Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Varagnolo, Silvia (2016) Study and control of drop motion on inclined surfaces. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione pubblicata
38Mb

Abstract (inglese)

This PhD thesis collects different experimental studies in the field of wetting phenomena and open microfluidics, which analyze the behavior of liquid drops on free open surfaces. The main goal of such a research is to develop smart coatings featuring useful wetting properties (e. g. water repellent, antifogging and antireflection materials) or techniques aimed at manipulating droplets for chemical or biological applications.
In particular this work considers both passive and active methods to control the statics and dynamics of drops deposited on an inclined plane and consequently subject to an external constant force, the gravity force. Among the passive techniques based on surface patterning, we investigated the adhesion properties of multiscale nano- and microstructured hairy surfaces made of polymers having different elasticity. Also, chemically patterned surfaces, formed by hydrophilic and hydrophobic regions of different shape (stripes, squares and triangles), have found to be an effective tool to passively tune drop sliding velocity. Chemically heterogeneous surfaces can affect not only sliding velocity, but also drop trajectory. To further investigate the deviation of a drop by means of a chemical pattern we considered a sample formed by only two regions featuring different wettability, i. e. a chemical step characterized by a linear interface. On the other hand, an active manipulation implies the application of an external field, as, for instance, electric, magnetic or acoustic. As active technique we considered asymmetric vibrations of the substrate, able to induce interesting and surprising dynamical behaviors: small droplets placed on a vertically oscillating inclined plane can stay pinned, slide down, but even climb up the surface against gravity.
Even if the vast majority of our experiments involves ordinary liquids, in particular water and aqueous solutions, our research about sliding includes also the study of complex fluids, more precisely polymer solutions, exhibiting rheological properties (e. g. viscosity and elastic behaviors) depending on the applied stress.

Abstract (italiano)

Questa tesi raccoglie una serie di lavori sperimentali che si collocano nell'ambito della microfluidica aperta e dei fenomeni interfacciali di bagnamento e fondamentalmente studiano il comportamento di gocce depositate su superfici. Lo scopo principale di questo tipo di ricerca è lo sviluppo di superfici che presentino proprietà particolari, come ad esempio superfici autopulenti, antinebbia o antiriflesso, o di tecniche di manipolazione di gocce finalizzate ad applicazioni nel campo biologico o chimico.
In particolare questo lavoro considera metodi attivi e passivi atti a controllare sia la statica che la dinamica di gocce poste su superfici inclinate e quindi soggette ad una forza esterna costante, la forza di gravità. Tra le tecniche passive basate sull'utilizzo di superfici strutturate sono state studiate le proprietà di adesione di superfici polimeriche geometricamente nano/microstrutturate. Inoltre, campioni chimicamente eterogenei formati da regioni idrofiliche e idrofobiche di geometria diversa (strisce, quadrati, triangoli) si sono dimostrati uno strumento efficace per la regolazione passiva della velocità di scivolamento delle gocce. Questo tipo di superfici può influire non solo sulla velocità, ma anche sulla traiettoria della goccia. Per analizzare più nel dettaglio come si può deviare una goccia è stato studiato lo scivolamento su una superficie formata da due sole regioni di diversa bagnabilità, cioè una sorta di gradino chimico. D'altra parte, un controllo attivo implica l'applicazione di un campo esterno, ad esempio elettrico, magnetico o acustico. Come tecnica attiva in questa tesi è stata considerata l'applicazione di vibrazioni asimmetriche del substrato, capaci di indurre comportamenti dinamici interessanti e sorprendenti: piccole goccioline poste su un piano inclinato che oscilla verticalmente possono non solo rimanere ferme o scivolare, ma addirittura risalire contro la forza di gravità.
Anche se la maggioranza di questi esperimenti riguarda liquidi ordinari, in particolare acqua e soluzioni acquose, una parte della ricerca è stata dedicata allo scivolamento di fluidi complessi, più precisamente soluzioni polimeriche, caratterizzati da proprietà reologiche (ad esempio viscosità o effetti elastici) che dipendono dallo sforzo applicato sul fluido.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mistura, Giampaolo
Correlatore:Pierno, Matteo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZA ED INGEGERIA DEI MATERIALI
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:28 Gennaio 2016
Parole chiave (italiano / inglese):microfluidica aperta, gocce, microfabbricazione, PDMS, soft-litografia, fotolitografia, bagnabilità, adesione, scivolamento, linea di contatto / open microfluidics, drops, microfabrication, PDMS, soft-lithography, photo-lithography, wetting, pinning, sliding, contact line
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:9249
Depositato il:06 Ott 2016 14:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] K. Liu, X. Yao, and L. Jiang. Recent developments in bio-inspired special wettability. Chemical Cerca con Google

Society Reviews, 39(8):3240-3255, 2010. Cerca con Google

[2] C. Neinhuis and W. Barthlott. Characterization and distribution of water-repellent, self-cleaning Cerca con Google

plant surfaces. Annals of Botany, 79(6):667-677, 1997. Cerca con Google

[3] D. Quéré. Wetting and roughness, volume 38 of Annual Review of Materials Research, pages 71-99. 2008. Cerca con Google

[4] J. Genzer and A. Marmur. Biological and synthetic self-cleaning surfaces. Mrs Bulletin, Cerca con Google

33(8):742-746, 2008. Cerca con Google

[5] B. Bhushan, Y. C. Jung, and K. Koch. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 367(1894):1631-1672, 2009. Cerca con Google

[6] O. Sato, S. Kubo, and Z.-Z. Gu. Structural color films with lotus effects, superhydrophilicity, Cerca con Google

and tunable stop-bands. Accounts of Chemical Research, 42(1):1-10, 2009. Cerca con Google

[7] S. Kim, E. Cheung, and M. Sitti. Wet self-cleaning of biologically inspired elastomer mushroom Cerca con Google

shaped microfibrillar adhesives. Langmuir, 25(13):7196-7199, 2009. Cerca con Google

[8] C. R. Crick and I. P. Parkin. A single step route to superhydrophobic surfaces through aerosol Cerca con Google

assisted deposition of rough polymer surfaces: duplicating the lotus effect. Journal of Materials Cerca con Google

Chemistry, 19(8):1074-1076, 2009. Cerca con Google

[9] L. Qu, L. Dai, M. Stone, Z. Xia, and Z. L. Wang. Carbon nanotube arrays with strong shear Cerca con Google

binding-on and easy normal lifting-off. Science, 322(5899):238-242, 2008. Cerca con Google

[10] V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and Cerca con Google

C. Fotakis. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a Cerca con Google

lotus leaf. Advanced Materials, 20(21):4049, 2008. Cerca con Google

[11] K. Liu, J. Zhai, and L. Jiang. Fabrication and characterization of superhydrophobic Sb2O3 Films. Nanotechnology, 19(16), 2008. Cerca con Google

[12] D. Nystrom, J. Lindqvist, E. Ostmark, P. Antoni, A. Carlmark, A. Hult, and E. Malmstrom. Cerca con Google

Superhydrophobic and self-cleaning bio-fiber surfaces via atrp and subsequent postfunctionalization. Acs Applied Materials & Interfaces, 1(4):816-823, 2009. Cerca con Google

[13] B. Bhushan, K. Koch, and Y. C. Jung. Biomimetic hierarchical structure for self-cleaning. Cerca con Google

Applied Physics Letters, 93(9), 2008. Cerca con Google

[14] B. Bhushan, Y. C. Jung, and K. Koch. Self-cleaning efficiency of artificial superhydrophobic Cerca con Google

surfaces. Langmuir, 25(5):3240-3248, 2009. Cerca con Google

[15] K. Koch, B. Bhushan, and W. Barthlott. Multifunctional surface structures of plants: An Cerca con Google

inspiration for biomimetics. Progress in Materials Science, 54(2):137-178, 2009. Cerca con Google

[16] Z. Luo, Z. Zhang, L. Hu, W. Liu, Z. Guo, H. Zhang, and W.Wang. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials, 20(5):970, 2008. Cerca con Google

[17] Z.-G. Guo, W.-M. Liu, and B.-L. Su. A stable lotus-leaf-like water-repellent copper. Applied Cerca con Google

Physics Letters, 92(6), 2008. Cerca con Google

[18] E. Stratakis, V. Zorba, M. Barberoglou, E. Spanakis, S. Rhizopoulou, P. Tzanetakis, S. Anastasiadis, and C. Fotakis. Laser structuring of water-repellent biomimetic surfaces. SPIE News- Cerca con Google

room, 10(2.1200901):1441, 2009. Cerca con Google

[19] A. Marmur. The lotus effect: Superhydrophobicity and metastability. Langmuir, 20(9):3517- Cerca con Google

3519, 2004. Cerca con Google

[20] A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, and R. E. Cohen. Robust omniphobic Cerca con Google

surfaces. Proceedings of the National Academy of Sciences of the United States of America, Cerca con Google

105(47):18200-18205, 2008. Cerca con Google

[21] W. Choi, A. Tuteja, S. Chhatre, J. M. Mabry, R. E. Cohen, and G. H. McKinley. Fabrics with Cerca con Google

tunable oleophobicity. Advanced Materials, 21(21):2190, 2009. Cerca con Google

[22] M. Le Merrer. Dissipation aux interfaces : alefaction, sillages, filaments visqueux. Phd thesis, Cerca con Google

Ecole Polytechnique X, 2010. Cerca con Google

[23] A. L. Biance, C. Clanet, and D. Quéré. Leidenfrost drops. Physics of Fluids, 15(6):1632-1637, Cerca con Google

2003. Cerca con Google

[24] M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang. Bioinspired design of a superoleophobic and Cerca con Google

low adhesive water/solid interface. Advanced Materials, 21(6):665, 2009. Cerca con Google

[25] L. Chen, M. Liu, H. Bai, P. Chen, F. Xia, D. Han, and L. Jiang. Antiplatelet and thermally Cerca con Google

responsive poly(n-isopropylacrylamide) surface with nanoscale topography. Journal of the Amer- Cerca con Google

ican Chemical Society, 131(30):10467-10472, 2009. Cerca con Google

[26] H. Meng, S. Wang, J. Xi, Z. Tang, and L. Jiang. Facile means of preparing superamphiphobic Cerca con Google

surfaces on common engineering metals. Journal of Physical Chemistry C, 112(30):11454-11458, Cerca con Google

2008. Cerca con Google

[27] J. Xi, L. Feng, and L. Jiang. A general approach for fabrication of superhydrophobic and Cerca con Google

superamphiphobic surfaces. Applied Physics Letters, 92(5), 2008. Cerca con Google

[28] K. Zhao, K. S. Liu, J. F. Li, W. H. Wang, and L. Jiang. Superamphiphobic cali-based bulk Cerca con Google

metallic glasses. Scripta Materialia, 60(4):225-227, 2009. Cerca con Google

[29] W. Wu, X. Wang, D. Wang, M. Chen, F. Zhou, W. Liu, and Q. Xue. Alumina nanowire Cerca con Google

forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids. Cerca con Google

Chemical Communications, (9):1043-1045, 2009. Cerca con Google

[30] X. Liu, W. Wu, X. Wang, Z. Luo, Y. Liang, and F. Zhou. A replication strategy for complex Cerca con Google

micro/nanostructures with superhydrophobicity and superoleophobicity and high contrast Cerca con Google

adhesion. Soft Matter, 5(16):3097-3105, 2009. Cerca con Google

[31] T. Darmanin and F. Guittard. Molecular design of conductive polymers to modulate superoleophobic properties. Journal of the American Chemical Society, 131(22):7928-7933, 2009. Cerca con Google

[32] T. Darmanin and F. Guittard. One methylene unit to control super oil-repellency properties of Cerca con Google

conducting polymers. Chemical Communications, (16):2210-2211, 2009. Cerca con Google

[33] J. Zimmermann, M. Rabe, G. R. J. Artus, and S. Seeger. Patterned superfunctional surfaces Cerca con Google

based on a silicone nanofilament coating. Soft Matter, 4(3):450-452, 2008. Cerca con Google

[34] A. Steele, I. Bayer, and E. Loth. Inherently superoleophobic nanocomposite coatings by spray Cerca con Google

atomization. Nano Letters, 9(1):501-505, 2009. Cerca con Google

[35] A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, Cerca con Google

and T. N. Krupenkin. Nanonails: A simple geometrical approach to electrically tunable Cerca con Google

superlyophobic surfaces. Langmuir, 24(1):9-14, 2008. Cerca con Google

[36] T. Kim, D. Tahk, and Hong H. Lee. Wettability-controllable super water- and moderately Cerca con Google

oil-repellent surface fabricated by wet chemical etching. Langmuir, 25(11):6576-6579, 2009. Cerca con Google

[37] G. Lagubeau, M. Le Merrer, C. Clanet, and D. Quéré. Leidenfrost on a ratchet. Nature Physics, 7(5):395-398, 2011. Cerca con Google

[38] D. Quéré. Leidenfrost dynamics. Annual Review of Fluid Mechanics, Vol 45, 45:197-215, 2013. Cerca con Google

[39] K. Piroird, C. Clanet, and D. Quéré. Magnetic control of leidenfrost drops. Physical Review E, Cerca con Google

85(5), 2012. Cerca con Google

[40] K. Piroird, B. D. Texier, C. Clanet, and D. Quéré. Reshaping and capturing leidenfrost drops Cerca con Google

with a magnet. Physics of Fluids, 25(3), 2013. Cerca con Google

[41] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8):4114-4119, 2008. Cerca con Google

[42] K. Autumn, M. Sitti, Y. C. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, Cerca con Google

R. Fearing, J. N. Israelachvili, and R. J. Full. Evidence for van der waals adhesion in gecko setae. Cerca con Google

Proceedings of the National Academy of Sciences of the United States of America, 99(19):12252- Cerca con Google

12256, 2002. Cerca con Google

[43] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and Cerca con Google

R. J. Full. Adhesive force of a single gecko foot-hair. Nature, 405(6787):681-685, 2000. Cerca con Google

[44] W. R. Hansen and K. Autumn. Evidence for self-cleaning in gecko setae. Proceedings of the Cerca con Google

National Academy of Sciences of the United States of America, 102(2):385-389, 2005. Cerca con Google

[45] H. Lee, B. P. Lee, and P. B. Messersmith. A reversible wet/dry adhesive inspired by mussels Cerca con Google

and geckos. Nature, 448(7151):338-U4, 2007. Cerca con Google

[46] Z. L. Wang. Sticky but not messy. Nature Nanotechnology, 4(7):407-408, 2009. Cerca con Google

[47] J. Davies, S. Haq, T. Hawke, and J. P. Sargent. A practical approach to the development of a Cerca con Google

synthetic gecko tape. International Journal of Adhesion and Adhesives, 29(4):380-390, 2009. Cerca con Google

[48] W.-H. Ting, C.-C. Chen, S. A. Dai, S.-Y. Suen, I. K. Yang, Y.-L. Liu, F. M. C. Chen, and R.-J. Cerca con Google

Jeng. Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Cerca con Google

Journal of Materials Chemistry, 19(27):4819-4828, 2009. Cerca con Google

[49] W. K. Cho and I. S. Choi. Fabrication of hairy polymeric films inspired by geckos: Wetting and Cerca con Google

high adhesion properties. Advanced Functional Materials, 18(7):1089-1096, 2008. Cerca con Google

[50] M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li, and L. Jiang. Superhydrophobic Cerca con Google

aligned polystyrene nanotube films with high adhesive force. Advanced Materials, 17(16):1977, Cerca con Google

2005. Cerca con Google

[51] X. Hong, X. Gao, and L. Jiang. Application of superhydrophobic surface with high adhesive Cerca con Google

force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Cerca con Google

Society, 129(6):1478, 2007. Cerca con Google

[52] J. A. Howarter and J. P. Youngblood. Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Advanced materials, 19(22):3838-3843, 2007. Cerca con Google

[53] J. A. Howarter and J. P. Youngblood. Self-cleaning and next generation anti-fog surfaces and Cerca con Google

coatings. Macromolecular Rapid Communications, 29(6):455-466, 2008. Cerca con Google

[54] L. Zhang, Y. Li, J. Sun, and J. Shen. Mechanically stable antireection and antifogging coatings Cerca con Google

fabricated by the layer-by-layer deposition process and postcalcination. Langmuir, 24(19):10851- Cerca con Google

10857, 2008. Cerca con Google

[55] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, Cerca con Google

and T. Watanabe. Light-induced amphiphilic surfaces. Nature, 388(6641):431-432, 1997. Cerca con Google

[56] F. C. Cebeci, Z. Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner. Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir, 22(6):2856- Cerca con Google

2862, 2006. Cerca con Google

[57] D. Lee, M. F. Rubner, and R. E. Cohen. All-nanoparticle thin-film coatings. Nano Letters, Cerca con Google

6(10):2305-2312, 2006. Cerca con Google

[58] X. Du, X. Liu, H. Chen, and J. He. Facile fabrication of raspberry-like composite nanoparticles Cerca con Google

and their application as building blocks for constructing superhydrophilic coatings. Journal of Cerca con Google

Physical Chemistry C, 113(21):9063-9070, 2009. Cerca con Google

[59] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang. The dry-style Cerca con Google

antifogging properties of mosquito compound eyes and artificial analogues prepared by soft Cerca con Google

lithography. Advanced Materials, 19(17):2213, 2007. Cerca con Google

[60] M. Srinivasarao. Nano-optics in the biological world: Beetles, butteries, birds, and moths. Cerca con Google

Chemical Reviews, 99(7):1935-1961, 1999. Cerca con Google

[61] A. R. Parker and H. E. Townley. Biomimetics of photonic nanostructures. Nature Nanotechnol- Cerca con Google

ogy, 2(6):347-353, 2007. Cerca con Google

[62] P. Vukusic and J. R. Sambles. Photonic structures in biology. Nature, 424(6950):852-855, 2003. Cerca con Google

[63] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Cerca con Google

Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen. Improved broadband and Cerca con Google

quasi-omnidirectional anti-reection properties with biomimetic silicon nanostructures. Nature Cerca con Google

Nanotechnology, 2(12):770-774, 2007. Cerca con Google

[64] C.-H. Sun, A. Gonzalez, N. C. Linn, P. Jiang, and B. Jiang. Templated biomimetic multifunctional coatings. Applied Physics Letters, 92(5), 2008. Cerca con Google

[65] G. S. Watson and J. A. Watson. Natural nano-structures on insects - possible functions of Cerca con Google

ordered arrays characterized by atomic force microscopy. Applied Surface Science, 235(1-2):139- Cerca con Google

144, 2004. Cerca con Google

[66] G. Zhang, J. Zhang, G. Xie, Z Liu, and H. Shao. Cicada wings: A stamp from nature for Cerca con Google

nanoimprint lithography. Small, 2(12):1440-1443, 2006. Cerca con Google

[67] G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu. The fabrication of subwavelength Cerca con Google

anti-reective nanostructures using a bio-template. Nanotechnology, 19(9), 2008. Cerca con Google

[68] G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart. Nanoimprinted optical Cerca con Google

fibres: Biotemplated nanostructures for sers sensing. Biosensors & Bioelectronics, 24(5):1531- Cerca con Google

1535, 2009. Cerca con Google

[69] M. Ebner, T. Miranda, and A. Roth-Nebelsick. Efficient fog harvesting by stipagrostis sabulicola (namib dune bushman grass). Journal of Arid Environments, 75(6):524-531, 2011. Cerca con Google

[70] J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, and L. Jiang. A multi-structural and multi-functional Cerca con Google

integrated fog collection system in cactus. Nature communications, 3:1247, 2012. Cerca con Google

[71] J. Ju, X. Yao, S. Yang, L. Wang, R. Sun, Y. He, and L. Jiang. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Advanced Functional Materials, 24(44):6933-6938, 2014. Cerca con Google

[72] P. Comanns, C. Effertz, F. Hischen, K Staudt, W. Böhme, and W. Baumgartner. Moisture Cerca con Google

harvesting and water transport through specialized micro-structures on the integument of lizards. Cerca con Google

Beilstein journal of nanotechnology, 2(1):204-214, 2011. Cerca con Google

[73] A. R. Parker and C. R. Lawrence. Water capture by a desert beetle. Nature, 414(6859):33-34, Cerca con Google

2001. Cerca con Google

[74] L. Zhai, M. C. Berg, F. C. Cebeci, Y. Kim, J. M. Milwid, M. F. Rubner, and R. E. Cohen. Cerca con Google

Patterned superhydrophobic surfaces: Toward a synthetic mimic of the namib desert beetle. Nano Letters, 6(6):1213-1217, 2006. Cerca con Google

[75] R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare, and Cerca con Google

J. P. S. Badyal. Mimicking a stenocara beetle's back for microcondensation using plasmachemical Cerca con Google

patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23(2):689-693, 2007. Cerca con Google

[76] C. Dorrer and J. Ruehe. Mimicking the stenocara beetle-dewetting of drops from a patterned Cerca con Google

superhydrophobic surface. Langmuir, 24(12):6154-6158, 2008. Cerca con Google

[77] Y. Zheng, H. Bai, Z. Huang, X. Tian, F.-Q. Nie, Y. Zhao, J. Zhai, and L. Jiang. Directional Cerca con Google

water collection on wetted spider silk. Nature, 463(7281):640-643, 2010. Cerca con Google

[78] B. S. Lalia, S. Anand, K. K. Varanasi, and R. Hashaikeh. Fog-harvesting potential of lubricantimpregnated electrospun nanomats. Langmuir, 29(42):13081-13088, 2013. Cerca con Google

[79] T. L. Sun, L. Feng, X. F. Gao, and L. Jiang. Bioinspired surfaces with special wettability. Cerca con Google

Accounts of Chemical Research, 38(8):644-652, 2005. Cerca con Google

[80] P. Tabeling and S. Chen. Introduction to Microfluidics. Oxford University Press, USA, 2006. Cerca con Google

[81] G. M. Whitesides. The origins and the future of microfluidics. Nature, 442:368-373, 2006. Cerca con Google

[82] M. Rauscher, S. Dietrich, and J. Koplik. Shear flow pumping in open micro- and nanofluidic Cerca con Google

systems. Phys. Rev. Lett., 98:224504, 2007. Cerca con Google

[83] R. Ledesma-Aguilar, R. Nistal, A. Hernández-Machado, and I. Pagonabarraga. Controlled drop emission by wetting properties in driven liquid filaments. Nature Materials, 10:367-371, 2011. Cerca con Google

[84] R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky. Wetting morphologies at microstructured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 102(6):1848-1852, 2005. Cerca con Google

[85] D. Ferraro, C. Semprebon, T. Tóth, E. Locatelli, M. Pierno, G. Mistura, and M. Brinkmann. Cerca con Google

Morphological transitions of droplets wetting rectangular domains. Langmuir, 28(39):13919- Cerca con Google

13923, 2012. Cerca con Google

[86] P. Brunet and J. H. Snoeijer. Star-drops formed by periodic excitation and on an air cushion - Cerca con Google

a short review. European Physical Journal-Special Topics, 192(1):207-226, 2011. Cerca con Google

[87] K. Ohno, K. Tachikawa, and A. Manz. Microfluidics: applications for analytical purposes in Cerca con Google

chemistry and biochemistry. Electrophoresis, 29(22):4443-4453, 2008. Cerca con Google

[88] S. K. Sia and G. M. Whitesides. Microfluidic devices fabricated in poly (dimethylsiloxane) for Cerca con Google

biological studies. Electrophoresis, 24(21):3563-3576, 2003. Cerca con Google

[89] D. B. Weibel and G. M. Whitesides. Applications of microfluidics in chemical biology. Current Cerca con Google

opinion in chemical biology, 10(6):584-591, 2006. Cerca con Google

[90] D. J. Beebe, G. A. Mensing, and G. M. Walker. Physics and applications of microfluidics in Cerca con Google

biology. Annual review of biomedical engineering, 4(1):261-286, 2002. Cerca con Google

[91] G. Dupeux, P. Bourrianne, Q. Magdelaine, C. Clanet, and D. Quéré. Propulsion on a superhydrophobic ratchet. Scientific reports, 4, 2014. Cerca con Google

[92] N. Moumen, R. S. Subramanian, and J. B. McLaughlin. Experiments on the motion of drops Cerca con Google

on a horizontal solid surface due to a wettability gradient. Langmuir, 22(6):2682-2690, 2006. Cerca con Google

[93] R. S. Subramanian, N. Moumen, and J. B. McLaughlin. Motion of a drop on a solid surface due to a wettability gradient. Langmuir, 21(25):11844-11849, 2005. Cerca con Google

[94] S. Daniel, M. K. Chaudhury, and J. C. Chen. Past drop movements resulting from the phase Cerca con Google

change on a gradient surface. Science, 291(5504):633-636, 2001. Cerca con Google

[95] S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury. Ratcheting motion of liquid drops on Cerca con Google

gradient surfaces. Langmuir, 20(10):4085-4092, 2004. Cerca con Google

[96] Y. Ito, M. Heydari, A. Hashimoto, T. Konno, A. Hirasawa, S. Hori, K. Kurita, and A. Nakajima. Cerca con Google

The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir, Cerca con Google

23(4):1845-1850, 2007. Cerca con Google

[97] M. K. Chaudhury and G. M. Whitesides. How to make water run uphill. Science, Cerca con Google

256(5063):1539-1541, 1992. Cerca con Google

[98] H. Bouasse. Capillarité: phénomènes superficiels. Librairie Delagrave, 1924. Cerca con Google

[99] F. Brochard. Motion of droplets on solid-surfaces induced by chemical or thermal-gradients. Cerca con Google

Langmuir, 5(2):432-438, 1989. Cerca con Google

[100] D. K. N. Sinz and A. A. Darhuber. Self-propelling surfactant droplets in chemically-confined Cerca con Google

microfluidics - cargo transport, drop-splitting and trajectory control. Lab on a Chip, 12(4):705- Cerca con Google

707, 2012. Cerca con Google

[101] S. Suzuki, A. Nakajima, K. Tanaka, M. Sakai, A. Hashimoto, N. Yoshida, Y. Kameshima, and Cerca con Google

K. Okada. Sliding behavior of water droplets on line-patterned hydrophobic surfaces. Applied Cerca con Google

Surface Science, 254(6):1797-1805, 2008. Cerca con Google

[102] A. Nakajima. Control of static and dynamic hydrophobicity of solid surface and its application. Cerca con Google

Journal of the Ceramic Society of Japan, 119(1394):711-719, 2011. Cerca con Google

[103] N. J. Cira, A. Benusiglio, and M. Prakash. Vapour-mediated sensing and motility in twocomponent droplets. Nature, 519(7544):446, 2015. Cerca con Google

[104] R. Shamai, D. Andelman, B. Berge, and R. Hayes. Water, electricity, and between... on electrowetting and its applications. Soft Matter, 4:38-45, 2008. Cerca con Google

[105] S. C. C. Shih, H. Yang, M. J. Jebrail, R. Fobel, N. McIntosh, O. Y. Al-Dirbashi, P. Chakraborty, and A. R. Wheeler. Dried blood spot analysis by digital microuidics coupled to nanoelectrospray ionization mass spectrometry. analytical chemistry, 84:3731-3738, 2012. Cerca con Google

[106] N. A. Mousa, M. J. Jebrail, H. Yang, M. Abdelgawad, P. Metalnikov, J. Chen, A. R. Wheeler, Cerca con Google

and R. F. Casper. Droplet-scale estrogen assays in breast tissue, blood, and serum. Science Cerca con Google

Translational Medicine, 1(1):1ra2, 2009. Cerca con Google

[107] S. Srigunapalan, I. A. Eydelnant, C. A. Simmons, and A. R. Wheeler. A digital microfluidic Cerca con Google

platform for primary cell culture and analysis. Lab Chip, 12:369-375, 2012. Cerca con Google

[108] I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler. A microfluidic platform for complete mammalian cell culture. Lab on a Chip, 10(12):1536-1542, 2010. Cerca con Google

[109] J. V. I. Timonen, M. Latikka, L. Leibler, R. H. A. Ras, and O. Ikkala. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science, 341(6143):253-257, 2013. Cerca con Google

[110] C.-Y. Chen and Z. Y. Cheng. An experimental study on rosensweig instability of a ferrofluid Cerca con Google

droplet. Physics of Fluids, 20(5), 2008. Cerca con Google

[111] K. S. Khalil, S. R. Mahmoudi, N. Abu-dheir, and K. K. Varanasi. Active surfaces: Ferrofluidimpregnated surfaces for active manipulation of droplets. Applied Physics Letters, 105(4), 2014. Cerca con Google

[112] X. Noblin, R. Kofman, and F. Celestini. Ratchetlike motion of a shaken drop. Physical review Cerca con Google

letters, 102(19):194504, 2009. Cerca con Google

[113] P. Brunet, J. Eggers, and R. D. Deegan. Vibration-induced climbing of drops. Phys. Rev. Lett., 99:144501, Oct 2007. Cerca con Google

[114] P. Brunet, M. Baudoin, O. Bou Matar, and F. Zoueshtiagh. Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A quantitative study. Physical Review E, Cerca con Google

81(3), 2010. Cerca con Google

[115] M. Baudoin, P. Brunet, O. B. Matar, and E. Herth. Low power sessile droplets actuation via Cerca con Google

modulated surface acoustic waves. Applied Physics Letters, 100(15), 2012. Cerca con Google

[116] X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, Cerca con Google

F. Costanzo, et al. Surface acoustic wave microfluidics. Lab on a Chip, 13(18):3626-3649, 2013. Cerca con Google

[117] L. Y. Yeo and J. R. Friend. Surface acoustic wave microfluidics. Annual Review of Fluid Cerca con Google

Mechanics, 46:379-406, 2014. Cerca con Google

[118] S. Daniel and M. K. Chaudhury. Rectified motion of liquid drops on gradient surfaces induced Cerca con Google

by vibration. Langmuir, 18(9):3404-3407, 2002. Cerca con Google

[119] S. Daniel, M. K. Chaudhury, and P.-G. De Gennes. Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir, 21(9):4240-4248, 2005. Cerca con Google

[120] R. W. Style, R. Boltyanskiy, Y. Che, J. S.Wettlaufer, L. A. Wilen, and E. R. Dufresne. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Physical review letters, 110(6):066103, 2013. Cerca con Google

[121] R. W. Style and E. R. Dufresne. Static wetting on deformable substrates, from liquids to soft Cerca con Google

solids. Soft Matter, 8(27):7177-7184, 2012. Cerca con Google

[122] A. B. D. Cassie and S. Baxter. Wettability of porous surfaces. Transactions of the Faraday Cerca con Google

Society, 40:546-551, 1944. Cerca con Google

[123] R. N. Wenzel. Resistance of solid surfaces to wetting by water. Industrial & Engineering Cerca con Google

Chemistry, 28(8):988-994, 1936. Cerca con Google

[124] J. Bico, C. Marzolin, and D. Quéré. Pearl drops. EPL (Europhysics Letters), 47(2):220, 1999. Cerca con Google

[125] J. Bico, C. Tordeux, and D. Quéré. Rough wetting. EPL (Europhysics Letters), 55(2):214, 2001. Cerca con Google

[126] P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media, 2004. Cerca con Google

[127] D. Quéré. Surface chemistry: Fakir droplets. Nature Materials, 1:14-15, September 2002. Cerca con Google

[128] E. Bormashenko G. Whyman and T. Stein. The rigorous derivation of Young, Cassie-Baxter Cerca con Google

and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Cerca con Google

Physics Letters, 450(4-6):355 - 359, 2008. Cerca con Google

[129] A. I. ElSherbini and A. M. Jacobi. Liquid drops on vertical and inclined surfaces: I. an experimental study of drop geometry. Journal of Colloid and Interface Science, 273(2):556 - 565, Cerca con Google

2004. Cerca con Google

[130] C.G.L. Furmidge. Studies at phase interfaces. i. the sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of Colloid Science, 17(4):309 - 324, 1962. Cerca con Google

[131] C. W. Extrand and Y. Kumagai. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force. Journal of colloid and interface science, 170(2):515-521, 1995. Cerca con Google

[132] T. Podgorski, J. M. Flesselles, and L. Limat. Corners, cusps, and pearls in running drops. Cerca con Google

Physical Review Letters, 87(3):036102, June 2001. Cerca con Google

[133] N. Le Grand, A. Daerr, and L. Limat. Shape and motion of drops sliding down an inclined Cerca con Google

plane. Journal of Fluid Mechanics, 541:293-315, 2005. Cerca con Google

[134] S. Suzuki, A. Nakajima, M. Sakai, J. Song, N. Yoshida, Y. Kameshima, and K. Okada. Sliding acceleration of water droplets on a surface coated with fluoroalkylsilane and octadecyltrimethoxysilane. Surface Science, 600(10):2214 - 2219, 2006. Cerca con Google

[135] S. R. Annapragada, J. Y. Murthy, and S. V. Garimella. Prediction of droplet dynamics on an Cerca con Google

incline. International Journal of Heat and Mass Transfer, 55(5-6):1466 - 1474, 2012. Cerca con Google

[136] Y. Y. Koh, Y. C. Lee, P. H. Gaskell, P. K. Jimack, and H. M. Thompson. Droplet migration: Cerca con Google

Quantitative comparisons with experiment. The European Physical Journal - Special Topics, Cerca con Google

166:117-120, 2009. Cerca con Google

[137] A. K. Das and P. K. Das. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics. Langmuir, 25(19):11459-11466, 2009. Cerca con Google

[138] S. Suzuki, A. Nakajima, M. Sakai, Y. Sakurada, N. Yoshida, A. Hashimoto, Y. Kameshima, Cerca con Google

and K. Okada. Slipping and rolling ratio of sliding acceleration for a water droplet sliding on Cerca con Google

fluoroalkylsilane coatings of different roughness. Chemistry Letters, 37(1):58-59, 2008. Cerca con Google

[139] M. Sakai, J. Song, N. Yoshida, S. Suzuki, Y. Kameshima, Yoshikazu, and A. Nakajima. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Cerca con Google

Langmuir, 22(11):4906-4909, 2006. Cerca con Google

[140] T. Furuta, A. Nakajima, M. Sakai, T. Isobe, Y. Kameshima, and K. Okada. Evaporation and Cerca con Google

sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness. Langmuir, Cerca con Google

25(10):5417-5420, 2009. Cerca con Google

[141] L. Gao and T. J. McCarthy. Contact angle hysteresis explained. Langmuir, 22(14):6234-6237, Cerca con Google

2006. Cerca con Google

[142] G. McHale, N. J. Shirtcliffe, and M. I. Newton. Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir, 20(23):10146-10149, 2004. Cerca con Google

[143] B. He, J. Lee, and N. A. Patankar. Contact angle hysteresis on rough hydrophobic surfaces. Cerca con Google

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248(1 - 3):101 - 104, 2004. Cerca con Google

[144] P. Hao, C. Lv, Z. Yao, and F. He. Sliding behavior of water droplet on superhydrophobic surface. EPL (Europhysics Letters), 90(6):66003, 2010. Cerca con Google

[145] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe. Effects of the surface Cerca con Google

roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, Cerca con Google

16(13):5754-5760, 2000. Cerca con Google

[146] M. Sakai, H. Kono, A. Nakajima, X. Zhang, H. Sakai, M. Abe, and A. Fujishima. Sliding of Cerca con Google

Water Droplets on the Superhydrophobic Surface with ZnO Nanorods. Part of the "Langmuir Cerca con Google

25th Year: Wetting and superhydrophobicity special issue". Langmuir, 25(24):14182-14186, Cerca con Google

2009. Cerca con Google

[147] D. Quéré. Non-sticking drops. Reports on Progress in Physics, 68(11):2495, 2005. Cerca con Google

[148] M. Reyssat, D. Richard, C. Clanet, and D. Quéré. Dynamical superhydrophobicity. Faraday Cerca con Google

discussions, 146:19-33, 2010. Cerca con Google

[149] E. Reyssat, F. Chevy, A.-L. Biance, L. Petitjean, and D. Quéré. Shape and instability of freefalling liquid globules. EPL (Europhysics Letters), 80(3):34005, 2007. Cerca con Google

[150] C. Huh and L. E. Scriven. Hydrodynamic model of steady movement of a solid/liquid/fluid Cerca con Google

contact line. Journal of Colloid and Interface Science, 35(1):85-101, 1971. Cerca con Google

[151] L. Mahadevan and Y. Pomeau. Rolling droplets. Physics of Fluids, 11:2449-2453, September Cerca con Google

1999. Cerca con Google

[152] H. Kim, H. J. Lee, and B. H. Kang. Sliding of liquid drops down an inclined solid surface. Cerca con Google

Journal of Colloid and Interface Science, 247(2):372 - 380, 2002. Cerca con Google

[153] M. R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice boltzmann simulation of nonideal Cerca con Google

fluids. Physical Review Letters, 75(5):830, 1995. Cerca con Google

[154] A. J. Briant, A. J. Wagner, and J. M. Yeomans. Lattice boltzmann simulations of contact line Cerca con Google

motion. i. liquid-gas systems. Physical Review E, 69(3), 2004. Cerca con Google

[155] A. J. Briant and J. M. Yeomans. Lattice boltzmann simulations of contact line motion. ii. Binary fluids. Physical Review E, 69(3), 2004. Cerca con Google

[156] X. W. Shan and H. D. Chen. Lattice boltzmann model for simulating flows with multiple phases Cerca con Google

and components. Physical Review E, 47(3):1815-1819, 1993. Cerca con Google

[157] C. Semprebon, G. Mistura, E. Orlandini, G. Bissacco, A. Segato, and J. M. Yeomans. Anisotropy of water droplets on single rectangular posts. Langmuir, 25(10):5619-5625, 2009. Cerca con Google

[158] C. Semprebon and M. Brinkmann. On the onset of motion of sliding drops. Soft matter, Cerca con Google

10(18):3325-3334, 2014. Cerca con Google

[159] T. Qian, C. Wu, S. L. Lei, X.-P. Wang, and P. Sheng. Modeling and simulations for molecular Cerca con Google

scale hydrodynamics of the moving contact line in immiscible two-phase flows. Journal of Cerca con Google

Physics-Condensed Matter, 21(46), 2009. Cerca con Google

[160] A. Giacomello, S. Meloni, M. Chinappi, and C. M. Casciola. Cassie-baxter and wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir, 28(29):10764-10772, 2012. Cerca con Google

[161] L. W. Schwartz and R. R. Eley. Simulation of droplet motion on low-energy and heterogeneous surfaces. Journal of colloid and interface science, 202(1):173-188, 1998. Cerca con Google

[162] J. H. Snoeijer, N. Le Grand-Piteira, L. Limat, H. A. Stone, and J Eggers. Cornered drops and Cerca con Google

rivulets. Physics of Fluids, 19(4):042104, 2007. Cerca con Google

[163] D. Herde, U. Thiele, S. Herminghaus, and M. Brinkmann. Driven large contact angle droplets Cerca con Google

on chemically heterogeneous substrates. EPL (Europhysics Letters), 100(1):16002, 2012. Cerca con Google

[164] F. Magaletti, F. Picano, M. Chinappi, L. Marino, and C. M. Casciola. The sharp-interface Cerca con Google

limit of the cahn-hilliard/navier-stokes model for binary fluids. Journal of Fluid Mechanics, Cerca con Google

714:95-126, 2013. Cerca con Google

[165] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid Cerca con Google

mechanics. Annual review of fluid mechanics, 30(1):139-165, 1998. Cerca con Google

[166] K. N. Premnath and J. Abraham. Three-dimensional multi-relaxation time (mrt) lattice Boltzmann models for multiphase flow. Journal of Computational Physics, 224(2):539-559, 2007. Cerca con Google

[167] M. Sbragaglia, L. Biferale, G. Amati, S. Varagnolo, D. Ferraro, G. Mistura, and M. Pierno. Cerca con Google

Sliding drops across alternating hydrophobic and hydrophilic stripes. Physical Review E, 89(1), Cerca con Google

2014. Cerca con Google

[168] X. Shan. Pressure tensor calculation in a class of nonideal gas lattice boltzmann models. Physical Review E, 77(6):066702, 2008. Cerca con Google

[169] L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, and F. Toschi. Unified framework for a side-by-side comparison of different multicomponent algorithms: lattice boltzmann vs. phase field model. Journal of Computational Physics, 234:263-279, 2013. Cerca con Google

[170] K. A. Brakke. The Surface Evolver and the Stability of Liquid Surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 354(1715):2143-2157, 1996. Cerca con Google

[171] M. Musterd, V. Van Steijn, C. R. Kleijn, and M. T. Kreutzer. Droplets on inclined plates: Cerca con Google

Local and global hysteresis of pinned capillary surfaces. Physical Review Letters, 113(6):066104, Cerca con Google

2014. Cerca con Google

[172] T. D. Blake, A. Clarke, J. DeConinck, and M. J. DeRuijter. Contact angle relaxation during Cerca con Google

droplet spreading: Comparison between molecular kinetic theory and molecular dynamics. Cerca con Google

Langmuir, 13(7):2164-2166, 1997. Cerca con Google

[173] O. V. Voinov. Hydrodynamics of wetting. Fluid Dynamics, 11(5):714-721, 1976. Cerca con Google

[174] R. G. Cox. The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants. Cerca con Google

Journal of Fluid Mechanics, 168(-1):195, 1986. Cerca con Google

[175] D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics, Cerca con Google

402:57-88, 2000. Cerca con Google

[176] A. Carlson, G. Bellani, and G. Amberg. Contact line dissipation in short-time dynamic wetting. Cerca con Google

EPL (Europhysics Letters), 97(4):44004, 2012. Cerca con Google

[177] E. Chiarello. Analisi gocce 2010: Manuale utente, 2010. Cerca con Google

[178] National Instruments. NI Vision for LabVIEW VI Reference Help, 2007. Cerca con Google

[179] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii. Super-water-repellent fractal surfaces. Langmuir, 12(9):2125-2127, 1996. Cerca con Google

[180] M. H. Sun, C. X. Luo, L. P. Xu, H. Ji, O. Y. Qi, D. P. Yu, and Y. Chen. Artificial lotus leaf by Cerca con Google

nanocasting. Langmuir, 21(19):8978-8981, 2005. Cerca con Google

[181] A. Pozzato, S. Dal Zilio, L. Bruschi, G. Mistura, and M. Tormen. Fabrication of substrates Cerca con Google

with extended nanostructured surface areas for wetting studies. Microelectronic Engineering, Cerca con Google

86(4):1329-1332, 2009. Cerca con Google

[182] W. Xu, R. Leeladhar, Y. T. Kang, and C.-H. Choi. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Langmuir, 29(20):6032-6041, 2013. Cerca con Google

[183] C. Dorrer and J. Ruhe. Advancing and receding motion of droplets on ultrahydrophobic post Cerca con Google

surfaces. Langmuir, 22(18):7652-7657, 2006. Cerca con Google

[184] A. Gauthier, M. Rivetti, J. Teisseire, and E. Barthel. Role of kinks in the dynamics of contact Cerca con Google

lines receding on superhydrophobic surfaces. Physical review letters, 110(4):046101, 2013. Cerca con Google

[185] H. S. Lim, J. T. Han, D. Kwak, M. H. Jin, and K. Cho. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. Journal of the American Chemical Cerca con Google

Society, 128(45):14458-14459, 2006. Cerca con Google

[186] D. Dattilo, L. Armelao, G. Fois, G. Mistura, and M. Maggini. Wetting properties of at and Cerca con Google

porous silicon surfaces coated with a spiropyran. Langmuir, 23(26):12945-12950, 2007. Cerca con Google

[187] T. L. Sun, H. A. Liu, W. L. Song, X. Wang, L. Jiang, L. Li, and D. B. Zhu. Responsive aligned Cerca con Google

carbon nanotubes. Angewandte Chemie-International Edition, 43(35):4663-4666, 2004. Cerca con Google

[188] A. Podestà, G. Bongiorno, P. E. Scopelliti, S. Bovio, P. Milani, C. Semprebon, and G. Mistura. Cluster-assembled nanostructured titanium oxide films with tailored wettability. The Journal of Physical Chemistry C, 113(42):18264-18269, 2009. Cerca con Google

[189] X. Yu, Z. Q. Wang, Y. G. Jiang, F. Shi, and X. Zhang. Reversible ph-responsive surface: From superhydrophobicity to superhydrophilicity. Advanced Materials, 17(10):1289, 2005. Cerca con Google

[190] F. Xia, L. Feng, S. T. Wang, T. L. Sun, W. L. Song, W. H. Jiang, and L. Jiang. Dualresponsive surfaces that switch superhydrophilicity and superhydrophobicity. Advanced Materials, 18(4):432, 2006. Cerca con Google

[191] X. Wang and R. A. Weiss. A facile method for preparing sticky, hydrophobic polymer surfaces. Langmuir, 28(6):3298-3305, 2012. Cerca con Google

[192] J. B. K. Law, A. M. H. Ng, A. Y. He, and H. Y. Low. Bioinspired ultrahigh water pinning Cerca con Google

nanostructures. Langmuir, 30(1):325-331, 2014. Cerca con Google

[193] M. J. Liu and L. Jiang. Switchable adhesion on liquid/solid interfaces. Advanced Functional Cerca con Google

Materials, 20(21):3753-3764, 2010. Cerca con Google

[194] Xinjie Liu, Qian Ye, Bo Yu, Yongmin Liang, Weimin Liu, and Feng Zhou. Switching water Cerca con Google

droplet adhesion using responsive polymer brushes. Langmuir, 26(14):12377-12382, 2010. Cerca con Google

[195] T. Pisuchpen, N. Chaim-ngoen, N. Intasanta, P. Supaphol, and V. P. Hoven. Tuning hydrophobicity and water adhesion by electrospinning and silanization. Langmuir, 27(7):3654-3661, 2011. Cerca con Google

[196] M. K. Dawood, H. Zheng, T. H. Liew, K. C. Leong, Y. L. Foo, R. Rajagopalan, S. A. Khan, Cerca con Google

and W. K. Choi. Mimicking both petal and lotus effects on a single silicon substrate by tuning Cerca con Google

the wettability of nanostructured surfaces. Langmuir, 27(7):4126-4133, 2011. Cerca con Google

[197] W. Lee, B. G. Park, D. H. Kim, D. J. Ahn, Y. Park, S. H. Lee, and K. B. Lee. Nanostructuredependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: From highly adhesive to self-cleanable. Langmuir, 26(3):1412-1415, 2010. Cerca con Google

[198] C. F. Wang, T. F. Wang, C. S. Liao, S. W. Kuo, and H. C. Lin. Using pencil drawing to pattern Cerca con Google

robust superhydrophobic surfaces to control the mobility of water droplets. Journal of Physical Cerca con Google

Chemistry C, 115(33):16495-16500, 2011. Cerca con Google

[199] D. Wu, S. Z. Wu, Q. D. Chen, Y. L. Zhang, J. Yao, X. Yao, L. G. Niu, J. N. Wang, L. Jiang, Cerca con Google

and H. B. Sun. Curvature-driven reversible in situ switching between pinned and roll-down Cerca con Google

superhydrophobic states for water droplet transportation. Advanced Materials, 23(4):545, 2011. Cerca con Google

[200] Y. K. Lai, F. Pan, C. Xu, H. Fuchs, and L. F. Chi. In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Advanced Materials, 25(12):1682-1686, 2013. Cerca con Google

[201] J. L. Yong, F. Chen, Q. Yang, D. S. Zhang, H. Bian, G. Q. Du, J. H. Si, X. W. Meng, and X. Hou. Controllable adhesive superhydrophobic surfaces based on pdms microwell arrays. Langmuir, 29(10):3274-3279, 2013. Cerca con Google

[202] S. Choo, H.-J. Choi, and H. Lee. Replication of rose-petal surface structure using uv-nanoimprint lithography. Materials Letters, 121:170-173, 2014. Cerca con Google

[203] M. M. Stanton, R. E. Ducker, J. C. MacDonald, C. R. Lambert, and W. G. McGimpsey. Superhydrophobic, highly adhesive, polydimethylsiloxane (pdms) surfaces. Journal of Colloid and Cerca con Google

Interface Science, 367:502-508, 2012. Cerca con Google

[204] H. Lee and B. Bhushan. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Journal of Colloid and Interface Science, 372:231-238, 2012. Cerca con Google

[205] L. Bruschi, G. Fois, G. Mistura, K. Sklarek, R. Hillebrand, M. Steinhart, and U. Gosele. Adsorption hysteresis in self-ordered nanoporous alumina. Langmuir, 24(19):10936-10941, 2008. Cerca con Google

[206] W. Lee and S.-J. Park. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chemical reviews, 114(15):7487-7556, 2014. Cerca con Google

[207] M. Wang, X. Ye, and J. Feng. Fabrication of length-controlled polymer nanopillars using poly Cerca con Google

(dimethylsiloxane) filled anodised aluminium oxide templates. Micro & Nano Letters, 8(10):713- Cerca con Google

717, 2013. Cerca con Google

[208] Y. H. Yeh, K. H. Cho, and L. J. Chen. Effect of softness of polydimethylsiloxane on the Cerca con Google

hydrophobicity of pillar-like patterned surfaces. Soft Matter, 8(4):1079-1086, 2012. Cerca con Google

[209] K. M. Choi and J. A. Rogers. A photocurable poly (dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. Journal of the American Chemical Cerca con Google

Society, 125(14):4060-4061, 2003. Cerca con Google

[210] C. Brun, P. Delobelle, M. Fromm, F. Berger, A. Chambaudet, and F. Jaffiol. Mechanical Cerca con Google

properties determined by nanoindentation tests of polypropylene modified by he+ particle implantation. Materials Science and Engineering: A, 315(1):63-69, 2001. Cerca con Google

[211] M. J. Madou. Fundamentals of microfabrication: the science of miniaturization. CRC Press, 2 Cerca con Google

edition, March 2002. Cerca con Google

[212] H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima. Fabrication of a Cerca con Google

nanostructured diamond honeycomb film. Advanced Materials, 12(6):444-447, 2000. Cerca con Google

[213] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides. Improved pattern Cerca con Google

transfer in soft lithography using composite stamps. Langmuir, 18(13):5314-5320, 2002. Cerca con Google

[214] J. Lee, M. J. Kim, and H. H. Lee. Surface modification of poly (dimethylsiloxane) for retarding Cerca con Google

swelling in organic solvents. Langmuir, 22(5):2090-2095, 2006. Cerca con Google

[215] A. T. Paxson and K. K. Varanasi. Self-similarity of contact line depinning from textured surfaces. Nature communications, 4:1492, 2013. Cerca con Google

[216] C. F. Wang and T. W. Hsueh. Patterning superhydrophobic surfaces to realize anisotropic Cerca con Google

wettability and to transport micro-liter-sized droplets to any type of surface. Journal of Physical Cerca con Google

Chemistry C, 118(23):12399-12404, 2014. Cerca con Google

[217] Y. Chen, B. He, J. H. Lee, and N. A. Patankar. Anisotropy in the wetting of rough surfaces. Cerca con Google

Journal of Colloid and Interface Science, 281(2):458-464, 2005. Cerca con Google

[218] E. Bormashenko, T. Stein, R. Pogreb, and D. Aurbach. "petal effect" on surfaces based on Cerca con Google

lycopodium: High-stick surfaces demonstrating high apparent contact angles. Journal of Physical Cerca con Google

Chemistry C, 113(14):5568-5572, 2009. Cerca con Google

[219] J. Peng, P. Yu, S. Zeng, X. Liu, J. Chen, and W. Xu. Application of click chemistry in the Cerca con Google

fabrication of cactus-like hierarchical particulates for sticky superhydrophobic surfaces. Journal Cerca con Google

of Physical Chemistry C, 114(13):5926-5931, 2010. Cerca con Google

[220] A. Lafuma and D. Quéré. Superhydrophobic states. Nature Materials, 2(7):457-460, 2003. Cerca con Google

[221] R. E. Johnson and R. H. Dettre. Contact angle hysteresis. Advances in Chemistry Series Cerca con Google

(Contact Angle, Wettability, and Adhesion), 43:112, 1964. Cerca con Google

[222] C.-H. Xue and J.-Z. Ma. Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 1(13):4146-4161, 2013. Cerca con Google

[223] L. M. Hocking. Sliding and spreading of thin two-dimensional drops. The Quarterly Journal of Cerca con Google

Mechanics and Applied Mathematics, 34(1):37-55, 1981. Cerca con Google

[224] E. B. Dussan V. and R. T.-P. Chow. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid mechanics, 137:1-29, 1983. Cerca con Google

[225] V. E. B. Dussan. On the ability of drops or bubbles to stick to non-horizontal surfaces of Cerca con Google

solids. part 2. small drops or bubbles having contact angles of arbitrary size. Journal of Fluid Cerca con Google

Mechanics, 151(FEB):1-20, 1985. Cerca con Google

[226] H. Lamb. Hydrodynamics. Cambridge university press, 1932. Cerca con Google

[227] C. A. Schlecht and J. A. Maurer. Functionalization of glass substrates: mechanistic insights into the surface reaction of trialkoxysilanes. Rsc Advances, 1(8):1446-1448, 2011. Cerca con Google

[228] K. R. Finnie, R. Haasch, and R. G. Nuzzo. Formation and patterning of self-assembled monolayers derived from long-chain organosilicon amphiphiles and their use as templates in materials microfabrication. Langmuir, 16(17):6968-6976, 2000. Cerca con Google

[229] H. Tu, C. E. Heitzman, and P. V. Braun. Patterned poly(n-isopropylacrylamide) brushes on Cerca con Google

silica surfaces by microcontact printing followed by surface-initiated polymerization. Langmuir, Cerca con Google

20(19):8313-8320, 2004. Cerca con Google

[230] A. Nakajima, Y. Nakagawa, T. Furuta, M. Sakai, T. Isobe, and S. Matsushita. Sliding of Cerca con Google

water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Cerca con Google

Langmuir, 29(29):9269-9275, 2013. Cerca con Google

[231] Y. Xia, M. Mrksich, E. Kim, and G. M. Whitesides. Microcontact printing of octadecylsiloxane Cerca con Google

on the surface of silicon dioxide and its application in microfabrication. Journal of the American Cerca con Google

Chemical Society, 117(37):9576-9577, 1995. Cerca con Google

[232] Y. Xia and G. M. Whitesides. Soft lithography. Angewandte Chemie International Edition, Cerca con Google

37(5):550-575, 1998. Cerca con Google

[233] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides. Microcontact printing Cerca con Google

of self-assembled monolayers: applications in microfabrication. Nanotechnology, 7(4):452, 1996. Cerca con Google

[234] M. Winkelmann, J. Gold, R. Hauert, B. Kasemo, N. D. Spencer, D. M. Brunette, and M. Textor. Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein-and cell-surface interactions i: Microfabrication and surface characterization. Biomaterials, 24(7):1133-1145, 2003. Cerca con Google

[235] K. Lee, F. Pan, G. T. Carroll, N. J. Turro, and J. T. Koberstein. Photolithographic technique Cerca con Google

for direct photochemical modification and chemical micropatterning of surfaces. Langmuir, Cerca con Google

20(5):1812-1818, 2004. Cerca con Google

[236] M. Morita, T. Koga, H. Otsuka, and A. Takahara. Macroscopic-wetting anisotropy on the Cerca con Google

line-patterned surface of uoroalkylsilane monolayers. Langmuir, 21(3):911-918, 2005. Cerca con Google

[237] E. Farm, M. Kemell, M. Ritala, and M. Leskela. Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers. Thin Cerca con Google

Solid Films, 517(2):972 - 975, 2008. Cerca con Google

[238] T. Burgin, V. Choong, and G. Maracas. Large area submicrometer contact printing using a Cerca con Google

contact aligner. Langmuir, 16(12):5371-5375, 2000. Cerca con Google

[239] N. L. Jeon, K. Finnie, K. Branshaw, and R. G. Nuzzo. Structure and stability of patterned selfassembled films of octadecyltrichlorosilane formed by contact printing. Langmuir, 13(13):3382- Cerca con Google

3391, 1997. Cerca con Google

[240] J. Kim, B. Lee, H. Kang, J. Kim, G. Chae, I. Kang, and I. Chung. Self-assembly of ag nanopowder on ots-patterned glass. Applied Surface Science, 255(23):9386 - 9390, 2009. Cerca con Google

[241] L. Lu, L. Kam, M. Hasenbein, K. Nyalakonda, R. Bizios, A. Gopferich, J. F. Young, and A. G. Mikos. Retinal pigment epithelial cell function on substrates with chemically micropatterned Cerca con Google

surfaces. Biomaterials, 20(23 - 24):2351 - 2361, 1999. Cerca con Google

[242] G. Arslan, M. Ozmen, I. Hatay, I. H. Gubbuk, and M. Ersoz. Microcontact printing of an alkylsilane monolayer on the surface of glass. TURKISH JOURNAL OF CHEMISTRY, 32(3):313-321, 2008. Cerca con Google

[243] Y. Zhou, R. Valiokas, and B. Liedberg. Structural characterization of microcontact printed Cerca con Google

arrays of hexa(ethylene glycol)-terminated alkanethiols on gold. Langmuir, 20(15):6206-6215, Cerca con Google

2004. Cerca con Google

[244] H. Q. Luo, H. Shiku, A. Kumagai, Y. Takahashi, T. Yasukawa, and T. Matsue. Microcontact Cerca con Google

printed diaphorase monolayer on glass characterized by atomic force microscopy and scanning Cerca con Google

electrochemical microscopy. Electrochemistry Communications, 9(11):2703 - 2708, 2007. Cerca con Google

[245] C. W. Extrand. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir, 19(9):3793-3796, 2003. Cerca con Google

[246] J. Buehrle, S. Herminghaus, and F. Mugele. Impact of line tension on the equilibrium shape of liquid droplets on patterned substrates. Langmuir, 18(25):9771-9777, 2002. Cerca con Google

[247] H. P. Jansen, K. Sotthewes, C. Ganser, C. Teichert, H. J. W. Zandvliet, and E. S. Kooij. Cerca con Google

Tuning kinetics to control droplet shapes on chemically striped patterned surfaces. Langmuir, Cerca con Google

28(37):13137-13142, 2012. Cerca con Google

[248] H. P. Jansen, O. Bliznyuk, E. S. Kooij, B. Poelsema, and H. J. W. Zandvliet. Simulating Cerca con Google

anisotropic droplet shapes on chemically striped patterned surfaces. Langmuir, 28(1):499-505, Cerca con Google

2012. Cerca con Google

[249] J. Léopoldès and D. G. Bucknall. Droplet spreading on microstriped surfaces. The Journal of Cerca con Google

Physical Chemistry B, 109(18):8973-8977, 2005. Cerca con Google

[250] A. Moosavi, M. Rauscher, and S. Dietrich. Size dependent motion of nanodroplets on chemical steps. Journal of Chemical Physics, 129(4), 2008. Cerca con Google

[251] M. Rauscher and S. Dietrich. Nano-droplets on structured substrates. Soft Matter, 5(16):2997- 3001, 2009. Cerca con Google

[252] U. Thiele and E. Knobloch. Driven drops on heterogeneous substrates: Onset of sliding motion. Physical Review Letters, 97(20), 2006. Cerca con Google

[253] U. Thiele and E. Knobloch. On the depinning of a driven drop on a heterogeneous substrate. Cerca con Google

New Journal of Physics, 8, 2006. Cerca con Google

[254] H. Kusumaatmaja and J. M. Yeomans. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir, 23(11):6019-6032, 2007. Cerca con Google

[255] H. Kusumaatmaja, J. Léopoldés, A. Dupuis, and J. M. Yeomans. Drop dynamics on chemically patterned surfaces. EPL (Europhysics Letters), 73(5):740, 2006. Cerca con Google

[256] X.-P. Wang, T. Qian, and P. Sheng. Moving contact line on chemically patterned surfaces. Cerca con Google

Journal of Fluid Mechanics, 605:59-78, 2008. Cerca con Google

[257] Ph. Beltrame, P. Haenggi, and U. Thiele. Depinning of three-dimensional drops from wettability defects. Epl, 86(2), 2009. Cerca con Google

[258] M. Grison. Fotolitografia mediante resist SU-8. Bachelor thesis, Università degli Studi di Padova, 2009/2010. Cerca con Google

[259] S. Begolo. Fabrication of Microfluidic devices resistant to organic solvents. Master thesis, Cerca con Google

Università degli Studi di Padova, 2006/2007. Cerca con Google

[260] J. N. Lee, C. Park, and G. M. Whitesides. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 75(23):6544-6554, 2003. Cerca con Google

[261] G. P. López, H. A. Biebuyck, C. D. Frisbie, and G. M. Whitesides. Imaging of features on Cerca con Google

surfaces by condensation figures. Science, 260(5108):647-649, 1993. Cerca con Google

[262] H. J. Butt, B. Cappella, and M. Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1 - 6):1 - 152, 2005. Cerca con Google

[263] S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L. Biferale, and M. Sbragaglia. Stick-slip sliding of water drops on chemically heterogeneous surfaces. Physical Review Letters, 111(6), 2013. Cerca con Google

[264] S. Varagnolo, V. Schiocchet, D. Ferraro, M. Pierno, G. Mistura, M. Sbragaglia, A. Gupta, and Cerca con Google

G. Amati. Tuning drop motion by chemical patterning of surfaces. Langmuir, 30(9):2401-2409, Cerca con Google

2014. Cerca con Google

[265] I. S. Khattab, F. Bandarkar, M. A. A. Fakhree, and A. Jouyban. Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323k. Korean Journal of Chemical Engineering, 29(6):812-817, 2012. Cerca con Google

[266] R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, and S. Chibbaro. Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations. Journal of Chemical Physics, 131(10), 2009. Cerca con Google

[267] D. 't Mannetje, S. Ghosh, R. Lagraauw, S. Otten, A. Pit, C. Berendsen, J. Zeegers, D. van den Ende, and F. Mugele. Trapping of drops by wetting defects. Nature Communications, 5, April Cerca con Google

2014. Cerca con Google

[268] M. A. Nilsson and J. P. Rothstein. Using sharp transitions in contact angle hysteresis to move, deect, and sort droplets on a superhydrophobic surface. Physics of Fluids, 24(6):062001, 2012. Cerca con Google

[269] Glycerine Producers' Association. Physical Properties of Glycerine and Its Solutions. Glycerine Producers' Association, 1963. Cerca con Google

[270] C. Semprebon, P. Forsberg, C. Priest, and M. Brinkmann. Pinning and wicking in regular pillar arrays. Soft matter, 10(31):5739-5748, 2014. Cerca con Google

[271] R. G. Larson. The structure and rheology of complex fluids, volume 33. Oxford university press New York, 1999. Cerca con Google

[272] T. Iwao. Polymer solutions: An introduction to physical properties, 2002. Cerca con Google

[273] S. Rafai, D. Bonn, and A. Boudaoud. Spreading of non-newtonian fluids on hydrophilic surfaces. Journal of Fluid Mechanics, 513:77-85, 2004. Cerca con Google

[274] S. Rafai and D. Bonn. Spreading of non-newtonian fluids and surfactant solutions on solid Cerca con Google

surfaces. Physica a-Statistical Mechanics and Its Applications, 358(1):58-67, 2005. Cerca con Google

[275] P. T. Callaghan and A. M. Gil. Rheo-nmr of semidilute polyacrylamide in water. Macromolecules, 33(11):4116-4124, 2000. Cerca con Google

[276] P. J. Whitcomb and C. W. Macosko. Rheology of xanthan gum. Journal of Rheology, 22(2):493, 1978. Cerca con Google

[277] A. Helmreich, J. Vorwerk, R. Steger, M. Muller, and P. O. Brunn. Non-viscous effects in the Cerca con Google

flow of xanthan gum solutions through a packed-bed of spheres. Chemical Engineering Journal Cerca con Google

and the Biochemical Engineering Journal, 59(2):111-119, 1995. Cerca con Google

[278] M.A. Zirnsak, D.-V. Boger, and V. Tirtaatmadja. Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents. Journal of Rheology, 43:627, 1999. Cerca con Google

[279] D. Won and C. Kim. Alignment and aggregation of spherical particles in viscoelastic fluid undershear flow. Journal of non-newtonian fluid mechanics, 117(2):141-146, 2004. Cerca con Google

[280] J.R. Stokes, L. Macakova, A. Chojnicka-Paszun, C.G. DeKruif, H. Harmen, and H.J. De Jong. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions. Langmuir, 27:3474-3484, 2011. Cerca con Google

[281] F. Varela López, L. Pauchard, M. Rosen, and M. Rabaud. Non-newtonian effects on ribbing Cerca con Google

instability threshold. Journal of Non-Newtonian Fluid Mechanics, 103:123-139, 2002. Cerca con Google

[282] E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia. Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydrate Polymers, 82(4):1228-1235, 2010. Cerca con Google

[283] D. Bonn and J. Meunier. Viscoelastic free-boundary problems: Non-newtonian viscosity vs Cerca con Google

normal stress effects. Physical Review Letters, 79:2662-2665, 1997. Cerca con Google

[284] N. B. Wyatt and M. W. Liberatore. Rheology and viscosity scaling of the polyelectrolyte xanthan gum. Journal of Applied Polymer Science, 114(6):4076-4084, 2009. Cerca con Google

[285] H. W. Bewersdorff and R. P. Singh. Rheological and drag reduction characteristics of xanthan gum solutions. Rheologica Acta, 27(6):617-627, 1988. Cerca con Google

[286] P.E. Arratia, L.-A. Cramer, J.P. Gollub, and D. J. Durian. The effects of polymer molecular Cerca con Google

weight on filament thinning and drop breakup in microchannels. New J. Phys., 11:115006, 2009. Cerca con Google

[287] P.E. Arratia, J.P. Gollub, and D.J. Durian. Polymeric filament thinning and breakup in microchannels. Physical Review E, 77:036309, 2008. Cerca con Google

[288] B. Purnode and M.J. Crochet. Flows of polymer solutions through contractions. part 1: flows Cerca con Google

of polyacrylamide solutions through planar contractions. Journal of Non-Newtonian Fluid Me- Cerca con Google

chanics, 65:269-289, 1996. Cerca con Google

[289] A. Zell, S. Gier, S. Rafai, and C. Wagner. Is there a relationship between the elongational Cerca con Google

viscosity and the first normal stress difference in polymer solutions? Journal of Non-Newtonian Cerca con Google

Fluid Mechanics, 165(19-20):1265, 2010. Cerca con Google

[290] E. Rio, A. Daerr, B. Andreotti, and L. Limat. Boundary conditions in the vicinity of a dynamic Cerca con Google

contact line: Experimental investigation of viscous drops sliding down an inclined plane. Physical Cerca con Google

Review Letters, 94:024503, 2005. Cerca con Google

[291] P. Yue and J. J. Feng. Phase-field simulations of dynamic wetting of viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 189:8-13, 2012. Cerca con Google

[292] S. Gabbanelli, G. Drazer, and J. Koplik. Lattice boltzmann method for non-newtonian (powerlaw) fluids. Physical Review E, 72:046312, 2005. Cerca con Google

[293] A. Lindner, J. Vermant, and D. Bonn. How to obtain the elongational viscosity of dilute polymer solutions? Physica A, 319:125-133, 2003. Cerca con Google

[294] C. Wagner, Y. Amarouchene, D. Bonn, and J. Eggers. Droplet detachment and satellite bead Cerca con Google

formation in viscoelastic fluids. Physical Review Letters, 95:164504, 2005. Cerca con Google

[295] A. Gupta, M. Sbragaglia, and A. Scagliarini. Hybrid lattice boltzmann/finite difference simulations of viscoelastic multicomponent flows in confined geometries. Journal of Computational Cerca con Google

Physics, 291:177-197, 2015. Cerca con Google

[296] A. Gupta and M. Sbragaglia. Deformation and breakup of viscoelastic droplets in confined shear flow. Physical Review E, 90:023305, 2014. Cerca con Google

[297] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of polymeric liquids. J. Wiley & Sons, 1987. Cerca con Google

[298] M. Herrchen and H.C. Oettinger. A detailed comparison of various fene dumbell models. Journal of Non-Newtonian Fluid Mechanics, 68:17-42, 1997. Cerca con Google

[299] X. Noblin, A. Buguin, and F. Brochard-Wyart. Vibrated sessile drops: Transition between Cerca con Google

pinned and mobile contact line oscillations. The European Physical Journal E: Soft Matter and Cerca con Google

Biological Physics, 14(4):395-404, 2004. Cerca con Google

[300] F. Celestini and R. Kofman. Vibration of submillimeter-size supported droplets. Physical Review E, 73(4), 2006. Cerca con Google

[301] S. Mettu and M. K. Chaudhury. Motion of liquid drops on surfaces induced by asymmetric Cerca con Google

vibration: role of contact angle hysteresis. Langmuir, 27(16):10327-10333, 2011. Cerca con Google

[302] K. John and U. Thiele. Self-ratcheting stokes drops driven by oblique vibrations. Physical Cerca con Google

Review Letters, 104(10), 2010. Cerca con Google

[303] E. S. Benilov and J. Billingham. Drops climbing uphill on an oscillating substrate. Journal of Cerca con Google

Fluid Mechanics, 674:93-119, 2011. Cerca con Google

[304] E. S. Benilov. Thin three-dimensional drops on a slowly oscillating substrate. Physical Review E, 84(6), 2011. Cerca con Google

[305] N. Galvanetto. Studio preliminare del moto di una goccia indotto da vibrazioni del substrato. Cerca con Google

Bachelor thesis, Università degli Studi di Padova, 2011/2012. Cerca con Google

[306] D. Stefani. Moto di una goccia indotto da vibrazioni del substrato. Bachelor thesis, Università Cerca con Google

degli Studi di Padova, 2011/2012. Cerca con Google

[307] V. Chilese. Moto unidimensionale di una goccia indotto da vibrazioni del substrato. Bachelor Cerca con Google

thesis, Università degli Studi di Padova, 2012/2013. Cerca con Google

[308] T. Tóth, D. Ferraro, E. Chiarello, M. Pierno, G. Mistura, G. Bissacco, and C. Semprebon. Cerca con Google

Suspension of water droplets on individual pillars. Langmuir, 27(8):4742-4748, 2011. Cerca con Google

[309] P. Brunet, J. Eggers, and R. D. Deegan. Motion of a drop driven by substrate vibrations. The Cerca con Google

European Physical Journal - Special Topics, 166:11-14, 2009. Cerca con Google

[310] P. Sartori, D. Quagliati, S. Varagnolo, M Pierno, G. Mistura, F Magaletti, and C. M. Casciola. Cerca con Google

Drop motion induced by vertical vibrations. New Journal of Physics, 17(11):113017, 2015. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record