Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Figallo, Elisa (2008) Advanced technologies for cardiac tissue engineering. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
23Mb

Abstract (inglese)

Tissue engineering and cell-based therapies have been recently proposed as promising cure of diseases related to myocardium infarction. Aim of this thesis was to provide methods for rational approach the research in this field. We developed advanced systems for stem cell (SC) culture and differentiation. In particular, we focused on human stem cell, such as fetal amniotic or embryonic. To obtain biomimetic contractile tissue, these technologies have been applied to 2D and 3D cell cultures, studying in depth the parameters which influence significant biophysical stimulations, such as the electrical one. A quantitative evaluation of cardiac functionality was then performed at the cellular level, with a mathematical model, or at the tissue level, with high sensitive sensors and imaging analysis. These results seem promising for the development of high-throughput technologies for preclinical in vitro screening of cardiac drugs or for the definition of clinical method for cardiac regeneration.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Elvassore, Nicola
Correlatore:Vunjak-Novakovic, Gordana
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):cardiac tissue engineering, stem cell, advanced therapies, microbioreactor, electrical stimulation, differentiation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/24 Principi di ingegneria chimica
Struttura di riferimento:Dipartimenti > Dipartimento di Principi e Impianti di Ingegneria Chimica "I. Sorgato"
Codice ID:923
Depositato il:01 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Anne E. Bishop, L. D. K. Buttery, et al. (2002). "Embryonic stem cells." The Journal of Pathology 197(4): 424-429. Cerca con Google

2. Babensee, J. E., J. M. Anderson, et al. (1998). "Host response to tissue engineered devices." Advanced Drug Delivery Reviews 33: 111-139. Cerca con Google

3. Christman, K. L. and R. J. Lee (2006). "Biomaterials for the Treatment of Myocardial Infarction." Journal of the American College of Cardiology 48(5): 907-913. Cerca con Google

4. Davis, M. E., P. C. H. Hsieh, et al. (2005). "Custom Design of the Cardiac Microenvironment With Biomaterials." Circ Res 97(1): 8-15. Cerca con Google

5. Dimmeler, S., J. Burchfield, et al. (2007). "Cell-Based Therapy of Myocardial Infarction." Arterioscler Thromb Vasc Biol. Cerca con Google

6. Eschenhagen, T., C. Fink, et al. (1997). "Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system." FASEB J. 11(8): 683-694. Cerca con Google

7. European, Commission, et al. (2001). Opinion on State of the Art Concerning Tissue Engineering. Cerca con Google

8. Fukuda, K. and S. Yuasa (2006). "Stem Cells as a Source of Regenerative Cardiomyocytes." Circ Res 98(8): 1002-1013. Cerca con Google

9. Furuta, A., S. Miyoshi, et al. (2006). "Pulsatile Cardiac Tissue Grafts Using a Novel Three-Dimensional Cell Sheet Manipulation Technique Functionally Integrates With the Host Heart, In Vivo." Circ Res 98(5): 705-712. Cerca con Google

10. Garry, D. J. and C. M. Martin (2004). "Cardiac Regeneration: Self-Service at the Pump." Circ Res 95(9): 852-854. Cerca con Google

11. Giraud, M.-N., C. Armbruster, et al. (2007). "Current State of the Art in Myocardial Tissue Engineering." Tissue Engineering 13(8): 1825-1836. Cerca con Google

12. Goldstein, M. S. (2000). "Heart Failure Therapy at the Turn of the Century." Heart Failure Reviews 6: 7-14. Cerca con Google

13. Guo, X.-M., Y.-S. Zhao, et al. (2006). "Creation of Engineered Cardiac Tissue In Vitro From Mouse Embryonic Stem Cells." Circulation 113(18): 2229-2237. Cerca con Google

14. Haider, H. K. and M. Ashraf (2005). "Bone marrow stem cell transplantation for cardiac repair." Am J Physiol Heart Circ Physiol 288(6): H2557-2567. Cerca con Google

15. Hecker, L. and R. K. Birla (2007). "Engineering the heart piece by piece: state of the art in cardiac tissue engineering." Regenerative Medicine 2: 125-144. Cerca con Google

16. Ishii, O., M. Shin, et al. (2005). "In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography." Journal of Thoracic and Cardiovascular Surgery 130(5): 1358-1363. Cerca con Google

17. Itabashi, Y., S. Miyoshi, et al. (2005). "A New Method for Manufacturing Cardiac Cell Sheets Using Fibrin-Coated Dishes and Its Electrophysiological Studies by Optical Mapping." Artificial Organs 29(2): 95-103. Cerca con Google

18. Jiang, Y., B. N. Jahagirdar, et al. (2002). "Pluripotency of mesenchymal stem cells derived from adult marrow." Nature 418(6893): 41-49. Cerca con Google

19. Kaye, D. M. and H. Krum (2007). "Drug discovery for heart failure: a new era or the end of the pipeline?" Nat Rev Drug Discov 6(2): 127-139. Cerca con Google

20. Kehat, I., A. Gepstein, et al. (2002). "High-Resolution Electrophysiological Assessment of Human Embryonic Stem Cell-Derived Cardiomyocytes. A Novel In Vitro Model for the Study of Conduction." Circ Res. Cerca con Google

21. Kehat, I., D. Kenyagin-Karsenti, et al. (2001). "Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes." J. Clin. Invest. 108(3): 407-414. Cerca con Google

22. Laflamme, M. A. and C. E. Murry (2005). "Regenerating the heart." Nat Biotech 23(7): 845-856. Cerca con Google

23. Langer, R. and J. P. Vacanti (1993). "Tissue engineering." Science 260(5110): 920-926. Cerca con Google

24. Laugwitz, K.-L., A. Moretti, et al. (2005). "Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages." Nature 433(7026): 647-653. Cerca con Google

25. Li, X., X. Yu, et al. (2007). "Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment." Journal of Molecular and Cellular Cardiology 42(2): 295-303. Cerca con Google

26. Makino, S., K. Fukuda, et al. (1999). "Cardiomyocytes can be generated from marrow stromal cells in vitro." J. Clin. Invest. 103(5): 697-705. Cerca con Google

27. Margaret V. Westfall, K. A. Pasyk, et al. (1997). "Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures." Cell Motility and the Cytoskeleton 36(1): 43-54. Cerca con Google

28. Martina, M. and D. W. Hutmacher (2007). "Biodegradable polymers applied in tissue engineering research: a review." Polymer International 56: 145-157. Cerca con Google

29. Messina, E., L. De Angelis, et al. (2004). "Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart." Circ Res 95(9): 911-921. Cerca con Google

30. Miniati, D. N. and R. C. Robbins (2002). "Heart Transplantation: A Thirty-Year Perspective." Annual Review of Medicine 53(1): 189-205. Cerca con Google

31. Orlic, D., J. Kajstura, et al. (2001). "Mobilized bone marrow cells repair the infarcted heart, improving function and survival." Proceedings of the National Academy of Sciences 98(18): 10344-10349. Cerca con Google

32. Papadaki, M., N. Bursac, et al. (2001). "Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies." Am J Physiol Heart Circ Physiol 280(1): H168-178. Cerca con Google

33. Parmacek, M. S. and J. A. Epstein (2005). "Pursuing Cardiac Progenitors: Regeneration Redux." Cell 120(3): 295-298. Cerca con Google

34. Pittenger, M. F. and B. J. Martin (2004). "Mesenchymal Stem Cells and Their Potential as Cardiac Therapeutics." Circ Res 95(1): 9-20. Cerca con Google

35. Radisic, M., H. Park, et al. (2004). "From the Cover: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds." Proceedings of the National Academy of Sciences 101(52): 18129- 18134. Cerca con Google

36. Rangappa, S., J. W. C. Entwistle, et al. (2003). "Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype." J Thorac Cardiovasc Surg 126(1): 124-132. Cerca con Google

37. Rebecca L. Carrier, M. Papadaki, et al. (1999). "Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization." Biotechnology and Bioengineering 64(5): 580-589. Cerca con Google

38. Roman-Sanchez, P., P. Conthe, et al. (2005). "Factors influencing medical treatment of heart failure patients in Spanish internal medicine departments: a national survey." QJM 98(2): 127-138. Cerca con Google

39. Sekiya, S., T. Shimizu, et al. (2006). "Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential." Biochemical and Biophysical Research Communications 341(2): 573-582. Cerca con Google

40. Shimizu, T., M. Yamato, et al. (2002). "Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces." Circ Res 90(3): e40-48. Cerca con Google

41. Shu, Q. L. (2007). Cardiac Regenerative Engineering. Bioregenerative Engineering: Principles and Applications: 584-658. Cerca con Google

42. Stevenson, L. W. and R. L. Kormos (2001). "Mechanical Cardiac Support 2000: Current applications and future trial designJune 15-16, 2000, Bethesda, Maryland." J Thorac Cardiovasc Surg 121(3): 418-424. Cerca con Google

43. Stevenson, L. W., S. L. Warner, et al. (1994). "The impending crisis awaiting cardiac transplantation. Modeling a solution based on selection." Circulation 89(1): 450- 457. Cerca con Google

44. Sun, Y. and K. T. Weber (2000). "Infarct scar: a dynamic tissue." Cardiovascular Research 46(2): 250-256. Cerca con Google

45. Virag, J. I. and C. E. Murry (2003). "Myofibroblast and Endothelial Cell Proliferation during Murine Myocardial Infarct Repair." Am J Pathol 163(6): 2433-2440. Cerca con Google

46. Wah Siu, C., J. C. Moore, et al. (2007). "Human Embryonic Stem Cell-Derived Cardiomyocytes for Heart Therapies." Cardiovascular Haematological Disorders - Drug Targets 7: 145-152. Cerca con Google

47. Xu, M., M. Wani, et al. (2004). "Differentiation of Bone Marrow Stromal Cells Into the Cardiac Phenotype Requires Intercellular Communication With Myocytes." Circulation 110(17): 2658-2665. Cerca con Google

48. Zimmermann, W. H. and T. Eschenhagen (2003). "Cardiac Tissue Engineering for Replacement Therapy." Heart Failure Reviews 8: 259-269. Cerca con Google

49. Agapios, S., K. F. Bernd, et al. (2003). "Cardiac specific differentiation of mouse embryonic stem cells." Cardiovascular Research 58(2): 278-291. Cerca con Google

50. Anderson, D. G., S. Levenberg, et al. (2004). "Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells." Nat Biotech 22(7): 863-866. Cerca con Google

51. Badorff, C., R. P. Brandes, et al. (2003). "Transdifferentiation of Blood-Derived Human Adult Endothelial Progenitor Cells Into Functionally Active Cardiomyocytes." Circulation: 01.CIR.0000051460.85800.BB. Cerca con Google

52. Beebe, D. J., G. A. Mensing, et al. (2002). "Physics and applications of microfluidics in biology." Annual Review of Biomedical Engineering 4(1): 261-286. Cerca con Google

53. Bhatia, S. N., M. L. Yarmush, et al. (1997). "Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts." Journal of Biomedical Materials Research 34(2): 189-199. Cerca con Google

54. Biswas, A. and R. Hutchins (2007). "Embryonic Stem Cells." Stem Cells and Development 16(2): 213-222. Cerca con Google

55. Boheler, K. R., J. Czyz, et al. (2002). "Differentiation of Pluripotent Embryonic Stem Cells Into Cardiomyocytes." Circ Res 91(3): 189-201. Cerca con Google

56. Boon Chin, H., H. Husnain Kh, et al. (2004). "Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro." Cardiovascular Research 62(1): 34-42. Cerca con Google

57. Bursac, N., K. K. Parker, et al. (2002). "Cardiomyocyte Cultures With Controlled Macroscopic Anisotropy: A Model for Functional Electrophysiological Studies of Cardiac Muscle." Circ Res 91(12): e45-54. Cerca con Google

58. Chin, V., P. Taupin, et al. (2004). "Microfabricated platform for studying stem cell fates." Biotechnology and Bioengineering 88(3): 399-415. Cerca con Google

59. Czyz, J. and A. M. Wobus (2001). "Embryonic stem cell differentiation: The role of extracellular factors." Differentiation 68(4-5): 167-174. Cerca con Google

60. De Coppi, P., G. Bartsch, et al. (2007). "Isolation of amniotic stem cell lines with potential for therapy." Nat Biotech 25(1): 100-106. Cerca con Google

61. Desai, T. A., J. Deutsch, et al. (1999). "Microtextured Cell Culture Platforms: Biomimetic Substrates for the Growth of Cardiac Myocytes and Fibroblasts." Biomedical Microdevices 2(2): 123-129. Cerca con Google

62. Elisa Cimetta, Sara Pizzato, et al. (submitted). "Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate." Biomedical Microdevices. Cerca con Google

63. Elisa Figallo , Marina Flaibani , et al. (2007). "Micropatterned Biopolymer 3D Scaffold for Static and Dynamic Culture of Human Fibroblasts." Biotechnol Prog 23(1): 210-6. Cerca con Google

64. Engler, A. J., M. A. Griffin, et al. (2004). "Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments." J. Cell Biol. 166(6): 877-887. Cerca con Google

65. Flaim, C. J., S. Chien, et al. (2005). "An extracellular matrix microarray for probing cellular differentiation." Nat Meth 2(2): 119-125. Cerca con Google

66. Geiger, B., A. Bershadsky, et al. (2001). "Transmembrane crosstalk between the extracellular matrix and the cytoskeleton." Nat Rev Mol Cell Biol 2(11): 793- 805. Cerca con Google

67. Gepstein, L. (2006). "Cardiovascular Therapeutic Aspects of Cell Therapy and Stem Cells." Annals of the New York Academy of Sciences 1080(1): 415-425. Cerca con Google

68. Goldsmith, E. C. and T. K. Borg (2002). "The dynamic interaction of the extracellular matrix in cardiac remodeling." Journal of Cardiac Failure 8(6, Part 2): S314- S318. Cerca con Google

69. Heng, B. C., H. K. Haider, et al. (2004). "Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro." Cardiovascular Research 62(1): 34-42. Cerca con Google

70. Huang, N. F., R. J. Lee, et al. (2007). "Chemical and Physical Regulation of Stem Cells and Progenitor Cells: Potential for Cardiovascular Tissue Engineering." Tissue Engineering 13(8): 1809-1823. Cerca con Google

71. Hwang, W. S., Y. J. Ryu, et al. (2004). "Evidence of a Pluripotent Human Embryonic Stem Cell Line Derived from a Cloned Blastocyst." Science 303(5664): 1669- 1674. Cerca con Google

72. Iijima, Y., T. Nagai, et al. (2003). "Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes." FASEB J.: 02-1048fje. Cerca con Google

73. Jaffe, L. F. and R. Nuccitelli (1977). "Electrical Controls of Development." Annual Review of Biophysics and Bioengineering 6(1): 445-476. Cerca con Google

74. Kenneth R. Robinson, M. A. M. (2003). "Left/right, up/down: The role of endogenous electrical fields as directional signals in development, repair and invasion." BioEssays 25(8): 759-766. Cerca con Google

75. Lev, S., I. Kehat, et al. (2005). "Differentiation Pathways in Human Embryonic Stem Cell-Derived Cardiomyocytes." Ann NY Acad Sci 1047(1): 50-65. Cerca con Google

76. Li, J., M. Stouffs, et al. (2006). "The NADPH Oxidase NOX4 Drives Cardiac Differentiation: Role in Regulating Cardiac Transcription Factors and MAP Kinase Activation." Mol. Biol. Cell: E05-06-0532. Cerca con Google

77. Luisa Boldrin , Nicola Elvassore , et al. (2007). "Satellite cells delivered by micropatterned scaffolds: a new strategy for cell transplantation in muscle diseases." Tissue Eng 13(2): 253-62. Cerca con Google

78. Matsushita, T., M. Oyamada, et al. (1999). "Remodeling of Cell-Cell and Cell- Extracellular Matrix Interactions at the Border Zone of Rat Myocardial Infarcts." Circ Res 85(11): 1046-1055. Cerca con Google

79. Motlagh, D., S. E. Senyo, et al. (2003). "Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes." Biomaterials 24(14): 2463-2476. Cerca con Google

80. Mummery, C., D. Ward-van Oostwaard, et al. (2003). "Differentiation of Human Embryonic Stem Cells to Cardiomyocytes: Role of Coculture With Visceral Endoderm-Like Cells." Circulation 107(21): 2733-2740. Cerca con Google

81. Nianzhen Li, Anna Tourovskaia, et al. (2003). "Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells." Critical Reviews in Biomedical Engineering 31(5&6): 423–488. Cerca con Google

82. Nuccitelli, R. (2003). "Endogenous electric fields in embryos during development, regeneration and wound healing." Radiat Prot Dosimetry 106(4): 375-383. Cerca con Google

83. Nygren, J. M., S. Jovinge, et al. (2004). "Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation." Nat Med 10(5): 494-501. Cerca con Google

84. Sauer, H., G. Rahimi, et al. (2000). "Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells." FEBS Letters 476(3): 218-223. Cerca con Google

85. Schmelter, M., B. Ateghang, et al. (2006). "Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation." FASEB J. 20(8): 1182-1184. Cerca con Google

86. Schuldiner, M., O. Yanuka, et al. (2000). "From the Cover: Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells." PNAS 97(21): 11307-11312. Cerca con Google

87. Situma, C., M. Hashimoto, et al. (2006). "Merging microfluidics with microarray-based bioassays." Biomolecular Engineering 23(5): 213-231. Cerca con Google

88. Stewart, R., M. Stojkovic, et al. (2006). "Mechanisms of self-renewal in human embryonic stem cells." European Journal of Cancer 42(9): 1257-1272. Cerca con Google

89. Thomson, J. A., J. Itskovitz-Eldor, et al. (1998). "Embryonic Stem Cell Lines Derived from Human Blastocysts." Science 282(5391): 1145-1147. Cerca con Google

90. Ting H Au Hoi , I. Cheng, et al. (2007). "Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes." Biomaterials 28(29): 4277-4293. Cerca con Google

91. Todd C. McDevitt, J. C. Angello, et al. (2002). "In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces." Journal of Biomedical Materials Research 60(3): 472-479. Cerca con Google

92. Todd C. McDevitt, K. A. Woodhouse, et al. (2003). "Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair." Journal of Biomedical Materials Research Part A 66A(3): 586-595. Cerca con Google

93. Tokuyama, T., S. i. Fujii, et al. (2005). "Microbioassay System for Antiallergic Drug Screening Using Suspension Cells Retaining in a Poly(dimethylsiloxane) Microfluidic Device." Anal. Chem. 77(10): 3309-3314. Cerca con Google

94. Ying J. Li, E. H. Chung, et al. (2006). "Hydrogels as artificial matrices for human embryonic stem cell self-renewal." Journal of Biomedical Materials Research Part A 79A(1): 1-5. Cerca con Google

A. Stett, U. Egert, et al. (2003). "Biological application of microelectrode arrays in drug discovery and basic research." Anal. Bioanal. Chem. 377(3): 486–495. Cerca con Google

95. Alberts, B., A. Johnson, et al. (2002). Molecular Biology of the Cell, Garland Science. Cerca con Google

96. Baxter, D. F., M. Kirk, et al. (2002). "A Novel Membrane Potential-Sensitive Fluorescent Dye Improves Cell-Based Assays for Ion Channels." J Biomol Screen 7(1): 79-85. Cerca con Google

97. Bhalla and Ravi Iyengar, U. S. (1999). "Emergent Properties of Networks of Biological Signaling Pathways." Science 283(5400): 381-387. Cerca con Google

98. Brady, A. J. (1991). "Mechanical properties of isolated cardiac myocytes." Physiol. Rev. 71(2): 413-428. Cerca con Google

99. Canaday, P. G. and F. S. Fay (1976). "An ultrasensitive isometric force transducer for single smooth muscle cell mechanics." J Appl Physiol 40(2): 243-246. Cerca con Google

100. Cecchi, G., F. Colomo, et al. (1992). "The stimulus interval-tension relation in enzymatically isolated single myocytes of the frog heart." J Physiol 448(1): 275- 291. Cerca con Google

101. Efimov, I. R., V. P. Nikolski, et al. (2004). "Optical Imaging of the Heart." Circ Res 95(1): 21-33. Cerca con Google

102. Falconer, M., F. Smith, et al. (2002). "High-Throughput Screening for Ion Channel Modulators." J Biomol Screen 7(5): 460-465. Cerca con Google

103. Fast VG, I. R. (2000). "Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures." J Cardiovasc Electrophysiol. 11(5): 547-56. Cerca con Google

104. Golbunova Y.V., S. N. C. (2002). "Dynamic interactions of cyclic cAMP transient and spontaneous Ca2+ spikes." Nature 418: 93-96. Cerca con Google

105. Goldbeter (1996). Biochemical oscillations and cellular rhythms: the molecular bases of periodical and chaotic behaviour. Cerca con Google

106. Gonzalez, J. E. and R. Y. Tsien (1995). "Voltage sensing by fluorescence resonance energy transfer in single cells." Biophys. J. 69(4): 1272-1280. Cerca con Google

107. Gorbunova, Y. V. and N. C. Spitzer (2002). "Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes." Nature 418(6893): 93-96. Cerca con Google

108. Hamill OP, Marty A, et al. ( 1981). "Improved patch-clamp techniques for highresolution current recording from cells and cell-free membrane patches." Pflugers Arch. 391(2): 85-100. Cerca con Google

109. Huang R.-C., G. R. (1991). "Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron." J. Gen. Physiol 98: 835-848. Cerca con Google

110. Kamp, T. J. and J. W. Hell (2000). "Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C." Circ Res 87(12): 1095-1102. Cerca con Google

111. Kent, R. L., D. L. Mann, et al. (1989). "Contractile function of isolated feline cardiocytes in response to viscous loading." Am J Physiol Heart Circ Physiol 257(5): H1717-1727. Cerca con Google

112. Klauke, N., G. L. Smith, et al. (2006). "Extracellular Recordings of Field Potentials from Single Cardiomyocytes." Biophys. J. 91(7): 2543-2551. Cerca con Google

113. Kozer N., S. G. (2004). "Effect of Crowding on Protein–Protein Association Rates: Fundamental Differences between Low and High Mass crowding Agents." J. Mol. Biol. 336: 763–774. Cerca con Google

114. Kunst, G., K. R. Kress, et al. (2000). "Myosin Binding Protein C, a Phosphorylation- Dependent Force Regulator in Muscle That Controls the Attachment of Myosin Heads by Its Interaction With Myosin S2." Circ Res 86(1): 51-58. Cerca con Google

115. Lin, G., R. E. Palmer, et al. ( 2001 ). " Miniature heart cell force transducer system implemented in MEMS technology." IEEE Transactions on Biomedical Engineering. 48(9): 996-1006. Cerca con Google

116. Lugnier, C. (2006). "Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents." Pharmacology & Therapeutics 109(3): 366-398. Cerca con Google

117. Marx, S. O., S. Reiken, et al. (2000). "PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor): Defective Regulation in Failing Hearts." Cell 101(4): 365-376. Cerca con Google

118. McCullough, T. E. and D. A. Walsh (1979). "Phosphorylation and dephosphorylation of phosphorylase kinase in the perfused rat heart." J. Biol. Chem. 254(15): 7345- 7352. Cerca con Google

119. Meyer, T., P. Sartipy, et al. (2007). "New cell models and assays in cardiac safety profiling." Expert Opinion on Drug Metabolism & Toxicology 3(4): 507-517. Cerca con Google

120. Mongillo, M., T. McSorley, et al. (2004). "Fluorescence Resonance Energy Transfer- Based Analysis of cAMP Dynamics in Live Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized Phosphodiesterases." Circ Res 95(1): 67-75. Cerca con Google

121. Müller, F. U., J. Neumann, et al. (2000). "Transcriptional regulation by cAMP in the heart." Molecular and Cellular Biochemistry 212(1): 11-17. Cerca con Google

122. Natarajan, A., P. Molnar, et al. (2006). "Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity." Toxicology in Vitro 20(3): 375-381. Cerca con Google

123. Peters R. (1984). "Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis." The EMBO Journal 3(8): 1831-1836. Cerca con Google

124. Rich T., F. K. A., Tse T. E., Schaack J., Cooper D. M., Karpen J. W. (2001). "A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell." PNAS 98: 13049-13054. Cerca con Google

125. Rich, T. C., W. Xin, et al. (2007). "Cellular mechanisms underlying prostaglandininduced transient cAMP signals near the plasma membrane of HEK-293 cells." Am J Physiol Cell Physiol 292(1): C319-331. Cerca con Google

126. Sakmann, B. and E. Neher (1984). "Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes." Annual Review of Physiology 46(1): 455- 472. Cerca con Google

127. Saucerman, J. J., L. L. Brunton, et al. (2003). "Modeling {beta}-Adrenergic Control of Cardiac Myocyte Contractility in Silico." J. Biol. Chem. 278(48): 47997-48003. Cerca con Google

128. Schwanke, K., S. Wunderlich, et al. (2006). "Generation and Characterization of Functional Cardiomyocytes from Rhesus Monkey Embryonic Stem Cells." Stem Cells 24(6): 1423-1432. Cerca con Google

129. Simmerman, H. K. B. and L. R. Jones (1998). "Phospholamban: Protein Structure, Mechanism of Action, and Role in Cardiac Function." Physiol. Rev. 78(4): 921- 947. Cerca con Google

130. Sulakhe, P. V. and X. T. Vo (1995). "Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli: roles of cyclic nucleotides, calcium, protein kinases and phosphatases and depolarization." Molecular and Cellular Biochemistry 149(1): 103-126. Cerca con Google

131. Takahashi, A., P. Camacho, et al. (1999). "Measurement of Intracellular Calcium." Physiol. Rev. 79(4): 1089-1125. Cerca con Google

132. Tarr, M., J. W. Trank, et al. (1983). "Effect of external force on relaxation kinetics in single frog atrial cardiac cells." Circ Res 52(2): 161-169. Cerca con Google

133. Tasche, C., E. Meyhofer, et al. (1999). "A force transducer for measuring mechanical properties of single cardiac myocytes." Am J Physiol Heart Circ Physiol 277(6): H2400-2408. Cerca con Google

134. Tung L. (1986). "An ultrasensitive transducer for measurement of isometric contractile force from single heart cells." Pflugers Arch. 407(1): 109-15. Cerca con Google

135. van Rheenen, J., M. Langeslag, et al. (2004). "Correcting Confocal Acquisition to Optimize Imaging of Fluorescence Resonance Energy Transfer by Sensitized Emission." Biophys. J. 86(4): 2517-2529. Cerca con Google

136. Vannier, C., H. Chevassus, et al. (1996). "Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats." Cardiovascular research 32(3): 580-586. Cerca con Google

137. Waggoner, A. S. (1979). "Dye Indicators of Membrane Potential." Annual Review of Biophysics and Bioengineering 8(1): 47-68. Cerca con Google

138. Wojcikiewicz EP, Zhang X, et al. (2004). "Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM)." Biol Proced Online 6(1- 9.). Cerca con Google

139. Yi Zhao, C. C. Lim, et al. (2007). "Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures." Cell Motility and the Cytoskeleton 64(9): 718-725. Cerca con Google

140. Yin, S., X. Zhang, et al. (2005). "Measuring Single Cardiac Myocyte Contractile Force via Moving a Magnetic Bead." Biophys. J. 88(2): 1489-1495. Cerca con Google

141. Amini, A., S. Tehrani, et al. (1988). Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. . 2nd Int. Conf. On Computer Vision. Cerca con Google

142. Ayelet Dar, M. S., J. Leor, et al. (2002). "Cardiac tissue engineering Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds." Biotechnology and Bioengineering 80(3): 305-312. Cerca con Google

143. Baker, A. J., C. H. Redfern, et al. (2001). "Abnormal contraction caused by expression of Gi-coupled receptor in transgenic model of dilated cardiomyopathy." Am J Physiol Heart Circ Physiol 280(4): H1653-1659. Cerca con Google

144. Bérangère, R., P. Philippe, et al. (2004). "Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies." Clinical biomechanics (Bristol, Avon) 19(5): 433-447. Cerca con Google

145. Bilodeau, K. and D. Mantovani (2006). "Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review." Tissue Engineering 12(8): 2367-2383. Cerca con Google

146. Blake, A. and R. Cipolla (1990). Robust estimation of surface curvature from deformation of parent contours. . 1st European Conf. Computer Vision, Springer-Verlag. Cerca con Google

147. Curwen, R., A. Blake, et al. (1991). Parallel implementation of Lagrangian dynamics for real-time snakes. . British Machine Vision Conf. Cerca con Google

148. Cynthia M. Begley, S. J. K. (2000). "The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor." Biotechnology and Bioengineering 70(1): 32-40. Cerca con Google

149. Figallo, E., M. Flaibani, et al. (2007). "Micropatterned Biopolymer 3D Scaffold for Static and Dynamic Culture of Human Fibroblasts." Biotechnol. Prog. 23(1): 210-216. Cerca con Google

150. Giovangrandi, L., K. H. Gilchrist, et al. (2006). "Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology." Sensors and Actuators B: Chemical 113(1): 545-554. Cerca con Google

151. Griffith, L. G. and M. A. Swartz (2006). "Capturing complex 3D tissue physiology in vitro." Nat Rev Mol Cell Biol 7(3): 211-224. Cerca con Google

152. Hanley, P. J. and D. S. Loiselle (1998). "Mechanisms of force inhibition by halothane and isoflurane in intact rat cardiac muscle." J Physiol 506(1): 231-244. Cerca con Google

153. Hillier, C. and D. Bunton (2007). "Functional human tissue assays." Drug Discovery Today 12(9-10): 382-388. Cerca con Google

154. Kass, M., A. Witkin, et al. (1987). Snakes: Active contour models. 1st Int. Conf. On Computer Vision. Cerca con Google

155. Kazusuke Yamane, F. M. (1997). "Optical isometric force transducer for measurement of rat skeletal muscle contraction in the NMR spectrometer." NMR in Biomedicine 10(6): 292-295. Cerca con Google

156. Knight, B. (2000). "Visualizing muscle cell migration in situ." Curr. Biol. 10: 576-585. Cerca con Google

157. Kubo, H., T. Shimizu, et al. (2007). "Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device." Biomaterials 28(24): 3508- 3516. Cerca con Google

158. Menet, S., P. Saint-Marc, et al. (1990). B-snakes: Implementation and application to stereo. DARPA. Cerca con Google

159. Park, J., J. Ryu, et al. (2005). "Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers." Anal. Chem. 77(20): 6571-6580. Cerca con Google

160. Patrick Brigger, Jeff Hoeg, et al. (2000). B-Spline Snakes: A Flexible Tool for Parametric Contour Detection. IEEE Transaction on Image Processing. Cerca con Google

161. Peterson, C. V., Jr. and A. B. Otis (1983). "A Hall effect transducer for measuring length changes in mammalian diaphragm." J Appl Physiol 55(2): 635-641. Cerca con Google

162. Radisic, M., H. Park, et al. (2004). "From the Cover: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds." Proceedings of the National Academy of Sciences 101(52): 18129- 18134. Cerca con Google

163. Ralf Sodian, T. Lemke, et al. (2001). "New pulsatile bioreactor for fabrication of tissueengineered patches." Journal of Biomedical Materials Research 58(4): 401-405. Cerca con Google

164. Rebecca L. Carrier, M. Rupnick, et al. (2002). "Effects of oxygen on engineered cardiac muscle." Biotechnology and Bioengineering 78(6): 617-625. Cerca con Google

165. Roskelley, C. D., P. Y. Desprez, et al. (1994). "Extracellular matrix-dependent tissuespecific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction." Proc. Natl Acad. Sci. USA 91: 12378-12382. Cerca con Google

166. Scott, G. (1987). The alternative snake — and other animals. . 3rd Alvey Vision Conference. Cerca con Google

167. Shimizu, T., M. Yamato, et al. (2002). "Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces." Circ Res 90(3): e40-48. Cerca con Google

168. Terzopoulos, D. and R. Szeliski (1992). Tracking with Kalman snakes. , Blake, A. and Yuille, A., editors,Active Vision, MIT. Cerca con Google

169. Terzopoulos, D. and K. Waters (1990). Analysis of facial images using physical and anatomical models. In , . 3rd Int. Conf. on Computer Vision. Cerca con Google

170. Wu, X., T. A. J. Haystead, et al. (1998). "Acceleration of Myosin Light Chain Dephosphorylation and Relaxation of Smooth Muscle by Telokin. SYNERGISM WITH CYCLIC NUCLEOTIDE-ACTIVATED KINASE." J. Biol. Chem. 273(18): 11362-11369. Cerca con Google

171. Xu, C. and J. L. Prince (1997). Gradient Vector Flow: A New External Force for Snakes IEEE Proceding Conference on Computer Vision and Pattern Recognition. Cerca con Google

172. Xu, C. and J. L. Prince (1998). "Generalized gradient vector flow external forces for active contours." Signal Processing(71): 131-139. Cerca con Google

173. Zimmermann, W.-H., M. Didie, et al. (2002). "Cardiac Grafting of Engineered Heart Tissue in Syngenic Rats." Circulation 106(90121): I-151-157. Cerca con Google

174. Zimmermann, W. H., K. Schneiderbanger, et al. (2002). "Tissue Engineering of a Differentiated Cardiac Muscle Construct." Circ Res 90(2): 223-230. Cerca con Google

175. Zinkiewicz, O. and K. Morgan (1983). Finite elements and approximation. , Wiley, New York. Cerca con Google

176. Anseth, K. S., C. N. Bowman, et al. (1996). "Mechanical properties of hydrogels and their experimental determination." Biomaterials 17(17): 1647-1657. Cerca con Google

177. Anseth, K. S. and J. A. Burdick (2002). " New directions in photopolymerizable biomaterials." MRS Bulletin. 27(2): 130-136. Cerca con Google

178. Biancamaria, B. (2006). "Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications." Journal of Chemical Technology & Biotechnology 81(4): 491-499. Cerca con Google

179. Biancamaria, B. (2007). "Hydrogels for tissue engineering and delivery of tissueinducing substances." Journal of Pharmaceutical Sciences 96(9): 2197-2223. Cerca con Google

180. Bogdanov, B., E. Schacht, et al. (1997). "Thermal and rheological properties of gelatindextran hydrogels." Journal of Thermal Analysis and Calorimetry 49(2): 847- 856. Cerca con Google

181. Burdick, J. A., C. Chung, et al. (2005). "Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks." Biomacromolecules 6(1): 386-391. Cerca con Google

182. Callegari, A., S. Bollini, et al. (2007). "Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts." Biomaterials 28(36): 5449-5461. Cerca con Google

183. Calvet, D., J. Y. Wong, et al. (2004). "Rheological Monitoring of Polyacrylamide Gelation: Importance of Cross-Link Density and Temperature." Macromolecules 37(20): 7762-7771. Cerca con Google

184. Chen, W. Y. J. and G. Abatangelo (1999). "Functions of hyaluronan in wound repair." Wound Repair and Regeneration 7(2): 79-89. Cerca con Google

185. Christman, K. L., Q. Fang, et al. (2005). "Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer." Biomaterials 26(10): 1139-1144. Cerca con Google

186. Fedorovich, N. E., J. Alblas, et al. (2007). "Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing." Tissue Engineering 13(8): 1905-1925. Cerca con Google

187. Gage, F. H. (1998). "Cell therapy." Nature 392(6679): 18-24. Cerca con Google

188. Gerecht, S., J. A. Burdick, et al. (2007). "Hyaluronic acid hydrogel for controlled selfrenewal and differentiation of human embryonic stem cells." Proceedings of the National Academy of Sciences 104(27): 11298-11303. Cerca con Google

189. Gu Y, Yu J, et al. (2007). " Tissue engineering and stem cell therapy for myocardial repair." Front Biosci. 12: 5157-65. Cerca con Google

190. Hoffman, A. S. (2002). "Hydrogels for biomedical applications." Advanced Drug Delivery Reviews 54(1): 3-12. Cerca con Google

191. Kofidis T, Müller-Stahl K, et al. (2007). "Myocardial restoration and tissue engineering of heart structures." Methods Mol Med(140): 273-90. Cerca con Google

192. Nguyen, K. T. and J. L. West (2002). "Photopolymerizable hydrogels for tissue engineering applications." Biomaterials 23(22): 4307-4314. Cerca con Google

193. Radisic, M., H. Park, et al. (2004). "From the Cover: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds." Proceedings of the National Academy of Sciences 101(52): 18129- 18134. Cerca con Google

194. Semsarian, C. (2002). "Stem cells in cardiovascular disease: from cell biology to clinical therapy." Internal Medicine Journal 32(5-6): 259-265. Cerca con Google

195. Silva, E. A. and D. J. Mooney (2007). "Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis." Journal of Thrombosis and Haemostasis 5(3): 590-598. Cerca con Google

196. Tessmar, J. K. and A. M. Gopferich (2007). "Matrices and scaffolds for protein delivery in tissue engineering." Advanced Drug Delivery Reviews 59(4-5): 274-291. Cerca con Google

197. West DC and K. S. (1989). "The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity." Exp Cell Res 183(1): 179-96. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record