015). L’output di quest’analisi ha definito una prevalenza generale di giardiosi del 15,2%, nonostante ci sia una grande eterogeneità tra gli studi; sono infatti riportate prevalenze variabili in funzione del contesto (cani di proprietà, cani di canile, pet shop) e del metodo diagnostico utilizzato. Negli studi in cui vengono adottati ELISA, IFA e PCR i valori sono da 2,6 a 3,7 volte più elevati di quelli in cui si utilizza la microscopia. Studi di prevalenza di *Giardia* in foci canine sono riportati in numerosi paesi europei: 2% in Polonia (Solarczyk e Majewska, 2010), 6% in Germania (Sotiriadou et al., 2013), 8,5% in Romania (Mircean et al., 2012), 9,3% in Belgio (Claerebout et al., 2009), 15,2% nei Paesi Bassi (Overgaauw et al., 2009), 16,4% in Spagna (Dado et al., 2012b) e 21% in Inghilterra (Upjohn et al., 2010). Prevalenze variabili sono segnalate anche nel resto del mondo: 6% in Australia (Palmer et al., 2008b), 17,3% in Brasile (Paz e Silva et al., 2012), 23,4% in Giappone (Itoh et al., 2011), 29,2% in USA (Johansen et al., 2013) e 38% in Canada (Uehlinger et al., 2013). In Italia, le prevalenze si aggirano attorno al 15% con valori minimi nei cani di proprietà: 8,2% (Paoletti et al., 2015), 11% (Scaramozzino et al., 2009), 14,37% (Bianciardi et al., 2004), 16,7% (Capelli et al., 2006) e massimi nei cani di canile come il 20,3% in Abruzzo/Veneto (Capelli et al., 2006) ed il 55,2% nel Lazio (Papini et al., 2005).
Ciclo biologico

Giardia presenta un ciclo diretto di tipo oro-fecale (Figura 21); l’ospite si infetta per ingestione accidentale delle cisti, presenti in acque o cibi contaminati, o nelle feci di altri ospiti. Una volta ingerita, la cisti subisce una fase di escistamento favorita dall’acidità gastrica, della durata di circa 10 minuti, da cui originano due trofozoiti che aderiscono meccanicamente attraverso il disco alla mucosa intestinale senza invaderla. Alla fase di adesione segue quella di moltiplicazione che avviene per scissione binaria. In alcuni casi i trofozoiti possono diventare così numerosi da coprire interamente alcune aree della mucosa intestinale, creando una vera e propria barriera meccanica che ostacola l’assorbimento dei principi nutritivi. Nel digiuno, in seguito all’esposizione alle secrezioni biliari e a un PH basico, i trofozoiti si ricoprono di uno strato glucidico, ritraggono i flagelli ed il loro citoplasma si condensa per ritornare allo stato di cisti (fase di incistamento).

Le cisti sono infine escrete, già infettanti, con le feci dell’ospite. La dose infettante è piuttosto bassa (10-25 cisti). La durata complessiva del ciclo vitale è compresa tra i quattro ed i quindici giorni.

EPIDEMIOLOGIA

Un ruolo fondamentale nel mantenimento del ciclo vitale e della diffusione della parassitosi è giocato dalle cisti in quanto non sono solo particolarmente resistenti nell’ambiente, sono anche infettanti nel momento in cui vengono espulse dall’ospite ed eliminate in quantità notevoli soprattutto in soggetti sintomatici, dove la replicazione dei trofozoiti a livello intestinale è causa di forme diarroiche frequenti. La contaminazione ambientale è sicuramente fonte di infestazione, in particolare in quei contesti delimitati come i canili e l’allevamento dove si instaurano facilmente condizioni stressanti e dove gli animali sono strettamente a contatto (Ortuño e Castellà, 2011). Gli animali giovani, al di sotto dei sei mesi, sono quelli maggiormente colpiti (Bouzid et al., 2015) e sono spesso affetti da forme sintomatiche responsabili di forti contaminazioni ambientali. Fungono da reservoir i cani adulti che spesso sono asintomatici o presentano quadri diarroici saltuari. Data la resistenza delle cisti nell’ambiente, la contaminazione può interessare anche l’acqua potabile (Savioli et al., 2006), le sorgenti naturali (Dreelin et al., 2014) e gli alimenti, mettendo a serio rischio anche la salute dell’uomo.

PATOGENESI E SINTOMATOLOGIA

A livello intestinale il parassita può determinare atrofia dei microvilli, iperplasia delle cripte, con aumento delle cellule infiammatorie ed infiltrazione della lamina propria. Non penetra negli enterociti e pertanto non si osserva la diarrea sanguinolenta tipica della coccidiosi.

In realtà la patologia decorre nella maggior parte dei casi in maniera asintomatica; infatti, sebbene le cisti di *Giardia* siano evidenziate frequentemente nelle feci di cani e gatti, il protozoo è causa di diarrea o di altre manifestazioni gastrointestinali solo in soggetti giovani o immunodepressi. La diarrea può manifestarsi in modo variabile, da lieve a grave, e può essere persistente, intermittente o autolimitante. I quadri enterici possono aggravarsi fino alla sindrome da malassorbimento, dovuta alle masse di trofozoiti che aderiscono alle pareti intestinali ed interferiscono meccanicamente con l’assorbimento. I sintomi in questo caso sono steatorrea, perdita di peso, carenze di acido folico, cianocobalamina, trigliceridi, carboidrati e
proteine. Questi disturbi digestivi comportano nei cuccioli problemi nell'accrescimento e letargia.

Al contrario, nei cani adulti se immunocompetenti la produzione di IgA sembra essere sufficiente ad impedire l'adesione del trofozoita agli enterociti. Questi soggetti potrebbero però rimanere portatori e manifestare la sintomatologia in concomitanza di periodi di immuno-depressione.

DIAGNOSI

La diagnosi si basa sull'esame copromicroscopico per sedimentazione e flottazione, che permette di evidenziare le cisti di *Giardia* nelle feci dell'ospite. Poiché le cisti del parassita vengono espulse in modo discontinuo e non costante, è consigliabile campionare le feci in 2-3 giornate consecutive per avere una diagnosi affidabile (Capelli et al., 2006). In alternativa all’indagine copromicroscopica, possono essere eseguiti dei test che ricercano i copro-antigeni (ELISA) oppure test di immunofluorescenza diretta (IFA) che mettono in evidenza le cisti presenti nel campione fecale. Le indagini biomolecolari sono eseguite solo in laboratori specializzati e sono senz’altro utili per identificare gli assemblaggi.

TERAPIA

Una possibilità terapeutica è il fenbendazolo, ed il trattamento può essere ripetuto se i segni clinici e l’escrezione delle cisti persistono. Un'altra opzione è quella di utilizzare delle compresse che contengono una associazione di febantel/pyrantel/praziquantel alla dose antielmintica standard. Questo trattamento è concesso in licenza in alcuni Paesi europei e Paesi al di fuori dell’Unione Europea. Anche il metronidazolo ed il tinidazolo sono efficaci (Tangtrongsup e Scorza, 2010). I trattamenti possono risultare inefficaci, a causa di re-infezioni, co-infezioni o altre malattie che predispongono all’instaurarsi della giardiosi ed impediscono il corretto assorbimento dei farmaci. Un effetto duraturo del trattamento è spesso ostacolato dall’ambiente contaminato; quindi, per ridurre tali fenomeni, sono fondamentali misure profilattiche aggiuntive come per esempio lo shampoo a fine terapia farmacologica per eliminare qualsiasi possibilità che il cane si reinfesti con il pelo contaminato.

MALATTIA NELL’UOMO

G. duodenalis è un protozoo a diffusione cosmopolita. I valori di prevalenza riportati nell’uomo variano da un minimo dell’1,2% ad un massimo del 32% (Monis e Thompson, 2003), dove i
valori inferiori sono stati registrati nei Paesi industrializzati, mentre quelli più elevati sono stati descritti nei Paesi in via di sviluppo (Feng e Xiao, 2011). Il suo ruolo zoonotico è indiscusso ma le modalità con le quali avviene la trasmissione dagli animali all’uomo o viceversa è ancora da chiarire (Ryan e Cacciò, 2013). Numerose sono le indagini che hanno messo in evidenza l’isolamento di genotipi umani da feci canine principalmente in contesti sociali dove le condizioni igieniche generali erano sparse, un esempio è quello descritto in una piccola comunità Rom in Italia dove lo stesso assemblaggio (A1) di G. duodenalis è stato isolato sia dai bambini sia dai cani che vagavano liberamente nella comunità (Marangi et al., 2010). Viceversa, sono scarsi i riferimenti bibliografici che hanno evidenziato assemblaggi specie-specifici del cane in feci umane, un esempio è quello descritto da Soliman et al. (2011) in Egitto; da isolati di G. duodenalis umani gli Autori hanno identificato l’assemblaggio B nella maggior parte dei campioni e un assemblaggio C.

L’uomo si infetta attraverso l’ingestione di acqua o cibo contaminati. Epidemie di giardiasi sono ben documentate; dal 1954 sono riportati in tutto il mondo almeno 132 casi di cui 104 correlati al consumo di acqua potabile contaminata, 18 alla frequentazione di piscine e 10 a viaggi in Paesi esteri; in effetti G. duodenalis è considerata una delle principali cause della “diarrea del viaggiatore” (Broglia et al., 2013). Epidemie correlate al consumo di cibo sono state descritte a seguito di ingestione di ghiaccio, verdura e chicken salad contaminati (Feng e Xiao, 2011).

La giardiasi nell’uomo si presenta in diverse forme cliniche da quadri asintomatici ad acuti con diarrea intermittente o cronica. Si possono presentare crampi addominali, nausea, vomito, steatorrea, anoressia e perdita di peso. In zone endemiche i quadri asintomatici sono comuni sia nei bambini sia negli adulti (Ballweber et al., 2010). La diagnosi avviene come descritta per il cane ed il trattamento è basato sulla somministrazione di benzimidazolici.

PREVENZIONE

Le attività profilattiche prevedono non solo il controllo periodico degli animali e l’eventuale terapia in caso di positività, ma anche l’igiene e la pulizia degli ambienti in cui vivono gli animali, la raccolta e l’eliminazione delle feci in ambiente sia pubblico che privato ed il rispetto delle basilari norme igieniche. In particolare, per la pulizia degli ambienti sono riconosciuti efficaci i disinfettanti a base di sali quaternari d’ammonio, l’ipoclorito di sodio al 1%, la formalina in soluzione acquosa al 2,5% e le soluzioni acquose al 5% di fenolo o cresolo, nonché il vapore (50°C); inoltre le superfici dopo il lavaggio devono essere lasciate asciugare
completamente in quanto le cisti temono la disidratazione. Nelle aree a rischio diventa opportuno bollire l'acqua prima del suo consumo, in quanto le acque potabili possono comunque contenere le cisti del parassita, che sopravvivono per lunghi periodi nelle acque clorate alle concentrazioni normalmente utilizzate per la potabilizzazione.
FECALIZZAZIONE AMBIENTALE

NEL MONDO

Nell’ottica del concetto sempre più diffuso di “One health – One medicine”, la contaminazione ambientale da feci canine, quale fonte di malattia per gli altri animali e soprattutto per l’uomo, ha assunto negli ultimi anni un’importanza crescente. Numerose, infatti, sono le indagini condotte in vari Paesi europei ed extra-europei per valutare il livello di contaminazione di aree pubbliche (strade, parchi, spiagge) da parassiti eliminati dal cane con le feci, tra cui alcuni potenzialmente trasmissibili all’uomo. Le indagini risultano diversificate tra di loro in termini di materiale esaminato, in alcuni casi sono stati analizzati campioni di terreno (sabbia, terra, erba), talora discriminando tra campioni prelevati superficialmente e profondamente, in altri casi sono stati esaminati campioni di feci canine raccolte in vari contesti (parchi, aree gioco per bambini, piazze, spiagge). I risultati di tali indagini sono riportati in dettaglio in Tabella 1.

Prevalenze piuttosto elevate sono state riportate in Sud-America per *Ancylostoma* spp. con valori medi attorno al 50% fino a raggiungere il 92% quando nella città di Rio de Janeiro sono state raccolte ed analizzate feci canine. In particolare, sono state evidenziate differenze statisticamente significative nelle prevalenze di *Ancylostoma* spp. nei quartieri di Buenos Aires, riportando valori del 14% in quelli della media borghesia e del 53% in quelli poveri dove le condizioni igienico-sanitarie risultavano piuttosto scarse. Le uova di *Toxocara* sono state isolate in indagini europee ed extra-europee con valori di prevalenza che arrivavano a superare il 60% in campioni di terreno della città di Guarulhos (Brasile) e in altri prelevati in aree gioco per bambini in Turchia. Seppur specie-specifica e privo di carattere zoonotico, *T. vulpis* risulta alquanto diffuso; è stato descritto sia nelle indagini svolte in Nord e Sud America sia in Europa, raggiungendo valori di prevalenza notevoli nella città di Buenos Aires, senza particolari differenze tra quartieri borghesi e quartieri poveri (26% vs 38%). Tra i protozoi sono stati descritti sia *G. duodenalis* sia *Cryptosporidium* spp., con prevalenze superiori per la prima rispetto il secondo (18% vs 9%).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina b</td>
<td>26</td>
<td>9</td>
<td>14</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>17</td>
<td>53</td>
<td>Rubel e Wisnivesky, 2005</td>
</tr>
<tr>
<td>Argentina b</td>
<td>2,6</td>
<td>1,7</td>
<td>0,2</td>
<td>20</td>
<td>0,4</td>
<td>0,6</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasile b</td>
<td></td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Brasile b</td>
<td>36</td>
<td>3,5</td>
<td>92</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasile b</td>
<td>68</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Costa Rica b</td>
<td>19</td>
<td>7</td>
<td>3</td>
<td>55</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA b</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>3,9</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croazia b</td>
<td>10</td>
<td>15</td>
<td>2,2</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polonia b</td>
<td>0,4</td>
<td>7,7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Repubblica Ceca b</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Spagna b</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Spagna b</td>
<td>1,3</td>
<td>1,3</td>
<td>18</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turchia b</td>
<td>16</td>
<td>62</td>
<td>1,5</td>
<td>1</td>
<td>0,2</td>
<td></td>
<td></td>
<td>7,7</td>
<td>12</td>
<td>12</td>
<td>7,7</td>
<td></td>
<td>Aydenizöz Özkayhan, 2006</td>
</tr>
<tr>
<td>Turchia b</td>
<td></td>
</tr>
<tr>
<td>UK b</td>
<td>6,3</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1. Prevalenze (%) di parassiti intestinali in indagini di fecalizzazione ambientale nel mondo.
*a campioni di terreno; b campioni di feci canine.
IN ITALIA

Anche nel nostro Paese, così come nel resto del mondo, le indagini sulla fecalizzazione ambientale si sono intensificate negli ultimi tempi e numerose sono le città che sono state monitorate. Così come descritto nelle indagini internazionali sulla fecalizzazione ambientale, anche in Italia esiste una ampia varietà di studi; non esiste infatti un approccio univoco nella valutazione di questa problematica a partire dalla tipologia di campione analizzato (feci, terreno) al metodo di campionamento (es. transetti) e alle procedure diagnostiche.

Tra gli elminti, quelli più diffusi sono gli ascaridi, seguiti da T. vulpis e dagli ancylostomatidi. In particolare, le uova di Toxocara sono state isolate in tutte le indagini prese in considerazione (Tabella 2), ad eccezione del lavoro di Papini et al. (2009) che ha esaminato i campioni esclusivamente per la ricerca di G. duodenalis. Le prevalenze riportate sono variabili ma particolarmente importanti sono quelle evidenziate nella città di Bergamo (22%), di Torino (42%) e nelle zone urbane e rurali delle Marche, rispettivamente il 24% ed il 53%. In Ancona sono stati esaminati 22 parchi di cui più della metà (n=14, 63,6%) sono risultati positivi alla presenza di uova di ascaridi. Anche T. vulpis risulta presente in quasi tutti gli studi considerati, e i valori di prevalenza segnalati non superano l’11%. A differenza del Sud America, nelle indagini italiane gli ancylostomatidi non raggiungono prevalenze particolarmente elevate restando al di sotto dell’8%, fatta eccezione per le città di Sassari e di Bari nelle quali è stato trovato positivo rispettivamente l’11% ed il 24% dei campioni analizzati.

Tra i protozoi, G. duodenalis è senz’altro la più diffusa, con prevalenze variabili legate alle procedure diagnostiche utilizzate; sono stati registrati valori dall’1,4% al 31%, evidenziato nella città di Pisa con indagini biomolecolari; prevalenze piuttosto elevate del 16%, 20% e 25% sono state registrate rispettivamente nelle città di Milano, Bergamo e Brescia utilizzando un test commerciale immunocromatografico. Secondi per diffusione ma poiché specie-specifici privi di potere zoonotico sono i coccidi che non raggiungono prevalenze superiori al 7%. Cryptosporidium spp. è stato isolato in tre indagini e in nessuna i campioni positivi erano superiori al 2%.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Milanoa</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td>1,4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torinoa</td>
<td></td>
</tr>
<tr>
<td>Milanoa</td>
<td>6</td>
<td>4,5</td>
<td>1</td>
<td></td>
<td></td>
<td>1,9</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergamoa</td>
<td>11</td>
<td>22</td>
<td>3,7</td>
<td>5,5</td>
<td></td>
<td>3</td>
<td>0,4</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bresciab</td>
<td>5,8</td>
<td>9,3</td>
<td>3,4</td>
<td></td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udineb</td>
<td>Aree urbane</td>
<td>8,3</td>
<td>0,3</td>
<td>1,9</td>
<td></td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aree verdi</td>
<td>1,7</td>
<td>0,8</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>Ancona</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Marchea</td>
<td>Aree rurali</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aree urbane</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Firenzeb</td>
<td>4,6</td>
<td>3,6</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Pisa</td>
<td></td>
</tr>
<tr>
<td>Bari</td>
<td>5,5</td>
<td>14,8</td>
<td>24</td>
<td></td>
<td></td>
<td>1,4</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messina</td>
<td>4</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napoli</td>
<td>10</td>
<td>0,7</td>
<td>1,4</td>
<td>2,4</td>
<td></td>
<td>4,1</td>
<td>7,7</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algherob</td>
<td>1,9</td>
<td>8</td>
<td>0,5</td>
<td>4</td>
<td></td>
<td>4,5</td>
<td>5,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sassarb</td>
<td>0,9</td>
<td>11</td>
<td>4,8</td>
<td></td>
<td>0,6*</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 2. Prevalenze (%) di parassiti intestinali in indagini di fecalizzazione ambientale in Italia.

a campioni di terreno; b campioni di fci canine; c prevalenza espressa come numero di parchi positivi sul totale dei controllati (n=14/22); *prevalenza di nematodi polmonari
ASPETTI NORMATIVI

ITALIA

Su tutto il territorio italiano a partire dal 2009 con la “Ordinanza contingibile ed urgente per la tutela dell’incolumità pubblica dall’aggressione dei cani”, il Ministero del Lavoro, della Salute e delle Politiche sociali definisce il proprietario di un cane, o colui che ne fa le veci, “responsabile del benessere, del controllo e della conduzione dell’animale” rispondendo, “sia civilmente che penalmente, dei danni o lesioni a persone, animali o cose provocati dall’animale stesso” (art. 1, punto 1). Nata per tutelare la salute del cittadino dall’aggressione di cani, l’Ordinanza elenca obblighi e divieti per una corretta conduzione del proprio animale in ambito pubblico che un proprietario di un cane (o chi ne fa le veci) è tenuto a rispettare a tutela del benessere del proprio animale e della salute del cittadino, tra questi l’uso di guinzaglio e museruola (art. 1, punto 3) e l’obbligo di raccolta delle deiezioni con idonei strumenti (art. 2, punto 4). Pubblicata nella Gazzetta Ufficiale della Repubblica italiana (n. 68) il 23 marzo 2009; la sua efficacia è stata poi prorogata fino ad oggi con le successive Ordinanze del 2011, 2013, 2014 e 2015.

In aggiunta, in Veneto con la Legge regionale n. 17 del 19 giugno 2014 (BUR n. 62/2014) è stato aggiunto l’art. 18 bis nella Legge regionale n. 60 del 28 dicembre 1993 “Tutela degli animali d’affezione e prevenzione del randagismo” che regolamenta l’”accesso ai giardini, parchi, aree pubbliche ed aree riservate agli animali da compagnia”.

REGOLAMENTO DELLA CITTÀ DI PADOVA

A seguire l’Ordinanza del 2009, il Consiglio Comunale della città di Padova, con delibera n. 84 del 26 ottobre 2010, ha approvato il “Regolamento comunale per la tutela degli animali”, a garanzia del benessere degli animali posseduti come animali d’affezione (cani, gatti, equidi, avifauna, specie acquatiche, anfibi e rettili) e nel rispetto della convivenza cittadino-animale. In particolare, nell’ambito del capitolo dedicato alla specie canina, il Regolamento invita i detentori dei cani alla raccolta delle deiezioni del proprio animale con idonea strumentazione (art. 27). Inoltre, per favorire il cittadino il Comune si è adoperato per la distribuzione di sacchetti igienici e dog-box in diversi punti della città (Figura 22).
LOTTA AL RANDAGISMO

PARTE SPERIMENTALE
MATERIALI E METODI

CAMPIONAMENTO

CANI DI CANILE

Il campionamento è stato condotto nel periodo novembre 2008 – dicembre 2012 in collaborazione con i Servizi Sanitari e alcuni medici veterinari libero-professionisti responsabili della gestione di alcuni canili rifugio (Tabella 3). Hanno collaborato all’indagine 8 canili, di cui 7 distribuiti sul territorio veneto e 1 in Friuli Venezia Giulia (Figura 23). In Tabella 4 sono elencati i Comuni appartenenti al territorio di competenza dei Servizi Sanitari nei quali sono stati catturati i cani vaganti ospitati nei canili di riferimento. I campioni fecali sono stati raccolti da terra dagli operatori del canile il mattino prima delle pulizie quotidiane dei box, riposti in contenitori di plastica idonei, identificati singolarmente in base alla struttura di provenienza e conservati a temperatura di refrigerazione fino alla consegna al Laboratorio di Parassitologia e Malattie Parassitarie del Dipartimento di Medicina Animale, Produzioni e Salute (MAPS) dell’Università degli Studi di Padova. Nella maggior parte dei casi, i campioni erano individuali; qualora non fosse stato possibile raccoglierli singolarmente veniva prelevato un pool di feci ed indentificato in funzione del box di appartenenza. Ogni campione individuale era corredato di scheda anamnestica relativa ai dati segnaletici del cane ed ai trattamenti antiparassitari eventualmente effettuati nei 2 mesi antecedenti il campionamento. Tutti i campioni venivano conservati refrigerati (+4°C) fino al momento delle analisi, eseguite entro le 48 ore. Un’aliquota di ogni campione veniva congelata a -20°C per le successive analisi biomolecolari.

<table>
<thead>
<tr>
<th>SERVIZIO SANITARIO</th>
<th>CANILE</th>
<th>TIPOLOGIA</th>
<th>ANNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASS 4 "MEDIO FRIULI"</td>
<td>Udine</td>
<td>sanitario 2008-2009</td>
</tr>
<tr>
<td>2</td>
<td>ULSS 3</td>
<td>Bassano del Grappa (Vi)</td>
<td>sanitario e rifugio 2011</td>
</tr>
<tr>
<td>3</td>
<td>ULSS 6</td>
<td>Vicenza</td>
<td>sanitario e rifugio 2011</td>
</tr>
<tr>
<td>4</td>
<td>ULSS 9</td>
<td>Treviso</td>
<td>sanitario 2011</td>
</tr>
<tr>
<td>5</td>
<td>ULSS 10</td>
<td>San Donà di Piave (Ve)</td>
<td>rifugio 2011</td>
</tr>
<tr>
<td>6</td>
<td>ULSS 15</td>
<td>Piazzola sul Brenta (Pd)</td>
<td>rifugio 2012</td>
</tr>
<tr>
<td>7</td>
<td>ULSS 18</td>
<td>Rovigo</td>
<td>sanitario e rifugio 2012</td>
</tr>
<tr>
<td>8</td>
<td>ULSS 22</td>
<td>Verona</td>
<td>sanitario 2012</td>
</tr>
</tbody>
</table>

Tabella 3. Elenco dei canili indagati con riferimenti alla tipologia, al Servizio Sanitario competente e al periodo di indagine
Figura 23. Distribuzione geografica dei canili indagati in Veneto e Friuli Venezia-Giulia
<table>
<thead>
<tr>
<th>Servizio Sanitario Locale</th>
<th>Provincia</th>
<th>Comuni</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSS 3</td>
<td>VICENZA</td>
<td>Asiago, Bassano del Grappa, Campolongo sul Brenta, Cartigliano, Cassola, Cismont del Grappa, Conco, Enego, Foza, Gallio, Lusignano, Marostica, Mason Vicentino, Molvena, Musso, Noi, Pianezze, Pove del Grappa, Romano d’Ezzelino, Roana, Rosà, Rossano Veneto, Rotzo, San Nazario, Schiavon, Solagna, Tezze sul Brenta, Valstagna</td>
</tr>
</tbody>
</table>

Tabella 4. Servizio Sanitario competente per il territorio di cattura dei cani vaganti e comuni afferenti
CANI DI PROPRIETÀ

Grazie alla collaborazione di alcuni veterinari libero-professionisti (n=7) operanti nella città di Padova e nei Comuni limitrofi (Figura 24), tra febbraio e aprile 2012 sono stati raccolti campioni di feci canine appartenenti a cani di proprietà che si recavano in ambulatorio per i controlli di routine. Ad ogni campione, identificato singolarmente, era allegata una scheda che raccoglieva i dati segnaletici ed anamnestici del cane quali la tipologia di ambiente di vita (appartamento, giardino), la convivenza con altri animali, la frequentazione di aree verdi pubbliche, i sintomi enterici eventualmente presenti e le pregresse parassitosi. Così come precedentemente descritto, le feci venivano raccolte in idonei contenitori, identificate in maniera univoca, conservate refrigerate ed inviate al Laboratorio di Parassitologia e Malattie Parassitarie del Dipartimento MAPS dove venivano analizzate entro 48 ore. Una piccola parte veniva aliquotata e conservata a -20°C per le successive analisi biomolecolari.

Figura 24. Distribuzione geografica degli ambulatori veterinari che hanno collaborato; il perimetro in rosso delimita l’area della Provincia di Padova.
CAMPIONI AMBIENTALI

La raccolta dei campioni fecali nella città di Padova, sia nelle aree verdi (parchi, giardini, etc.) sia nelle aree urbane (strade, marciapiedi, aree pedonali, etc.) è avvenuta nell’ambito di un Progetto di Ateneo (anno 2011, prot. CPDA110843), coordinato dall’Università degli Studi di Padova (Dipartimento di Medicina Animale, Produzione e Salute - MAPS) in stretta collaborazione con l’Università degli Studi di Teramo (Dipartimento di Scienze Biomediche Comparate) e in accordo con l’Amministrazione Comunale della Città di Padova (Assessorato Ambiente).

Tabella 5. Elenco e descrizione dei quartieri della città di Padova

All’interno dei quartieri, le strade e le piazze adibite ad area pedonale ricoprono 172.000 m² mentre le aree verdi della città si estendono per circa 5.603.368 m² di cui 4.345.497 m² sono di verde pubblico, gestiti direttamente dal Comune, e corrispondono a circa 20,57 m² per cittadino. Il verde pubblico è distinto in verde attrezzato (parchi gioco, aree gioco, aree dedicate al fitness), parchi urbani (parchi privi di attrezzature), verde storico (parchi e giardini storici) ed aree di arredo urbano (aiuole, spartitraffico, parterres). In Tabella 6 sono riportate le dimensioni e la tipologia delle aree verdi presenti in città (www.padovanet.it, “territorio ambiente e climatologia”).

Tabella 6. Descrizione della ripartizione delle aree verdi nella città di Padova e relativa superficie in m²

<table>
<thead>
<tr>
<th>VERDE PUBBLICO</th>
<th>ALTRI AREE VERDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERDE ATREZZATO</td>
<td>PARCHI URBANI</td>
</tr>
<tr>
<td>3.126.077</td>
<td>60.320</td>
</tr>
</tbody>
</table>

Aree Verdi

L’indagine è stata condotta nell’estate 2012, concentrando i campionamenti nel mese di luglio. Sono state indagate le aree verdi ritenute più significative all’interno del perimetro urbano elencate in Tabella 7 e localizzate geograficamente in Figura 26. Poiché il campionamento è
stato svolto durante il periodo estivo, si è scelto di campionare ciascuna area verde almeno due volte, in fasce orarie nelle quali era maggiormente probabile incontrare i proprietari e i loro cani in passeggiate o viceversa dal mattino dalle 8,00 alle 11,00 e la sera dalle 17,00 alle 20,00. Ogni campionamento prevedeva la partecipazione di una o più squadre di operatori, composte ciascuna da 2-3 persone.

Tabella 7. Aree verdi indagate nella città di Padova e relativa superficie

<table>
<thead>
<tr>
<th>AREE VERDI INDAGATE</th>
<th>QUARTIERE</th>
<th>SUPERFICIE (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GIARDINO DEI CIELEGI</td>
<td>2</td>
<td>21.096</td>
</tr>
<tr>
<td>2 GIARDINO SANTA RITA</td>
<td>4</td>
<td>10.500</td>
</tr>
<tr>
<td>3 PARCO DEI CIGNI</td>
<td>5</td>
<td>19.395</td>
</tr>
<tr>
<td>4 PARCO DEI FRASSINI</td>
<td>3</td>
<td>27.170</td>
</tr>
<tr>
<td>5 PARCO DEI PLATANI</td>
<td>4</td>
<td>15.718</td>
</tr>
<tr>
<td>6 PARCO DEL ROSETO/CUORE</td>
<td>6</td>
<td>7.303</td>
</tr>
<tr>
<td>7 PRATO DELLA VALLE</td>
<td>1</td>
<td>19.928</td>
</tr>
<tr>
<td>8 PARCO IRIS</td>
<td>3,4</td>
<td>32.500</td>
</tr>
<tr>
<td>9 PARCO DEI FAGGI</td>
<td>4</td>
<td>23.539</td>
</tr>
<tr>
<td>10 AREA VERDE P.P. DI VIA DEL COMMISSARIO</td>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>11 PARCO FISTOMBA</td>
<td>1</td>
<td>14.754</td>
</tr>
<tr>
<td>12 PARCO EUROPA</td>
<td>3</td>
<td>45.000</td>
</tr>
<tr>
<td>13 PARCO DEL RONCAJETTE</td>
<td>3</td>
<td>95.000</td>
</tr>
</tbody>
</table>

TOTALE SUPERFICIE 332.403

Figura 26. Distribuzione geografica delle aree verdi indagate nella città di Padova
Durante le attività di campionamento gli operatori provvedevano a perlustrare il suolo con la maggiore attenzione possibile, raccogliendo le feci trovate a terra ed escludendo quelle ritenute non idonee alle analisi di laboratorio e contemporaneamente si impegnavano ad osservare il comportamento dei proprietari di cani, verificando se procedevano o meno alla raccolta delle feci eventualmente emesse dal loro animale. Indipendentemente dal fatto che il proprietario raccogliesse o meno le feci del proprio animale, gli operatori si avvicinavano e gli proponevano di partecipare allo studio, fornendo in cambio un servizio di diagnostica gratuita sulle feci del suo cane. Ciascun campione fecale veniva raccolto in apposito contenitore plastico, identificato in maniera univoca e conservato in una borsa termica refrigerata. Al termine delle attività di campionamento i campioni venivano recapitati al Laboratorio di Parassitologia e Malattie Parassitarie del Dipartimento MAPS e conservati a temperatura di refrigerazione fino alle successive analisi di laboratorio effettuate entro le 48 ore. Un’aliquota veniva congelata a -20°C per le successive analisi biomolecolari.

Aree Urbane

Il campionamento nelle aree urbane si è svolto da giugno a dicembre 2013, con una breve interruzione durante il mese di agosto, periodo durante il quale la frequentazione della città da parte dei cittadini e dei loro cani risulta in genere inferiore per sovrapposizione con il periodo delle vacanze.

Per poter campionare le aree urbane è stata disegnata una griglia con il software Google Earth (versione 7.1.5.1557) suddividendo l’area della città in 84 celle delle dimensioni di 0,8 x 1,1 km ciascuna (Figura 27). A sua volta, ciascuna cella veniva suddivisa in 4 sub-aree di 0,4 x 0,55 km ciascuna (Figura 28). Trentuno celle che ricoprivano aree non accessibili, quali basi e insediamenti militari, area aeroportuale e zone industriali, sono state escluse dal campionamento. Nelle 53 celle rimanenti è stato studiato un percorso che attraversasse le vie cittadine caratterizzate da una maggiore densità abitativa; in particolare, è stato previsto un passaggio in tutte le quattro sub-aree costituenti la cella (Figura 28). La lunghezza dei percorsi disegnati variava da un minimo di 0,68 km (cella 40) a un massimo di 6,49 km (cella 27). Nel caso in cui l’area di una cella fosse sovrapposta a 2 o più quartieri, il percorso tracciato nelle sub-aree veniva attribuito al corretto quartiere di appartenenza. Lungo il percorso sono stati sottoposti ad indagine aree pedonali, marciapiedi, portici e ciglio delle strade. Il campionamento veniva svolto il mattino a partire dalle ore 9.00 fino a conclusione del percorso stabilito. Ogni campionamento prevedeva almeno due squadre composte da due
ciascuna. Ogni coppia percorreva a piedi una cella dividendosi in modo tale da monitorare ambo i lati della strada percorsa. Tutti i residui fecali presenti sul percorso venivano annotati e geo-referenziati mediante l’uso di un GPS portatile; tra questi, quelli ritenuti idonei agli esami di laboratorio venivano raccolti in appositi contenitori e identificati in modo univoco, conservati in una borsa frigo fino al termine del campionamento quindi consegnati al Laboratorio di Parassitologia e Malattie parassitarie del Dipartimento MAPS. Tutti i campioni venivano conservati refrigerati (-4°C) e analizzati entro due giorni. Un’aliquota veniva prelevata e conservata a temperatura di congelamento (-20°C) per le successive analisi biomolecolari.

Figura 27. Griglia sovrapposta al territorio della città di Padova e celle campionabili numerate da 1 a 53 (Google Earth)
INTERVISTE AI CITTADINI

Durante le attività di campionamento nella città di Padova, gli operatori hanno somministrato ad alcuni cittadini di passaggio, che fossero o meno proprietari di cani, dei questionari appositamente predisposti (Figura 29 e 30). I questionari sono stati redatti per valutare quanto il cittadino fosse a conoscenza del rischio sanitario legato alla contaminazione del suolo pubblico da feci canine e quanto fosse informato sull’esistenza del Regolamento Comunale relativamente all’obbligo di raccolta delle feci del proprio animale. In entrambe le tipologie di questionario sono state perciò inserite alcune domande comuni e, in aggiunta, nel questionario concepito per i proprietari sono stati elaborati alcuni quesiti per comprendere quanto fossero informati sulle malattie parassitarie del cane, indagando sulla periodicità dei controlli copromicroscopici e sulla frequenza e tipologia di trattamenti antiparassitari eseguiti sul loro animale.
Questionario sottoposto ai proprietari di cani

(Data compilazione: ____________________________
□ mattina □ sera)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Quanti anni ha il suo cane?</td>
<td></td>
</tr>
<tr>
<td>2) Raccoglie le feci del suo cane?</td>
<td>□ SI, abitualmente □ SI, tranne qualche volta □ Raramente/mai</td>
</tr>
<tr>
<td>3) Ritiene giusto che il proprietario raccolga le feci del proprio cane?</td>
<td>□ SI, soprattutto per igiene □ SI, soprattutto per decoro □ No</td>
</tr>
<tr>
<td>4) Pensa che le feci del cane possano veicolare malattie?</td>
<td>□ SI, solo ad altri cani □ SI, anche all’uomo □ NO □ Non lo so</td>
</tr>
<tr>
<td>5) Con che frequenza porta il suo cane dal veterinario per effettuare l’esame delle feci?</td>
<td>□ Solo se necessario □ Una volta/anno □ Più di una volta/anno □ Mai</td>
</tr>
<tr>
<td>6) Ha mai fatto un trattamento antiparassitario al suo cane?</td>
<td>□ Si □ No □ Non ricordo</td>
</tr>
<tr>
<td>7) Si ricorda il nome di almeno un prodotto antiparassitario somministrato al suo cane?</td>
<td>□ SI, ..</td>
</tr>
<tr>
<td>8) Sa che è in vigore una delibera del Comune che prevede l’obbligo di raccolta delle feci?</td>
<td>□ SI □ NO</td>
</tr>
<tr>
<td>9) Ha accolto con favore questo questionario?</td>
<td>□ SI □ NO □ Sono indifferente</td>
</tr>
</tbody>
</table>

Note: ____________________________

Figura 29. Questionario rivolto ai proprietari di cani
Questionario sottoposto ai non proprietari di cani

(da compilare da parte dell’operatore)

<table>
<thead>
<tr>
<th>ID. CELLA:</th>
<th>...</th>
</tr>
</thead>
</table>

Data compilazione:

□ mattina □ sera

1) Durante le sue passeggiate/camminate le capita di notare feci di cane?

□ SI, spesso
□ SI, saltuariamente
□ Raramente/mai

2) Se SI, come reagisce?

□ Tolleranza
□ Indifferenza
□ Collera
□ Ribrezzo/schifo

3) Pensa che le feci del cane possano veicolare malattie?

□ SI, solo ad altri cani
□ SI, anche all’uomo
□ NO
□ Non lo so

4) Sa che è in vigore una delibera del Comune che prevede l’obbligo di raccolta delle feci?

□ SI
□ NO

5) Ha accolto con favore questo questionario?

□ SI
□ NO
□ Sono indifferenti

Note:

Figura 30. Questionario rivolto ai non-proprietari di cani
ANALISI DI LABORATORIO

ESAME COPROMICROSCOPICO

Ciascun campione di feci è stato esaminato macroscopicamente per verificare l’eventuale presenza di elementi parassitari visibili come proglottidi di cestode o altri elminti. In un secondo momento da ciascun campione sono stati pesati circa 2 grammi che sono stati analizzati con una tecnica copromicroscopica qualitativa, mediante sedimentazione e successiva flottazione con soluzione di nitrato di sodio (peso specifico 1,3), seguendo le indicazioni riportate nel manuale MAFF (1986). Ogni campione è stato esaminato al microscopio ottico ad un ingrandimento di 100x e 400x per individuare rispettivamente uova di elminti e (o)ocistì di protozoi. Gli elementi parassitari eventualmente presenti sono stati identificati su base morfologica e morfometrica.

ANALISI BIOMOLECOLARLI

ESTRAZIONE DNA

Le aliquote dei campioni fecali, congelate preventivamente a -20°C nel corso dei campionamenti, sono state progressivamente decongelate e sottoposte ad estrazione del DNA con il kit commerciale PSP® Spin Stool DNA Kit (Invitek GmbH, Germania) secondo le indicazioni riportate dal produttore. Il DNA estratto da ciascun campione è stato congelato a -20°C e successivamente analizzato con le seguenti metodiche biomolecolari.

AMPLIFICAZIONE DNA Giardia duodenalis

REAL TIME PCR

Il DNA di G. duodenalis è stato amplificato attraverso una Real Time PCR eseguita in un LightCycler® Nano (Roche, Germany). I primer e la sonda TaqMan sono gli stessi usati da Verweij et al. 2003 (Tabella 8) ed amplificavano per il gene SSU-rRNA.

<table>
<thead>
<tr>
<th>Identificativo</th>
<th>Sequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer forward – Giardia F</td>
<td>5’-GACGGCTCAGGACAACGGTT-3’</td>
</tr>
<tr>
<td>Primer reverse – Giardia R</td>
<td>5’-TTGCCAGCGGTGTCGG-3’</td>
</tr>
<tr>
<td>Sonda double-labeled – Giardia T</td>
<td>FAM- 5’-CCCAGCGGTGTCGGTCTAG-3’-TAMRA</td>
</tr>
</tbody>
</table>

Tabella 8. Primer e sonda TaqMan utilizzati per la determinazione di G. duodenalis in Real Time PCR
A differenza di Verweij et al. (2003), le condizioni di reazione sono state in parte modificate come di seguito descritto. È stato ridotto il volume finale di reazione a 10µl di cui 5µl di un reagente pronto all’uso FastStart Essential DNA Probes Master a concentrazione 2x (Roche, Germany), 1,3µl di PCR Grade water, 0,5µl (0,5µmol) di ciascun primer specifico, 0,2µl (0,2µmol) di sonda e 2,5µl di DNA estratto dai campioni fecali. L’amplificazione prevedeva un primo step a 95°C per 10 min, seguito da 45 cicli a 95°C per 10sec e 60°C per 30sec.

I campioni risultati positivi alla procedura di Real Time PCR per cicli di amplificazione inferiori o uguali a 32 sono stati sottoposti ad una metodica di Nested PCR (gene target β-giardina) per confermarne la positività e per ottenere un amplicone sequenziabile.

Nested PCR (gene β-giardina)

La procedura in oggetto si sviluppava in due PCR sequenziali realizzate con l’ausilio di un T-Personal Thermocycler (Biometra, Germany). La prima PCR amplificava un frammento di 753bp ed è stata eseguita in un volume finale di 30µl contenenti 3µl di DNA, 3µl di Buffer 10X, 2µl di dimetilsulfossido (DMSO), 1,2µl (0,4µM) di ciascun primer (G7 e G759, Cacciò et al., 2002, Tabella 9), 0,2µl (1 UI) di AmpliTaq Gold® DNA Polymerase (Applied Biosystem®, USA), 0,6µl di deossinucleotidi trifosfato (dNTPs) 10mM, 0,9µl di dicloruro di magnesio (MgCl₂) 25mM e acqua bi-distillata a volume. La reazione prevedeva un’attivazione della Taq polimerasi a 94°C per 5 min, seguita da 34 cicli di 94°C per 30 sec, 60°C per 30 sec e 72°C per 30 sec e un ciclo finale di estensione a 72°C per 10 min.

<table>
<thead>
<tr>
<th>Identificativo</th>
<th>Sequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer forward – G7</td>
<td>5'-AAGCCCGAGCGACCTACCGCAGTCG-3’</td>
</tr>
<tr>
<td>Primer reverse – G759</td>
<td>5'-GAGCCCGCCCTGGATCTTGAGACGAC-3’</td>
</tr>
<tr>
<td>Primer forward – G7N</td>
<td>5'-GAACGACGAGATCGAGGTCCG-3’</td>
</tr>
<tr>
<td>Primer reverse – G759N</td>
<td>5’-CTGACGAGCTCCGTGTT-3’</td>
</tr>
</tbody>
</table>

Tabella 9. Sequenze dei primer utilizzati nella Nested PCR (gene β-giardina)

La seconda PCR amplificava un frammento di 511bp, interno al precedente, con la stessa miscela di reazione utilizzando i primer G7N e G759N (Lalle et al., 2005; Tabella 9) per i quali si usavano 1,5µl (0,4µM) di ciascuno e 1µl del DNA amplificato dalla prima reazione di PCR. La reazione poi si sviluppava a partire dall’attivazione della Taq polimerasi a 95°C per 5 min, per continuare con 35 cicli di 95°C per 30 sec, 55°C per 30 sec e 72°C per 60 sec, e concludendo con un’estensione finale di 72°C per 10 min. Ad ogni reazione sono stati aggiunti un controllo positivo (DNA target) ed uno negativo, costituito dai reagenti di reazione senza aggiunta di DNA. Gli ampliconi sono stati successivamente visualizzati su gel di agarosio al 2% additivato di
SYBR® Safe DNA Gel Stain (Invitrogen™, USA) con l’uso di Gel Doc™ EZ System (BIO-RAD, Belgio).

NESTED PCR (GENE SSU-rRNA)

Questa procedura veniva utilizzata qualora non si riuscisse ad ottenere con il gene β-giardina un amplicone sequenziabile. La PCR si sviluppava come la precedente amplificando un primo frammento di 292bp e un secondo, interno al primo, di 175bp. Il volume finale di reazione per la prima PCR era di 30µl costituiti da 3µl di DNA, 3µl di Buffer 10X, 2µl di dimetilsulfossido (DMSO), 1,2µl (0,4µM) di ciascun primer (RH11 e RH4, Hopkins et al., 1997, Tabella 10), 0,2µl (1 U) di AmpliTaq Gold® DNA Polymerase (Applied Biosystem®, USA), 0,6µl di deossinucleotidi trifosfato (dNTPs) 10mM, 0,9µl di dicloruro di magnesio (MgCl$_2$) 25mM e acqua bi-distillata a volume. La reazione prevedeva un’attivazione della Taq polimerasi a 94°C per 5 min, seguita da 35 cicli di 94°C per 30 sec, 65°C per 30 sec e 72°C per 30 sec e un ciclo finale di estensione a 72°C per 7 min.

<table>
<thead>
<tr>
<th>Identificativo</th>
<th>Sequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer forward – RH11</td>
<td>5’-CATCCGGTGCATCCTGCC-3’</td>
</tr>
<tr>
<td>Primer reverse – RH4</td>
<td>5’-AGTCGAACCTGATTCTGGCCCAGG-3’</td>
</tr>
<tr>
<td>Primer forward – GiarR</td>
<td>5’-CTGGTCACGCGTCTCG-3’</td>
</tr>
<tr>
<td>Primer reverse – GiarF</td>
<td>5’-GACGCTCTTCCCCAAGGAC-3’</td>
</tr>
</tbody>
</table>

Tabella 10. Sequenze dei primer utilizzati nella Nested PCR (gene SSU-rRNA)

La seconda PCR ripeteva le stesse condizioni di reazione usando i primer GiarF e GiarR (Read et al., 2002; Tabella 10) e 1µl del DNA amplificato dalla prima reazione. Ad ogni reazione, sono stati aggiunti un controllo positivo ed uno negativo. Gli ampliconi sono stati visualizzati su gel di agarosio al 2% additivato di SYBR® Safe DNA Gel Stain (Invitrogen™, USA) come precedentemente descritto.

AMPLIFICAZIONE DNA Cryptosporidium spp.

REAL TIME PCR SU SYBR GREEN I

Per la determinazione di *Cryptosporidium* è stata messa a punto una Real Time PCR su SYBR Green I in condizioni di touch-down dove il gene target era rappresentato dal gene che codifica per la proteina di parete di *Cryptosporidium* (gene COWP). La procedura descritta da Guy et al. (2003) amplificava un frammento del gene di 151 bp ed è stata adattata al nostro studio riducendo il volume di reazione finale a 10µl di cui 5µl di FastStart Essential DNA Green Master
concentrato 2x (Roche, Germany), 2,6µl di PCR Grade water, 0,2µl (0,2µmol) di ciascun primer (COWP P702-R e COWP P702-F, Tabella 11), 2µl di DNA estratto dai campioni fecali.

<table>
<thead>
<tr>
<th>Identificativo</th>
<th>Sequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer forward – COWP P702-F</td>
<td>5’-CAAATTGATACCGTTTGTCTTTCTG-3’</td>
</tr>
<tr>
<td>Primer reverse – COWP P702-R</td>
<td>5’-GGCATGTCGATTCTAATTACAGCT-3’</td>
</tr>
</tbody>
</table>

Tabella 11. Sequenza dei primer della Real Time PCR su SYBR green I per la determinazione di Cryptosporidium spp.

L’amplificazione veniva eseguita in un LightCycler® Nano (Roche, Germany) e consisteva di uno step iniziale a 95°C per 10 min, seguito da 50 cicli costituiti da una fase di denaturazione (95°C per 10 sec), una fase di annealing (65°C per 10 sec) ed una di estensione (72°C per 15 sec). Lo step di annealing è stato condotto in condizioni di touch-down, ovvero la temperatura iniziale di 65°C per 10 sec veniva diminuita di 0,5°C/sec ad ogni ciclo durante i primi 10 cicli fino a raggiungere la temperatura di annealing di 60°C. I successivi 40 cicli venivano eseguiti alle condizioni di temperatura raggiunte. Dopo l’amplificazione i campioni positivi venivano individuati attraverso l’analisi della curva di Melting. La temperatura veniva incrementata gradualmente da 60°C a 95°C per 15 sec alla velocità di 0,1°C/sec con monitoraggio continuo della fluorescenza. La temperatura specifica di Melting (Tm) veniva registrata per ogni singolo campione. Ad ogni reazione venivano inclusi un controllo positivo (DNA target) e un controllo negativo (no DNA aggiunto) a garanzia della buona riuscita della procedura.

Nested PCR (gene SSU-rRNA).

I campioni risultati positivi a Cryptosporidium spp. con Cq inferiori o uguali a 33 venivano processati in Nested PCR (gene target SSU-rRNA) per confermarne la positività. Dalla prima PCR si otteneva un amplicone di 1750 bp e dalla seconda PCR un amplicone, interno al precedente, di 820bp. È stata adottata la procedura messa a punto da Xiao et al. (2004) con le seguenti modifiche: il volume finale di reazione per la prima PCR era di 30µl costituiti da 3µl di DNA, 3µl di Buffer 10X, 0,6µl (0,4µM) di ciascun primer (SSU-F1 e SSU-R1, Tabella 12), 0,4µl (1 UI) di AmpliTaq Gold® DNA Polymerase (Applied Biosystem®, USA), 0,6µl di deossinucleotidi trifosfato (dNTPs) 10mM, 3,6µl di dicitrato di magnesio (MgCl₂) 25mM e acqua bi-distillata a volume. La reazione prevedeva un ciclo a 95°C per 5 min, seguito da 35 cicli di 94°C per 45 sec, 55°C per 45 sec, 72°C per 60 sec, e un ciclo finale di 72°C per 5 min.
La seconda PCR ripeteva le stesse condizioni di reazione della prima ad eccezione del MgCl₂ (abbassato a 1,8 µl), dei primer (SSU-F3 e SSU-R3, Tabella 12) e del DNA (2 µl dell’amplificato della prima reazione). Ad ogni reazione, sono stati aggiunti un controllo positivo ed uno negativo. Gli ampliconi sono stati visualizzati su gel di agarosio al 2% additivato di SYBR® Safe DNA Gel Stain (Invitrogen™, USA) come precedentemente descritto.

AMPLIFICAZIONE CONTEMPORANEA DNA Giardia/Cryptosporidium

REAL TIME DUPLEX

Data la numerosità campionaria, in un secondo momento è stata messa a punto una Real Time PCR duplex per la determinazione simultanea di *G. duodenalis* e *Cryptosporidium* spp. La procedura è stata realizzata in un LightCycler® Nano (Roche, Germany). I primer e la sonda TaqMan per la determinazione di *Giardia* (gene SSU-rRNA) sono gli stessi utilizzati nella Real Time PCR precedentemente descritta, i primer (usati in Real Time PCR su SYBR Green I) e la sonda TaqMan (COWP P702-P, HEX-5’- TGCCACATTGTGACAAATTGAAT-3’-BHQ1) per la rilevazione di *Cryptosporidium* spp. (gene COWP) sono tratti dal lavoro di Guy et al. (2003). Il volume finale di reazione era di 10 µl contenenti 5 µl di un reagente pronto all’uso FastStart Essential DNA Probes Master a concentrazione 2x (Roche, Germany), 0,1 µl di PCR Grade water, 0,5 µl (0,5 µmol) di ciascun primer specifico, 0,2 µl (0,2 µmol) di sonda e 2,5 µl di DNA estratto dai campioni fecali. L’amplificazione prevedeva un primo step a 95°C per 10 min, seguito da 45 cicli a 95°C per 10 sec e 60°C per 30 sec.

SEQUENZIAMENTO

Gli ampliconi di *G. duodenalis* e di *Cryptosporidium* spp. ottenuti dalle reazioni di Nested PCR e gli ampliconi di *Cryptosporidium* spp. ottenuti dalla procedura di Real Time PCR su SYBR Green I sono stati inviati al laboratorio della Macrogen Europe (Olanda). Le sequenze sono state

<table>
<thead>
<tr>
<th>Identificativo</th>
<th>Sequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer forward – SSU-F1</td>
<td>5’-AACCTGGTTGACCTGCCAGTAGTC-3’</td>
</tr>
<tr>
<td>Primer reverse – SSU-R1</td>
<td>5’-TGATCTTCCTGCAAGTTACCTACG-3’</td>
</tr>
<tr>
<td>Primer forward – SSU-F3</td>
<td>5’-GGAAGTTGTATTTATAGATAAG-3’</td>
</tr>
<tr>
<td>Primer reverse – SSU-R3</td>
<td>5’-AAGGAGTAAGGAACACCTCCA-3’</td>
</tr>
</tbody>
</table>

Tabella 12. Sequenze dei primer utilizzati nella Nested PCR (gene SSU-rRNA)
allineate usando il software ChromasPro version 1.7.5 (Technelysium Pty Ltd, Australia) e comparative con quelle disponibili in GenBank™.

ANALISI DEI DATI

Tutti i dati relativi ai campionamenti sono stati raccolti in banche dati (Excel 2007) appositamente predisposte. In particolare, per i cani di canile e di proprietà sono stati inseriti nei rispettivi dataset i dati segnaletici, i dati anamnestici, i risultati degli esami copromicroscopici e biomolecolari; per i campioni raccolti nelle aree verdi sono stati inseriti luogo di raccolta (area verde di riferimento) e gli esiti delle indagini di laboratorio; per i campioni raccolti lungo le vie cittadine (aree urbane) sono stati inseriti gli esiti delle analisi di laboratorio arricchite dei dati di georeferenziazione (cella e quartiere) sia dei campioni fecali raccolti sia di quelli osservati e non raccolti dagli operatori. Non ultime, le risposte ottenute dai questionari rivolti ai cittadini, distinti tra proprietari di cani e non proprietari, sono state inserite in fogli Excel 2007 appositamente creati.

L’analisi statistica (SPSS Statistics versione 23.0.0, IBM®, New York, USA) è stata condotta per valutare le differenze nelle prevalenze del parassitismo intestinale in relazione ai dati individuali dei cani di canile e dei cani di proprietà (Chi-quadrato di Pearson, p<0,05), escludendo dall’elaborazione tutti i valori di prevalenza inferiori al 6,0%.

I campioni prelevati nell’ambiente sono stati oggetto di una statistica descrittiva volta a valutare la fecalizzazione ambientale nelle aree urbane espressa in numero di deiezioni per km percorso dagli operatori. Successivamente, i valori di frequenza osservati in ciascuno dei sei diversi quartieri della città sono stati messi a confronto con il test del Chi-quadrato di Pearson (p<0,05).

Relativamente alle interviste rivolte alla cittadinanza, il confronto (test del Chi-quadrato, p<0,05) tra risposte corrette/errate dei proprietari di cani vs quelle dei non proprietari è stato limitato agli aspetti ritenuti inerenti la fecalizzazione ambientale ovvero il livello di informazione sui rischi sanitari ad essa associati e la conoscenza del Regolamento comunale per una corretta conduzione del proprio animale in ambiente pubblico. Tutte le risposte restanti sono state oggetto di una statistica descrittiva.
VALIDAZIONE DELLE METODICHE BIOMOLECOLARI

CONTROLLO INTERNO

Poiché la matrice fecale possiede dei fattori inibenti intrinseci che potrebbero avere un effetto negativo sulla buona riuscita dell’amplificazione, è stato condotto un test con le procedure molecolari oggetto di questo studio analizzando in contemporanea i DNA target (G. duodenalis e Cryptosporidium spp.) e un DNA estraneo definito “controllo interno”. È stato scelto il DNA di un plasmide commerciale (Hoffmann et al., 2006) che presentava una concentrazione di 2×10^5 copie/µl (Labor diagnostic GmbH-Leipzig) in cui è stato clonato una parte del gene EGFP. Per la sua amplificazione sono stati utilizzati i primer EGFP-1F (5’-GACCACTACCAGCAGAACAC-3’) ed EGFP-2R (5’-GAACTCCAGCAGGACCATG-3’).

L’amplificazione contemporanea del controllo interno e dei DNA target a diverse concentrazioni, ciascuna testata in doppia aliquota, ha confermato l’assenza di inibizione.

SENSIBILITÀ E SPECIFICITÀ

REAL TIME PCR - Giardia duodenalis

Per valutare la sensibilità e la specificità analitica del metodo in esame è stato utilizzato un campione fecale proveniente da un cane positivo per G. duodenalis, individuato dal Laboratorio di Parassitologia dell’Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) attraverso il test di Immunofluorescenza diretta (Merifluor®, Meridian Bioscience) stimando una concentrazione di 50.000 cisti/g di feci. Tale campione è stato quindi sottoposto ad estrazione come da protocollo; dall’estratto sono state predisposte delle diluzioni seriali in base 10 in acqua bidistillata. Le aliquote risultanti comprendevano l’estratto del campione tal quale (Tq) e si estendevano fino alla diluizione di 10^{-10} del Tq. I campioni sono stati analizzati in doppia aliquota con il metodo in oggetto e ad ogni reazione sono stati aggiunti un controllo positivo interno di G. duodenalis e un controllo negativo (no DNA aggiunto). La sensibilità analitica (limite di determinazione, LOD) è stata provata per 36 cicli di amplificazione (Cq) corrispondenti alla diluizione 10^{-4} del campione (circa 5 cisti/g), Figura 31 e 32. Tali diluzioni sono state testate in tre giornate distinte e da più operatori per poter valutare la ripetibilità e la riproducibilità della procedura, Figura 31.
Per l’indagine oggetto di questo studio si è scelto come valore di cut-off i 35 Cq poiché ritenuto un limite sufficiente per individuare cani asintomatici eliminatori di un numero di cisti (circa 20 cisti/g) superiore a quello (10 cisti/g) indicato come dose minima infettante nell’uomo (Ortega e Adam, 1997; Steiner et al., 1997) e probabilmente non trascurabile in termini di contaminazione ambientale. Inoltre, è stato valutato che il valore di 32 Cq corrisponde a campioni positivi a *Giardia* per circa 200 cisti/g (LOD di Nested PCR β-giardina), con più probabili ripercussioni negative sia sulla salute del cane che sui livelli di contaminazione ambientale.

![G. duodenalis](image)

Figura 31. Prove di riproducibilità e LOD della Real Time PCR per la determinazione di *G. duodenalis*
Per valutare la specificità del metodo, sono stati testati in doppia aliquota estratti di DNA di 16 patogeni isolati da feci quali elminti (T. crassiceps, Taenia spp., E. granulosus) e protozoi (Toxoplasma gondii) e da coltura come batteri (Streptococcus epidermidis, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Enterococcus fecalis, Clostridium difficile, Listeria monocytogenes), lieviti (Candida spp.) e funghi (Aspergillus spp., Cladosporium spp., Mucor spp., Prototheca spp.), forniti dal Laboratorio di Parassitologia dell’IZSVe.

REAL TIME PCR - Cryptosporidium spp.

Per mettere a punto tale metodica, considerando la difficoltà di reperire un campione di feci canine idoneo, è stato selezionato un campione di feci di vitello positivo a Cryptosporidium parvum fornitoci dal Laboratorio di Parassitologia dell’IZSVe la cui concentrazione di oocisti per gramma (opg) determinata mediante metodica di immunofluorescenza diretta (Merifluor®, Meridian Bioscience) risultava pari a 500.000.

Sono state valutate la sensibilità e la specificità analitica, la ripetibilità e la riproducibilità della procedura così come è stato eseguito per la Real Time PCR per la determinazione di G.
G. duodenalis. In particolare, il campione selezionato è stato estratto come da protocollo e dall’estratto tal quale (Tq) sono state eseguite diluizioni seriali del campione fino alla diluizione di 10^{-10}. Il Tq e le sue diluizioni sono stati analizzati in doppia aliquota con la metodica in oggetto in giornate diverse (Figura 33 e 34). Ad ogni reazione è stato aggiunto un controllo positivo e un controllo negativo. Il LOD è stato definito a 36 Cq per una diluizione di 10^{-5} corrispondente a una stima di 5 opg.

Per determinare la specifica temperatura di Melting (Tm) sono stati selezionati 5 campioni di feci di vitello, positivi a C. parvum (Merifluor®, Meridian Bioscience). La specifica Tm veniva registrata per ogni singolo campione amplificato. La Tm media era di 78,25±0,46 calcolata sui valori positivi dei vitelli analizzati in doppia aliquota e testati tre volte (Figura 35).

Per confermare la specificità della procedura sono stati testati, in doppia aliquota, gli stessi estratti (16 patogeni isolati da feci e da coltura batterica e fungina) descritti per la Real Time PCR per G. duodenalis e forniti dal Laboratorio di Parassitologia dell’IZSVe.
Figura 34. Output Real Time PCR su SYBR Green I relativa alle diluizioni di Cryptosporidium spp.

Figura 35. Output di Real Time PCR su SYBR Green I (Tm)
REAL TIME PCR - G. duodenalis/Cryptosporidium spp.

Per verificare che non vi fossero fenomeni di inibizione nella determinazione contemporanea dei due protozoi, sono state eseguite delle prove crociate, dapprima analizzando l’aliquota tal quale di G. duodenalis (campioncino utilizzato nella messa a punto della Real Time PCR per Giardia) in associazione all’aliquota Tq e alle diluizioni da 10^{-1} a 10^{-6} di Cryptosporidium parvum (campioncino utilizzato nella messa a punto della Real Time su SYBR Green I per Cryptosporidium). Poi, nello stesso modo ogni aliquota diluita di G. duodenalis è stata testata in associazione alle aliquote di Cryptosporidium dal Tq alla diluizione 10^{-6}. Viceversa, la stessa procedura è stata attuata per Cryptosporidium partendo dall’aliquota Tq e associandola rispettivamente al Tq e alle diluizioni di Giardia fino alla diluizione di 10^{-6}, procedendo così fino ad analizzare tutte le diluizioni di Cryptosporidium in relazione alle aliquote di Giardia. Tutte le combinazioni sono state testate in doppia aliquota e ripetute tre volte; ad ogni reazione venivano aggiunti anche un controllo positivo dei DNA target e un controllo negativo. I risultati hanno evidenziato che il DNA di Giardia non veniva mai inibito da quello di Cryptosporidium, indipendentemente dalla sua concentrazione, mantenendo il LOD della Real Time PCR per la determinazione di Giardia. Contrariamente, la sensibilità analitica relativamente a Cryptosporidium veniva diminuita, in quanto a parità di cisti/oocisti per grammo, Giardia ne oscurava la presenza. Per individuare campioni positivi a Cryptosporidium, si è quindi deciso di ristare con la procedura di Real Time su SYBR Green I tutti i campioni positivi alla presenza di Giardia per Cq inferiori 33 (campioni con una presenza stimata di 50 cisti/g).
RISULTATI

CANI DI CANILE

In totale sono stati raccolti 318 campioni di feci, di cui 268 (84,3%) individuali e i restanti 50 (15,7%) rappresentati da pool di feci raccolte in box che ospitavano da 2 a 8 cani. I pool di feci sono stati raccolti in due canili: il canile di Piazzola sul Brenta (Pd) ha fornito 38 campioni e in quello di Verona ne sono stati raccolti 12. I dati disponibili relativi al segnalamento dei cani sono riportati in Tabella 13.

<table>
<thead>
<tr>
<th>Classi di età</th>
<th>Totale (n=189)</th>
<th>Percentuale (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 anno</td>
<td>66</td>
<td>34,9</td>
</tr>
<tr>
<td>1-5 anni</td>
<td>68</td>
<td>36,0</td>
</tr>
<tr>
<td>>5 anni</td>
<td>55</td>
<td>29,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sesso</th>
<th>Total (n=213)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>♂</td>
<td>147</td>
<td>69,0</td>
</tr>
<tr>
<td>♀</td>
<td>66</td>
<td>31,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Razza</th>
<th>Total (n=265)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meticcio</td>
<td>214</td>
<td>80,8</td>
</tr>
<tr>
<td>Razza pura</td>
<td>51</td>
<td>19,2</td>
</tr>
</tbody>
</table>

Tabella 13. Distribuzione dei campioni raccolti in funzione dei dati di segnalamento

Al controllo macroscopico non sono stati evidenziati parassiti o parti di essi, mentre all’esame copromicroscopico più della metà (167/318, 52,5%) dei campioni è risultata positiva ad almeno un parassita. Tra i campioni positivi, 112 (67,1%) presentavano un’unica specie parassitaria, 50 (29,9%) due specie, 4 (2,4%) tre specie e solamente un campione è risultato positivo a quattro specie. Inoltre, 106 (63,5%) campioni sono risultati positivi alla sola presenza di elminti, 41 (24,5%) a quella di protozoi e 20 (12,0%) ad entrambi i gruppi di parassiti. Tra gli elminti, *Trichuris vulpis* ha evidenziato i valori di prevalenza più elevati (29,2%); tra i protozoi, le cisti di *Giardia* spp. e le oocisti di *Cystoisospora* spp. sono state osservate rispettivamente nel 15,1% e 5,7% dei campioni esaminati (Tabella 14).
Giardia è stata individuata dalla Real Time PCR in 165/285 (57,9%) campioni. Dei 165 campioni positivi, 106 sono stati confermati in Nested PCR (SSU-rRNA) e tra questi, 79 ampliconi sono stati sequenziati con successo: 78 assemblaggi ospite-specifici, ovvero 49 assemblaggi C (Genbank®, accession number DQ385548) e 29 assemblaggi D (ritrovati entrambi in tutti i canili ad eccezione di Treviso, dove è stato isolato solamente l’assemblaggio D; Genbank®, DQ385549) e 1 assemblaggio B1 (Genbank®, FJ668859) nel canile di Udine.

La Real-time PCR su SYBR Green I ha rilevato la presenza di Cryptosporidium spp. in 3/285 (1,1%) campioni, due raccolti nel canile di San Donà di Piave (VE) e uno in quello di Udine. Tutti i campioni sono stati confermati in Nested PCR (gene SSU-rRNA) e sequenziati come C. parvum (Genbank®, accession number JQ349359).

La prevalenza dei protozoi e/o degli elminti variava significativamente ($\chi^2=48,097, p<0,001$) tra i canili, da un minimo di 17,6% a un massimo di 82,7% (Tabella 15). Una differenza statisticamente significativa è stata confermata tra la provenienza (canile) e i valori di prevalenza degli elminti più comuni, ovvero di T. vulpis ($\chi^2=65,757, p<0,001$), di Toxocara canis ($\chi^2=33,863, p<0,001$) e degli ancylostomatidi ($\chi^2=77,981, p<0,001$). La stessa cosa è stata osservata per Giardia in quanto i valori di prevalenza differivano significativamente in funzione del canile di provenienza, sia valutando i risultati copromicroscopici ($\chi^2=61,728, p<0,001$) sia i risultati biomolecolari (Nested PCR, $\chi^2=22,690, p<0,01$), Tabella 15.
Tabella 15. Prevalenza [n., (%)] di elminti (a) e protozoi (b) in ogni canile monitorato (FVG, Friuli Venezia Giulia) e dati disponibili sui cani trattati e non trattati con antielmintici; (*) ne=non valutati; (**) Numero di positivi/analizzati; (***) Presenza di almeno un elminta/protozoo all’esame copromicroscopico

<table>
<thead>
<tr>
<th></th>
<th>Veneto</th>
<th>FVG</th>
<th>p(***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bassano (n=26)</td>
<td>Vicenza (n=47)</td>
<td>San Donà (n=52)</td>
</tr>
<tr>
<td>Trattamenti antielmintici (trattato/non trattato)</td>
<td>1/24</td>
<td>21/26</td>
<td>0/52</td>
</tr>
<tr>
<td>Trichuris vulpis</td>
<td>7 (26,9)</td>
<td>18 (38,3)</td>
<td>37 (71,2)</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>4 (15,4)</td>
<td>13 (27,7)</td>
<td>0</td>
</tr>
<tr>
<td>Ancylostomatidi</td>
<td>0</td>
<td>3 (6,4)</td>
<td>20 (38,5)</td>
</tr>
<tr>
<td>Eucoloeus aerophilus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dipylidium caninum</td>
<td>0</td>
<td>0</td>
<td>2 (3,8)</td>
</tr>
<tr>
<td>Cystoisospora spp.</td>
<td>0</td>
<td>0</td>
<td>2 (3,8)</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>13 (50,0)</td>
<td>13 (27,7)</td>
<td>2 (3,8)</td>
</tr>
<tr>
<td>Copromicroscopico</td>
<td>16/26 (61,5)</td>
<td>21/47 (44,7)</td>
<td>16/52 (30,8)</td>
</tr>
<tr>
<td>Nested PCR(***</td>
<td>17 (65,4)</td>
<td>33 (70,2)</td>
<td>43 (82,7)</td>
</tr>
</tbody>
</table>

(a) Trattamenti antielmentici (trattato/non trattato)

(b) Cystoisospora spp.

Giardia spp.

Copromicroscopico

Nested PCR(***

Overall prevalence(***

Tabella 15. Prevalenza [n., (%)] di elminti (a) e protozoi (b) in ogni canile monitorato (FVG, Friuli Venezia Giulia) e dati disponibili sui cani trattati e non trattati con antielmentici; (*) ne=non valutati; (**) Numero di positivi/analizzati; (***) Presenza di almeno un elminta/protozoo all’esame copromicroscopico

89
Relativamente ai campioni individuali, non sono state trovate differenze significative \((p>0,05)\) tra le prevalenze dei parassiti e i dati segnaletici quali età, sesso e razza. Ad ogni modo, se da una parte \(T.\ canis\) è risultato essere più frequentemente isolato in animali che avevano un’età stimata inferiore all’anno, dall’altra i valori di prevalenza di \(T.\ vulpis\) incrementavano gradualmente negli animali più giovani fino a quasi raddoppiare in quelli più anziani, come rappresentato in Figura 36.

![Figura 36. Prevalenza di \(T.\ canis\) e \(T.\ vulpis\) ripartita per classi di età](image)

Inoltre, la somministrazione di farmaci antielmintici nei 2 mesi antecedenti il campionamento è risultata influenzare in modo significativo la presenza di \(T.\ vulpis\) e degli ancylostomatidi (Tabella 16).

<table>
<thead>
<tr>
<th>Trattamento antielmintico</th>
<th>(T.\ vulpis)</th>
<th>(T.\ canis)</th>
<th>(T.\ vulpis)</th>
<th>(T.\ canis)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non trattati ((n=102))</td>
<td>43 (42,2)</td>
<td>59 (57,8)</td>
<td>81 (79,4)</td>
<td>21 (20,6)</td>
<td><0,001</td>
</tr>
<tr>
<td>Trattati ((n=60))</td>
<td>53 (88,3)</td>
<td>7 (11,7)</td>
<td>58 (96,7)</td>
<td>2 (3,3)</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 16. Risultati esami copromicroscopici \([n, (\%)\) per \(Trichuris\ vulpis\) e ancylostomatidi in cani trattati e non trattati.
Cani di proprietà

In totale sono stati raccolti 237 campioni di feci canine, quasi tutti corredati di dati segnaletici (Tabella 17) e anamnestici (Tabella 18). La mancanza di alcuni dati è dovuta ad un’incompleta compilazione della scheda da parte dei veterinari.

<table>
<thead>
<tr>
<th>Classi di età</th>
<th>Totale (n=218)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 anno</td>
<td>68</td>
<td>31,2</td>
</tr>
<tr>
<td>1-6 anni</td>
<td>80</td>
<td>36,7</td>
</tr>
<tr>
<td>>6 anni</td>
<td>70</td>
<td>32,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sesso</th>
<th>Total (n=231)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂</td>
<td>115</td>
<td>49,8</td>
</tr>
<tr>
<td>♀</td>
<td>116</td>
<td>50,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Razza</th>
<th>Total (n=232)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meticcio</td>
<td>88</td>
<td>37,9</td>
</tr>
<tr>
<td>Razza pura</td>
<td>144</td>
<td>62,1</td>
</tr>
</tbody>
</table>

Tabella 17. Distribuzione dei campioni raccolti in funzione dei dati di segnalamento

<table>
<thead>
<tr>
<th>Ambiente di vita</th>
<th>Totale (n=235)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa</td>
<td>63</td>
<td>26,8</td>
</tr>
<tr>
<td>Giardino</td>
<td>172</td>
<td>73,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convivenza altri animali</th>
<th>Totale (n=231)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sì</td>
<td>116</td>
<td>50,2</td>
</tr>
<tr>
<td>No</td>
<td>115</td>
<td>49,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequenza aree verdi</th>
<th>Totale (n=234)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sì</td>
<td>170</td>
<td>72,6</td>
</tr>
<tr>
<td>No</td>
<td>64</td>
<td>27,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sintomi enterici</th>
<th>Totale (n=232)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sì</td>
<td>41</td>
<td>17,7</td>
</tr>
<tr>
<td>No</td>
<td>191</td>
<td>82,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elimintiasi pregresse</th>
<th>Totale(n=221)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>13,6</td>
</tr>
<tr>
<td></td>
<td>191</td>
<td>86,4</td>
</tr>
</tbody>
</table>

Tabella 18. Ripartizione dei campioni in funzione dei dati anamnestici

Al controllo macroscopico non sono stati isolati elementi riconducibili a parassiti, mentre all’esame copromicroscopico il 13,9% (33/237) dei campioni esaminati è risultato positivo per
la presenza di almeno un parassita. Tra i campioni positivi, la maggior parte (87,9%, 29/33) presentava una monoinfezione parasitaria, 3 (9,1%) campioni presentavano due specie parasitarie e solo un caso risultava positivo a 3 specie. Inoltre, il 66,7% (22/33) dei campioni risultava positivo alla presenza di elminti, 10 (30,3%) campioni presentavano una parassitosi da protozoi e solo un campione era positivo ad entrambi i gruppi di parassiti. Tra gli elminti, *Trichuris vulpis* e *Toxocara canis* hanno evidenziato i valori di prevalenza maggiori, rispettivamente 5,5% e 5,1%; tra i protozoi, *Giardia* è stata osservata nel 3,8% dei campioni, mentre *Cystoisospora* in un solo campione (Tabella 19).

<table>
<thead>
<tr>
<th>Campioni esaminati</th>
<th>n=237</th>
<th>Prevalenza (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichuris vulpis</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>12</td>
<td>5,1</td>
</tr>
<tr>
<td>Eucoleus aerophilus</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Ancylostomatidi</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>9</td>
<td>3,8</td>
</tr>
<tr>
<td>Cystoisospora spp.</td>
<td>1</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Tabella 19. Valori di prevalenza all’esame copromicroscopico di elminti e protozoi nei cani di proprietà

Le indagini biomolecolari con Real Time PCR duplex hanno evidenziato la presenza di *G. duodenalis* nel 17,5% (41/234) dei campioni sottoposti a screening. Sono stati poi confermati in Nested PCR 19 dei 20 campioni esaminati, di cui 13 con gene β-giardina e 6 con gene SSU-rRNA. Tutti i 19 amplificoni sono stati sequenziati con successo come segue: 10 *G. duodenalis* assemblaggio C (GenBank™, accession number AF113899, AY775184, DQ385548), 8 assemblaggio D (GenBank™, accession number AY827497, JQ688284, AY775199, KF923019, FJ009206), 1 assemblaggio B (GenBank™, accession number JX972180). La procedura di Real Time PCR duplex non ha evidenziato campioni positivi a *Cryptosporidium* spp. ma la Real Time PCR su Sybr Green I ne ha individuati 7/234 (3%). Tutti i campioni amplificavano a valori di Cq superiori alla LOD della Nested PCR per cui non è stato possibile ottenere degli amplificoni con un numero di bp sufficienti a discriminare le specie. Gli amplificoni ottenuti dalla Real Time PCR su SYBR Green I sono stati comunque sottoposti a sequenziamento confermando il genere.

I dati individuali dei cani di proprietà sono stati correlati ai risultati biomolecolari di *G. duodenalis* (prevalenza>6%) con il test del Chi-quadrato di Pearson. Dei fattori indagati, l’età e la presenza del giardino sono risultati essere dei fattori predisponenti alla parassitosi, con prevalenze superiori nei cani di età inferiore all’anno ($\chi^2=11,670$, p<0,05) e in quelli che vivevano in abitazioni con giardino ($\chi^2=4,271$, p<0,05). Relativamente all’età, al sesso, alla razza, alla frequentazione di aree verdi pubbliche, alla presenza di sintomi intestinali, alla
convivenza con altri animali e alle elmintiasi pregresse non sono state evidenziate differenze statisticamente significative.

CAMPIONI AMBIENTALI

Durante i campionamenti nella città di Padova sono stati raccolti in totale 705 campioni, di cui 270 nelle aree verdi della città e 435 nelle aree urbane. All’esame copromicroscopico 29/705 (4,1%) campioni sono risultati positivi per la presenza di almeno una specie parassitaria, di questi 17 (2,4%) presentavano una infestazione da elminti e 12 (1,7%) da protozoi. Quattro campioni risultavano interessati dalla contemporanea presenza di più specie elmintiche, 2 per *T. canis* e *T. vulpis* e 2 per *T. canis* ed *E. aerophilus*. Nessuno dei campioni esaminati è risultato positivo per uova di elminti appartenenti alle famiglie Dilepididae e Taeniidae. Il dettaglio dei risultati copromicroscopici distinti per aree verdi ed urbane sono consultabili in Tabella 20. Le indagini biomolecolari di Real Time PCR duplex hanno evidenziato la presenza di *Giardia duodenalis* nel 28,9% (n=204/705) dei campioni, di cui 44/270 (16,3%) isolati nei campioni prelevati nelle aree verdi e 160/435 (36,8%) nei campioni raccolti lungo le vie cittadine (Tabella 20). Con la stessa metodica sono stati individuati 3/705 (0,4%) campioni positivi alla presenza di *Cryptosporidium* spp., di cui 1 appartenente ai campioni delle aree verdi e 2 a quelli delle aree urbane. Tali positività sono state confermate in Real Time PCR su SYBR Green I che ha individuato ulteriori 9 campioni positivi tra quelli raccolti nelle aree urbane per una prevalenza totale del 1,7% (n=12/705, Tabella 20).

<table>
<thead>
<tr>
<th></th>
<th>Aree VERDI</th>
<th></th>
<th>Aree URBANE</th>
<th></th>
<th>TOTALE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Coprologico positivo</td>
<td>6</td>
<td>2,2</td>
<td>23</td>
<td>5,3</td>
<td>29</td>
<td>4,1</td>
</tr>
<tr>
<td>T. vulpis</td>
<td>4</td>
<td>1,5</td>
<td>6</td>
<td>1,4</td>
<td>10</td>
<td>1,4</td>
</tr>
<tr>
<td>T. canis</td>
<td>2</td>
<td>0,7</td>
<td>3</td>
<td>0,7</td>
<td>5</td>
<td>0,7</td>
</tr>
<tr>
<td>E. aerophilus</td>
<td>0</td>
<td>0,0</td>
<td>3</td>
<td>0,7</td>
<td>3</td>
<td>0,4</td>
</tr>
<tr>
<td>Ancylostomatidi</td>
<td>0</td>
<td>0,0</td>
<td>3</td>
<td>0,7</td>
<td>3</td>
<td>0,4</td>
</tr>
<tr>
<td>Cystoisospora sp.*</td>
<td>1</td>
<td>0,4</td>
<td>4</td>
<td>0,9</td>
<td>5</td>
<td>0,7</td>
</tr>
<tr>
<td>G. duodenalis</td>
<td>1</td>
<td>0,4</td>
<td>7</td>
<td>1,6</td>
<td>8</td>
<td>1,1</td>
</tr>
<tr>
<td>G. duodenalis</td>
<td>44</td>
<td>16,3</td>
<td>160</td>
<td>36,8</td>
<td>204</td>
<td>28,9</td>
</tr>
<tr>
<td>Cryptosporidium sp.**</td>
<td>1</td>
<td>0,4</td>
<td>11</td>
<td>2,5</td>
<td>12</td>
<td>1,7</td>
</tr>
<tr>
<td>Campioni totali</td>
<td>270</td>
<td></td>
<td>435</td>
<td></td>
<td>705</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 20. Risultati dell’esame copromicroscopico (*) nelle aree verdi ed urbane della città di Padova. (***) Real Time PCR
Aree Verdi

Nelle aree verdi della città di Padova sono stati raccolti 270 campioni, con una media generale di 20 campioni per area e un range min-max rispettivamente di 3 (per le aree 3, 11, 13) e 43 (per l’area 2) (Tabella 21), risultato ovviamente legato alle dimensioni decisamente variabili delle aree verdi campionate (da un minimo di 500 m\(^2\) ad un massimo di 95.000 m\(^2\)). In totale sono risultate positive per presenza di parassiti all’esame copromicroscopico 5/13 (38,5%) aree verdi indagate (Figura 37).

Sul totale di 270 campioni, sono risultati positivi ad almeno un parassita 6 (2,2%) campioni, di cui 4 positivi alla presenza di elminti (*T. canis* e *T. vulpis*) e 2 a quella di protozoi (*Isospora* spp. e *G. duodenalis*), Tabella 21. In particolare tra i campioni positivi agli elminti, 2 presentavano una coinfezione da *T. canis* e *T. vulpis*.

<table>
<thead>
<tr>
<th>Area verde</th>
<th>n.</th>
<th>Es. copromicroscopico</th>
<th>T. canis</th>
<th>T. vulpis</th>
<th>Isospora</th>
<th>Giardia RT-PCR*</th>
<th>Giardia RT-PCR*</th>
<th>Cryptosporidium RT-PCR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Totale | **270** | **6** | **2** | **4** | **1** | **1** | **44** | **1** |

Prevalenza | % | **2,2** | **0,7** | **1,5** | **0,4** | **0,4** | **16,3** | **0,4** |

Tabella 21. Esiti dell’esame copromicroscopico e della Real Time PCR duplex (*) sui campioni delle aree verdi ripartiti per area indagata.
In Real Time PCR duplex sono stati testati 270 campioni di cui 44 (16,3%) sono risultati positivi a *G. duodenalis*. Dei 44 positivi, 4 sono stati sottoposti a Nested PCR e sono stati confermati positivi valutando in 2 campioni il gene β-giardina e il gene SSU-rRNA negli altri 2. Gli amplificati sono stati tutti sequenziati e gli assemblaggi identificati sono riportati in Tabella 22.

In Real Time PCR duplex è stato anche determinato l’unico campione positivo a *Cryptosporidium* spp. isolato nelle aree verdi, pur avendo sottoposto a Real Time PCR su SYBR Green I tutti (n=30) i campioni positivi a Giardia (Cq<33). Tale campione è stato confermato in Real Time PCR su SYBR Green I e in Nested PCR, ma il sequenziamento si è limitato a confermare il genere.

ASSEMBLAGGIO

<table>
<thead>
<tr>
<th>GENE</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-giardina</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>SSU-rDNA</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Totale</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 22. Assemblaggi di *G. duodenalis* isolati da campioni di feci canine raccolti nelle aree verdi

AREE URBANE

Nei 6 quartieri della città di Padova, lungo le vie e nelle aree pedonali sono stati raccolti in totale 435 campioni, con una media calcolata di circa 72 campioni per quartiere e con un
minimo di 35 campioni nel quartiere 2 (Nord) ed un massimo di 112 campioni nel quartiere 4 (Sud-Est).

Tutti i quartieri sono risultati positivi per presenza di parassiti (Figura 38). Dei 435 campioni totali, 23 (5,3%) sono risultati positivi all’esame copromicroscopico per almeno una specie parassitaria (Tabella 23). Tra gli elminti, la positività maggiore è stata rilevata per *T. vulpis* (6/435, 1,4%), seguito da *T. canis*, ancylostomatidi ed *E. aerophilus*, per ciascuno dei quali è stata registrata una prevalenza dello 0,7% (3/435). In due campioni, provenienti dal quartiere 6 (Ovest), è stata rilevata la contemporanea presenza di *T. canis* ed *E. aerophilus*.

<table>
<thead>
<tr>
<th>Quartieri</th>
<th>n.</th>
<th>Es. copromicroscopico</th>
<th>T. canis</th>
<th>T. vulpis</th>
<th>E. aerophilus</th>
<th>Ancylostomatidi</th>
<th>Isospora</th>
<th>Giardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Totale</td>
<td>435</td>
<td>23</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Prevalenza</td>
<td>%</td>
<td>5,3</td>
<td>0,7</td>
<td>1,4</td>
<td>0,7</td>
<td>0,7</td>
<td>0,9</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabella 23. Esiti dell’esame copromicroscopico sui campioni delle aree urbane ripartiti per quartiere indagato.

Figura 38. Numero di campioni positivi all’esame copromicroscopico sul totale dei raccolti in ogni quartiere della città di Padova
Sono stati indagati con Real Time PCR duplex per rilevare la simultanea presenza di *G. duodenalis* e *Cryptosporidium* spp. 435 campioni. A questo primo step sono risultati positivi a *Giardia* 160 (36,8%) campioni (Tabella 24) e a *Cryptosporidium* 2 (0,5%) campioni. Dei 75 campioni positivi alla presenza di *Giardia* (Cq<32), analizzati in Nested PCR (β-giardina e/o SSU-rRNA), 40 campioni sono stati confermati positivi al protozoo; di questi, 18 ampliconi sono stati sequenziati e confrontati con le sequenze disponibili in Genbank® (Tabella 25).

<table>
<thead>
<tr>
<th>Quartieri</th>
<th>n.</th>
<th>Giardia RT-PCR*</th>
<th>Cryptosporidium RT-PCR a/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Totale</td>
<td>435</td>
<td>160</td>
<td>11</td>
</tr>
<tr>
<td>Prevalenza</td>
<td></td>
<td>36,8%</td>
<td>2,5%</td>
</tr>
</tbody>
</table>

Tabella 24. Esiti della Real Time PCR duplex (*) e della Real Time PCR su SYBR Green I (†) sui campioni delle aree urbane ripartiti per quartiere indagato.

ASSEMBLAGGIO

<table>
<thead>
<tr>
<th>GENE</th>
<th>C</th>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β-giardina</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>SSU-Rdna</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Totale</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Tabella 25. Assemblaggi di *G. duodenalis* isolati da campioni di feci canine raccolti nelle aree urbane

I 79 campioni positivi a *Giardia* (Cq<33) sono stati testati con Real Time PCR su SYBR Green I per determinare l’eventuale presenza occulta di *Cryptosporidium* spp.. In questo secondo step sono stati amplificati per *Cryptosporidium* spp. altri 9 campioni e confermati i 2 precedenti per un totale di 11 (2,5%) campioni totali (Tabella 24), di cui 4 confermati in Nested PCR (gene SSU-rRNA) e 1 sequenziato come *C. canis*. Per gli altri 7 è stato ottenuto il sequenziamento che ne ha confermato il genere a partire dall’amplicone ottenuto in Real Time PCR su SYBR Green I.

CONTAMINAZIONE AMBIENTALE DA FECI CANINE NELLE AREE URBANE

Tutte le 53 celle interessate dall’indagine hanno evidenziato presenza di feci canine per un totale di 1861 deiezioni lungo un percorso totale di strade/marciapiedi/aree pedonali pari a 184,20 km. È stato registrato un valore medio di frequenza pari a 10,1 feci/km, con un numero
di deiezioni osservate/km che oscillava da un minimo di 4,7 nel quartiere 2 (Nord) a un massimo di 17,6 nel quartiere 5 (Sud-ovest), Tabella 26. Dato che i percorsi sono stati calcolati per ogni singola cella, il valore di frequenza registrato nell’ambito delle celle oscillava da un minimo di 0,7 feci/km (cella 3) ad un massimo di 57,9 feci/km (cella 24). Sebbene alcuni quartieri siano risultati più contaminati da deiezioni canine (Tabella 26), l’analisi statistica non ha messo in evidenza differenze statisticamente significative tra i valori di frequenza osservati nei sei diversi quartieri della città ($\chi^2 = 4,267; p>0,05$).

<table>
<thead>
<tr>
<th>Quartiere</th>
<th>percorso (km)</th>
<th>Deiezioni osservate</th>
<th>n. deiezioni/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27,62</td>
<td>284</td>
<td>10,3</td>
</tr>
<tr>
<td>2</td>
<td>21,72</td>
<td>101</td>
<td>4,7</td>
</tr>
<tr>
<td>3</td>
<td>28,67</td>
<td>221</td>
<td>7,7</td>
</tr>
<tr>
<td>4</td>
<td>52,75</td>
<td>580</td>
<td>11,0</td>
</tr>
<tr>
<td>5</td>
<td>22,86</td>
<td>402</td>
<td>17,6</td>
</tr>
<tr>
<td>6</td>
<td>30,58</td>
<td>273</td>
<td>8,9</td>
</tr>
<tr>
<td>TOTALE</td>
<td>184,20</td>
<td>1.861</td>
<td>10,1</td>
</tr>
</tbody>
</table>

Tabella 26. Fecalizzazione ambientale, rapporto tra il numero di deiezioni canine osservate e lunghezza del percorso calcolato per ogni quartiere di Padova

INTERVISTE AI CITTADINI

Sono stati intervistati 521 cittadini di Padova, distinti in proprietari (n=313) di cani e non proprietari (n=208). Una raccolta sintetica delle risposte dei proprietari e dei non proprietari alle domande più rilevanti per l’aspetto di percezione del rischio sono riportate nelle Tabelle 27 e 28.

<table>
<thead>
<tr>
<th>Proprietari</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raccoglie le feci del suo cane?</td>
<td>97,1%</td>
<td>2,9%</td>
</tr>
<tr>
<td>Le sembra giusto raccogliere le feci del proprio cane?</td>
<td>99%</td>
<td>1%</td>
</tr>
<tr>
<td>Esiste un Regolamento Comunale?</td>
<td>78,8%</td>
<td>21,2%</td>
</tr>
<tr>
<td>Le feci veicolano malattie? (Sì=risposta corretta, No=risposta errata)</td>
<td>9,4%</td>
<td>90,6%</td>
</tr>
</tbody>
</table>

Tabella 27. Domande rivolte ai proprietari dei cani con le risposte espresse in valore percentuale
Di seguito, sono riportati in dettaglio i risultati riguardanti il rispetto (da parte dei proprietari) del Regolamento comunale in termini di raccolta delle feci e la consapevolezza (dei proprietari e non) che le feci canine contaminanti il suolo pubblico possano essere fonte di patogeni sia per il cane che per l’uomo. Per ogni quesito sono state riportate le risposte considerate valide date dai proprietari e dai non proprietari, in considerazione del fatto che i questionari proposti a volte si presentavano incompleti.

Alla domanda “raccoglie le feci del suo cane?” il 97% dei proprietari rispondeva di farlo sempre o per lo meno spesso (Tabella 29). Questo dato è stato per lo più confermato dall’attività degli operatori sul campo che, osservando il comportamento dei proprietari a seguito della defecazione del proprio cane, hanno rilevato che l’83,1% di essi raccoglie le feci mentre hanno registrato una prevalenza maggiore (16,9%, Tabella 30) di quella dichiarata (2,9%) per i proprietari che non raccolgono le feci.

Il 99% degli intervistati riteneva giusto raccogliere le feci del proprio animale e più della metà (60%) dichiarava di farlo sia per igiene che per decoro (Tabella 31).

Non Proprietari

<table>
<thead>
<tr>
<th></th>
<th>Sì</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esiste un Regolamento Comunale?</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>Le feci veicolano malattie? (Sì=risposta corretta, No=risposta errata)</td>
<td>14,6%</td>
<td>85,5%</td>
</tr>
</tbody>
</table>

Tabella 28. Domande rivolte ai non proprietari e relative risposte espresse in valore percentuale

<table>
<thead>
<tr>
<th>Raccoglie le feci del suo cane?</th>
<th>n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sempre</td>
<td>264</td>
<td>86,3</td>
</tr>
<tr>
<td>Spesso</td>
<td>33</td>
<td>10,8</td>
</tr>
<tr>
<td>Mai</td>
<td>9</td>
<td>2,9</td>
</tr>
<tr>
<td>Totale</td>
<td>306</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabella 29. Proprietari (n, %) che dichiarano di raccogliere le feci del proprio cane (n. risposte valide = 306/313)

<table>
<thead>
<tr>
<th>Osservazione dei proprietari nella raccolta delle feci</th>
<th>n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>15</td>
<td>16,9</td>
</tr>
<tr>
<td>Sì</td>
<td>74</td>
<td>83,1</td>
</tr>
<tr>
<td>Totale</td>
<td>89</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabella 30. Proprietari (n, %) che raccogliono le feci del proprio cane
Ritiene giusto che il proprietario raccolga le feci del proprio cane?

<table>
<thead>
<tr>
<th></th>
<th>n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per igiene</td>
<td>80</td>
<td>25,9</td>
</tr>
<tr>
<td>Per decoro</td>
<td>39</td>
<td>12,7</td>
</tr>
<tr>
<td>Per igiene e decoro</td>
<td>186</td>
<td>60,4</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Totale</td>
<td>308</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabella 31. Ragioni per le quali i proprietari raccolgono le feci (n. risposte valide = 308/313)

Quando è stato chiesto “le feci veicolano malattie?” hanno risposto correttamente “a cane e a uomo” 59/513 (11,5%) persone interviste, di cui 29/307 (9,4%) proprietari e 30/206 (14,6%) non proprietari (Tabella 32). L’88,5% (n=454/513) della popolazione, di cui 278/307 (90,6%) proprietari e 176/206 (85,4%) non proprietari, ha risposto in modo non corretto, in particolare 130/307 (42,3%) proprietari e 86/206 (41,7%) non proprietari affermavano di non conoscere la risposta oppure che le feci del cane non erano fonte di malattia. Considerando il totale della popolazione intervistata (n. risposte valide = 513), l’analisi statistica ha evidenziato una differenza statisticamente significativa ($\chi^2=178,499; p<0,01$) tra le risposte corrette (59/513, 11,5%) e le risposte non corrette (454/513, 88,5%), mantenuta anche nell’ambito delle singole categorie di popolazione (proprietari e non proprietari). Infatti, la frequenza delle risposte errate dei proprietari (278/307, 90,6%) e dei non proprietari (176/206, 85,4%) superava in modo altamente significativo (rispettivamente $\chi^2=120,735$, $p<0,01$ e $\chi^2=59,168$, $p<0,01$) le frequenza delle risposte corrette. Tale risultato viene confermato dall’assenza di differenze statisticamente significative ($\chi^2=3,171; p>0,05$) nelle risposte corrette tra le due categorie di popolazione (n. risposte proprietari = 29/307, 9,4% e n. risposte non proprietari = 30/206, 14,6%).

Circa l’80% della popolazione intervistata, di cui 416/516 (78,8%) proprietari e 171/205 (83%) non proprietari (Tabella 33), dichiarava di essere a conoscenza dell’esistenza del Regolamento comunale della città di Padova senza differenze statisticamente significative tra le due categorie di popolazione ($\chi^2=1,700; p>0,05$). In particolare, considerando il totale della popolazione intervistata (n. risposte = 517), il numero di persone a conoscenza del Regolamento (416/516, 80,6%) superava in modo altamente significativo ($\chi^2=106,770; p<0,01$) il numero di persone che dichiarava di non conoscerlo (100/516, 19,4%), valore confermato anche nelle singole categorie di popolazione.
Le feci del cane veicolano malattie?

<table>
<thead>
<tr>
<th></th>
<th>Proprietari</th>
<th>Non proprietari</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.</td>
<td>%</td>
<td>n.</td>
</tr>
<tr>
<td>Al cane</td>
<td>60</td>
<td>19,5</td>
<td>21</td>
</tr>
<tr>
<td>All’uomo</td>
<td>88</td>
<td>28,7</td>
<td>69</td>
</tr>
<tr>
<td>A cane e uomo</td>
<td>29</td>
<td>9,4</td>
<td>30</td>
</tr>
<tr>
<td>No</td>
<td>51</td>
<td>16,6</td>
<td>29</td>
</tr>
<tr>
<td>Non lo so</td>
<td>79</td>
<td>25,7</td>
<td>57</td>
</tr>
<tr>
<td>Totale</td>
<td>307</td>
<td>100</td>
<td>206</td>
</tr>
</tbody>
</table>

Tabella 32. Conoscenza dei cittadini sul ruolo delle feci come fonte di patogeni (n. risposte valide proprietari = 307/313; n. risposte valide non proprietari = 206/208)

Esiste un Regolamento Comunale che prevede la raccolta delle feci?

<table>
<thead>
<tr>
<th></th>
<th>Proprietari</th>
<th>Non proprietari</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.</td>
<td>%</td>
<td>n.</td>
</tr>
<tr>
<td>No</td>
<td>66</td>
<td>21,2</td>
<td>34</td>
</tr>
<tr>
<td>Sì</td>
<td>245</td>
<td>78,8</td>
<td>171</td>
</tr>
<tr>
<td>Totale</td>
<td>311</td>
<td>100</td>
<td>205</td>
</tr>
</tbody>
</table>

Tabella 33. Numero dei cittadini che dichiarano di conoscere o meno il Regolamento Comunale (n. risposte valide proprietari = 311/313; n. risposte valide non proprietari = 205/208)

Quasi la metà (43%) dei proprietari ha dichiarato di effettuare l'esame copromicroscopico per il proprio cane solo se in caso di necessità, solo il 20% annualmente, mentre il 17% dei proprietari ha ammesso di non effettuarlo mai (Tabella 34).

Quante volte l’anno esegue un esame copromicroscopico delle feci del suo cane?

<table>
<thead>
<tr>
<th></th>
<th>n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo se necessario</td>
<td>129</td>
<td>43</td>
</tr>
<tr>
<td>Ogni anno</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Più di una volta l’anno</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Mai</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>Totale</td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabella 34. Numero di proprietari distinti in funzione della frequenza con la quale portano il cane dal veterinario per un esame copromicroscopico durante l’anno (n. risposte valide = 300/313)
DISCUSSIONE

Numerose indagini sono state condotte a livello internazionale per investigare le prevalenze delle parassitosi intestinali nei cani e la maggior parte di queste riportano valori superiori al 30% sia nei cani di canile (Turkowicz e Cielecka, 2002; Capelli et al., 2006; Blagburn et al., 2008; Palmer et al., 2008a; Claerebout et al., 2009; Ortuño e Castellà, 2011; Ortuño et al., 2014) sia nei cani di proprietà (Ramírez-Barrios et al., 2004; Fontanarrosa et al., 2006; Blagburn et al., 2008; Beiromvand et al., 2013; Riggio et al., 2013; Neves et al., 2014; Zanzani et al., 2014). La prevalenza (52,5%) rilevata in questa indagine nei canili è in linea con i dati precedentemente segnalati in Italia da Capelli et al. (2006) mentre i valori (13,9%) relativi ai cani di proprietà risultano inferiori a quelli segnalati da altri Autori italiani (Riggio et al., 2013; Zanzani et al., 2014) ma in accordo con altre indagini internazionali (Claerebout et al., 2009; Little et al., 2009). Gli elevati valori di prevalenza nei cani di canile sono probabilmente dovuti all’enorme esposizione alle infezioni parasitarie. L’elevato numero di animali in un contesto ristretto, dove generalmente il management sanitario è scarso o comunque di complessa attuazione, può portare ad una importante contaminazione ambientale e ad un aumentato rischio di infezione, in particolare per la giardiosi e i geo-elminti (Capelli et al., 2003; Leonhard et al., 2007; Ortuño e Castellà, 2011). Nel presente studio è stato evidenziato come le mono-infezioni risultino più frequenti di quelle miste e che gli elminti possano essere più frequentemente isolati dei protozoi, in accordo con quanto riportato in precedenti indagini (Ramírez-Barrios et al., 2004; Beiromvand et al., 2013; Riggio et al., 2013). Inoltre, T. vulpis è risultato essere l’elminta più frequente sia nei canili sia nei cani di proprietà, seguito dagli ascaridi. I valori di prevalenza elevati per T. vulpis e T. canis, paragonati agli altri parassiti, sono probabilmente dovuti all’elevata resistenza delle loro uova nell’ambiente per periodi piuttosto lunghi e alle caratteristiche biologiche delle forme larvali degli ascaridi che possono essere trasmesse verticalmente dalla madre al cucciolo attraverso la placenta oppure il latte (Traversa, 2012). Inoltre, come è stata evidenziata nei cani di canile una prevalenza significativamente superiore per T. vulpis e ancylostomatidi nei soggetti trattati rispetto ai non trattati con antielmintici, allo stesso modo si può ipotizzare che le basse prevalenze per gli stessi parassiti, compreso anche T. canis, nei cani di proprietà, siano dovute non solo ad un contesto abitativo più pulito e meno stressante, ma anche ad una maggior cura degli aspetti sanitari legati al cane (es. trattamenti antielmintici più frequenti, prevenzione per la dirofilariosi cardio-polmonare, etc.). Tra gli elminti, le più basse prevalenze registrate per gli ancylostomatidi, potrebbero essere
giustificate dalla scarsa resistenza delle forme larvali nell’ambiente. Tra gli elminti, degno di nota è *E. aerophilus*, sebbene sia stato isolato nello 0,8% dei cani di proprietà e nel 2,2% dei cani di canile. La sua presenza viene spesso sottostimata a causa della morfologia delle sue uova, molto simili a quelle di *T. vulpis* con il quale viene spesso confuso. La prevalenza totale di *E. aerophilus* rilevata nei cani è legata alla positività di una sola struttura, quella di Udine, nella quale i cani positivi alla parassitosi erano il 7,9%. La resistenza delle uova nell’ambiente e l’adozione di protocolli terapeutici non corretti per errata diagnosi giustificano la prevalenza registrata in questo canile.

Nel corso dell’indagine non sono stati riscontrati elementi riconducibili alla presenza di cestodi ad eccezione di *D. caninum* che è stato isolato in 5 soli casi, 2 nel canile di San Donà di Piave, 2 nel canile di Udine e 1 nel canile di Rovigo. In generale, i bassi valori di prevalenza per i cestodi sono dovuti ad una sottostima legata al metodo diagnostico utilizzato; infatti l’esecuzione di una sola analisi copromicroscopica risulta essere poco sensibile nella rilevazione di questi parassiti a causa dell’eliminazione intermittente e della distribuzione non omogenea delle proglottidi nelle feci dell’ospite.

Tra i protozoi, la prevalenza totale (15,1%) di *G. duodenalis* nei canili, determinata con l’analisi copromicroscopica, risulta in accordo con altri studi precedenti (Capelli et al., 2006; Nikolic et al., 2008; Palmer et al., 2008; Neves et al., 2014) così come quella (3,8%) evidenziata nei cani di proprietà (Little et al., 2009; Riggio et al., 2013). Dopo *Trichuris*, *G. duodenalis* è risultato essere il secondo parassita intestinale maggiormente presente nei canili e il terzo nei cani di proprietà, raggiungendo rispettivamente la prevalenza del 57,9% e del 17,5% quando investigata con le metodiche biomolecolari, analogamente a quanto descritto in Italia da Paoletti et al. (2008) e da Scaramozzino et al. (2009). I risultati ottenuti con l’analisi copromicroscopica suggeriscono che una singola analisi potrebbe non essere sufficiente per diagnosticare la giardiosi come già segnalato da altri Autori (Thompson, 2004; Capelli et al., 2006; Epe et al., 2010). In accordo con i risultati di precedenti esperienze (Giangaspero et al., 2007; Paoletti et al., 2008; Scaramozzino et al., 2009), tutti gli isolati di *Giardia* determinati in questo studio, ad eccezione di 2, appartenevano agli assemblaggi C e D specie-specifici del cane, a conferma che tali assemblaggi risultano essere molto più frequenti nei canili, dove esiste un’elevata frequenza di trasmissione da cane a cane (Thompson, 2004; Leonhard et al., 2007; Ballweber et al., 2010). Assemblaggi zoonotici e ospite-specifici di *G. duodenalis* isolati da feci canine sono ben documentati in letteratura (Monis et al., 2003; Berrilli et al., 2004; Lalle et al., 2005; Hunter e Thompson, 2005; Scaramozzino et al., 2009; Bowman e Lucio-
Di fatto la frequenza delle infezioni con assemblaggi ospite-specifici è più comune nei cani che vivono nei canili rispetto ai cani che vivono in contesti familiari, dove gli assemblaggi zoonotici sembrano più frequenti (Leonhard et al., 2007; Claerebout et al., 2009; Scaramozzino et al., 2009; Upjohn et al., 2010; Covacin et al., 2011; Uehlinger et al., 2013). In questa indagine, comunque sono stati evidenziati due isolati zoonotici di G. duodenalis, entrambi tipizzati come assemblaggio B, uno tra i campioni provenienti dal canile e uno tra quelli dei cani di proprietà.

La bassa prevalenza rilevata per Cryptosporidium spp., 1,1% e 3% rispettivamente nei cani di canile e nei cani di proprietà, è in accordo con i valori precedentemente segnalati in Centro e Sud Italia (Giangaspero et al., 2007; Rinaldi et al., 2008; Paololetti et al., 2015) e in altre parti del mondo (Claerebout et al., 2009; Yoshiuchi et al., 2010; Uehlinger et al., 2013). Dai 10 campioni positivi per Cryptosporidium è stato possibile tipizzare come C. parvum i 3 isolati ottenuti dai campioni provenienti dai canili, a differenza di quanto descritto in altre indagini nelle quali è stato riscontrato principalmente il genotipo ospite-specifico C. canis (Giangaspero et al., 2006; Yoshiuchi et al., 2010; Wang et al., 2012; Sotiriadou et al., 2013; Uehlinger et al., 2013). Come per Giardia, anche le specie zoonotiche di Cryptosporidium sono ben documentate nell'uomo, incluso C. parvum (Pieniazek et al., 1999; Morgan et al., 2000; Pedraza-Díaz et al., 2001; Xiao et al., 2001; Cama et al., 2003; Lucio-Forster et al., 2010). Questi risultati suggeriscono che il rischio di trasmissione all'uomo per entrambi i protozoi è meno importante di quello che si è portati a pensare, sostenendo la teoria di Lucio-Forster et al. (2010) secondo cui il ruolo del cane e del gatto nella trasmissione di Giardia e di Cryptosporidium è limitato. Tuttavia questo genere di parassitosi sono spesso sottostimate e l’isolamento di genotipi specifici del cane da feci umane non è poi così insolito (Pieniazek et al., 1999; Xiao et al., 2001; Cama et al., 2003; Bowman e Lucio-Forster, 2010; Soliman et al., 2011).

L’analisi dei fattori di rischio ha evidenziato come il canile di provenienza sia uno dei maggiori fattori di rischio per la diffusione dei parassiti intestinali. Questo suggerisce una stretta relazione tra la presenza dei parassiti e la gestione del canile, in particolare in relazione ad effettivi programmi di controllo che includano: (a) le misure igieniche, come la pulizia e la disinfezione degli spazi, (b) degli appropriati metodi diagnostici, sia nei cani presenti e soprattutto in quelli di nuova introduzione, e (c) l’uso di farmaci antiparassitari. La somministrazione di antelmintici nei 2 mesi antecedenti il campionamento si è dimostrata efficace nel ridurre in modo significativo gli elminti (p<0,001). Infatti, gli elevati valori di prevalenza per T. vulpis (71,2%) e ancylostomatidi (38,5%) nel canile di San Donà di Piave,
nonché di *T. canis* (27,7%) nel canile di Vicenza, strutture nelle quali nessuno o pochi cani (0/52 e 21/47, rispettivamente) avevano ricevuto un farmaco antielmintico nei 2 mesi precedenti, evidenziano l’importanza di attuare corrette misure di controllo e interventi antielmintici mirati. La densità degli animali è senza dubbio un altro fattore di rischio (Dubná et al., 2007b; Leonhard et al., 2007; Meireles et al., 2008; Ortuño e Castellà, 2011), specialmente nelle aree di sgambamento, che possono contribuire nell’aumentare il rischio di infestazione. Anche la giardiosi è risultata essere influenzata in modo significativo dal canile di provenienza. Sebbene questo protozoo sia stato isolato in tutti i canili monitorati, le prevalenze rilevate con le analisi copromicroscopiche e con quelle molecolari (Nested PCR) sono risultate variare in modo significativo e rispettivamente dallo 0% al 33,3% e dal 20,0% al 61,5%. Da una parte, le più basse prevalenze ottenute con l’esame copromicroscopico possono essere spiegate da possibili falsi negativi legati alla minore sensibilità del metodo diagnostico, dall’altra i valori più elevati, riscontrati soprattutto alla PCR, possono essere attribuiti anche all’utilizzo di principi attivi privi di attività antiprotozoaria. Anche se alcune molecole come il fenbendazolo sono attive contemporaneamente contro elmenti e protozoi, generalmente vengono somministrate in protocolli che prevedono una mono-somministrazione, che risulta inefficace nei confronti di *Giardia*, per la quale il protocollo terapeutico prevede una somministrazione ripetuta in 3 giornate successive (ESCCAP, 2011). Trattamenti errati possono perciò incrementare le prevalenze di *Giardia* e/o esacerbare la superinfezione. I parassiti intestinali sono generalmente considerati maggiormente prevalenti nei cuccioli più che negli adulti, a causa di una minore risposta immunitaria (Gates e Nolan, 2009); si pensa infatti che l’immunità parassito-specifica venga acquisita con l’età, come conseguenza di esposizioni singole o ripetute (Ramírez-Barrios et al., 2004). Ad ogni modo, nei cani di canile l’età non è risultata statisticamente correlata alla presenza dei parassiti, sebbene *T. canis* sia risultato maggiormente presente nei cani più giovani, mentre *T. vulpis* ha evidenziato un trend di crescita risultando maggiormente frequente nei cani più anziani. Questi dati sono in accordo con quelli riportati in studi precedenti che descrivono un’elevata prevalenza di ascaridi in cani di età inferiore ai 12 mesi e di trichuridi nei cani adulti (Fontanarrosa et al., 2006; Gates e Nolan, 2009; Riggio et al., 2013). L’elevata presenza di infestazioni da trichuridi nei cani adulti è probabilmente dovuta all’assenza di trasmissione verticale da madre a cucciolo, all’incapacità di stimolare una risposta immunitaria protettiva (Traversa, 2011) e ad una maggior tempo di esposizione. Inoltre, l’elevata prevalenza dei trichuridi riscontrata in questo studio conferma la resistenza delle loro uova nell’ambiente e supporta l’importanza dell’uso di antielmintici attivi sia contro gli stadi larvali sia contro le forme adulte del parassita. Differentemente, nei cani di
proprietà l’età è risultata essere un fattore predisponente alla giardiosi come ben documentato in letteratura (Paoletti et al., 2008; Gates e Nolan, 2009; Bowman e Lucio-Forster, 2010; Joffe et al., 2011); infatti i soggetti di età inferiore all’anno sono risultati più frequentemente parasitati dei cani adulti. Altro fattore predisponente nei cani di proprietà è risultato essere il giardino di casa, causa di probabili re-infezioni dovute all’elevata contaminazione di un’area delimitata. A differenza di quanto evidenziato da altri Autori (Wang et al., 2012) in questa indagine non è stata riscontrata una relazione statisticamente significativa tra positività per giardiosi e fattori quali la presenza di sintomi enterici e la frequentazione di aree verdi pubbliche (in particolare quelle destinate ai cani). Occorre comunque sottolineare che in questo studio i campionamenti hanno interessato aree verdi condivise da animali e uomo, e non aree verdi appositamente destinate ai cani, in genere caratterizzate da limitata estensione e pertanto favorenti la maggiore concentrazione di animali e la contaminazione del suolo. Inoltre, i risultati ottenuti sembrano evidenziare come la convivenza con altri animali possa rappresentare un fattore di rischio per l’infezione da *Giardia*, confermando come la condivisione di ambienti e il contatto diretto rappresentino una delle principali modalità di trasmissione del protozoo (Leonhard et al., 2007; Ortuño et al., 2014).

Un discorso a parte va fatto per la fecalizzazione ambientale nel contesto urbano che, pur rappresentando un problema di igiene e decoro, è principalmente un rischio per la salute pubblica, in gran parte sottovalutato. Indagini relative a tale problematica sono state già elencate nella parte introduttiva e descrivono, in numerosi Paesi europei (Gillespie e Ramsey, 1992; Dubná et al., 2007a; Dado et al., 2012a), extraeuropei (Paquet-Durand et al., 2007; Rubel e Wisnivesky, 2010; Marques et al., 2012) ed in numerose città italiane (Martini e Cassani, 1984; Lia et al., 2002; Habluetzel et al., 2003; Genchi et al., 2007; Ristiano et al., 2007; Papini et al., 2009; Scala et al., 2009; Tarsitano et al., 2010; Beraldo et al., 2014; Tamponi et al., 2014), la fecalizzazione ambientale come una fonte di parassiti sia per gli animali sia per l’uomo, in particolare per i bambini che risultano essere i soggetti maggiormente esposti al rischio (Macpherson, 2005; Stull et al., 2012). Le feci canine sono fonte di parassiti intestinali in parte molto resistenti nell’ambiente e in parte trasmissibili all’uomo con ripercussioni più o meno gravi sulla sua salute. Il monitoraggio della città di Padova è stato utile al fine di valutare sia il grado di contaminazione ambientale dei quartieri, sia la diffusione dei parassiti intestinali potenzialmente zoonotici, individuando gli eventuali fattori di rischio correlati. Si suppone che le feci canine distribuite sul territorio appartenano normalmente ai cani vaganti e ai cani di proprietari incivilì, che abbandonano le feci del proprio animale sul suolo pubblico nonostante
sia in vigore a livello nazionale un’ordinanza (2015) e a livello comunale un Regolamento che obbligano di fatto il proprietario alla raccolta delle deiezioni (Capitolo Aspetti Normativi). La problematica del randagismo in Veneto e in particolare nel Comune di Padova, pur essendo presente, è comunque limitata e poco sentita in quanto la gestione dei cani vaganti sul territorio risulta tutto sommato efficiente; a questo, si aggiunge la buona consuetudine da parte dei proprietari di identificare i propri animali: dati recenti dell’anagrafe canina nazionale confermano che su quasi 8 milioni di cani registrati più di un milione sono proprio in Veneto (ASSALCO, 2015). Si deduce dunque che la maggior parte delle feci abbandonate sul territorio appartengano principalmente ai cani di proprietà.

Tutti i quartieri sono risultati contaminati da feci canine in modo più o meno intenso, senza differenze statisticamente significative, con una media di deiezioni per km pari a 10,1 (1861 feci/184,2 km). La valutazione nell’ambito delle singole celle indagate però ha mostrato valori variabili da un minimo di 0,7 ad un massimo di 57,9 feci/km. Questa variabilità potrebbe essere giustificata dal fatto che alcuni percorsi attraversassero aree residenziali caratterizzate da una maggiore densità abitativa di persone e cani.

In totale sono risultati positivi ad almeno una specie parassitaria il 4,1% (n=29/705) dei campioni raccolti, distinto in un 2,2% (n=6/270) trovato nelle aree verdi (parchi pubblici e giardini) e in un 5,3% (n=23/435) nelle aree urbane (aree pedonali, vie e marciapiedi). Nel contesto nazionale questi dati evidenziano una minore presenza di parassiti rispetto a quanto riscontrato nelle indagini condotte nelle città di Alghero (Scala et al., 2009), Bari (Tarsitano et al., 2010), Messina (Risitano et al., 2007), Napoli (Rinaldi et al., 2006), Torino (Genchi et al., 2007) e Udine (Beraldo et al., 2014) e risultano in linea con i dati riportati invece da Genchi et al. (2007) nella città di Milano. Come descritto nelle due popolazioni canine precedenti, i principali parassiti intestinali isolati dai campioni ambientali sono risultati essere T. vulpis, T. canis e G. duodenalis con valori di prevalenza rispettivamente di 1,4%, 0,7% e 1,1% seguiti da Cystoisospora spp. (0,7%), A. caninum (0,4%) ed E. aerophilus (0,4%). Pur ipotizzando che le feci ambientali appartenessero a cani di proprietà, i valori ottenuti sono inferiori non solo a quelli riscontrati nelle altre indagini italiane ma anche a quelli evidenziati nei cani di proprietà di questo studio, suggerendo che il periodo di campionamento è stato probabilmente motivo di questa differenza. Infatti, il campionamento relativo ai cani di proprietà è coinciso con il periodo antecedente l’inizio della prevenzione per la dirofilariosi cardio-polmonare, mentre il campionamento relativo alla città è stato realizzato proprio in sovrapposizione. A differenza delle Regioni del Centro e del Sud Italia, dove la dirofilariosi cardio-polmonare è limitatamente
diffusa ad alcune aree, il Veneto è territorio endemico (Otranto et al., 2009) e la somministrazione di farmaci per la prevenzione di questa parassitosi è piuttosto diffusa nel periodo a rischio che coincide con quello estivo, periodo di presenza del vettore. La maggior parte delle formulazioni commerciali usate nella prevenzione di questa malattia parasitaria, a base di avermectine (selamectina), milbemicine (milbemicina ossima e moxidectina) o di associazioni ivermectina-pyran tel, sono efficaci anche contro la maggior parte degli elminti intestinali del cane. Inoltre, alcune molecole (moxidectina e milbemicina ossima) hanno attività anche nei confronti degli stadi larvali e immaturi di *T. vulpis*, *T. canis* e *A. caninum* (Traversa, 2012). Tali molecole non sono efficaci però nella terapia della giardiosi; in effetti, diversamente da quanto messo in evidenza dall’esame copromicroscopico, considerato poco sensibile nella diagnosi di questa parassitosi, le indagini biomolecolari hanno rilevato una positività del 16,3% nelle aree verdi e del 36,8% nelle aree urbane, con un valore medio di prevalenza del 28,9% che si avvicina a quanto riscontrato nei cani di proprietà (17,5%) sia in questo studio sia in altri lavori condotti in Italia (Papini et al., 2009; Zanzani et al., 2014) utilizzando metodi diagnostici più sensibili dell’esame copromicroscopico. L’elevata prevalenza riscontrata suggerisce che *Giardia* è senz’altro più diffusa di quanto si creda e che nella maggior parte dei casi gli animali interessati sono asintomatici (campioni fecali non diarroici). Pur ritenendo plausibile che le feci di un cane eliminatore possano essere state campionate più volte, tale aspetto risulta di scarso rilievo in quanto l’obiettivo di quest’indagine non è stato quello di definire una prevalenza parasitaria nella popolazione canina che frequenta le aree pubbliche, bensì di valutare quanto i parassiti siano diffusi nell’ambiente. Tra gli elminti, ad eccezione di *T. vulpis* per il quale il carattere zoonotico è ancora in dubbio (Traversa, 2011), *T. canis*, *A. caninum* ed *E. aerophilus* sono riconosciuti agenti di zoonosi (Robertson et al., 2000; Heukelbach e Feldmeier, 2008; Bowman et al., 2010; Veraldi et al., 2013; Nicoletti, 2013; Traversa et al., 2014) e, seppur isolati in quest’indagine con prevalenze molto basse, sono presenti nel territorio e non vanno sottovalutati. *G. duodenalis* invece è risultato essere un parassita sottostimato quando ricercato mediante indagini copromicroscopiche. In particolare, non tutte le aree verdi sono risultate positive; su 13 parchi indagati ne sono risultati positivi 8 (61%), con valori minimi del 3,7% (n=1/27) nell’area verde 7 (Prato della Valle) e valori massimi del 32,5% (n=14/43) nell’area verde 2 (Giardino Santa Rita). Diversamente, i quartieri sono risultati tutti più o meno intensamente contaminati con un valore minimo del 26,8% (n=30/112) nel quartiere 4 (sud-est) e un valore massimo del 72,4% nel quartiere 1 (centro storico). La maggior parte degli isolati di *Giardia* sono stati sequenziati come assemblaggi ospite-specifici C e D del cane; un solo caso, prelevato nell’area verde 8 (Parco Iris), è stato identificato come assemblaggio B
specifico dell’uomo. L’elevata prevalenza ambientale del protozoo e la presenza di assemblaggi ospite-specifici del cane, suggeriscono un maggior rischio di infezione per i cani frequentanti le aree verdi e soprattutto le vie cittadine in particolare quelle del centro storico. Pur sapendo che assemblaggi C sono stati isolati da feci umane (Soliman et al., 2011), il rischio per l’uomo sembra essere limitato e ulteriori fattori di rischio andrebbero indagati approfonditamente. Tra i protozoi, è stata valutata anche la presenza di Cryptosporidium spp.. Indagini epidemiologiche relative a questo protozoo in Italia sono scarse. La bassa prevalenza (1,7%) riscontrata anche a livello ambientale è in accordo con le prevalenze riscontrate nei cani di canile ed in quelli di proprietà e in linea con altri lavori italiani (Giangaspero et al., 2006; Rinaldi et al., 2008) e mondiali che, a parte qualche eccezione, riportano valori di prevalenza non superiori al 10% (Lucio-Forster et al., 2010; Scorza e Tangtrongsup, 2010). Il sequenziamento degli isolati ambientali nella maggior parte dei casi non è stato possibile perché il DNA amplificato risultava insufficiente. Si è stimato infatti che tali campioni avessero tra 5 e 50 opg. Ci si è limitati quindi ad ottenere la conferma del genere sequenziando l’amplificato (~150 bp) ottenuto con la Real Time su SYBR Green I. Solo un campione è stato sequenziato con successo come genotipo specie-specifico C. canis. Tutti i campioni positivi a Cryptosporidium nel corso di questo studio (n=23), ad eccezione di tre, sono stati isolati in presenza di Giardia confermando il ruolo opportunistico di questo protozoo per il quale generalmente un soggetto immunocompetente è in grado di guarire spontaneamente in assenza di terapia farmacologica (Tangtrongsup e Scorza, 2010). Dei 23 campioni positivi erano disponibili i dati segnaletici di soli 8 cani di cui solo per uno era segnalata l’età (1 anno), compatibile con quanto riportato in bibliografia (Scorza e Tangtrongsup, 2010), mentre gli altri 7 appartenevano alla classe degli adulti con età variabili dai 2 ai 13 anni. Il basso numero di positivi e la scarsità dei dati individuali di segnalamento non hanno consentito di procedere con un’elaborazione statistica per descrivere la reale distribuzione della parassitosi in relazione all’età e ad altri possibili fattori di rischio.

La problematica della contaminazione ambientale da feci canine è stata affrontata anche dal punto di vista del cittadino. Durante i campionamenti ambientali nella città di Padova sono stati somministrati dei questionari ai cittadini di passaggio, distinti in funzione del fatto che possedessero o meno un cane (proprietari e non proprietari). I questionari sono stati elaborati per valutare quanto il cittadino fosse consapevole che le feci canine abbandonate su suolo pubblico potessero, al di là dell’aspetto igienico e di decoro, essere un rischio per la salute pubblica. Indagini di questo tipo sono già state affrontate sia in Italia (Beraldo et al., 2014; Zanzani et al., 2014) sia in altri Paesi (McGlade et al., 2003; Stull et al., 2007; Hegglin et al.,
2008; Katagiri e Oliveira-Sequeira, 2008; Bingham et al., 2010; Palmer et al., 2010; Stull et al., 2012) valutando sia il ruolo del veterinario nell’informare ed educare i proprietari sui possibili rischi legati alla convivenza con i propri animali (Stull et al., 2012; Palmer et al., 2010;) sia il grado di conoscenza di quest’ultimi relativamente alle zoonosi trasmissibili dal cane all’uomo (McGlade et al., 2003; Katagiri e Oliveira-Sequeira, 2008; Bingham et al., 2010; Palmer et al., 2010; Stull et al., 2012; Beraldo et al., 2014; Zanzani et al., 2014). I cittadini di Padova, senza differenze statisticamente significative tra proprietari e non proprietari di cani, nell’88,5% dei casi non hanno risposto correttamente alla domanda inerente la problematica della fecalizzazione ambientale quale possibile fonte di patogeni. In particolare, il 15,7% ha dichiarato che la trasmissione di patogeni interessa solo i cani, il 30,5% interessa solo l’uomo, il 15,9% sosteneva che le feci non sono fonte di malattia e il 26,4% non sapeva rispondere. Solo l’11,5% della popolazione affermava correttamente che le feci possono essere fonte di patogeni sia per altri cani sia per l’uomo diversamente da quanto dichiarato dai cittadini di Udine, che nel 75% dei casi erano consapevoli del rischio di zoonosi nella relazione con il loro animale, e dei proprietari di cani delle città di Milano, Bergamo e Brescia che riconoscevano nel 71,89% dei casi che la trasmissione dei parassiti intestinali avviene attraverso la contaminazione fecale di cibo o altro materiale. Prevalenze simili sono state anche segnalate da McGlade et al. (2003) e Palmer et al. (2010) in Australia, dove proprietari di cani e di gatti risultavano consapevoli del rischio di contrarre parassitosi zoonotiche dai loro animali, anche se le modalità con le quali questo avvenisse non erano sempre chiare. Bingham et al. (2010) negli USA hanno riportato valori simili a quelli di questa indagine, dichiarando che la maggior parte delle persone intervistate mancavano di conoscenze in merito alla malattie zoonotiche legate al cane. Anche nelle interviste di Katagiri e Oliveira-Sequeira (2008) le conoscenze dei proprietari in termini di zoonosi dei piccoli animali erano piuttosto scarse e confuse, pur attuando nella maggior parte dei casi misure profilattiche come l’igiene e la somministrazione di farmaci antelmintici. Anche nella città di Padova, pur riscontrando una contaminazione ambientale, l’86,3% dei proprietari dei cani dichiarava di raccogliere sempre le feci del proprio animale e la veridicità di tale risposta è stata confermata dagli operatori che osservando i proprietari dei cani durante i campionamenti hanno potuto verificare che l’83,1% di essi effettivamente attuava la raccolta. Pur ignorando che le feci possano veicolare patogeni anche per l’uomo, vengono comunque messe in atto misure preventive di igiene. In aggiunta, la maggioranza dichiarava di raccogliere le feci principalmente per igiene e decoro e solo l’1% ammetteva che non fosse giusto farlo. Inoltre, l’80,5% dei cittadini era consapevole dell’esistenza del Regolamento comunale, distinti tra un 78,8% rappresentato dai proprietari
dei cani ed un 83% dai non proprietari. I risultati di queste interviste suggeriscono che le attività di informazione ed educazione della cittadinanza da parte dell’Amministrazione pubblica in termini di Regolamento e obbligo alla raccolta delle feci abbiano fino ad oggi funzionato e debbano senz’altro continuare per raggiungere tutta la popolazione. Le risposte invece relative ai proprietari dei cani hanno messo inevidenza come l’informazione e l’educazione ai possibili rischi sanitari nonché la gestione e la prevenzione degli stessi siano insufficienti. Il 43% dei proprietari dichiarava infatti di far eseguire un esame copromicroscopico solo se necessario, il 20% una volta l’anno, un altro 20% più di una volta l’anno ed il 17% addirittura mai; risultati oltretutto sottostimati nella maggior parte dei casi in quanto ci si è accorti che la domanda veniva intesa come frequenza di un ambulatorio veterinario e non nello specifico di esecuzione di indagini parassitologiche, confondendo la vaccinazione con il trattamento antielmintico e l’esame copromicroscopico con altre indagini ambulatoriali, sottolineando come il proprietario non sia correttamente informato di quello che accade in ambito ambulatoriale. Tutto questo suggerisce che esiste un gap di informazione da individuare nel ruolo del veterinario. Al riguardo, Palmer et al. (2010) hanno riportato che in Australia pochi veterinari informavano di prassi i propri clienti sul potenziale ruolo zoonotico dei parassiti degli animali da compagnia pur raccomandando nella maggior parte dei casi la somministrazione di trattamenti antielmintici nell’arco della vita dell’animale, e alcuni addirittura erano inconsapevoli dell’esistenza di zoonosi. Stull et al. (2007) in Canada hanno evidenziato come i veterinari raccomandino protocolli antielmintici solo nel 13% dei cuccioli e del 39% dei gattini, e sebbene la maggior parte delle strutture veterinarie adottassero un protocollo antielmintico, i veterinari lo applicavano nel 78% dei casi. Inoltre, più della metà (66%) dei veterinari dichiarava di discutere con i loro clienti relativamente ai rischi zoonotici correlati agli endoparassiti di cani e gatti solo in particolari circostanze o addirittura per niente. Il ruolo del veterinario è senza dubbio fondamentale nell’educazione del proprietario di un animale da compagnia e i risultati di quest’indagine hanno messo ancor più in evidenza la carenza di informazioni tra veterinario e proprietario. Ci si aspettava infatti che i proprietari, frequentando strutture veterinarie fossero maggiormente consapevoli in termini di rischi sanitari. Si rende perciò necessario migliorare questo aspetto puntando su un’attenta opera di educazione sanitaria nel concetto di “One Health” che consiste in un approccio multidisciplinare nell’ottica di un’unica salute, dell’uomo, degli animali e del nostro ambiente (Paul et al., 2010). Esiste quindi la necessità che medici umani, veterinari e Amministrazione pubblica indirizzino interesse e sforzi in apppropriati programmi di informazione e controllo
verso una riduzione della contaminazione ambientale delle città e del rischio di infezioni sia per gli animali sia per l’uomo (Traversa et al., 2014).

Lo sviluppo delle metodiche di Real Time PCR sono state fondamentali nella realizzazione di questo studio epidemiologico in quanto si è potuto ridurre i tempi di analisi rispetto alla tradizionale PCR, che è stata quindi limitata solo ai campioni particolarmente positivi per ottenere degli amplificati sequenziabili. Entrambe le Real Time PCR per le identificazioni di *G. duodenalis* e di *Cryptosporidium* spp. si sono rivelate molto sensibili, riuscendo ad individuare tutti i campioni positivi fino a valori di 5 cisti/g per *Giardia* e 5 opg per *Cryptosporidium* spp.

Sapendo che il cane, diversamente da altre specie, elimina quantità ridotte di oocisti di *Cryptosporidium* con le feci (Scorza e Tangtrongsup 2010), è stato fondamentale sviluppare una metodica che fosse molto sensibile. Diversamente, le cisti di *Giardia* possono essere eliminate copiosamente con le feci del cane infetto e, in questi casi, le forme sintomatiche risultano più facilmente diagnosticabili anche con un semplice esame copromicroscopico. La messa a punto di una Real Time PCR è stata utile per determinare la reale prevalenza della giardiosi, individuando anche i soggetti asintomatici eliminatori di scarse quantità di cisti. I limiti principali delle due metodiche Real Time PCR per la determinazione di *Cryptosporidium* spp. e di *Giardia* sono correlati a fattori distinti. La Real Time PCR su SYBR Green I (*Cryptosporidium* spp.) è semplice, economica nell’ambito della categoria, e genera amplificati che possono essere sottoposti direttamente a sequenziamento; il limite è legato alle dimensioni dell’amplificato, spesso insufficiente per poter procedere con un identificativo di specie, ma sufficiente per la conferma di genere. La Real Time PCR per la determinazione di *Giardia* è altrettanto semplice e rapida, il suo limite è rappresentato dall’impiego della sonda che interferisce con il sequenziamento per cui, usando questa metodica, per raggiungere l’identificativo di specie è necessario che un campione positivo venga comunque processato in Nested PCR. Entrambe le metodiche si adattano perfettamente a studi di screening. La Real Time PCR duplex è stata messa a punto per ridurre ulteriormente costi e tempi. Nello sviluppo è stato notato che il DNA di *Giardia* inibiva, a parità di cisti/oocisti, la rilevazione di *Cryptosporidium*, per cui nel corso dell’indagine è stato comunque necessario ritestare i campioni risultati fortemente positivi alla presenza di *Giardia*, per evidenziare le forme “occulte” di cryptosporidiosi. Nel caso del cane, nelle cui feci le oocisti di *Cryptosporidium* sono generalmente scarse rispetto le cisti di *Giardia* e considerato che *Cryptosporidium* è un protozoo opportunista, spesso cioè in associazione a *Giardia*, questa metodica torna utile sono in una fase di screening supportata dall’utilizzo della Real Time PCR su SYBR Green I. In altre specie animali nelle quali cisti e oocisti vengono eliminate entrambe in grandi quantità (es.
vitello), tale metodica può essere applicata senza riserve. Per utilizzare la metodica in ambito diagnostico nel cane, così come nel gatto, è necessario eseguire ulteriori prove per ridurre l’effetto inibizione esercitato da Giardia e migliorare la sensibilità nella determinazione di Cryptosporidium spp.
CONCLUSIONI

I parassiti intestinali sono patogeni molto comuni nel cane, con valori di prevalenza variabili in funzione delle popolazioni canine considerate. I principali parassiti isolati hanno diverse caratteristiche di resistenza ambientale (T. vulpis, T. canis, E. aerophilus e G. duodenalis) e, ad eccezione di T. vulpis, il cui ruolo zoonotico è ancora discusso, gli altri sono potenzialmente trasmissibili all’uomo e la loro presenza nel territorio può esporre al rischio di infezione non solo i cani, ma anche le persone. Nella presente indagine, le prevalenze riscontrate per questi parassiti nei cani di proprietà e nei campioni ambientali sono risultate relativamente basse e sembrerebbero indicare un limitato rischio di infezione, comunque da non sottovalutare. Nei cani di canile, invece, dove le condizioni ambientali favoriscono la diffusione, le prevalenze riscontrate sono più elevate. Questo si traduce in una necessità di migliorare la qualità della gestione in termini di pulizia, di programmi di disinfezione e di controllo, combinando metodi diagnostici accurati a corretti approcci terapeutici. L’esame copromicroscopico resta il test di elezione per individuare la maggior parte dei parassiti, mentre per alcuni protozoi come G. duodenalis e Cryptosporidium spp. le indagini biomolecolari si sono confermate tecniche più sensibili e soprattutto in grado di determinare il genotipo, suggerendo o meno un potenziale rischio zoonotico. Sebbene la stretta convivenza tra cani non sia considerata un elevato fattore di rischio nella trasmissione di nematodi intestinali, in quanto le uova necessitano di un periodo di tempo variabile per maturare allo stadio infestante nell’ambiente, il rischio zoonotico dovuto alla persistenza nel suolo di elementi infestanti dovrebbe sempre essere tenuto presente (Traversa 2012). Contrariamente, le cisti di Giardia e le oocisti di Cryptosporidium sono immediatamente infettanti, nel momento stesso in cui vengono espulse, e questo può rappresentare un elevato rischio di infezione sia nella convivenza cane-cane sia cane-uomo. Per questa ragione, i cani di canile dovrebbero essere considerati una possibile fonte di infezione sia per gli operatori sia per l’eventuale famiglia adottante. Inoltre, avendo riscontrato che la maggior parte dei cittadini non è consapevole del rischio per la propria salute legato alla contaminazione ambientale da feci canine, si rende necessario nell’ottica di salvaguardare la salute del cane e dell’uomo, attuare programmi di informazione ed educazione con un approccio multidisciplinare che preveda il coinvolgimento di figure professionali distinte (es. medici umani, medici veterinari, amministrazione pubblica, etc.) al fine di ridurre la fecalizzazione ambientale e di educare i cittadini ad una corretta prevenzione delle parassitosi specie-specifiche e zoonotiche.

Boscolo, S., 2014. Fecalizzazione ambientale e parassiti intestinali del cane: indagine in aree verdi pubbliche, Tesi di Laurea magistrale a ciclo unico in Medicina Veterinaria, Università degli Studi di Padova, a.a. 2013/2014

Casulli, A., 2014. HERACLES (FP7 funded project on cystic echinococcosis), in: Atti del XXVIII Congresso Nazionale della Società Italiana di Parassitologia (SoIPa), 271.

Giardia from domestic dogs in the USA. Vet. Parasitol. 177, 28–32. doi:10.1016/j.vetpar.2010.11.029

Parasitol. 113, 243–252.

Rubel, D., Wisnivesky, C., 2005. Magnitude and distribution of canine fecal contamination and

Solarczyk, P., Majewska, A.C., 2010. A survey of the prevalence and genotypes of *Giardia*

NORMATIVA

Accordo Stato, Regioni e Province autonome di Trento e Bolzano, 25 marzo 2015 “Linee guida nazionali per gli Interventi Assistiti con gli Animali (IAA)”

Comune di Padova (2010) Regolamento comunale per la tutela degli animali, delibera n. 84 del 26 ottobre 2010

Legge regionale n. 60/1993 “Tutela degli animali d’affezione e prevenzione del randagismo”, Regione Veneto, BUR n. 111/1993

O.M. 28 agosto 2014 “Proroga dell’ordinanza contingibile e urgente 6 agosto 2013, concernente la tutela dell’incolumità pubblica dall’aggressione dei cani”. Ministero della Salute, Gazzetta Ufficiale Serie generale n. 208 del 8 settembre 2014

TEesti consultati

SITOGRAFIA

http://www.esccap.org

http://www.cdc.gov

http://cartografia.comune.padova.it/mappe/index.html

http://www.padovanet.it

http://www.padovanet.it/allegati/C_1_Allegati_16168_Allegato.pdf

http://www.padovanet.it/allegati/C_1_Allegati_16169_Allegato.pdf

135
ALLEGATO
Cromicroscopic and molecular investigations on intestinal parasites in kenneled dogs

Giulia Simonato · Antonio Frangipane di Regalbono · Rudi Cassini · Donato Traversa · Paola Beraldo · Cinzia Tessarin · Mario Pietrobelli

Received: 4 February 2015 / Accepted: 5 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Intestinal parasites are common in dogs worldwide, and their importance has recently increased for a renewed awareness on the public health relevance that some of them have. In this study, the prevalence of helminths and protozoa was evaluated by microscopy in 318 canine faecal samples collected from eight rescue shelters in the North-eastern Italy; 285 of them were also submitted to the molecular characterization of *Giardia duodenalis* and *Cryptosporidium* spp. isolates. An analysis was performed to evaluate the prevalence rates in relation to canine individual data, shelter provenance and anthelmintic treatments. Overall, 52.5 % (167/318) of faecal samples were positive for at least one parasite. *Trichuris vulpis* showed the highest overall prevalence rate (29.2 %), followed by *G. duodenalis* (15.1 %), *Toxocara canis* (9.7 %), ancylostomatids (8.2 %) and *Cystoisospora* (5.7 %). The prevalence of *G. duodenalis*, evaluated by real-time PCR, was 57.9 % (165/285), and 79 isolates were characterized by nested PCR on the β-giardin gene. The assemblages found were mainly the host-specific genotypes C and D, while only one assemblage was identified as the human-specific genotype B1. Isolates of *Cryptosporidium* spp., recorded in 3/285 (1.1 %) stool samples, were *Cryptosporidium parvum* based on the characterization of the *Cryptosporidium* oocyst wall protein (COWP) gene. Although the results describe a relatively limited risk of dog-originating zoonoses, there is the need to improve the quality of shelter practices towards better health managements for safe pet-adoption campaigns and a minimization of the environmental faecal pollution with canine intestinal parasites.

Keywords Helminths · Protozoa · *Giardia* · *Cryptosporidium* · Shelter dog · Italy

Introduction

Intestinal helminths and protozoa are common enteroparasites in household and shelter dogs. Many surveys have been conducted worldwide in different canine populations to evaluate the presence of intestinal parasites, because of their veterinary and sanitary importance (Claerebout et al. 2009; Ito et al. 2009; Joffe et al. 2011; Palmere et al. 2008; Rizzarelli et al. 2013; Rinaldi et al. 2006; Robertson and Thompson 2002; Savilla et al. 2011). Dogs can harbour several helminths, i.e. ascarids (“roundworms”), ancylostomatids (“hookworms”) and tapeworms (e.g. *Dipylidium caninum*, *Echinococcus* spp. and *Taenia* spp.), most of which able to infect also human beings. For instance, *Toxocara* spp. and *Ancylostoma* spp. are responsible for different lesions and diseases in humans, being visceral and cutaneous *larva migrans* the most important (Lee et al. 2010; Traversa 2012). Human cystic and alveolar echinococcoses by *Echinococcus granulosus* and *Echinococcus multilocularis*, respectively, are also of great human concern (Deplazes et al. 2011). The zoonotic role of some protozoa affecting dogs, such as *Giardia duodenalis* and *Cryptosporidium* spp., is established despite some aspects have to be yet clarified (Bowman and Lucio-Forster 2010). In humans and in dogs, both protozoa may induce different gastrointestinal manifestations, including intermittent/chronic...
diarrhoea, abdominal pain, nausea, vomiting, anorexia, and weight loss (Ballweber et al. 2010; Lucio-Forster et al. 2010). Of the seven different host assemblages (A–G) in which G. duodenalis is divided (Monis et al. 2003), assemblages A and B are usually isolated from human faeces, and recent studies reported that they can occur frequently in pet dogs, suggesting their potential role as reservoirs in human infections (Monis et al. 2009).

The strictly cohabitation between dogs and humans, sharing the same living areas, increases the risk of infection. For this reason, rescue shelters represent a good observatory for the evaluation of the pathogens that circulate among dog populations. The purpose of the present survey was to determine the occurrence and prevalence of intestinal parasites in dogs living in shelters, with a focus on the characterization of Giardia and Cryptosporidium isolates, together with the assessment of potential risk factors related to canine individual data and anthelmintic treatments.

Materials and methods

Samples and data collection

From November 2008 to June 2012, faecal samples were collected randomly from dogs kept in eight different shelters (S) located in North-eastern Italy, namely seven in Veneto region (S1–S7) and one in Friuli-Venezia Giulia region (S8). Of a total of 318 samples, 268 (84.3 %) were individual stool samples and 50 (15.7 %) were pooled faeces collected from boxes housing 2–8 dogs. All pooled samples were collected in two shelters, one (S5) located in the province of Padua (38 samples) and one (S7) in the province of Verona (12 samples).

When possible, individual data on breed (crossbred, purebred), gender and age class (<1-year-old, 1–5-years-old, >5-years-old) were collected. Furthermore, information on anthelmintic treatments (yes/no) given within 2 months prior to sampling was recorded in 162 cases. Faecal samples were picked up from the box floor in clean plastic containers, stored at refrigerated conditions (+4 °C) and examined within 2 days. An aliquot of each faecal sample was frozen at −20 °C, pending further molecular analyses, except for 33 samples (i.e. low amount of material, thus not suitable for molecular analysis).

Copromicroscopic analyses

Each faecal sample was macroscopically checked for tapeworm proglottids and roundworms and then analysed (at least 2 g) with a qualitative copromicroscopic technique using a sodium-nitrate solution (specific gravity 1.3) in a double-step sedimentation-floatation procedure (MAFF 1986). Each slide was examined under a light microscope by ×100 and ×400 magnification for helminth eggs and (oo)cysts of protozoa, respectively. Morphometric features were analysed to identify parasitic elements, whose presence was registered for each sample into an Excel 2007 spreadsheet.

Molecular analyses

DNA was extracted from 285 samples using the commercial PSP® Spin Stool DNA Kit (Invitek GmbH, Germany) according to the manufacturer’s instructions. The extracted DNA was screened by a real-time PCR to detect Giardia and Cryptosporidium, separately. Real-time positive samples were submitted to PCR for DNA amplification and sequencing.

Giardia duodenalis

The DNA of G. duodenalis was amplified using a real-time PCR targeting the SSU-rRNA gene with the forward primer Giardia F, the reverse primer Giardia R and the specific double-labeled probe Giardia T (Verweij et al. 2003). The cycling conditions, performed in a LightCycler® Nano (Roche, Germany) and previously described by Verweij et al. (2003), were modified as follows: the final volume of reaction was 10 μl with 5 μl easy-to-use master reagent FastStart Essential DNA Probes Master 2x concentrated (Roche, Germany), 1.3 μl PCR Grade water, 0.5 μl (0.5 μmol) of each specific primer, 0.2 μl (0.2 μmol) double-labeled probe and 2.5 μl of the DNA isolated from the stool samples. PCR amplifications consisted of 10 min at 95 °C followed by 45 cycles at 95 °C for 10 s and 60 °C for 30 s.

Real-time PCR-positive samples were submitted to a two-step nested PCR protocol. The first PCR reaction was performed in T-Personal Thermocycler (Biometra, Germany) in 30 μl volume with the final mix containing 3 μl DNA, 3 μl Buffer 10X, 2 μl dimethyl sulfoxide (DMSO), 1.2 μl (0.4 μM) of each primer RH11 and RH4 (Hopkins et al. 1997), 0.2 μl (1 U) AmpliTaq Gold® DNA Polymerase (Applied Biosystem®, USA), 0.6 μl deoxynucleotide triphosphates (dNTPs) 10 mM, 0.9 μl MgCl2 25 mM and double-distilled water. Reactions were heated at 94 °C for 11 min and 30 s followed by 35 cycles of 94 °C for 30 s, 65 °C for 30 s and 72 °C for 30 s and 1 cycle of 72 °C for 7 min. The second PCR reaction used the same conditions as previously described using the primers GiarF and GiarR (Read et al. 2002). One microtitre amplicon of the first PCR was used in the reaction mixture of the second step.

Both positive (G. duodenalis DNA) and negative (no template added) controls were included in each PCR reaction. Amplification products were subsequently visualized on 2 % agarose gels with SYBR® Safe DNA gel stain (Invitrogen™, USA).
Cryptosporidium spp.

A touch-down real-time PCR on SYBR® Green I targeting the Cryptosporidium oocyst wall protein (COWP) gene was used with a LightCycler® Nano for the detection of Cryptosporidium spp. with slight variations from the published method (Guy et al. 2003). The amplification reaction was performed in 10 μl of final volume with 5 μl FastStart Essential DNA Green Master 2x concentrated (Roche, Germany), 2.6 μl PCR Grade water, 0.2 μl (0.2 μmol) of each primer (COWP P702-R, COWP P702-F) and 2 μl of DNA extracted from the stool samples. The amplification cycle included an initial step for Taq activation at 95 °C for 10 min, followed by 50 cycles characterized by denaturation (95 °C for 10 s), annealing (65 °C for 10 s) and extension (72 °C for 15 s) steps. The annealing step was conducted under touchdown PCR conditions, i.e. the initial temperature of 65 °C for 10 s was decreased by 0.5 °C s⁻¹ at each cycle during the first ten cycles until the final annealing temperature of 60 °C. The following 40 cycles were carried out under the reached conditions. After the amplification cycle, positive samples were detected using the melting curve analysis. The temperature was increased slowly from 60 to 95 °C for 15 s at a rate of 0.1 °C s⁻¹ with continuous monitoring of fluorescence. The specific melting temperature (Tm) was registered for each amplified sample.

Real-time PCR-positive samples were submitted to a conventional PCR protocol with the following mixture of reaction: 2 μl DNA, 1.2 μl (0.4 μmol) of each primer (COWP P702-R, COWP P702-F), 3 μl Buffer 10X, 1.2 μl (2 mmol) MgCl₂, 0.6 μl (0.2 mmol) dNTPs, 1 UI Platinum® Taq DNA Polymerase (Invitrogen™, USA) and double-distilled water in 30 μl of final volume. Cycling conditions were the following: Taq activation step at 95 °C for 5 min, 40 cycles of 95 °C for 15 s, 60 °C for 1 min and 72 °C for 1 min and post-extension step of 72 °C for 7 min. Cryptosporidium amplicons were shown on agarose gel as described for Giardia nested PCR.

In each PCR reaction, positive (Cryptosporidium parvum DNA) and negative (no DNA) samples were added.

Amplicons were sequenced by BMR Genomics (University of Padua, Italy), and then, sequences were aligned using the software ChromasPro version 1.7.5 (Technelysium Pty Ltd, Australia) and compared with those available in the GenBank® database.

Results

Data on dogs’ signalment are reported in Table 1. No parasites were detected at the macroscopic examination of stool samples, while more than the half (167/318, 52.5 %) of them were positive for at least one parasite at the microscopic analysis. Among positive samples, 112 (67.1 %) presented one parasite species, 50 (29.9 %) two species and four (2.4 %) three species, and only one was positive for four species. Overall, 106 (63.5 %) samples were positive for helminths, 41 (24.5 %) for protozoa and 20 (12.0 %) for both groups of parasites. Concerning helminths, Trichuris vulpis showed the highest prevalence rate (29.2 %); among protozoa, Giardia and Cystoisospora (oo)cysts were observed in the 15.1 and 5.7 % of the examined samples, respectively (Table 2).

The overall prevalence for protozoa and/or helminth parasites varied significantly ($\chi^2=48.097, p<0.001$) among shelters, from a minimum of 17.6 % to a maximum of 82.7 % (Table 3). A significant relation between prevalence values and provenance was confirmed for the most common helminths, i.e. T. vulpis ($\chi^2=65.757, p<0.001$), Toxocara canis ($\chi^2=33.863, p<0.001$) and ancylostomatids ($\chi^2=77.981, p<0.001$). Such a significant relationship was also observed for Giardia prevalence values obtained by both copromicroscopy ($\chi^2=61.728, p<0.001$) and nested PCR ($\chi^2=22.690, p<0.01$), as reported in Table 3. With regard to the individual faecal samples, no significant correlations ($p>0.05$) were found between prevalence of the most common parasites and history data as age, sex and breed. Anyhow, T. canis was most frequently detected in animals ageing less than 1 year, while the prevalence of T. vulpis gradually increased from younger dogs until to almost double in older ones as shown in Fig. 1. The administration of an anthelminthic

<table>
<thead>
<tr>
<th>Age classes</th>
<th>Total (n=189)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-year-old</td>
<td>66</td>
<td>34.9</td>
</tr>
<tr>
<td>1–5-years-old</td>
<td>68</td>
<td>36.0</td>
</tr>
<tr>
<td>>5-years-old</td>
<td>55</td>
<td>29.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Total (n=213)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>147</td>
<td>69.0</td>
</tr>
<tr>
<td>Female</td>
<td>66</td>
<td>31.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breed</th>
<th>Total (n=265)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossbred</td>
<td>214</td>
<td>80.8</td>
</tr>
<tr>
<td>Purebred</td>
<td>51</td>
<td>19.2</td>
</tr>
</tbody>
</table>
within 2 months prior to sampling significantly influenced the occurrence of *T. vulpis* and ancylostomatids (Table 4).

The presence of *Giardia* was revealed by real-time PCR in 165/285 (57.9 %) samples. Out of 165 positive samples, 106 were confirmed by nested PCR, and among them, 79 amplicons were successfully sequenced as on the follows: 78 host-specific genotypes, i.e. 49 assemblages C and 29 assemblages D (detected both in all shelters except S4, where only assemblage D was found) and one assemblage B1 (S8).

Real-time PCR on SYBR® Green I revealed the presence of *Cryptosporidium* spp. in 3/285 (1.1 %) stool samples, two collected in S3 and one in S8. All positive samples were confirmed by PCR, and amplicons were sequenced as *C. parvum* (GenBank®, accession number JQ349359).

Table 2 Copromicroscopic prevalence [n (%)] of helminth and protozoan parasites assessed by copromicroscopic technique in single and pooled faecal samples

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Single samples (n = 268)</th>
<th>Pooled samples (n = 50)</th>
<th>Overall prevalence (n = 318)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichuris vulpis</td>
<td>83 (31.0)</td>
<td>10 (20.0)</td>
<td>93 (29.2)</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>31 (11.6)</td>
<td>0 (0.0)</td>
<td>31 (9.7)</td>
</tr>
<tr>
<td>Ancylostomatids</td>
<td>25 (9.3)</td>
<td>1 (2.0)</td>
<td>26 (8.2)</td>
</tr>
<tr>
<td>Eucoleus aerophilus</td>
<td>7 (2.6)</td>
<td>0 (0.0)</td>
<td>7 (2.2)</td>
</tr>
<tr>
<td>Dipylidium caninum</td>
<td>5 (1.9)</td>
<td>0 (0.0)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>39 (14.6)</td>
<td>9 (18.0)</td>
<td>48 (15.1)</td>
</tr>
<tr>
<td>Cystoisospora spp.</td>
<td>14 (5.2)</td>
<td>4 (8.0)</td>
<td>18 (5.7)</td>
</tr>
</tbody>
</table>

Discussion

Several studies were conducted all over the world to investigate parasite prevalence in dogs kept in shelters, and most of them reported helminth prevalence over 30 % (Blagburn et al. 2008; Capelli et al. 2006; Claerbeout et al. 2009; Ortúñoa and Castellà 2011; Ortúño et al. 2014; Palmer et al. 2008; Turkowicz and Cielecka 2002). The prevalence recorded in the present survey (52.5 %) fits with data previously reported in Italy (Capelli et al. 2006). These high prevalence values in shelter and kenneled dogs are likely related to the great exposure to parasitic infections and, in particular, to infective elements. The density of individuals in a restricted area, especially in poor management conditions, may lead to high environmental contaminations and to an increased risk of infection, especially for giardiosis and geo-helminthoses (Capelli et al. 2003; Leonhard et al. 2007; Ortúñoa and Castellà 2011). In the present study, the results showed that single infections were more frequent than mixed infections and that helminths were more prevalent than protozoa, in agreement with the results recorded in previous investigations (Ramírez-Barrios et al. 2004; Riggio et al. 2013). Furthermore, *T. vulpis* was confirmed as the most prevalent helminth in kenneled dogs,

Table 3 Prevalence [n (%)] of helminth (a) and protozoan (b) parasites in each monitored shelter and available data on treated/untreated dogs with anthelmintic drugs

<table>
<thead>
<tr>
<th>Veneto region</th>
<th>FVG</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1 (n=25)</td>
<td>S2 (n=47)</td>
</tr>
<tr>
<td>(a) Anthelmintic treatments (treated/untreated)</td>
<td>1/24</td>
<td>21/26</td>
</tr>
<tr>
<td>Trichuris vulpis</td>
<td>7 (26.9)</td>
<td>18 (38.3)</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>4 (15.4)</td>
<td>13 (27.7)</td>
</tr>
<tr>
<td>Ancylostomatids</td>
<td>0</td>
<td>3 (6.4)</td>
</tr>
<tr>
<td>Eucoleus aerophilus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dipylidium caninum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b) Cystoisospora spp.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>13 (50.0)</td>
<td>13 (27.7)</td>
</tr>
<tr>
<td>Copromicroscopy</td>
<td>16/26 (61.5)</td>
<td>21/47 (44.7)</td>
</tr>
<tr>
<td>Nested PCR*</td>
<td>17 (65.4)</td>
<td>33 (70.2)</td>
</tr>
</tbody>
</table>

FVG Friuli-Venezia Giulia region, *ne* not evaluated

a Number of positive/analysed samples

b Presence of at least one helminth or protozoan species at copromicroscopic observations
followed by roundworms and hookworms. The higher prevalence rates of *T. vulpis* and *T. canis* in comparison with other parasites are probably due to the high resistance of their eggs in the environment for long time and to the biological features of ascarid larval stages in transplacental and transmammary transmission (Traversa 2012).

No cestode elements were found, except for *D. caninum* that was isolated only in one case. In general, low prevalence values are probably underestimated because a single copromicroscopic examination has a very low sensitivity to detect tapeworms, due to the inconstant elimination of proglottids and the undistributed eggs in the faeces.

Among protozoan infections, the overall prevalence of giardiosis by copromicroscopic examinations (15.1 %) was in accordance with other studies (Capelli et al. 2006; Neves et al. 2014; Nikolic et al. 2008; Palmer et al. 2008). After trichuriosis, giardiosis was the second most prevalent intestinal infection in the examined dog population, reaching the high value of 57.9 % when investigated with molecular methods, as previously described in Italy (Paoletti et al. 2008; Scaramozzino et al. 2009) and elsewhere (Bowman and Lucio-Forster 2010). The lower copromicroscopic prevalence detected in this survey indicates that a single copromicroscopic analysis may be insufficient to diagnose *G. duodenalis* infection (Capelli et al. 2006; Epe et al. 2010; Thompson 2004).

According to previous results (Giangaspero et al. 2007; Paoletti et al. 2008; Scaramozzino et al. 2009), all the isolates detected in the present study but one were the dog-specific assemblages C and D, confirming that host-specific genotypes are much more prevalent than other assemblages in kennels, where there is a high frequency of dog-to-dog transmission (Ballweber et al. 2010; Leonhard et al. 2007; Thompson 2004). Zoonotic and host-specific assemblages of *G. duodenalis* isolated from dog faeces are well documented in literature (Ballweber et al. 2010; Berrilli et al. 2004; Bowman and Lucio-Forster 2010; Hunter and Thompson 2005; Lalle et al. 2005; Monis et al. 2003; Scaramozzino et al. 2009). In fact, the frequency of infections with host-specific assemblages is more common in dogs living in kennels than in household dogs, where zoonotic assemblages are more frequent (Claerebout et al. 2009; Covacin et al. 2011; Leonhard et al. 2007; Scaramozzino et al. 2009; Uehlinger et al. 2013; Upjohn et al. 2010).

The low prevalence rate (1.1 %) of cryptosporidiosis detected in this study is in accordance with values previously found in Central and Southern Italy (Giangaspero et al. 2007; Rinaldi et al. 2008) and worldwide (Claerebout et al. 2009; Uehlinger et al. 2013; Yoshiuchi et al. 2010). The *Cryptosporidium* isolates in this survey were typed as *C. parvum*, and none of the three positive samples was identified as a host-specific genotype as reported by other authors worldwide (Giangaspero et al. 2006; Sotiriadou et al. 2013; Uehlinger et al. 2013; Yoshiuchi et al. 2010). As for *Giardia*, also, zoonotic *Cryptosporidium* species are well documented in humans, including *C. parvum*.

![Fig. 1 Prevalence of *T. canis* and *T. vulpis* according to the age classes](image1)

Table 4: Copromicroscopic results [n (%)] for *Trichuris vulpis* and ancylostomatids in treated/untreated dogs

<table>
<thead>
<tr>
<th>Anthelmintic treatment</th>
<th>Trichuris vulpis</th>
<th>Ancylostomatids</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
</tr>
<tr>
<td>Untreated (n=102)</td>
<td>43 (42.2)</td>
<td>59 (57.8)</td>
<td>81 (79.4)</td>
</tr>
<tr>
<td>Treated (n=60)</td>
<td>53 (88.3)</td>
<td>7 (11.7)</td>
<td>58 (96.7)</td>
</tr>
</tbody>
</table>
and/or exacerbate the occurrence of parasites and shelter management, in particular with the accomplishment of effective control programmes including: (a) hygiene measures, such as environmental cleaning and disinfections; (b) appropriate diagnostic methods in housed animals (including new arrivals) and, as a consequence, (c) appropriate use of parasiticides. In the present study, the adoption of anthelmintic treatments within 2 months before sampling led into a significant reduction ($p<0.001$) of helminthoses. Indeed, a higher prevalence was found for *T. vulpis* (71.2 %) and ancylostomats (38.5 %) in S3 and for *T. canis* (27.7 %) in S2, where no or few sampled dogs (0/52 and 21/47, respectively) received an anthelmintic drug within the previous 2 months, suggesting that the management had a low standard for controlling parasites in those sites. The animal density is another key factor (Dubná et al. 2007; Leonhard et al. 2007; Meireles et al. 2008; Ortúñoa and Castellá 2011), especially in areas for out-of-box time, that may have contributed to the increase of infection risks in these shelters. Also, giardiosis resulted to be significantly influenced by the provenance of dogs. Although these protozoa were detected in all investigated shelters, copromicroscopic and nested PCR prevalence varied significantly from 0 to 33.3 % and from 20.0 to 61.5 %, respectively. With this regard, it is worthy of note that false-negatives may influence faecal examinations and that molecules routinely used in shelters may not have an antiprotozoal activity. Despite some parasiticides (e.g. fenbendazole) are active against both helminths and protozoa, they are frequently administered in a single dose under a parasite control scheme. This approach does not have efficacy for giardiosis, as, for instance, fenbendazole should be given for three consecutive days (ESCAAP 2011). Therefore, incorrect treatments may increase *Giardia* prevalence and/or exacerbate the occurrence of *Giardia* superinfections in a shelter.

The prevalence of intestinal parasites in puppies is generally considered higher than in adults, due to their immature immune-system (Gates and Nolan 2009), whereas parasite-specific immunity is thought to be acquired with age, as a consequence of single or repeated exposures (Ramirez-Barrios et al. 2004). Nevertheless, in this study, the age of animals was not statistically related to the presence of parasites, even though *T. canis* was more prevalent in younger animals, while *T. vulpis* showed an increasing trend until to be mainly prevalent in older ones. These data are in agreement with those reported in previous studies describing a higher prevalence of roundworms in dogs younger than 12 months of age and whipworms in adult dogs (Fontanarrosa et al. 2006; Gates and Nolan 2009; Riggio et al. 2013). The high occurrence of trichuroid infections in adult dogs is likely due to an absence of a transplacental and/or transmammary transmission and to the inability to elicit a protective immune response (Traversa 2011). Moreover, the high prevalence of whipworm infections detected in this study confirms the resistance of trichuroid eggs in the environment and supports the importance to use anthelmintics which are effective against both larval and/or adult stages of *T. vulpis*.

In conclusion, this study confirms that intestinal parasites are very common pathogens in dog communities and highlights the need to improve the quality of shelter management in terms of cleaning and disinfection programme, control programmes combining accurate diagnostic methods and therapeutic approaches. Although the close-contact with dogs is not considered as a relevant risk in the transmission of intestinal nematodes, the zoonotic risk due to their infective elements in the environment should always be kept in mind (Traversa 2012). Conversely, *Giardia* and *Cryptosporidium* (oo)cysts are infective immediately after they are excreted and this may represent a higher risk of infection by a close-contact between dogs and human beings. For this reason, shelter dogs should be considered a source of infection for shelter workers, towards better health managements, for safe pet-adoption campaigns and a minimization of the environmental faecal pollution with canine intestinal parasites (Traversa et al. 2014).

Ethical standards The authors declare that they have no conflict of interest.

Conflict of interest The authors declare that they have no conflict of interest.

References

